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Alice: Why do I keep having fever?

Vary your response depending on the situation: 
Case 1: If the fever follows a patterns such as ~, suspect ~. 
Case 2: If the user traveled to ~, identify ~.

Bot: Considering the two-day symptom cycle and recent travel to Africa, malaria may be the cause.
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Figure 1: Overview of our hybrid framework. Upon receiving a query, a remote LLM generates a
Chain-of-Thought (CoT) prompt and sub-queries (Stage 1) which are embedded locally (Stage 2), and
used for our encrypted vector search on a remote database (Stage 3). Retrieved records are decrypted
and provided with the CoT prompt as context to a local model to generate the final response (Stage 4).

Abstract

Large language models (LLMs) are increasingly used as personal agents, accessing1

sensitive user data such as calendars, emails, and medical records. Users currently2

face a trade-off: They can send private records—many of which are stored in remote3

databases—to powerful but untrusted LLM providers, increasing their exposure4

risk. Alternatively, they can run less powerful models locally on trusted devices.5

We bridge this gap: Our Socratic Chain-of-Thought Reasoning first sends a6

generic, non-private user query to a powerful, untrusted LLM, which generates7

a Chain-of-Thought (CoT) prompt and detailed sub-queries without accessing8

user data. Next, we embed these sub-queries and perform encrypted sub-second9

semantic search using our Homomorphically Encrypted Vector Database across10

one million entries of a single user’s private data. This represents a realistic scale11

of personal documents, emails, and records accumulated over years of digital12

activity. Finally, we feed the CoT prompt and the decrypted records to a local13

language model and generate the final response. On the LoCoMo long-context QA14

benchmark, our hybrid framework—combining GPT-4o with a local Llama-3.2-15

1B model—outperforms using GPT-4o alone by up to 7.1 percentage points. This16

demonstrates a first step toward systems where tasks are decomposed and split17

between untrusted strong LLMs and weak local ones, preserving user privacy.18
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1 Introduction19

Large language models (LLMs) are becoming the default backend for personal agents that manage20

emails, schedule meetings, and process health data [36, 29, 41]. These agents must integrate data21

from heterogeneous sources using retrieval-augmented generation (RAG) [25]. While forwarding22

user queries with retrieved data to powerful LLMs enhances performance, it introduces substantial23

privacy risks [50, 21]. Conversely, restricting operations to local devices significantly degrades24

performance [30].25

Problem: Users face a fundamental trade-off between privacy and utility. Powerful cloud LLMs offer26

superior reasoning but require exposing private data to untrusted providers. Local models preserve27

privacy but lack computational capacity for complex reasoning tasks.28

We propose a four-stage hybrid framework that partitions tasks between untrusted powerful LLMs29

and trusted lightweight local models (Figure 1). Our key insight is that many complex queries can be30

decomposed into: (1) abstract reasoning that doesn’t require private data, and (2) contextual retrieval31

and response generation that can be handled locally.32

Socratic Chain-of-Thought Reasoning enables challenging yet non-private queries to be offloaded to33

powerful external LLMs. When a user asks "Why do I keep having fever?", we send only this generic34

query to GPT-4o, which generates targeted sub-queries (e.g., "How often are symptoms?" "Recent35

travel?") and reasoning prompts without accessing private data. Homomorphically Encrypted36

Vector Database enables secure semantic search over encrypted records—the cloud provider executes37

searches without learning data content.38

Our framework operates in four stages: (1) Send generic user query to powerful LLM for chain-of-39

thought and sub-query generation, (2) Locally embed sub-queries for encrypted search, (3) Execute40

secure similarity search over encrypted million-scale database in <1 second, (4) Local model generates41

final response using CoT prompt and decrypted records.42

Results: On LoCoMo long-context QA, our hybrid approach with Llama-3.2-1B achieves F1=87.7,43

surpassing GPT-4o alone (80.6) by 7.1 percentage points and local-only baseline by 23.1 points.44

This counterintuitive improvement demonstrates the power of structured task decomposition. Our45

encrypted database achieves >99% accuracy with 5.8× storage overhead and sub-second latency on46

million-scale collections.47

Contributions: (1) First framework enabling privacy-preserving LLM interaction through task48

decomposition between untrusted and trusted models, (2) Novel Socratic Chain-of-Thought method49

that improves performance while preserving privacy, (3) Efficient homomorphically encrypted vector50

database with practical performance, (4) Demonstration that hybrid approaches can outperform51

monolithic powerful models.52

2 Background and Problem Formulation53

Large language models (LLMs) increasingly serve as personal assistants, processing sensitive user54

data such as calendars, emails, and medical records [49, 36]. Effective LLM-based personal assistants55

require two fundamental capabilities:56

(1) Contextual Reasoning: The model must establish clear criteria to accurately interpret user57

queries in context. For instance, recognizing a cyclic fever pattern recurring every two days in58

combination with recent travel to Africa strongly suggests malaria. Augmenting such contextual59

understanding into the reasoning process ensures precise and meaningful conclusions.60

(2) Contextual Data Retrieval: The model must determine which contextual data is necessary for61

comprehensive understanding. As illustrated in Figure 1, a user’s query such as "Why do I keep62

having fever?" might not provide enough context to retrieve all necessary records. The model must63

generate targeted sub-queries to collect comprehensive information, such as travel history that might64

reveal malaria risk factors [25].65

Privacy Problem Formulation: While powerful cloud-based LLMs offer superior reasoning capabil-66

ities, they require users to expose private data to untrusted providers [33]. Conversely, local models67

that preserve privacy lack the computational capacity for complex reasoning tasks. We consider a68

user with a non-private query whose answer depends on private records stored remotely (As shown in69
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Figure 1). The local device has limited computational resources insufficient for complex reasoning,70

while powerful cloud LLMs cannot be trusted with sensitive data [45].71

Threat Model: We protect against three adversaries: (1) the LLM provider who receives user72

queries, (2) the database provider storing encrypted records [5], and (3) external attackers who may73

compromise these services [19]. Even with standard encryption, providers typically hold decryption74

keys, enabling potential privacy breaches through insider threats or security compromises [7, 17].75

Privacy Goal: User data must remain encrypted outside the trusted local environment, with decryp-76

tion keys never leaving the user’s control. The system must enable complex reasoning and efficient77

retrieval while ensuring that untrusted components cannot access plaintext private data [14, 38].78

3 Privacy-Preserving Framework with Socratic Chain-of-Thought Reasoning79

Our framework separates computation into trusted and untrusted zones to balance privacy and80

performance (Figure 1). The trusted zone (left) hosts a lightweight LLM and embedding model with81

exclusive access to decryption keys. The untrusted zone (right) comprises cloud providers hosting:82

(1) a powerful LLM for abstract reasoning, and (2) an encrypted vector database using homomorphic83

encryption [14].84

3.1 Framework Operation85

Consider the medical example in Figure 1: when a user asks "Why do I keep having fever?", our86

framework operates as follows:87

Stage 1 - Socratic Reasoning: The generic query is sent to GPT-4o, which generates:88

• Chain-of-Thought prompt: "Vary response by situation: Case 1: If fever follows pat-89

terns, suspect recurring illness. Case 2: If user traveled recently, identify location-specific90

diseases."91

• Sub-queries: "How often are symptoms?" and "Recent travel history?"92

Stage 2 - Local Embedding: Sub-queries are embedded locally and prepared for encrypted search93

without exposing content to cloud providers.94

Stage 3 - Encrypted Search: Our homomorphically encrypted database executes similarity search95

over encrypted user records, retrieving top-k matches like "Has fever every two days" and "Recently96

traveled to Africa" while maintaining encryption.97

Stage 4 - Local Response: The local Llama model combines the CoT prompt and decrypted records98

to generate: "Considering the two-day cycle and Africa travel, malaria may be the cause."99

This decomposition ensures powerful models operate only on non-private data while private records100

remain encrypted outside the trusted zone. The approach provides both active control (users manage101

what reaches remote models) and passive control (cryptographic protection ensures data security even102

with user errors).103

3.2 Key Properties104

Privacy Guarantees: Private data never leaves the trusted zone in plaintext. Even if users accidentally105

send sensitive queries, the database remains encrypted with keys held exclusively locally.106

Performance Benefits: Delegating complex reasoning to powerful models while keeping private107

retrieval local often improves performance through structured test-time computation compared to108

monolithic approaches.109

4 Homomorphically Encrypted Vector Database110

Personal AI assistants require large-scale user data for effective retrieval, but cloud storage introduces111

privacy risks. Our homomorphically encrypted vector database enables semantic search over private112

data without exposing plaintext to untrusted servers.113
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Challenge: Standard homomorphic encryption approaches suffer from high computational overhead114

and cannot support dynamic updates efficiently. Existing methods like CHAM [37] require expensive115

preprocessing that becomes impractical when users frequently add personal data.116

Our Approach: We develop a novel inner product protocol that separates query and key operations,117

enabling efficient caching of encrypted vectors while supporting constant-time insertions and deletions.118

Key innovations include: (1) Query-key decoupling that allows precomputation independent of119

queries, (2) Butterfly decomposition reducing automorphism complexity, (3) SIMD-style operations120

in encrypted domain, and (4) Seed-based ciphertext generation for compact storage.121

Security: Our system provides 128-bit IND-CPA security via CKKS encryption [10] for vectors and122

AES-256 for data values, with quantum-resistant guarantees [5]. The database provider cannot access123

plaintext data or learn query patterns.124

Performance: Our encrypted database achieves sub-second semantic search across one million125

768-dimensional vectors with >99% recall accuracy compared to plaintext search. Storage overhead126

is 5.8× with linear scalability. The system outperforms prior work (CHAM) by 37× on million-scale127

searches through optimized key-switching that scales with vector length rather than matrix size.128

Detailed algorithms, security analysis, and technical optimizations are provided in Appendix A.129

5 Experiments130

We evaluate our framework on LoCoMo [31] (personal assistant scenarios) and MediQ [27] (medical131

consultations), comparing against local-only baselines (Llama-3.2-1B/3B) and remote-only baselines132

(GPT-4o, Gemini-1.5-Pro, Claude-3.5-Sonnet). All experiments use DRAGON [28] for embeddings133

and standard evaluation metrics (F1 for LoCoMo, exact match for MediQ).134

5.1 Main Results135

Table 1 shows our hybrid approach consistently outperforms local-only baselines by up to 27.6136

percentage points while approaching or exceeding remote-only performance. Notably, our framework137

with Llama-3.2-1B achieves F1=87.7 on LoCoMo, surpassing GPT-4o (80.6) by 7.1 points. This138

counterintuitive result demonstrates that decomposing tasks between untrusted powerful LLMs139

and trusted local models improves performance through structured test-time computation. On

Table 1: Main Results: Our hybrid framework outperforms both local-only and remote-only baselines.
Method Privacy LoCoMo F1 MediQ EM
Local-only (Llama-1B) ✓ 64.6 40.3
Local-only (Llama-3B) ✓ 69.4 43.7

Remote-only (GPT-4o) × 80.6 89.2
Remote-only (Gemini-1.5-Pro) × 84.3 87.5

Ours (Hybrid) ✓ 87.7 67.9
Improvement over Local +23.1 +27.6
Improvement over GPT-4o +7.1 –

140
MediQ, improvements are smaller due to domain-specific challenges, but our approach still provides141

substantial gains over local-only baselines while maintaining complete privacy of medical records.142

5.2 Ablation Study143

Table 2 isolates the contributions of sub-query generation and chain-of-thought reasoning. Delegating144

sub-query generation to GPT-4o doubles retrieval performance (Recall@5: 21.8→44.1 on LoCoMo),145

while GPT-4o-generated reasoning prompts improve final answer quality. Both components are146

essential for optimal performance. Database Performance: Our encrypted vector database147

maintains >99% search accuracy across LoCoMo, Deep1B, and LAION benchmarks with 5.8×148

storage overhead and sub-second latency on million-scale collections. Network communication149

becomes the primary bottleneck rather than homomorphic computation. The results demonstrate that150
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Table 2: Ablation Study: Both sub-query generation and CoT reasoning contribute to performance.
Sub-query Source CoT Source Recall@5 LoCoMo F1
Llama-1B Llama-1B 21.8 82.0
GPT-4o Llama-1B 44.1 85.4
GPT-4o GPT-4o 44.1 87.7
Ground Truth GPT-4o 100.0 89.3

our framework enables effective collaboration between untrusted powerful models and trusted local151

models, achieving better performance than either approach alone while preserving complete privacy152

of personal data.153

6 Related Work154

Private Inference via Encryption. Early approaches combined homomorphic encryption with155

neural networks [15], achieving privacy with 103× computational overhead. Recent systems like156

MPCFormer [26], PermLLM [51], and PUMA [12] extend these to Transformers but require seconds157

per token. Cloud providers remain reluctant to adopt these approaches due to computational costs158

and complex key management.159

Input Sanitization Methods. Complementary approaches sanitize prompts before transmission.160

PREEMPT [11] replaces sensitive spans with placeholders, while PAPILLON [40] divides processing161

between local and external LLMs. These methods require task-specific engineering and often sacrifice162

accuracy when critical context is removed [47].163

Chain-of-Thought and Task Decomposition. CoT prompting improves LLM reasoning through164

step-by-step solutions [46, 23]. Model cascades like FrugalGPT [9] route queries between different-165

sized models using confidence estimators. Multi-model frameworks like Socratic Models [48] divide166

tasks between planners and executors but assume the central model has full access to private data.167

RAG and Agentic Workflows. Modern systems embed LLMs within persistent datastores for168

personalized assistance, from research prototypes like Generative Agents [35] to commercial deploy-169

ments like ChatGPT Memory [34]. However, these systems typically assume trustworthy datastores,170

ignoring privacy risks from extraction attacks [3].171

Our work is the first to combine agentic RAG with encrypted local retrieval, enabling powerful model172

collaboration while maintaining strict privacy guarantees through cryptographic protection rather173

than data minimization or sanitization.174

7 Conclusion and Discussion175

We introduced a four-stage, privacy-preserving framework that uniquely partitions tasks between176

untrusted powerful LLMs and trusted lightweight local models. Our key innovations—Socratic177

Chain-of-Thought Reasoning and Homomorphically Encrypted Vector Database—enable secure178

collaboration without exposing private data. Our approach not only preserves privacy but actually179

improves performance, with our local lightweight model outperforming even GPT-4o on long-context180

QA tasks. This counter-intuitive result demonstrates the power of additional test-time computation181

when properly structured through our chain-of-thought decomposition. Meanwhile, our encrypted182

vector database achieves sub-second latency on million-scale collections with negligible accuracy183

loss compared to plaintext search.184

Future work should address extending our approach to tasks resistant to clean decomposition,185

developing dynamic sensitivity classification for mixed public-private content, and scaling encrypted186

retrieval to billion-scale collections. These advances will further expand applications that can benefit187

from powerful models without surrendering personal data.188
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A Homomorphic Encryption based Inner Product335

A.1 Secure Inner Product, Algorithms and Optimizations336

We specify the detailed algorithms as follows. Algorithms 1 and 2 describe the precomputations for337

the query and key, respectively. Algorithm 3 describes the score computation algorithm starting from338

the precomputed query and cache ciphertexts.339

Optimizations Summary. We summarize the optimizations mentioned in the previous subsection340

and discuss some additional optimizations.341

• Batching and Caching: We write the homomorphic inner product equation. This separates342

the precomputations for query and key, which are denoted as Decompose and Cache,343

respectively. This reduces the number of automorphisms from d log(r) to r − 1.344

• Butterfly Decomposition: The key side precomputation is significant as it involves O(r2)345

polynomial additions. We leverage the butterfly decomposition to reduce the complexity346

from r(r − 1) to r log(r).347

• Seeding and MLWE: In order to improve the storage size, we use Module LWE348

(MLWE) [24] and Extendable Output-format Function (XOF) with a public seed. This349

reduces ciphertext size from 2d (i.e. twoRq,d elements) to r (i.e. oneRq,r element and a350

128-bit public seed).351

• Remove the leading term r: We use the optimization technique introduced in [8] that352

evaluates the trace without the leading term r, thereby improving the precision. This353

technique is applied for Line 2 of Algorithm 1 and Line 3 of Algorithm 2.354

• Hoisting [16]: We adapt the hoisting technique that lazily computes the homomorphic355

operations to improve efficiency. Our adaptaion is similar to the double hoisting algorithm356

in [6]. Hoisting appears in the following instances.357

– Line 3 of Algorithm 1: For each index 0 ≤ i < s, ModUp(ai) is computed only once.358

– Line 5,6 of Algorithm 1, Line 13,14 of Algorithm 2: We ModDown after summation,359

reducing the number of modDown to r per each j.360

• Reducing NTT dimension: In Line 3,5,6 of Algorithm 1, we utilize dimension r NTT361

instead of dimension d NTT, reducing the complexity by a factor of log(d)/ log(r). This is362

possible because each âi is sparsely embedded into the larger ringRq,d.363

Algorithm 1 Decompose

Require: Query (seeded) MLWE ciphertext (b, ρ) that encrypts q ∈ Rq,r via the secret key s =
(su)0≤u<s ∈ Rs

q,r. Here b ∈ Rq,r and ρ is a 128-bit seed string. swkj = (swkj,u)0≤u<s ∈
(R2

qp,d)
s are the RLWE switching keys where swkj,u switches from s̃u to φ−1

j (s′) where s′ ∈
R∗,d is the target RLWE secret key. Here GenA generates the a-part of the MLWE ciphertext
from the 128-bit seed ρ, and ModUp and ModDown are the typical homomorphic base conversions
from q to qp and from qp to q.

Ensure: RLWE ciphertexts (ctj)0≤j<r that encrypt
(
φj(r

−1 · q)
)
0≤j<r

, i.e. polynomial of degree
d inRq with X2j+1 automorphism operations for 0 ≤ j < r.

1: a = (au)0≤u<s ∈ Rs
q,r ← GenA(ρ)

2: (b,a)← r−1 · (b,a) mod q
3: â = (âu)0≤u<s ∈ Rs

qp,r ← (ModUp(au))0≤u<s

4: for j = 0 to r − 1 do
5: ctj ∈ R2

qp,d ←
∑s−1

u=0(âi · swkj,u)
6: ctj ← ModDown(ctj)

7: ctj ← φj(ctj + (b̃ ∈ Rq,d, 0))
8: end for
9: return (ctj)0≤j<r
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Algorithm 2 Cache

Require: Key (seeded) MLWE ciphertexts (bi, ρi) that encrypts ki ∈ Rq,r via the secret key
s = (su)0≤u<s ∈ Rs

q,r, for each 0 ≤ i < d. Here bi ∈ Rq,r and ρi is a 128-bit seed string.
swkj = (swkj,u)0≤u<s ∈ (R2

qp,d)
s are the RLWE switching keys where swkj,u switches from

φj(s̃i) to s′ where s′ ∈ R∗,d is the target RLWE secret key. Here GenA generates the a-part of the
MLWE ciphertext from the 128-bit seed ρ, and ModUp and ModDown are the typical homomorphic
base conversions from q to qp and vice versa, respectively. Let B ∈ Rr×r

q,d be the matrix.

Ensure: RLWE ciphertexts (ct′′′j )0≤j<r ∈ (R2
q,d)

r that encrypt
(∑d−1

i=0 φj(k̃i)X
i
)
0≤j<r

.

1: for i = 0 to d− 1 do
2: ai = (ai,u)0≤u<s ∈ Rs

q,r ← GenA(ρi)

3: (bi,ai)← r−1 · (bi,ai) mod q
4: end for
5: for j = 0 to r − 1 do

6: (b′j ,a
′
j) ∈ R

s+1
q,d ←

(∑s−1
v=0 b̃v+sj ·Xv,

(∑s−1
v=0 ã(v+sj),u ·Xv

)
0≤u<s

)
7: end for
8: ct′ ∈ (Rs+1

q,d )r ← (b′j ,a
′
j)0≤j<r

9: ct′ ∈ (Rs+1
q,d )r ← B · ct′

10: for j = 0 to r − 1 do
11: ct′′j = (b′′j ,a

′′
j ) ∈ Rq,d ×Rs

q,d ← φj,r (ct
′[j])

12: â′′j = (â′′j,u)0≤u<s ∈ Rs
qp,d ← ModUp(a′′j )

13: ct′′′j ∈ R2
qp,d ←

∑s−1
u=0(â

′′
j,u · swkj,u)

14: ct′′′j ∈ R2
q,d ← ModDown(ct′′′j )

15: ct′′′j ← ct′′′j + (b′′j ∈ Rq,d, 0)
16: ct′′′j ← r · ct′′′j mod q
17: end for
18: return (ct′′′j )0≤j<r

Algorithm 3 Score

Require: Decomposed query ciphertexts ctq ∈ (R2
q,d)

r, Cached key ciphertexts ctk ∈ (R2
q,d)

r.

Ensure: A RLWE ciphertext ctout encrypting the resulting score polynomial
∑d−1

j=0 σjX
j .

1: ctout ← Relin(
∑r−1

i=0 ctq[i]⊗ ctk[i])
2: return ctout

A.2 Private Information Retrieval364

We extend our Secure Inner Product method to support Private Information Retrieval (PIR). Similar365

to SPIRAL [32], we treat the database as a matrix. The protocol requires the client to send two366

encrypted queries: one selecting the target row and the other selecting the target column, each367

containing a one hot vector at the corresponding index. The server then performs PIR through two368

sequential applications of the Secure Inner Product protocol. However, naively applying the Secure369

Inner Product protocol in this PIR context introduces a cache invalidation issue. Specifically, while370

the standalone Secure Inner Product scenario only requires refreshing the cache corresponding to371

the updated index, PIR necessitates refreshing the entire cache whenever the database changes. This372

occurs because the output from the first stage acts as the key for the second stage. To address this, we373

modify our protocol by applying the inverse butterfly operation—originally intended for use on the374

key—to the decomposed query instead.375

In our experimental setting using a Fast network (see Section C), the modified PIR protocol achieves376

an end-to-end retrieval latency of under 700 ms for databases consisting of 220 records, each sized at377

1 KiB. Consequently, we demonstrate that our approach efficiently supports a secure vector database378
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of 1 GiB containing 1 million records with 96 dimensions each, achieving an end-to-end latency379

below 1 second.380

B Experimental Setup381

B.1 Socratic Chain-of-Thought Reasoning382

We empirically evaluate the effectiveness of our reasoning framework in addressing the computational383

limitations of local models. Experiments are conducted on two QA-focused benchmarks: LoCoMo,384

which simulates personal assistant scenarios, and MediQ, which simulates medical consultation385

scenarios. Both tasks require retrieving relevant private user data and performing complex reasoning386

to arrive at a final answer. We compare our framework against two categories of baselines: Golden387

Baselines assume no privacy constraints, allowing private data to be directly passed to remote models.388

We use GPT-4o (R1), Gemini-1.5-Pro (R2), and Claude-3.5-Sonnet (R3), which cannot be run locally389

but offer strong reasoning capabilities. Local-only Baselines assume strong privacy constraints,390

requiring the entire inference process to be carried out by local models. We use Llama-3.2-1B (L1),391

Llama-3.2-3B (L2), and Llama-3.1-8B (L3), which are lightweight enough for local execution but392

less capable in complex reasoning tasks. The goal of our reasoning framework is to improve the393

performance of local-only baselines by leveraging model collaboration and delegated reasoning,394

aiming to approach the performance of the golden baselines.395

B.2 Homomorphically Encrypted Vector Database396

We examine whether vector search can be performed accurately and efficiently over encrypted data397

using homomorphic encryption. Our goal is to match the quality and latency of plaintext vector search398

while ensuring that both queries and database contents remain private. The encrypted vector database399

is implemented using HEXL [4] and evaluated in in the same Google Cloud Platform configuration400

used by Compass [52] for a fair comparison: an n2-standard-8 instance (8 vCPUs @ 2.8 GHz, 32 GB401

RAM) as the client and an n2-highmem-64 instance (64 vCPUs @ 2.8 GHz, 512 GB RAM) as the402

server, co-located in the same region/zone. Using Linux Traffic Control, we emulate two network403

regimes: Fast (3 Gbps, 1 ms Round Trip Time (RTT)) and Slow (400 Mbps, 80 ms RTT) to isolate the404

impact of bandwidth and latency. We use 10k query vectors and 1M key vectors from Deep1B (96D)405

and LAION (512D), as well as the entire LoCoMo dataset (768D). For search accuracy, we report406

mean/max inner product error, MRR@10, and 1-Recall@k. For latency, we measure end-to-end407

CPU runtime. All speed measurements assume that both the query and the keys are ciphertexts and408

employ parameters that satisfy IND-CPA 128-bit security. To evaluate storage, we analyze ciphertext409

overhead and apply packing optimizations.410

B.3 Hyperparameter Selection411

To evaluate Socratic Chain-of-Thought Reasoning, we set the temperature of all language models to412

zero to ensure reproducibility. We use top-k retrieval with reranking based on vector similarity scores.413

We set k to 5 for LoCoMo and 20 for MediQ, as the maximum number of ground truth retrievals414

varies across datasets.415

B.4 Model Selection416

We employ DRAGON [28] as the retriever because it outperforms other candidates, such as DPR [22],417

Contriever [20], and Instructor [42], on our chosen datasets. It represents data as 768-dimensional418

vectors, and the inner product between two vectors is used to compute the similarity score. For the419

remote models, we use GPT-4o (R1) [18], Gemini-1.5-Pro (R2) [44], and Claude-3.5-Sonnet (R3) [1],420

representing the most powerful closed API language models currently available. These models are421

assumed to run in a public cloud environment. For the local models, we select Llama-3.2-1B (L1),422

Llama-3.2-3B (L2), and Llama-3.1-8B (L3) [13], which are lightweight enough to be deployed on423

edge devices. These models reflect realistic constraints for privacy-preserving, on-device inference.424

This selection enables a clear evaluation of our framework, balancing reasoning capability with425

privacy constraints.426
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B.5 Benchmark Selection427

We report the performance of Socratic Chain-of-Thought Reasoning on two benchmarks. The first,428

LoCoMo [31], is a benchmark designed to test language models in long-term dialogues. It simulates429

an everyday personal assistance scenario, where personal information is gradually accumulated in a430

vector database through extended observation. On LoCoMo, we evaluate (1) the remote models’s431

impact on retrieval using Recall@5 and (2) its enhancement of response quality through improved432

response generation, measured by the F1 score. We use only the single-hop QA and multi-hop QA433

datasets out of the total five datasets in LoCoMo, as these are the only datasets suitable for our434

scenario. The second benchmark, MediQ [27], presents a more specialized scenario focused on435

medical consultation, where privacy risks are directly at odds with the need for access to a patient’s436

personal context. MediQ is a multiple-choice question-answering dataset, so we evaluate generation437

accuracy using the exact match metric. Since MediQ lacks retrieval annotations, we do not report438

retrieval metric for this benchmark.439

We report the performance of the homomorphically encrypted vector database on standard retrieval440

benchmarks. To assess the scalability of encrypted storage and search, we selected a sufficiently large441

dataset. We used the top 10k query vectors and 1M key vectors from Deep1B [2] and LAION [39],442

represented as 96-dimensional and 512-dimensional vectors respectively. For LoCoMo [31], we used443

the entire dataset, which consists of 1,742 query vectors and 4,972 key vectors, each represented as a444

768-dimensional vector.445

B.6 Metric Selection446

For the Socratic Chain-of-Thought Reasoning, we focus on measuring the quality of the generated447

answers. On the LoCoMo benchmark, we report the F1 score, which captures token-level overlap448

between generated and ground-truth responses in long-context dialogues. On the MediQ benchmark,449

we report exact match accuracy, as the task involves multiple-choice question answering and requires450

strict correctness. These metrics enable us to quantify the impact of delegating complex reasoning to451

powerful remote models while keeping sensitive data within a trusted zone.452

For the homomorphically encrypted vector database, we evaluate both search accuracy and latency.453

To assess search accuracy, we compute the mean error and maximum error between the inner product454

similarity scores produced by encrypted and plaintext searches. Additionally, we report 1-Recall@1455

and 1-Recall@5, which represent the proportion of queries for which the top-1 result from the456

plaintext database is not recovered in the top-1 or top-5 encrypted results. Lower values for these457

metrics indicate higher retrieval consistency under encryption. To evaluate latency, we measure the458

average response time of encrypted search queries. All metrics are reported separately for plaintext459

and ciphertext queries.460

C Compute Resources461

For Socratic Chain-of-Thought Reasoning, all experiments were conducted using a single NVIDIA462

A100 GPU. Language models from the Llama family were accessed via the Fireworks API [43], while463

other closed API models, including those from OpenAI, Gemini, and Claude, were accessed through464

their respective APIs. Our homomorphically encrypted vector database was implemented using465

HEXL [4] and evaluated under the same Google Cloud Platform configuration used by Compass [52]466

to ensure a fair comparison: an n2-standard-8 instance (8 vCPUs @ 2.8 GHz, 32 GB RAM) was used467

as the client, and an n2-highmem-64 instance (64 vCPUs @ 2.8 GHz, 512 GB RAM) was used as the468

server, both co-located in the same region and zone. To emulate realistic networking conditions, we469

used Linux Traffic Control to simulate two environments: Fast (3 Gbps bandwidth, 1 ms round-trip470

time and Slow (400 Mbps bandwidth, 80 ms round-trip time). The following commands were used to471

apply these network configurations to the server.472

Fast Network473

tc qdisc add dev ens4 root netem delay 1ms474

tc qdisc add dev ens4 root handle 1: htb default 30475

tc class add dev ens4 parent 1: classid 1:1 htb rate 3096mbps476

tc class add dev ens4 parent 1: classid 1:2 htb rate 3096mbps477
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tc filter add dev ens4 protocol ip parent 1:0 prio 1 u32 \478

match ip dst $CLIENT_IP flowid 1:1479

tc filter add dev ens4 protocol ip parent 1:0 prio 1 u32 \480

match ip src $CLIENT_IP flowid 1:2481

Slow Network482

tc qdisc add dev ens4 root netem delay 80ms483

tc qdisc add dev ens4 root handle 1: htb default 30484

tc class add dev ens4 parent 1: classid 1:1 htb rate 400mbps485

tc class add dev ens4 parent 1: classid 1:2 htb rate 400mbps486

tc filter add dev ens4 protocol ip parent 1:0 prio 1 u32 \487

match ip dst $CLIENT_IP flowid 1:1488

tc filter add dev ens4 protocol ip parent 1:0 prio 1 u32 \489

match ip src $CLIENT_IP flowid 1:2490

D Qualitative Analysis491

We present qualitative examples from the LoCoMo and MediQ benchmarks to illustrate how our492

system improves response quality under strict privacy constraints. By delegating sub-query generation493

and chain-of-thought reasoning to a powerful remote model, and executing final response generation494

locally, our framework ensures that sensitive data never leaves the trusted zone while still benefiting495

from advanced reasoning capabilities.496

D.1 LoCoMo497

User Query. “What motivated Caroline to pursue counseling?”498

This query requires linking the user’s past personal experiences to her career decisions, as this499

information is often buried in long conversational histories.500

Sub-Query Generation by Remote Model. The remote model generated sub-queries such as: “Has501

Caroline discussed any impactful personal experiences related to her career?” “Did she mention an502

interest in counseling in past conversations?”503

These sub-queries were embedded on the local client and used to search the homomorphically504

encrypted vector database.505

Encrypted Search from Private Records. The search retrieved a key statement: “My own journey506

and the support I got made a huge difference... I saw how counseling and support groups improved507

my life.”508

Chain-of-Thought Reasoning from Remote Model. The model suggested this reasoning guideline:509

“When personal growth or transformation is attributed to support or counseling, infer a connection510

between that experience and a career motivation to help others.”511

Response Generation by Local Model. Using the retrieved memory and the reasoning instruction,512

the local model generated the following answer: “Caroline was motivated to pursue counseling513

because of her own journey and the support she received, particularly through counseling and support514

groups.”515

D.2 MediQ516

User Query. “I’ve been feeling more forgetful lately and have started falling more often. What517

should I do?”518

This query suggests a combination of cognitive and physical decline, potentially indicating an519

underlying neurological issue. Proper assessment requires integration of personal medical context520

and symptom history.521

Sub-Query Generation by Remote Model. The remote model generated targeted follow-up522

questions, including: “Is there any record of short-term memory impairment?” “Have the falls523
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become more frequent or severe over time?” “Are there other neurological symptoms noted in the524

history?”525

Encrypted Search from Private Records. These sub-queries were executed on encrypted medical526

records, retrieving relevant notes such as: “I couldn’t remember any of the five things the doctor527

asked me to recall after ten minutes.” “I’ve been falling more often lately, and it feels like it’s getting528

worse.”529

Chain-of-Thought Reasoning from Remote Model. The remote model provided the following530

reasoning instruction to the local model: “When both progressive memory loss and increased531

frequency of falls are reported, evaluate for possible neurodegenerative conditions and recommend532

medical assessment.”533

Response Generation by Local Model. Based on the retrieved data and reasoning instruction, the534

local model generated the following concise response: “Parkinson’s disease.”535

These examples demonstrate that our framework enables local models to generate informed, context-536

sensitive responses by leveraging powerful remote models for high-level reasoning. Throughout the537

process, sensitive user data remains local, ensuring strong privacy guarantees while maintaining or538

even improving response quality.539

E Prompt Templates540

For sub-query generation in both the baselines and Socratic Chain-of-Thought Reasoning, we used541

the prompt shown in Figure 2. For response generation in the baselines, the prompt in Figure 3 was542

used. For Socratic Chain-of-Thought Reasoning, chain-of-thought generation was performed using543

the prompt in Figure 4, and response generation used the prompt in Figure 5. The prompts include544

substitution keys, which are described in Table 3.545

Key Description Illustrative Example

{user_input} User input I have a fever and a cough.
What disease do I have?

{options} Multiple-choice option. For-
matted as bulleted list. For
open ended questions, this is
replaced with Empty instead.

- Common cold
- Flu
- Strep throat

{personal_context} List of retrieved personal con-
texts in descending order of
importance, one item on each
line.

In January 30th, user consumed
a half gallon of ice cream.
User enjoys cold drink, even
in winter.
User spends most of the time
in their place alone.

{personal_context_json} List of retrieved personal
contexts in descending or-
der of importance, as JSON-
formatted array of strings.

[
"In January 30th, user

consumed a half gallon of ice
cream.",

"User enjoys cold drink,
even in winter.",

"User spends most of the
time in their place alone."
]

{generated_reasoning} The output of reasoning gener-
ation step.

(omitted)

Table 3: Substitutions for our prompts. Whenever the listed substitution keys appear on our prompt
template, they are substituted into the actual values as described on the right side of the table.
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You are a sub-query generator.

1. You are given a query and a list of possible options.
2. Your task is to generate 3 to 5 sub-queries that help retrieve
personal context relevant to answering the query.
3. Each sub-query should be answerable based on the user's personal
context.
4. Ensure the sub-queries cover different aspects or angles of the
query.
5. If the options text says 'Empty,' it means no options are
provided.

Please output the sub-queries one sub-query each line, in the
following format:
"Sub-query 1 here"
"Sub-query 2 here"
"Sub-query 3 here"

Example 1)

## Query
I have a fever and a cough. What disease do I have?

## Options
Common cold
Flu
Strep throat

### Sub-queries
"Have user visited any countries in Africa recently?"
"Have user eat any cold food recently?"
"Have user been in contact with anyone who has a COVID-19 recently?"

Test Input)

### Query
{user_input}

### Options
{options}

### Sub-queries

Figure 2: Prompt used for sub-query generation in both the baselines and the socratic chain-of-thought
reasoning.
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You are a question answering model.

1. You are given a personal context, a query, and a list of
possible options.
2. Your task is to generate an answer to the query based on the
user’s personal context.
3. You should generate an answer to the query by referring to the
personal context where relevant.
4. If the options text says 'Empty,' it means no options are
provided.
5. If the options are not empty, simply output one of the answers
listed in the options without any additional explanation.
6. Never output any other explanation. Just output the answer.
7. If option follows a format like '[A] something', then output
something as the answer instead of A.

Test Input)

### Personal Context
{personal_context}

### Question
{user_input}

### Options
{options}

### Answer

Figure 3: Prompt used for response generation in the baselines.

Your task is to provide good reasoning guide for students.

You are a chain-of-thought generator.
1. You are given a query and a list of possible options.
2. Your task is to provide a step-by-step reasoning guide to help a
student answer the query.
3. The reasoning guide should clearly show your reasoning process
so that the student can easily apply it to their query.
4. Analyze the query and write a reasoning guide for the student to
follow.
5. If there is a lack of information relevant to the query, you
must identify the missing elements as "VARIABLES" and write the
guide on a case-by-case basis.
6. If the options text says 'Empty,' it means no options are
provided.

Test Input)

### Query
{user_input}

### Options
{options}

### Chain-of-Thought

Figure 4: Prompt used for chain-of-thought generation in the socratic chain-of-thought reasoning.
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You are a question answering model.

1. Your task is to answer the query based on the teacher's
chain-of-thought decision guide, using additional personal context.
2. Read the chain-of-thought decision guide carefully.
3. If the decision guide contains "VARIABLES" that may affect
the outcome, extract them and determine their values based on the
personal context.
4. Then, follow the decision guide and apply the extracted
variables appropriately to derive the final answer.
5. The final answer must be preceded by '### Answer', and your
response must end immediately after the answer.
6. If the options text says 'Empty,' it means no options are
provided.
7. If the options are not empty, simply output one of the answers
listed in the options without any additional explanation.
8. Never output any other explanation. Just output the answer.
9. If option follows a format like '[A] something', then output
something as the answer instead of A.

### Personal Context
{personal_context_json}

### Chain-of-Thought
{cot}

### Query
{user_input}

### Options
{options}

### Answer

Figure 5: Prompt used for response generation in the socratic chain-of-thought reasoning.
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F Additional MediQ Analysis546

The Remote-Only Baseline with Socratic Chain-of-Thought Reasoning performs worse than the547

standard Remote-Only Baseline on MediQ. To understand the cause of this drop, we conducted a548

detailed qualitative analysis of the model’s inputs and outputs. As a result, we found that R1 (GPT-549

4o), when generating chain-of-thought reasoning, often included the most likely answer without550

considering the user’s personal context. As a result, L1 (Llama-3.2-1B) became strongly biased551

toward this uncontextualized answer and also ignored the user’s personal context. To address this552

issue, we added explicit rules to the prompt—shown in Figure 6—to reduce this bias and re-ran the553

experiment under this setup only. With this adjustment, performance improved from 67.3 to 77.0,554

indicating that the bias was partially mitigated.

Your task is to provide good reasoning guide for students.

You are a chain-of-thought generator.
1. You are given a query and a list of possible options.
2. Your task is to provide a step-by-step reasoning guide to help a
student answer the query.
3. The reasoning guide should clearly show your reasoning process
so that the student can easily apply it to their query.
4. Analyze the query and write a reasoning guide for the student to
follow.
5. The student may have less domain knowledge than you, but they
have more context about the situation.
6. If there is a lack of information relevant to the query, you
must identify the missing elements as "VARIABLES" and write the
guide on a case-by-case basis.
7. Since you don’t have full context about the situation, your goal
is not to choose a final answer but to present a set of possible
answers along with the reasoning steps that could lead to each one.
8. If the options text says 'Empty,' it means no options are
provided.

Test Input)

### Query
{user_input}

### Options
{options}

### Chain-of-Thought

Figure 6: Prompt used for chain-of-thought generation in the additional MediQ analysis.
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