GenTKG: Generative Forecasting on Temporal Knowledge Graph

Anonymous ACL submission

Abstract

The rapid advancements in large language mod-
els (LLMs) have ignited interest in the tem-
poral knowledge graph (tKG) domain, where
conventional embedding-based and rule-based
methods dominate. The question remains open
of whether pre-trained LLMs can understand
structured temporal relational data and replace
them as the foundation model for temporal
relational forecasting. Therefore, we bring
temporal knowledge forecasting into the gen-
erative setting. However, challenges occur
in the huge chasms between complex tempo-
ral graph data structure and sequential nat-
ural expressions LLMs can handle, and be-
tween the enormous data sizes of tKGs and
heavy computation costs of finetuning LL.Ms.
To address these challenges, we propose a
novel retrieval augmented generation frame-
work named GenTKG combining a temporal
logical rule-based retrieval strategy and few-
shot parameter-efficient instruction tuning to
solve the above challenges, respectively. Ex-
tensive experiments have shown that GenTKG
outperforms conventional methods of temporal
relational forecasting with low computation re-
sources using extremely limited training data
as few as 16 samples. GenTKG also high-
lights remarkable cross-domain generalizabil-
ity with outperforming performance on unseen
datasets without re-training, and in-domain gen-
eralizability regardless of time split in the same
dataset. Our work reveals the huge potential
of LLMs in the tKG domain and opens a new
frontier for generative forecasting on tKGs. '

1 Introduction

Forecasting the future lies in the intrinsic nature
of humans to take controllability over the futural
uncertainty ever since the existence of ancient for-
tunetellers who predict the future with insights into
historical events. As the wave of Artificial General

'Codes and data will be released after review.

Intelligence (AGI) led by Large Language Mod-
els (LLMs) (Bubeck et al., 2023) showcases a per-
sistent craving for World Models(Matsuo et al.,
2022) that can model the complex information
evolving in the real world, master the implicit rules
and give predictions of what might happen next
based on the historical observations(Mialon et al.,
2023), we term this challenge for LLMs as Gener-
ative Forecasting. We find Temporal Knowledge
Graph (tKG) is a natural instance for investigating
such a challenge attributed to the evolving world
knowledge it contains and the task performed on it,
namely temporal knowledge graph forecasting. In
short sentence, tKGs are multi-relational, directed
graphs with labeled timestamped edges between
entities (nodes) and can be viewed as streaming
data sources where events come hourly, daily, or
yearly, etc., and tKG forecasting task aims to fore-
cast future events at timestamp ¢ based on past his-
torical events before ¢. Specifically, tKG originates
from Knowledge Graph (KG) (Nickel et al., 2015)
which structures knowledge fact in the real world
in the form of triples (e, r, €,), such as (Paris, the
capital of, France), where e, e, represent the sub-
ject and object entity respectively, and r represents
the observed predicate between the two entities.
As world knowledge evolves constantly over time
such as the inaugurated presidents of the USA, the
Temporal Knowledge Graph (tKG) was introduced
by (Tresp et al., 2015) to indicate the temporal
effectiveness of the world events by extending a
timestamp ¢ to form quadruples (eg, 7, €,,t). For
example, (Donald Trump, the president of, the USA,
2021) is followed by (Joe Biden, the president of,
the USA, 2023). The tKG forecasting task aims to
answer queries (es, r, 7, t) that predict the missing
object given history events before ¢.

Conventional embedding-based graph represen-
tation learning methods (Goel et al., 2020; Han
et al., 2020a; Sun et al., 2021; Yang et al., 2020)
require carefully designed models that embed in-



dexed quadruples into hidden latent space and
hence lose the semantic aspects of events in tKGs.
Besides, they require separate training for differ-
ent datasets and hence suffer to handle even slight
dataset modification and time split adaptation. In
stark contrast, the rule-based methods (Liu et al.,
2022) focus on mining temporal logic rules within
the tKG graph structure in a symbolic way us-
ing neural networks. However, it posesses limited
scalability to only similar datasets sharing silimar
rules. With the huge advancements emerging with
numerous large language models (LLMs) (Wei
et al., 2022), for example utilizing the emergent
in-context learning (ICL) ability of LLMs (Dong
et al., 2022) by sequentializing temporal ascend-
ing ordered tKG facts to texts but failed to com-
pete with the above conventional methods (Lee
et al., 2023). The question remains open: Can
pre-trained LLMs understand structured tem-
poral relational data and replace conventional
methods as the foundation model for temporal
relational forecasting?

To address the above issue, we bring temporal
knowledge forecasting into the generative fore-
casting setting and deliberately prioritize the most
influential factors in these two domain: the tem-
poral and structural characteristics of tKGs and
the flexible natural language processing abilities of
Large Language Models (LLMs). However, two
challenges stand in the middle how to integrate
them organically. The first is the modality chal-
lenge between data structures. As tKG are com-
plex temporal multi-relational graph data with tens
of thousands of quadruples, it is hard to adapt to
sequential natural language expressions that LLMs
can process. The second is the computation chal-
lenge with the enormous costs of fine-tuning LLMs
especially with tens of thousands of quadruples re-
quiring months of training time on consumable
graphic cards.

To solve the above two challenges, we propose
GenTKG, a novel retrieval-augmented generation
framework that solves the tKG forecasting task
in the generative forecasting setting, outperform-
ing embedding-based, rule-based and ICL meth-
ods. Besides, GenTKG serves as an instantiation
that sheds light on the promising generative fore-
casting ability of LLMs. For the first modality
challenge between structured temporal graph data
and sequential natural languages, we solve it in
the retrieval phase. We utilize a temporal logical
rule-based retrieval strategy (TLR) that mines the

temporal logic rules of the tKGs and forms a rule
bank. These rules serve to retrieve the most tem-
porally and logically relevant historical facts to the
give query. These facts are then sequentialized to
natural languages in the ascending temporal order
and fill in a specialized prompt template to LLMs.
Although the prompts are in the form of sequen-
tial natural languages, they inherit structural infor-
mation in the tKG implicitly since the extraction
process are highly dependent on learned structural
rules. These prompts enable LLMs to comprehend
temporal relational data, and TLR enables the input
window of LLM to serve as the implicit and decou-
plable interface for communicating temporal and
structural relational data to LLM. Moreover, TLR
delivers improvement over recent pure ICL method,
regardless of the backbone LLM being used.

For the second computation challenge between
huge tKG size and high computation costs of LLM,
we solve it in the generation phase. We propose
a few-shot parameter-efficient instruction-tuning
strategy (FIT) that aligns LLM with temporal re-
lational forecasting task and reforming it into an
autoregressive generation task. We further decom-
pose the second computation challenge in two sub-
tasks from the perspective of model and data re-
spectively. The first subtask is to deal with the
enormous computation costs and hardware require-
ments in training LL.M. We solve this subtask
with a parameter-efficient fine-tuning (PEFT) adap-
tation method, specifically Low-rank Adaptation
(LoRA)(Hu et al., 2021). The second subtask is
to deal with the enormous size of training data in
tKGs. We deliberately think out of the box by by-
passing learning the data like conventional methods
and instead, letting the LLM learn the generative
forecasting task on tKG. In other words, we reform
data-centric model learning to task-centric LLM
alignment that aligns LLMs with tKG forecasting
task through instruction tuning. We have specially
designed task instruction, retrieved facts as input,
and generative predictions as output. Besides, we
introduce few-shot tuning that further reduces train-
ing data to only 1024 prompt-response pairs which
is as few as 0.27% of original tens of thousands
of training data with exceeding performance. Un-
der extreme case, we could further reduce to as
few as 16 samples which is 0.0042% of original
data while maintaining comparable performance to
conventional methods.

Our approach offers a foundational framework
for future explorations in generative forecasting on



temporal knowledge graphs. Our contributions can
be summarized as follows:

1. Opening a frontier of generative forecast-
ing on tKG. To the best of our knowledge, we
are the first to introduce instruction-tuned gen-
erative LLM to the tKG domain. Our frame-
work GenTKG proposes a novel retrieval aug-
mented generation paradigm for tKG forecast-
ing, regardless of the backbone LLM.

2. Drastically low computation costs with
exceeding performance. With only 16-
shots parameter-efficient instruction tuning,
we can already reach comparable results to
conventional methods. With 1024-shots tun-
ing, we can outperform existing rule-based,
embedding-based, and the recent in-context-
learning method.

3. Task reformulation from data learning to
task alignment. We bypass designing specific
models to learn specific tKG datasets. Instead,
we novelly reform the data-centric learning to
task-centric LLM alignment that aligns LLMs
to generative forecasting task on tKG.

4. Generalizability across datasets without re-
training. With one-time training on a single
dataset, our GenTKG has showcased remark-
ably both cross-domain and in-domain gen-
eralizability with exceeding performance on
multiple datasets without retraining.

2 Generative Forecasting on Temporal
Knowledge Graph

In this section, we explain our GenTKG framework
following its two-phase methodology: Retrieve-
then-Generate, in two sections. In Section 2.1, we
explain the retrieval phase, which proposes a tem-
poral logical rule-based retrieval strategy (TLR) to
capture historical facts that exhibit high temporal
relevance and logical coherence. In Section 2.2,
we delve into the details of the few-shot parameter-
efficient instruction-finetuning strategy (FIT), an
essential component that aligns Large Language
Models (LLMs) to the task of generative forecast-
ing on temporal knowledge graphs.

2.1 Temporal Logic Rule-based Retrieval

The TLR retrieval strategy is inspired by the phe-
nomenon that a pair of entities can have many inter-
actions at different timestamps such as a president

visiting the same country multiple times. Another
intuition behind this is that some relations tend to
be temporally and logically sequential, for example
in ICEWS14 we can see (Angela Merkel, discuss
by telephone, Barack Obama, 2014/07/22) and (An-
gela Merkel, consult, Barack Obama, 2014/08/09).
Therefore, we borrow a partial idea of TLogic(Liu
et al., 2022) that mines the temporal logic rules hid-
den in the tKG structure. Notably, we opt to choose
rules with a length equal to one that complies with
the input context constraints of the LLMs, and
don’t apply rules directly for ranking each entity.
Then we propose the TLR that retrieves the most
temporally related and logically supportive history
events for the given query based on these learned
rules. To help understand our retrieval strategy,
two definitions and the algorithm are given in the
following.

Definition I (Temporal Random Walk) A non-
increasing temporal random walk W starting from
subject entity e; € & to object entity e, € &
in the tKG G is defined as a cycle of edges
((es, 71, €0,t2), (€5,72, €0,t1)) With ta > t; wWhere
(es,Ti,€0,t;) € Gand i € 1,2. The time con-
straints ensure that the edges are traversed only
backward in time.

Definition II (Temporal Logical Rule) A
cyclic temporal logical rule R is defined as
(El, rh, Fo, TQ) — (El, 7y, Fa, Tl) with T > 17,
where F; and T; for i € 1,2 are replaceable vari-
ables that represent entities and timestamps. The
left-hand side of R is called the rule head, with 7},
being the head relation, while the right-hand side
is called the rule body, with 7, being the body rela-
tion. A rule head can be supported by multiple rule
bodies denoting different rules as 7R. A TR im-
plies that if the rule body holds then the rule head
is true for a future timestamp 75. The confidence
of arule conf(7R) is defined as dividing the rule
support by the body support, where the support is
the number of quadruples satisfying rule bodies or
rule heads with time constraints within 7R .

Rule Learning Let r, be a fixed relation, for
which we want to learn rules. We sample an edge
(e1,7h, e2,t), which will serve as the rule head, uni-
formly from all edges with relation 7. Then the
temporal random walker samples iteratively candi-
date edges adjacent to the current object C(es, t) =
{(62,’/“, el,f) | (eg,r,el,f) €gG,t< t}, where ¢
is the timestamp associated with the next transition



Temporal Logical Rule-based Retrieval (TLR)

Few-shot Instruction Tuning (FIT)
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Figure 1: Framework of GenTKG. GenTKG first retrieves relevant facts based on a temporal logical rule-based
retrieval strategy, then samples K prompts for few-shot parameter-efficient instruction-tuning of LLM that aligns
LLM to the task of generative temporal knowledge graph forecasting.

edge. Besides, we use an exponentially weighted
transition distribution that prioritizes temporally
closer edges during sampling which is defined as

exp (ty, — 1)
D aeC(eayt) €XP (ta — 1)

P (u;ez,t) = (1)

where ¢, denotes the timestamp of edge u. After
a fixed sampling we can collect a set of tempo-
ral walks satisfying the rule (E1,ry, E2,To)
(E4, 1y, E2,T1). We then estimate the confidence
of the rules following the definition II.

Temporal Logic Rule-based Retrieval After
gaining learned temporal logical rule sets, we or-
der them according to the associated confidence
scores. For a given forecast query (es,r,?,t) we
retrieve a candidate subgraph Gs(eg, r, t) from the
TKG G containing temporally and logically rele-
vant histories for the given query, with respect to
the subject entity, relation, and timestamp. Since
the query subject entity is fixed, there are two key
factors in the retrieval algorithm, i.e. time window
and rule grounding. First, we define the time win-
dow as TW = [t_,t] with t_ =t — w, where the
w € NT represents the time window length back-
ward starting from the query timestamp. The maxi-
mum length of w is min {44, t} With £,,4, denot-
ing the maximum timestamp of the datasets. Sec-
ond, the query relation r is fixed as a rule head ry,.
Within each TW, we apply the learned rules TR

and select top k various rule bodies ry,, , 1y, , -+, Tp,
regarding to r in descending confidence and add
historical events (e, 74, €0, t — w) to Gg(es, 7, t)
for the given query. The size of Gs(es, 7, t) can be
adjusted dynamically with respect to w and k. We
stop the retrieval until a maximum history length N
is reached. For instance, we retrieve history events
iteratively with the descending confident rule bod-
ies for each time window backtrace step until a
maximum history length of 50 is reached. At the
end of the retrieval phase, we reorder all history
events in temporal descending order for each query.

2.2 Align LLM to Generative tKG
Forecasting

In the second phase of the proposed GenTKG
framework, we contribute to transforming the con-
ventional data-centric tKG model learning task
into an alignment task that aligns LLM with gen-
erative forecasting on tKGs. We utilize a few-
shot parameter-efficient instruction tuning strategy
(FIT) under the settings of low GPU resource con-
sumption with a single graphic card. In 2.2.1, we
first describe the instruction prompt design. In
2.2.2, we describe the parameter-efficient instruc-
tion tuning for training our generative model. In
2.2.3, we explain the few-shot tuning strategy that
efficiently aligns the LLM with temporal relational
forecasting with as few as 1024 samples and ex-
plore the lower-bound of samples for few-shot tun-
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Task Instruction ~ You must be able to correctly predict the next {object_label} from a given text
consisting of multiple quadruplets in the form of " {time}:[{subject}, {relation},
{object_label}.{object}]" and the query in the form of " {time}:[{subject}, {rela-
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197: [Abdulrahman, Consult, 8488.Governor_(Nigeria)]

197: [Abdulrahman, Make_statement, 8092.Government_(Nigeria)]

228: [Abdulrahman, Praise_or_endorse, 15414.Muhammadu_Buhari]

270: [Abdulrahman, Make_an_appeal_or_request, 3835.Citizen_(Nigeria)]
270: [Abdulrat Praise_or_endorse,

3835.Citizen_(Nigeria)]

Task Input

Task Output

Figure 2: Instruction Prompt Design

ing. In 2.2.4, we describe the inductive generaliza-
toin ability of generative forecasting on tKG.

2.2.1 Instruction Prompt Design

Instruction Tuning is a crucial technique that fine-
tunes LLMs with human-curated instruction and
response pairs as the training data, empowering
LLMs with instruction-following capability (Zhou
et al., 2023). The construction of an instruction
sample is usually composed of three parts, i.e.
task instruction, task input, and task output. Task
instruction clarifies the definition of the task for
LLM:s to comprehend and gives explicit solutions
for LLMs to follow and execute. Task input in nat-
ural languages is input data serving as context for
LLMs. Task output is the decoding results based on
the input prompt. In our proposed GenTKG frame-
work, we adapt the temporal knowledge graph fore-
casting task to the instruction task for LLMs with
individual adaptation for the three parts partially
following the setting in (Lee et al., 2023). As a
demonstration, the instruction is depicted in Figure
2. Except for the designed task instruction, the
task input is modeled as ordered historical events
retrieved from the TLR phase for a given query
(es, T, €0, 1) as described in 2.1. Each fact is filled
in the template of “¢ : [es, 7, ne,.€,]“. The query
(es, T, €0, 1) is expressed in a similar but partial way
as “t : [es, r, for LLM to complete as generative
predictions. It is worth noting that we conserve
the format in (Lee et al., 2023) that maps each
candidate object e, with a numerical index n,._ as
a fair comparison. However, (Lee et al., 2023)
try to avoid unfair tokenization for different en-
tities with this index and use the probabilities of
index tokens generated by the LLMs to get ranked
scores of output entities in an indirect way. But this
can only been used on GPT-like model and cannot
handle LLaMA-like models harnessing individual
tokenization. Therefore we use top generated entity
names directly for prediction evaluation.

2.2.2 Parameter-efficient Instruction Tuning

Direct fine-tuning of the entire model is computa-
tionally demanding and time-consuming. To ad-
dress these computational challenges, we adopt
the Low-Rank Adaptation (LoRA) technique (Hu
et al.,, 2021). LoRA involves the freezing of
pre-trained model parameters 8 while introduc-
ing trainable additional parameters Oy that can
be decomposed into low-rank matrices Afy =
BA,B € R™>" A ¢ R™* r <« min(d, k) that
incorporat supplimentary information to the LLM.

At present, there are large amounts of LLMs re-
leased, such as GPT series (Kojima et al., 2022;
Radford et al., 2019), T5 series (Raffel et al.,
2020), CHinchilla (Hoffmann et al., 2022), and
LLaMA (Touvron et al., 2023), etc.. Among these,
proprietary models can only be accessed by APIs
such as ChatGPT with limited adaptation and align-
ment possibilities that hinder the research purpose.
To facilitate the research of generative forecast-
ing on temporal knowledge graph, we carefully
opt for the open-sourcing LLMs, i.e. GPT-NeoX-
20B (Black et al., 2022) and LLaMA2-7B(Touvron
et al., 2023), which is the third-party reproduction
of GPT-3 and open-source public model respec-
tively. Due to hardware limitations, we leave GPT-
NeoX-20B frozen to investigate the effectiveness of
our retrieval phase through its in-context learning
ability. We perform the whole GenTKG framework
on LLaMA2-7B with consumable adaptation.

2.2.3 Efficient Alignment with Few-shot
Tuning

Our framework contributes a remarkably efficient
and effective few-shot training strategy. The hy-
pothesis has been proven that alignment can be
a simple process where the LLMs learn the style
or format for responding to prompts and expose
the knowledge and capabilities that were already
acquired during pretraining (Zhou et al., 2023).
Therefore, considering the volume of temporal
knowledge graphs that usually possess tens of thou-
sands of training data, we propose a K -shot tuning
paradigm where only an extremely limited num-
ber of K samples are uniformly sampled from the
temporal-ordered training set for language model
adaptations. In our case, we select only 1024 sam-
ples which takes up as few as 0.27% of the original
GDELT dataset sizes that conventional methods
usually fully trained on. We further prove that our
method can acquire temporal relational forecast-
ing capability rapidly with severely limited train-



ing data (0.0027%) with an extreme 16-shot train-
ing setting while maintaining comparable perfor-
mances to conventional method.

2.2.4 Inductive Setting

Due to the novel transformation from data-centric
learning to task-centric alignment which forces the
LLM is aligned to the temporal relational forecast-
ing task itself rather than the learning of the tKG
data. GenTKG also delivers remarkable generaliza-
ibility in various inductive settings.

Cross-domain generalizability. LLM trained
on one dataset can be inferred directly on other
datasets. An inductive GenTKG only requires
learning the temporal-logical rule-based retrieval
strategy for the new datasets in the first phase to en-
sure proper prompts with relevant histories. How-
ever, it doesn’t require retraining LLM in the sec-
ond phase. Still, high-performance gains are main-
tained and even comparable to the original setting.

In-domain generalizability. GenTKG main-
tains high-performance gains on the same dataset
even trained on only partial training data. The parti-
tion can be limited to a small fraction such as 5% of
original training data. This characteristic exceeds
conventional methods which always suffer drastic
performance drops even with minor change of criti-
cal value of the forecasting timestamp between the
train and evaluation set.

3 Experimental Setup

In this section, we describe the experimental setup
of GenTKG framework. Specifically, we describe
four datasets, the evaluation protocols, and the ex-
perimental design.

Datasets Four benchmark datasets are used to
evaluate GenTKG: 1) ICEWS14 (Boschee et al.,
2015) 2) ICEWS18 (Boschee et al., 2015) 3)
GDELT (Leetaru and Schrodt, 2013) 4) YAGO
(Mahdisoltani et al., 2013). The two versions of the
Integrated Crisis Early Warning System (ICEWS)
both consist of timestamped political events, e.g.,
(Angela Merkel, visit, India, 2015-03-25). The
GDELT and YAGO datasets are extracted from the
subsets of GDELT and YAGO knowledge bases
containing facts and time information. Dataset
statistics is shown in Table 4 in the Appendix.

Evaluation Since GenTKG generates entity pre-
dictions directly, we use the temporal-aware fil-
tred Hits@1/3/10 metric to evaluate the model
performance on extrapolated link prediction.

Hits@1/3/10 denotes the proportion of the actual
missing entities ranked within the top 1/3/10.

Baselines Since GenTKG is the first method
to introduce instruction-tuned generative models
into the tKG forecasting domain, it is necessary
to include three typical types of existing meth-
ods as baselines. The first are embedding-based
methods, represented by RE-GCN (Li et al., 2021),
xERTE (Han et al., 2020a), TANGO (Han et al.,
2021), and Timetraveler (Sun et al., 2021). The
rule-based method is TLogic (Liu et al., 2022) and
the third type is the LLM-based ICL method with
frozen parameters (Lee et al., 2023).

Experiment Design In order to comprehensively
analyze GenTKG compared to different conven-
tional methods, there are three research questions
to be answered. RQ1: How is the overall perfor-
mance of the proposed GenTKG framework com-
pared with the existing conventional embedding-
based, rule-based TKG methods and LLM-based
ICL method? RQ2: How well is the cross-domain
and in-domain generalizability of GenTKG on dif-
ferent inductive settings? RQ3: How do the com-
ponents of the GenTKG affect its effectiveness?

4 Experimental Results

4.1 Main Results

Experiment results can be seen on Table 1.
To answer the first question RQI1, our results
achieve state-of-the-art performance, surpassing
all three types of existing conventional including
embedding-based models, rule-based method, and
LLM-based in-context learning method across four
datasets regarding metric Hit@ 1 and Hit@3 while
maintaining comparable results regarding Hits@10.
Our method demonstrates the promising trend for
retrieval-augmented LLMs to serve as the foun-
dation model for temporal relational forecasting,
opening a new frontier in the TKG domain. More
detailed results and analyses are presented in the
following. We refer to GenTKG utilizing LLaMA2-
7B as instantiation unless otherwise specified.
Compared to embedding-based models. For all
datasets, GenTKG outperforms its best embedding-
based model XERTE on ICEWS14, ICEWS18,
GDELT, and Timetraveler on YAGO. Specifi-
cally, the highest performance gain is observed
on GDELT with more than 58% higher on Hits@1.
It is natural to conclude that GenTKG can outper-
form embedding-based methods.

Compared to the rule-based model. Compared



Table 1: Temporal link prediction results: Hits@1/3/10(%). The best results among each metric except for the
inductive setting are highlighted in bold and the second bests are underlined.

Method Type Datasets | ICEWS14 | ICEWS18 | GDELT YAGO
P Models | His@l Hits@3 Hits@10 | Hits@l Hits@3 Hits@10 | Hits@l Hits@3 Hits@10 | Hits@1 Hits@3 Hits@10
RE-GCN 313 413 62.6 23 367 525 8.4 17.1 29.9 468 607 72,9
Ermbeddine-based | XERTE 330 454 57.0 209 335 46.2 8.5 159 26.5 s61 726 78.9
S TANGO 272 408 55.0 190 318 462 9.4 18.9 322 566 65.1 71.8
Timetraveler 319 454 57.5 212 325 439 112 186 285 604 770 831
Rule-based | TLogic | 332 47.6 602 | 204 33.6 480 | 113 212 351 | 638 65.0 66.0
InContext Leamning | GPTNCOX-20B 326 440 542 182 295 414 638 120 211 726 810 846
% | Llama2-7B 258 430 51.0 135 276 326 3.6 12,5 220 677 790 818
GPT-NeoX-20B +TLR | 350 474 575 21 339 456 102 167 273 736 830 868
GenTKG Llama2 7B + GenTKG | 3685% 4795+ 535+ | 2425+ 3625+ 42.1% | 139+ 2255+ 3045% | 79.15% 830 8425%
075 075 038 075 125 11 05 055 045 | 225 17 155
lama2.7B - inductive 275+ 362+ 440% | 1375+ 2035+ 276+ | 689+ 7545+ 8205+
ue 0.65 07 0.8 0.95 1.05 0.8 0.6 0.35 035
. Llama2-ICL
to the rule-based model TLogic, GenTKG out- ! : : !
. . . . B Induct GenTKG ) 00 -137 <108 -126 - 0.0 94 53 -63 - 00 1 91 -89
performs TLogic on Hits@1 and Hits@3 while E cowna 105 00 42 &1 <43 00 52 46 <51 00 93
. .. . 8 .
malntalnlng Comparable performance regardll’lg . g ow -z.t,z. 00 465 --234 540 00 -352 - 215 466 00 -3.0
. . . . AGo- =108 -15.7 -123 0.0 9.0 <121 77 00 - 30 75 42 00
Hits@10 on GDELT. The slight drops in Hits@10 S . o
. 0,175 wcewsia- 0.0 186 182 175 - 0.0 -33 -19 09 - 00 -3.0 -50 18
on ICEWS14 and ICEWSI18 are because TLogic
wcewsis - 586 0.0 266 242 - 132 00 62 88 - 158 0.0 118 226
is carefully designed on these datasets while our B oo oo 2058 0o a0 100 58 00 0
method has more generalizability and demonstrated 00 vaGo- -7.5 -6.2 -142 0.0 <70 47 -6 0.0 --1L1 87 -123 0.0
H@1 H@3 H@!1 H@3 H@10

better performance regarding accuracy than recall.
Compared to in-context-learning method. We
analyze the performance of GenTKG on different
Language Model instantiations, i.e. GPT-NeoX-
20B and LLaMA2-7B respectively. For GPT-
NeoX-20B, we apply only the first retrieval phase
of GenTKG due to hardware limitations. How-
ever, an average 10% performance increase is ob-
served for all three metrics on all datasets even
with pure retrieval-augmented in-context learning.
For LLaMA?2-7B, the performance gain of Hits@1
has increased remarkably even outperforming GPT-
NeoX-20B which has two times more parameters,
indicating the potential for greater performance of
our proposed GenTKG framework if applied to
larger language models.

4.2 Cross-domain Generalization

To answer the second question of GenTKG’s perfor-
mance in the inductive setting, the empirical results
indicate that the GenTKG framework manifests a
substantial capability for cross-dataset generaliza-
tion. Specifically, once the LLM has been aligned
to the tKG forecasting task in the second phase on
any dataset, the LLM can be applied directly to
any other datasets. Therefore, on a new dataset,
GenTKG only requires dataset-specific temporal-
logical rule-based retrieval to formulate proper
prompts from the first phase, and can directly in-
fer the predictions without retraining in the second
phase. As shown in Figure 3(a), all methods are

(a) Single Dataset Evaluation. (b) Cross-checking Evaluation.

Figure 3: Cross-Domain Inductive Setting. (a) Sin-
gle dataset evaluation. All training and evaluation
is on GDELT except inductive GenTKG is trained
on ICEWS14. (b) Cross-checking. We cross-check
the trained LLaMA?2 in GenTKG on different training
datasets and evaluation datasets. The performance drop
compared to the original training setting takes up only
small percentages. Even higher performance than ICL
can be observed. Absolute difference value is given on
Appendix 2, explaining the huge relative difference on
GDELT is due to its poor baseline performances.

trained and evaluated on GDELT, except that the
LLM in inductive GenTKG is trained ICEWS14.
Still, the inductive GenTKG delivers comparable
performance metrics on GDELT to conventional
methods with a minor performance drop compared
to the orginal trained GenTKG. We further demon-
strate similar inductive results by cross-checking
the training and evaluation datasets as shown in Fig-
ure 3(b). Although the LLM is trained exclusively
on one dataset, it still delivers comparable metrics
on disparate datasets, closely approximating the
outcomes of methods that were trained specifically
on the identical evaluation dataset. This notable
characteristic implies that the GenTKG framework
is effectively capturing the underlying task-related
features, as opposed to merely carefully-designed
for the dataset data, a limitation commonly shared
in conventional methods.
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Figure 4: In-domain generalizability. GenTKG exceeds
conventional methods on all different partitions of train-
ing data on ICEWS14. Values in Appendix Table 3.

4.3 In-domain Generalization

Apart from cross-domain generalizability, how well
does GenTKG generalize to different training parti-
tions within the same dataset? To investigate such
a problem, we carefully designed various partitions
of time-ordered training data ranging in {5%, 10%,
20%, 30%, 50%, 75%, 100%}. All models trained
on different training partitions are evaluated on the
same evaluation set starting from the same times-
tamp. According to Figure 4, experiments have
shown that conventional methods suffer from in-
sufficient training data while GenTKG remains ex-
ceeding performance even with as few as 5% train-
ing data. This further proves that GenTKG success-
fully transforms conventional data-centric learning
to the task-centric alignment of LLMs and over-
comes the prediction instability under the changing
value of time split in forecasting setting.

4.4 Ablation study

We undertake the ablation studies on ICEWS14 to
evaluate the contribution of each phase in GenTKG
with three distinct variants of the GenTKG: TLR,
FIT, and TLR+FIT configurations. Here, TLR rep-
resents the variant that exclusively employs tem-
poral logical rule-based retrieval on top of ICL
learning, FIT denotes the variant solely implement-
ing few-shot parameter-efficient instruction tuning
with naive fact retrieval (Lee et al., 2023), and
TLR+FIT encapsulates the integration of all com-
ponents within GenTKG. Figure 5(a) draws the
conclusion that both phases in GenTKG framework
contribute to distinct performance improvements.
The whole pipeline enables GenTKG the ability to
outperform existing methods.

4.5 Few-shot Tuning

To delve further into the impact of sample size
within the few-shot tuning, we conducted a series
of experiments on the ICEWS 14 dataset employing
a range of shot sizes K from the set {6,512, 1024}.

04 ICL 07 ICL

034 W TLR 0,625 M 16-shots

M FIT B 512-shots
028 B TLR+FIT 1024-shots
0,22

0,16
0,1

Hits@l Hits@3 Hits@10

His@! Hits@3 Hits@10

(a) Ablation studies. (b) Few-shot tuning.

Figure 5: (a) Both TLR and FIT phases contribute to
GenTKG. (b) Increasing the few-shot training parameter
K improves performance.

For each configuration, we employed uniform sam-
pling on the temporally-ordered training dataset.
Empirical results indicate a consistent trend of per-
formance improvement correlating proportional to
the increase in the number of training samples, as
visualized in Figure 5(b). Remarkably, our findings
suggest that the GenTKG framework is capable
of outperforming naive ICL method even when as
few as 16 shots are used for tuning. This notable
finding unlocks significant potential for GenTKG
in the context of aligning LL.Ms with temporal re-
lational forecasting tasks from the perspective of
efficient alignment or a larger scale.

5 Conclusion

In this paper, we raise the question and prove
that pre-trained LLLMs can understand structured
temporal relational data and replace existing tKG
models as the foundation model for temporal re-
lational forecasting task. We propose a retrieval-
augmented generative framework GenTKG that
can efficiently align LLM with temporal relational
task through two stages: temporal logical rule-
based retrieval and few-shot parameter-efficient
fine-tuning. Extensive experimental results demon-
strate that GenTKG framework outperforms con-
ventional embedding-based, rule-based and ICL
methods. Moreover, GenTKG is training-light
through comsumable computation resources with
extremely few training data, and exhibits strong
cross-domain and in-domain transferability break-
ing the barriers of conventional data-centric learn-
ing.

6 Limitations

GenTKG is limited by the input context window
of LLMs. Specifically, for LLaMA2, the input
context window is 4096 tokens with an average
upper length limit of 50 history facts that limit the
performance of Hit@10. We leave this to future
work.



Ethics Statement

GenTKG is tailored to generative forecasting on
temporal knowledge graph and can be applied to a
wide variety of downstream tasks with generative
forecasting setting, such as recommendation sys-
tem, anomly detection, etc. It can also power search
and serve to improve users’ lives. GenTKG can
help protect data with its generalizability which
requires less training over various datasets. The
risk of GenTKG might comes from risks inherited
in open-source LLMs, such as hallucinations.

Liscence

The datasets used in this research work is open-
sourced and can be seen on references. We derive
some datasets from the original version within the
intended use term. The code and source will be
released after review.
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A Related Works

Temporal Knowledge Graphs Temporal knowl-
edge graphs (tKGs) are multi-relational, directed
graphs with labeled timestamped edges between
entities (nodes). Let £ and P represent a finite set
of entities and predicates. A quadruple (es, 7, €5, t)
represents a timestamped and labeled edge between
a subject entity e; € £ and an object entity ¢, € £
at a timestamp ¢t € 7 . Let F represent the set of
all true quadruples, i.e., real events in the world, the
temporal knowledge graph forecasting is the task
of predicting missing object entity at timestamp
t,i.e. (es,r,7,t) based on a set of observed facts
O before t, which is a subset of F. Current meth-
ods can be categorized into two streams. On the
one hand, embedding-based models learn represen-
tations of the quadruples with carefully designed
embedding models(Han et al., 2020a; Goel et al.,
2020; Sun et al., 2021; Han et al., 2020b; Ding et al.,
2022). On the other hand, the rule-based methods
mine the temporal logical rules extracted and ex-
tract candidates directly on the temporal knowledge
graphs(Liu et al., 2022).

Investigating TKG with Language Models
The semantic part stored in the temporal knowledge
graphs is heavily overlooked in either embedding-
based or rule-based temporal knowledge graph
methods. Early explorers had tryouts in intro-
ducing language models in the TKG domain,
some fused pre-trained language representations



to the temporal knowledge embeddings (Han et al.,
2022), and some flattened explicit temporal events
with the emergent in-context learning ability of
large language models however not comparable
with conventional performance (Lee et al., 2023).
Other researchers had tryouts in combing KG with
LLM, utilizing the knowledge-aware prompting
method (Baek et al., 2023; Rony et al., 2022; Sun
et al., 2023; Zhang et al., 2022), however, cannot
be transferred to the tKG domain due to their igno-
rance of temporal characteristics.

B Supplimentary Materials

B.1 Implementation details.

Experiment hyperparmeters will be release in code
after review. We run experiments 3 times and take
averages with A40 GPU.
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Table 2: Appendix table for inductive result differences of GenTKG compared with non-inductive GenTKG (-nind)
results and compared with ICL on LLaMA?2 with baseline retrieval (-ICL).

Train | Hits@1 Hits@3 Hits@10
Eval ICEWS14 ICEWSI8 GDELT YAGO | ICEWS14 ICEWSI8 GDELT YAGO | ICEWS14 ICEWSI8 GDELT YAGO
ICEWS14 -0.05 004 005 |- -0.05 003 003 |- -0.04 005 -0.05
A(_nind) | ICEWSIS | 002 002 002 | -0.02 - 002 002 | -0.02 - 004 -0.04
)| GDELT -0.04 -0.12 -0.09 | -0.07 -0.15 - -0.10 | -0.08 -0.17 - -0.11
YAGO -0.08 -0.11 -0.09 -0.07 -0.09 006 - -0.02 -0.06 003 -
ICEWS14 0.05 005 004 |- -0.01 001 000 |- -0.02 003 001
AC1or) | CEWSIS | 008 003 003 |004 - 002 002 |005 - 004 007
GDELT 0.05 -0.02 0.00 | 0.04 -0.08 - -0.03 | 0.03 -0.11 - 0.00
YAGO -0.05 -0.04 009 - -0.05 -0.04 009 - -0.09 -0.07 010 -
Table 3: Appendix table for few-shot results of conventional methods and GenTKG.
Top 5% Top 10% Top 20% ‘ Top 30% Top 50% Top 75% Top 100%
Hits@l Hits@3 Hits@10 | Hits@1 Hits@3 Hits@10 | Hits@1 Hits@3 Hits@10 | Hits@] Hits@3 Hits@10 | Hits@1 Hits@3 Hits@10 | Hits@1 Hits@3 Hits@10 | Hits@1 Hits@3 Hits@10
RE-GCN 13.79 22.09 30.27 16.47 2523 34.19 19.63 29.67 39.83 19.30 30.66 4297 24.05 36.72 48.84 2723 40.42 54.04 31.30 47.30 62.60
XERTE 06.95 14.17 25.46 15.27 26.79 39.43 17.80 29.26 42.08 20.56 31.39 43.63 22.51 34.15 46.59 24.25 36.07 4827 33.00 45.40 57.00
TANGO 11.29 17.18 2297 11.34 17.47 2298 11.25 17.38 23.38 11.25 17.39 23.40 14.37 17.51 2277 11.25 16.90 22.50 27.20 40.80 55.00
Timetraveler 21.06 34.78 49.10 23.10 3571 49.96 26.69 39.42 51.78 27.98 40.14 5323 30.05 42.82 54.74 32.11 4533 57.14 31.90 45.40 57.50
TLogic Original | 26.03 37.42 46.50 27.65 39.55 4872 28.72 40.48 50.71 29.11 41.79 51.90 29.84 42.40 5337 31.89 45.01 5737 33.20 47.60 60.20
GenTKG ‘ 30.60 42.20 49.30 ‘ 34.00 45.40 52.10 ‘ 34.90 46.60 54.00 ‘ 34.70 46.90 54.40 ‘ 36.00 48.70 55.50 ‘ 36.50 48.30 55.30 ‘ 37.20 48.80 56.30
Table 4: Dataset statistics.
Datasets #train #valid | #test | #entity | #relations | time gap
ICEWS14 | 74854 | 8514 | 7371 | 7128 230 1 day
ICEWS18 | 373018 | 45995 | 49545 | 23033 | 256 1 day
GDELT 79319 | 9957 | 9715 | 5850 238 15 mins
YAGO 220393 | 28948 | 22765 | 10778 | 23 I year
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