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Abstract

The rapid advancements in large language mod-001
els (LLMs) have ignited interest in the tem-002
poral knowledge graph (tKG) domain, where003
conventional embedding-based and rule-based004
methods dominate. The question remains open005
of whether pre-trained LLMs can understand006
structured temporal relational data and replace007
them as the foundation model for temporal008
relational forecasting. Therefore, we bring009
temporal knowledge forecasting into the gen-010
erative setting. However, challenges occur011
in the huge chasms between complex tempo-012
ral graph data structure and sequential nat-013
ural expressions LLMs can handle, and be-014
tween the enormous data sizes of tKGs and015
heavy computation costs of finetuning LLMs.016
To address these challenges, we propose a017
novel retrieval augmented generation frame-018
work named GenTKG combining a temporal019
logical rule-based retrieval strategy and few-020
shot parameter-efficient instruction tuning to021
solve the above challenges, respectively. Ex-022
tensive experiments have shown that GenTKG023
outperforms conventional methods of temporal024
relational forecasting with low computation re-025
sources using extremely limited training data026
as few as 16 samples. GenTKG also high-027
lights remarkable cross-domain generalizabil-028
ity with outperforming performance on unseen029
datasets without re-training, and in-domain gen-030
eralizability regardless of time split in the same031
dataset. Our work reveals the huge potential032
of LLMs in the tKG domain and opens a new033
frontier for generative forecasting on tKGs. 1034

1 Introduction035

Forecasting the future lies in the intrinsic nature036

of humans to take controllability over the futural037

uncertainty ever since the existence of ancient for-038

tunetellers who predict the future with insights into039

historical events. As the wave of Artificial General040

1Codes and data will be released after review.

Intelligence (AGI) led by Large Language Mod- 041

els (LLMs) (Bubeck et al., 2023) showcases a per- 042

sistent craving for World Models(Matsuo et al., 043

2022) that can model the complex information 044

evolving in the real world, master the implicit rules 045

and give predictions of what might happen next 046

based on the historical observations(Mialon et al., 047

2023), we term this challenge for LLMs as Gener- 048

ative Forecasting. We find Temporal Knowledge 049

Graph (tKG) is a natural instance for investigating 050

such a challenge attributed to the evolving world 051

knowledge it contains and the task performed on it, 052

namely temporal knowledge graph forecasting. In 053

short sentence, tKGs are multi-relational, directed 054

graphs with labeled timestamped edges between 055

entities (nodes) and can be viewed as streaming 056

data sources where events come hourly, daily, or 057

yearly, etc., and tKG forecasting task aims to fore- 058

cast future events at timestamp t based on past his- 059

torical events before t. Specifically, tKG originates 060

from Knowledge Graph (KG) (Nickel et al., 2015) 061

which structures knowledge fact in the real world 062

in the form of triples (es, r, eo), such as (Paris, the 063

capital of, France), where es, eo represent the sub- 064

ject and object entity respectively, and r represents 065

the observed predicate between the two entities. 066

As world knowledge evolves constantly over time 067

such as the inaugurated presidents of the USA, the 068

Temporal Knowledge Graph (tKG) was introduced 069

by (Tresp et al., 2015) to indicate the temporal 070

effectiveness of the world events by extending a 071

timestamp t to form quadruples (es, r, eo, t). For 072

example, (Donald Trump, the president of, the USA, 073

2021) is followed by (Joe Biden, the president of, 074

the USA, 2023). The tKG forecasting task aims to 075

answer queries (es, r, ?, t) that predict the missing 076

object given history events before t. 077

Conventional embedding-based graph represen- 078

tation learning methods (Goel et al., 2020; Han 079

et al., 2020a; Sun et al., 2021; Yang et al., 2020) 080

require carefully designed models that embed in- 081
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dexed quadruples into hidden latent space and082

hence lose the semantic aspects of events in tKGs.083

Besides, they require separate training for differ-084

ent datasets and hence suffer to handle even slight085

dataset modification and time split adaptation. In086

stark contrast, the rule-based methods (Liu et al.,087

2022) focus on mining temporal logic rules within088

the tKG graph structure in a symbolic way us-089

ing neural networks. However, it posesses limited090

scalability to only similar datasets sharing silimar091

rules. With the huge advancements emerging with092

numerous large language models (LLMs) (Wei093

et al., 2022), for example utilizing the emergent094

in-context learning (ICL) ability of LLMs (Dong095

et al., 2022) by sequentializing temporal ascend-096

ing ordered tKG facts to texts but failed to com-097

pete with the above conventional methods (Lee098

et al., 2023). The question remains open: Can099

pre-trained LLMs understand structured tem-100

poral relational data and replace conventional101

methods as the foundation model for temporal102

relational forecasting?103

To address the above issue, we bring temporal104

knowledge forecasting into the generative fore-105

casting setting and deliberately prioritize the most106

influential factors in these two domain: the tem-107

poral and structural characteristics of tKGs and108

the flexible natural language processing abilities of109

Large Language Models (LLMs). However, two110

challenges stand in the middle how to integrate111

them organically. The first is the modality chal-112

lenge between data structures. As tKG are com-113

plex temporal multi-relational graph data with tens114

of thousands of quadruples, it is hard to adapt to115

sequential natural language expressions that LLMs116

can process. The second is the computation chal-117

lenge with the enormous costs of fine-tuning LLMs118

especially with tens of thousands of quadruples re-119

quiring months of training time on consumable120

graphic cards.121

To solve the above two challenges, we propose122

GenTKG, a novel retrieval-augmented generation123

framework that solves the tKG forecasting task124

in the generative forecasting setting, outperform-125

ing embedding-based, rule-based and ICL meth-126

ods. Besides, GenTKG serves as an instantiation127

that sheds light on the promising generative fore-128

casting ability of LLMs. For the first modality129

challenge between structured temporal graph data130

and sequential natural languages, we solve it in131

the retrieval phase. We utilize a temporal logical132

rule-based retrieval strategy (TLR) that mines the133

temporal logic rules of the tKGs and forms a rule 134

bank. These rules serve to retrieve the most tem- 135

porally and logically relevant historical facts to the 136

give query. These facts are then sequentialized to 137

natural languages in the ascending temporal order 138

and fill in a specialized prompt template to LLMs. 139

Although the prompts are in the form of sequen- 140

tial natural languages, they inherit structural infor- 141

mation in the tKG implicitly since the extraction 142

process are highly dependent on learned structural 143

rules. These prompts enable LLMs to comprehend 144

temporal relational data, and TLR enables the input 145

window of LLM to serve as the implicit and decou- 146

plable interface for communicating temporal and 147

structural relational data to LLM. Moreover, TLR 148

delivers improvement over recent pure ICL method, 149

regardless of the backbone LLM being used. 150

For the second computation challenge between 151

huge tKG size and high computation costs of LLM, 152

we solve it in the generation phase. We propose 153

a few-shot parameter-efficient instruction-tuning 154

strategy (FIT) that aligns LLM with temporal re- 155

lational forecasting task and reforming it into an 156

autoregressive generation task. We further decom- 157

pose the second computation challenge in two sub- 158

tasks from the perspective of model and data re- 159

spectively. The first subtask is to deal with the 160

enormous computation costs and hardware require- 161

ments in training LLM. We solve this subtask 162

with a parameter-efficient fine-tuning (PEFT) adap- 163

tation method, specifically Low-rank Adaptation 164

(LoRA)(Hu et al., 2021). The second subtask is 165

to deal with the enormous size of training data in 166

tKGs. We deliberately think out of the box by by- 167

passing learning the data like conventional methods 168

and instead, letting the LLM learn the generative 169

forecasting task on tKG. In other words, we reform 170

data-centric model learning to task-centric LLM 171

alignment that aligns LLMs with tKG forecasting 172

task through instruction tuning. We have specially 173

designed task instruction, retrieved facts as input, 174

and generative predictions as output. Besides, we 175

introduce few-shot tuning that further reduces train- 176

ing data to only 1024 prompt-response pairs which 177

is as few as 0.27% of original tens of thousands 178

of training data with exceeding performance. Un- 179

der extreme case, we could further reduce to as 180

few as 16 samples which is 0.0042% of original 181

data while maintaining comparable performance to 182

conventional methods. 183

Our approach offers a foundational framework 184

for future explorations in generative forecasting on 185
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temporal knowledge graphs. Our contributions can186

be summarized as follows:187

1. Opening a frontier of generative forecast-188

ing on tKG. To the best of our knowledge, we189

are the first to introduce instruction-tuned gen-190

erative LLM to the tKG domain. Our frame-191

work GenTKG proposes a novel retrieval aug-192

mented generation paradigm for tKG forecast-193

ing, regardless of the backbone LLM.194

2. Drastically low computation costs with195

exceeding performance. With only 16-196

shots parameter-efficient instruction tuning,197

we can already reach comparable results to198

conventional methods. With 1024-shots tun-199

ing, we can outperform existing rule-based,200

embedding-based, and the recent in-context-201

learning method.202

3. Task reformulation from data learning to203

task alignment. We bypass designing specific204

models to learn specific tKG datasets. Instead,205

we novelly reform the data-centric learning to206

task-centric LLM alignment that aligns LLMs207

to generative forecasting task on tKG.208

4. Generalizability across datasets without re-209

training. With one-time training on a single210

dataset, our GenTKG has showcased remark-211

ably both cross-domain and in-domain gen-212

eralizability with exceeding performance on213

multiple datasets without retraining.214

2 Generative Forecasting on Temporal215

Knowledge Graph216

In this section, we explain our GenTKG framework217

following its two-phase methodology: Retrieve-218

then-Generate, in two sections. In Section 2.1, we219

explain the retrieval phase, which proposes a tem-220

poral logical rule-based retrieval strategy (TLR) to221

capture historical facts that exhibit high temporal222

relevance and logical coherence. In Section 2.2,223

we delve into the details of the few-shot parameter-224

efficient instruction-finetuning strategy (FIT), an225

essential component that aligns Large Language226

Models (LLMs) to the task of generative forecast-227

ing on temporal knowledge graphs.228

2.1 Temporal Logic Rule-based Retrieval229

The TLR retrieval strategy is inspired by the phe-230

nomenon that a pair of entities can have many inter-231

actions at different timestamps such as a president232

visiting the same country multiple times. Another 233

intuition behind this is that some relations tend to 234

be temporally and logically sequential, for example 235

in ICEWS14 we can see (Angela Merkel, discuss 236

by telephone, Barack Obama, 2014/07/22) and (An- 237

gela Merkel, consult, Barack Obama, 2014/08/09). 238

Therefore, we borrow a partial idea of TLogic(Liu 239

et al., 2022) that mines the temporal logic rules hid- 240

den in the tKG structure. Notably, we opt to choose 241

rules with a length equal to one that complies with 242

the input context constraints of the LLMs, and 243

don’t apply rules directly for ranking each entity. 244

Then we propose the TLR that retrieves the most 245

temporally related and logically supportive history 246

events for the given query based on these learned 247

rules. To help understand our retrieval strategy, 248

two definitions and the algorithm are given in the 249

following. 250

Definition I (Temporal Random Walk) A non- 251

increasing temporal random walk W starting from 252

subject entity es ∈ E to object entity eo ∈ E 253

in the tKG G is defined as a cycle of edges 254

((es, r1, eo, t2), (es, r2, eo, t1)) with t2 > t1 where 255

(es, ri, eo, ti) ∈ G and i ∈ 1, 2. The time con- 256

straints ensure that the edges are traversed only 257

backward in time. 258

Definition II (Temporal Logical Rule) A 259

cyclic temporal logical rule R is defined as 260

(E1, rh, E2, T2)← (E1, rb, E2, T1) with T2 > T1, 261

where Ei and Ti for i ∈ 1, 2 are replaceable vari- 262

ables that represent entities and timestamps. The 263

left-hand side of R is called the rule head, with rh 264

being the head relation, while the right-hand side 265

is called the rule body, with rb being the body rela- 266

tion. A rule head can be supported by multiple rule 267

bodies denoting different rules as T R. A T R im- 268

plies that if the rule body holds then the rule head 269

is true for a future timestamp T2. The confidence 270

of a rule conf(T R) is defined as dividing the rule 271

support by the body support, where the support is 272

the number of quadruples satisfying rule bodies or 273

rule heads with time constraints within T R . 274

Rule Learning Let rh be a fixed relation, for 275

which we want to learn rules. We sample an edge 276

(e1, rh, e2, t), which will serve as the rule head, uni- 277

formly from all edges with relation rh. Then the 278

temporal random walker samples iteratively candi- 279

date edges adjacent to the current object C(e2, t) := 280{(
e2, r, e1, t̂

)
|
(
e2, r, e1, t̂

)
∈ G, t̂ < t

}
, where t̂ 281

is the timestamp associated with the next transition 282
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Figure 1: Framework of GenTKG. GenTKG first retrieves relevant facts based on a temporal logical rule-based
retrieval strategy, then samples K prompts for few-shot parameter-efficient instruction-tuning of LLM that aligns
LLM to the task of generative temporal knowledge graph forecasting.

edge. Besides, we use an exponentially weighted283

transition distribution that prioritizes temporally284

closer edges during sampling which is defined as285

P (u; e2, t) =
exp (tu − t)∑

û∈C(e2,t) exp (tû − t)
(1)286

where tu denotes the timestamp of edge u. After287

a fixed sampling we can collect a set of tempo-288

ral walks satisfying the rule (E1, rh, E2, T2) ←289

(E1, rb, E2, T1). We then estimate the confidence290

of the rules following the definition II.291

Temporal Logic Rule-based Retrieval After292

gaining learned temporal logical rule sets, we or-293

der them according to the associated confidence294

scores. For a given forecast query (es, r, ?, t) we295

retrieve a candidate subgraph Gs(es, r, t) from the296

TKG G containing temporally and logically rele-297

vant histories for the given query, with respect to298

the subject entity, relation, and timestamp. Since299

the query subject entity is fixed, there are two key300

factors in the retrieval algorithm, i.e. time window301

and rule grounding. First, we define the time win-302

dow as TW = [t−, t] with t− := t− w, where the303

w ∈ N+ represents the time window length back-304

ward starting from the query timestamp. The maxi-305

mum length of w is min {tmax, t} with tmax denot-306

ing the maximum timestamp of the datasets. Sec-307

ond, the query relation r is fixed as a rule head rh.308

Within each TW , we apply the learned rules T R309

and select top k various rule bodies rb1 , rb2 , · · ·, rbk 310

regarding to r in descending confidence and add 311

historical events (es, rb, eo, t − w) to Gs(es, r, t) 312

for the given query. The size of Gs(es, r, t) can be 313

adjusted dynamically with respect to w and k. We 314

stop the retrieval until a maximum history length N 315

is reached. For instance, we retrieve history events 316

iteratively with the descending confident rule bod- 317

ies for each time window backtrace step until a 318

maximum history length of 50 is reached. At the 319

end of the retrieval phase, we reorder all history 320

events in temporal descending order for each query. 321

2.2 Align LLM to Generative tKG 322

Forecasting 323

In the second phase of the proposed GenTKG 324

framework, we contribute to transforming the con- 325

ventional data-centric tKG model learning task 326

into an alignment task that aligns LLM with gen- 327

erative forecasting on tKGs. We utilize a few- 328

shot parameter-efficient instruction tuning strategy 329

(FIT) under the settings of low GPU resource con- 330

sumption with a single graphic card. In 2.2.1, we 331

first describe the instruction prompt design. In 332

2.2.2, we describe the parameter-efficient instruc- 333

tion tuning for training our generative model. In 334

2.2.3 , we explain the few-shot tuning strategy that 335

efficiently aligns the LLM with temporal relational 336

forecasting with as few as 1024 samples and ex- 337

plore the lower-bound of samples for few-shot tun- 338
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Figure 2: Instruction Prompt Design

ing. In 2.2.4, we describe the inductive generaliza-339

toin ability of generative forecasting on tKG.340

2.2.1 Instruction Prompt Design341

Instruction Tuning is a crucial technique that fine-342

tunes LLMs with human-curated instruction and343

response pairs as the training data, empowering344

LLMs with instruction-following capability (Zhou345

et al., 2023). The construction of an instruction346

sample is usually composed of three parts, i.e.347

task instruction, task input, and task output. Task348

instruction clarifies the definition of the task for349

LLMs to comprehend and gives explicit solutions350

for LLMs to follow and execute. Task input in nat-351

ural languages is input data serving as context for352

LLMs. Task output is the decoding results based on353

the input prompt. In our proposed GenTKG frame-354

work, we adapt the temporal knowledge graph fore-355

casting task to the instruction task for LLMs with356

individual adaptation for the three parts partially357

following the setting in (Lee et al., 2023). As a358

demonstration, the instruction is depicted in Figure359

2. Except for the designed task instruction, the360

task input is modeled as ordered historical events361

retrieved from the TLR phase for a given query362

(es, r, eo, t) as described in 2.1. Each fact is filled363

in the template of “t : [es, r, neo .eo]“. The query364

(es, r, eo, t) is expressed in a similar but partial way365

as “t : [es, r,“ for LLM to complete as generative366

predictions. It is worth noting that we conserve367

the format in (Lee et al., 2023) that maps each368

candidate object eo with a numerical index neo as369

a fair comparison. However, (Lee et al., 2023)370

try to avoid unfair tokenization for different en-371

tities with this index and use the probabilities of372

index tokens generated by the LLMs to get ranked373

scores of output entities in an indirect way. But this374

can only been used on GPT-like model and cannot375

handle LLaMA-like models harnessing individual376

tokenization. Therefore we use top generated entity377

names directly for prediction evaluation.378

2.2.2 Parameter-efficient Instruction Tuning 379

Direct fine-tuning of the entire model is computa- 380

tionally demanding and time-consuming. To ad- 381

dress these computational challenges, we adopt 382

the Low-Rank Adaptation (LoRA) technique (Hu 383

et al., 2021). LoRA involves the freezing of 384

pre-trained model parameters θ0 while introduc- 385

ing trainable additional parameters θ0 that can 386

be decomposed into low-rank matrices ∆θ0 = 387

BA,B ∈ Rd×r,A ∈ Rr×k, r ≪ min(d, k) that 388

incorporat supplimentary information to the LLM. 389

At present, there are large amounts of LLMs re- 390

leased, such as GPT series (Kojima et al., 2022; 391

Radford et al., 2019), T5 series (Raffel et al., 392

2020), CHinchilla (Hoffmann et al., 2022), and 393

LLaMA (Touvron et al., 2023), etc.. Among these, 394

proprietary models can only be accessed by APIs 395

such as ChatGPT with limited adaptation and align- 396

ment possibilities that hinder the research purpose. 397

To facilitate the research of generative forecast- 398

ing on temporal knowledge graph, we carefully 399

opt for the open-sourcing LLMs, i.e. GPT-NeoX- 400

20B (Black et al., 2022) and LLaMA2-7B(Touvron 401

et al., 2023), which is the third-party reproduction 402

of GPT-3 and open-source public model respec- 403

tively. Due to hardware limitations, we leave GPT- 404

NeoX-20B frozen to investigate the effectiveness of 405

our retrieval phase through its in-context learning 406

ability. We perform the whole GenTKG framework 407

on LLaMA2-7B with consumable adaptation. 408

2.2.3 Efficient Alignment with Few-shot 409

Tuning 410

Our framework contributes a remarkably efficient 411

and effective few-shot training strategy. The hy- 412

pothesis has been proven that alignment can be 413

a simple process where the LLMs learn the style 414

or format for responding to prompts and expose 415

the knowledge and capabilities that were already 416

acquired during pretraining (Zhou et al., 2023). 417

Therefore, considering the volume of temporal 418

knowledge graphs that usually possess tens of thou- 419

sands of training data, we propose a K-shot tuning 420

paradigm where only an extremely limited num- 421

ber of K samples are uniformly sampled from the 422

temporal-ordered training set for language model 423

adaptations. In our case, we select only 1024 sam- 424

ples which takes up as few as 0.27% of the original 425

GDELT dataset sizes that conventional methods 426

usually fully trained on. We further prove that our 427

method can acquire temporal relational forecast- 428

ing capability rapidly with severely limited train- 429

5



ing data (0.0027%) with an extreme 16-shot train-430

ing setting while maintaining comparable perfor-431

mances to conventional method.432

2.2.4 Inductive Setting433

Due to the novel transformation from data-centric434

learning to task-centric alignment which forces the435

LLM is aligned to the temporal relational forecast-436

ing task itself rather than the learning of the tKG437

data. GenTKG also delivers remarkable generaliza-438

ibility in various inductive settings.439

Cross-domain generalizability. LLM trained440

on one dataset can be inferred directly on other441

datasets. An inductive GenTKG only requires442

learning the temporal-logical rule-based retrieval443

strategy for the new datasets in the first phase to en-444

sure proper prompts with relevant histories. How-445

ever, it doesn’t require retraining LLM in the sec-446

ond phase. Still, high-performance gains are main-447

tained and even comparable to the original setting.448

In-domain generalizability. GenTKG main-449

tains high-performance gains on the same dataset450

even trained on only partial training data. The parti-451

tion can be limited to a small fraction such as 5% of452

original training data. This characteristic exceeds453

conventional methods which always suffer drastic454

performance drops even with minor change of criti-455

cal value of the forecasting timestamp between the456

train and evaluation set.457

3 Experimental Setup458

In this section, we describe the experimental setup459

of GenTKG framework. Specifically, we describe460

four datasets, the evaluation protocols, and the ex-461

perimental design.462

Datasets Four benchmark datasets are used to463

evaluate GenTKG: 1) ICEWS14 (Boschee et al.,464

2015) 2) ICEWS18 (Boschee et al., 2015) 3)465

GDELT (Leetaru and Schrodt, 2013) 4) YAGO466

(Mahdisoltani et al., 2013). The two versions of the467

Integrated Crisis Early Warning System (ICEWS)468

both consist of timestamped political events, e.g.,469

(Angela Merkel, visit, India, 2015-03-25). The470

GDELT and YAGO datasets are extracted from the471

subsets of GDELT and YAGO knowledge bases472

containing facts and time information. Dataset473

statistics is shown in Table 4 in the Appendix.474

Evaluation Since GenTKG generates entity pre-475

dictions directly, we use the temporal-aware fil-476

tred Hits@1/3/10 metric to evaluate the model477

performance on extrapolated link prediction.478

Hits@1/3/10 denotes the proportion of the actual 479

missing entities ranked within the top 1/3/10. 480

Baselines Since GenTKG is the first method 481

to introduce instruction-tuned generative models 482

into the tKG forecasting domain, it is necessary 483

to include three typical types of existing meth- 484

ods as baselines. The first are embedding-based 485

methods, represented by RE-GCN (Li et al., 2021), 486

xERTE (Han et al., 2020a), TANGO (Han et al., 487

2021), and Timetraveler (Sun et al., 2021). The 488

rule-based method is TLogic (Liu et al., 2022) and 489

the third type is the LLM-based ICL method with 490

frozen parameters (Lee et al., 2023). 491

Experiment Design In order to comprehensively 492

analyze GenTKG compared to different conven- 493

tional methods, there are three research questions 494

to be answered. RQ1: How is the overall perfor- 495

mance of the proposed GenTKG framework com- 496

pared with the existing conventional embedding- 497

based, rule-based TKG methods and LLM-based 498

ICL method? RQ2: How well is the cross-domain 499

and in-domain generalizability of GenTKG on dif- 500

ferent inductive settings? RQ3: How do the com- 501

ponents of the GenTKG affect its effectiveness? 502

4 Experimental Results 503

4.1 Main Results 504

Experiment results can be seen on Table 1. 505

To answer the first question RQ1, our results 506

achieve state-of-the-art performance, surpassing 507

all three types of existing conventional including 508

embedding-based models, rule-based method, and 509

LLM-based in-context learning method across four 510

datasets regarding metric Hit@1 and Hit@3 while 511

maintaining comparable results regarding Hits@10. 512

Our method demonstrates the promising trend for 513

retrieval-augmented LLMs to serve as the foun- 514

dation model for temporal relational forecasting, 515

opening a new frontier in the TKG domain. More 516

detailed results and analyses are presented in the 517

following. We refer to GenTKG utilizing LLaMA2- 518

7B as instantiation unless otherwise specified. 519

Compared to embedding-based models. For all 520

datasets, GenTKG outperforms its best embedding- 521

based model xERTE on ICEWS14, ICEWS18, 522

GDELT, and Timetraveler on YAGO. Specifi- 523

cally, the highest performance gain is observed 524

on GDELT with more than 58% higher on Hits@1. 525

It is natural to conclude that GenTKG can outper- 526

form embedding-based methods. 527

Compared to the rule-based model. Compared 528
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Table 1: Temporal link prediction results: Hits@1/3/10(%). The best results among each metric except for the
inductive setting are highlighted in bold and the second bests are underlined.

Method Type
Models

Datasets ICEWS14 ICEWS18 GDELT YAGO
Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10

Embedding-based

RE-GCN 31.3 47.3 62.6 22.3 36.7 52.5 8.4 17.1 29.9 46.8 60.7 72.9
xERTE 33.0 45.4 57.0 20.9 33.5 46.2 8.5 15.9 26.5 56.1 72.6 78.9
TANGO 27.2 40.8 55.0 19.1 31.8 46.2 9.4 18.9 32.2 56.6 65.1 71.8
Timetraveler 31.9 45.4 57.5 21.2 32.5 43.9 11.2 18.6 28.5 60.4 77.0 83.1

Rule-based TLogic 33.2 47.6 60.2 20.4 33.6 48.0 11.3 21.2 35.1 63.8 65.0 66.0

In-Context Learning
GPT-NeoX-20B 32.6 44.0 54.2 18.2 29.5 41.4 6.8 12.0 21.1 72.6 81.0 84.6
Llama2-7B 25.8 43.0 51.0 13.5 27.6 32.6 3.6 12.5 22.0 67.7 79.0 81.8

GenTKG
GPT-NeoX-20B + TLR 35.0 47.4 57.5 21.1 33.9 45.6 10.2 16.7 27.3 73.6 83.0 86.8

Llama2-7B + GenTKG
36.85 ±

0.75
47.95 ±

0.75
53.5 ±

0.8
24.25 ±

0.75
36.25 ±

1.25
42.1 ±

1.1
13.9 ±

0.5
22.55 ±

0.55
30.45 ±

0.45
79.15 ±

2.25
83.0 ±

1.7
84.25 ±

1.55

Llama2-7B - inductive - - -
22.75 ±

0.65
36.2 ±

0.7
44.0 ±

0.8
13.75 ±

0.95
20.35 ±

1.05
27.6 ±

0.8
68.9 ±

0.6
75.45 ±

0.35
82.05 ±

0.35

to the rule-based model TLogic, GenTKG out-529

performs TLogic on Hits@1 and Hits@3 while530

maintaining comparable performance regarding531

Hits@10 on GDELT. The slight drops in Hits@10532

on ICEWS14 and ICEWS18 are because TLogic533

is carefully designed on these datasets while our534

method has more generalizability and demonstrated535

better performance regarding accuracy than recall.536

Compared to in-context-learning method. We537

analyze the performance of GenTKG on different538

Language Model instantiations, i.e. GPT-NeoX-539

20B and LLaMA2-7B respectively. For GPT-540

NeoX-20B, we apply only the first retrieval phase541

of GenTKG due to hardware limitations. How-542

ever, an average 10% performance increase is ob-543

served for all three metrics on all datasets even544

with pure retrieval-augmented in-context learning.545

For LLaMA2-7B, the performance gain of Hits@1546

has increased remarkably even outperforming GPT-547

NeoX-20B which has two times more parameters,548

indicating the potential for greater performance of549

our proposed GenTKG framework if applied to550

larger language models.551

4.2 Cross-domain Generalization552

To answer the second question of GenTKG’s perfor-553

mance in the inductive setting, the empirical results554

indicate that the GenTKG framework manifests a555

substantial capability for cross-dataset generaliza-556

tion. Specifically, once the LLM has been aligned557

to the tKG forecasting task in the second phase on558

any dataset, the LLM can be applied directly to559

any other datasets. Therefore, on a new dataset,560

GenTKG only requires dataset-specific temporal-561

logical rule-based retrieval to formulate proper562

prompts from the first phase, and can directly in-563

fer the predictions without retraining in the second564

phase. As shown in Figure 3(a), all methods are565

Figure 3: Cross-Domain Inductive Setting. (a) Sin-
gle dataset evaluation. All training and evaluation
is on GDELT except inductive GenTKG is trained
on ICEWS14. (b) Cross-checking. We cross-check
the trained LLaMA2 in GenTKG on different training
datasets and evaluation datasets. The performance drop
compared to the original training setting takes up only
small percentages. Even higher performance than ICL
can be observed. Absolute difference value is given on
Appendix 2, explaining the huge relative difference on
GDELT is due to its poor baseline performances.

trained and evaluated on GDELT, except that the 566

LLM in inductive GenTKG is trained ICEWS14. 567

Still, the inductive GenTKG delivers comparable 568

performance metrics on GDELT to conventional 569

methods with a minor performance drop compared 570

to the orginal trained GenTKG. We further demon- 571

strate similar inductive results by cross-checking 572

the training and evaluation datasets as shown in Fig- 573

ure 3(b). Although the LLM is trained exclusively 574

on one dataset, it still delivers comparable metrics 575

on disparate datasets, closely approximating the 576

outcomes of methods that were trained specifically 577

on the identical evaluation dataset. This notable 578

characteristic implies that the GenTKG framework 579

is effectively capturing the underlying task-related 580

features, as opposed to merely carefully-designed 581

for the dataset data, a limitation commonly shared 582

in conventional methods. 583
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Figure 4: In-domain generalizability. GenTKG exceeds
conventional methods on all different partitions of train-
ing data on ICEWS14. Values in Appendix Table 3.

4.3 In-domain Generalization584

Apart from cross-domain generalizability, how well585

does GenTKG generalize to different training parti-586

tions within the same dataset? To investigate such587

a problem, we carefully designed various partitions588

of time-ordered training data ranging in {5%, 10%,589

20%, 30%, 50%, 75%, 100%}. All models trained590

on different training partitions are evaluated on the591

same evaluation set starting from the same times-592

tamp. According to Figure 4, experiments have593

shown that conventional methods suffer from in-594

sufficient training data while GenTKG remains ex-595

ceeding performance even with as few as 5% train-596

ing data. This further proves that GenTKG success-597

fully transforms conventional data-centric learning598

to the task-centric alignment of LLMs and over-599

comes the prediction instability under the changing600

value of time split in forecasting setting.601

4.4 Ablation study602

We undertake the ablation studies on ICEWS14 to603

evaluate the contribution of each phase in GenTKG604

with three distinct variants of the GenTKG: TLR,605

FIT, and TLR+FIT configurations. Here, TLR rep-606

resents the variant that exclusively employs tem-607

poral logical rule-based retrieval on top of ICL608

learning, FIT denotes the variant solely implement-609

ing few-shot parameter-efficient instruction tuning610

with naive fact retrieval (Lee et al., 2023), and611

TLR+FIT encapsulates the integration of all com-612

ponents within GenTKG. Figure 5(a) draws the613

conclusion that both phases in GenTKG framework614

contribute to distinct performance improvements.615

The whole pipeline enables GenTKG the ability to616

outperform existing methods.617

4.5 Few-shot Tuning618

To delve further into the impact of sample size619

within the few-shot tuning, we conducted a series620

of experiments on the ICEWS14 dataset employing621

a range of shot sizes K from the set {6, 512, 1024}.622

Figure 5: (a) Both TLR and FIT phases contribute to
GenTKG. (b) Increasing the few-shot training parameter
K improves performance.

For each configuration, we employed uniform sam- 623

pling on the temporally-ordered training dataset. 624

Empirical results indicate a consistent trend of per- 625

formance improvement correlating proportional to 626

the increase in the number of training samples, as 627

visualized in Figure 5(b). Remarkably, our findings 628

suggest that the GenTKG framework is capable 629

of outperforming naive ICL method even when as 630

few as 16 shots are used for tuning. This notable 631

finding unlocks significant potential for GenTKG 632

in the context of aligning LLMs with temporal re- 633

lational forecasting tasks from the perspective of 634

efficient alignment or a larger scale. 635

5 Conclusion 636

In this paper, we raise the question and prove 637

that pre-trained LLMs can understand structured 638

temporal relational data and replace existing tKG 639

models as the foundation model for temporal re- 640

lational forecasting task. We propose a retrieval- 641

augmented generative framework GenTKG that 642

can efficiently align LLM with temporal relational 643

task through two stages: temporal logical rule- 644

based retrieval and few-shot parameter-efficient 645

fine-tuning. Extensive experimental results demon- 646

strate that GenTKG framework outperforms con- 647

ventional embedding-based, rule-based and ICL 648

methods. Moreover, GenTKG is training-light 649

through comsumable computation resources with 650

extremely few training data, and exhibits strong 651

cross-domain and in-domain transferability break- 652

ing the barriers of conventional data-centric learn- 653

ing. 654

6 Limitations 655

GenTKG is limited by the input context window 656

of LLMs. Specifically, for LLaMA2, the input 657

context window is 4096 tokens with an average 658

upper length limit of 50 history facts that limit the 659

performance of Hit@10. We leave this to future 660

work. 661
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Ethics Statement662

GenTKG is tailored to generative forecasting on663

temporal knowledge graph and can be applied to a664

wide variety of downstream tasks with generative665

forecasting setting, such as recommendation sys-666

tem, anomly detection, etc. It can also power search667

and serve to improve users’ lives. GenTKG can668

help protect data with its generalizability which669

requires less training over various datasets. The670

risk of GenTKG might comes from risks inherited671

in open-source LLMs, such as hallucinations.672

Liscence673

The datasets used in this research work is open-674

sourced and can be seen on references. We derive675

some datasets from the original version within the676

intended use term. The code and source will be677

released after review.678
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A Related Works 846

Temporal Knowledge Graphs Temporal knowl- 847

edge graphs (tKGs) are multi-relational, directed 848

graphs with labeled timestamped edges between 849

entities (nodes). Let E and P represent a finite set 850

of entities and predicates. A quadruple (es, r, eo, t) 851

represents a timestamped and labeled edge between 852

a subject entity es ∈ E and an object entity eo ∈ E 853

at a timestamp t ∈ T . Let F represent the set of 854

all true quadruples, i.e., real events in the world, the 855

temporal knowledge graph forecasting is the task 856

of predicting missing object entity at timestamp 857

t, i.e. (es, r, ?, t) based on a set of observed facts 858

O before t, which is a subset of F . Current meth- 859

ods can be categorized into two streams. On the 860

one hand, embedding-based models learn represen- 861

tations of the quadruples with carefully designed 862

embedding models(Han et al., 2020a; Goel et al., 863

2020; Sun et al., 2021; Han et al., 2020b; Ding et al., 864

2022). On the other hand, the rule-based methods 865

mine the temporal logical rules extracted and ex- 866

tract candidates directly on the temporal knowledge 867

graphs(Liu et al., 2022). 868

Investigating TKG with Language Models 869

The semantic part stored in the temporal knowledge 870

graphs is heavily overlooked in either embedding- 871

based or rule-based temporal knowledge graph 872

methods. Early explorers had tryouts in intro- 873

ducing language models in the TKG domain, 874

some fused pre-trained language representations 875

10



to the temporal knowledge embeddings (Han et al.,876

2022), and some flattened explicit temporal events877

with the emergent in-context learning ability of878

large language models however not comparable879

with conventional performance (Lee et al., 2023).880

Other researchers had tryouts in combing KG with881

LLM, utilizing the knowledge-aware prompting882

method (Baek et al., 2023; Rony et al., 2022; Sun883

et al., 2023; Zhang et al., 2022), however, cannot884

be transferred to the tKG domain due to their igno-885

rance of temporal characteristics.886

B Supplimentary Materials887

B.1 Implementation details.888

Experiment hyperparmeters will be release in code889

after review. We run experiments 3 times and take890

averages with A40 GPU.891
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Table 2: Appendix table for inductive result differences of GenTKG compared with non-inductive GenTKG (-nind)
results and compared with ICL on LLaMA2 with baseline retrieval (-ICL).

Eval
Train Hits@1 Hits@3 Hits@10

ICEWS14 ICEWS18 GDELT YAGO ICEWS14 ICEWS18 GDELT YAGO ICEWS14 ICEWS18 GDELT YAGO

∆(−nind)

ICEWS14 - -0.05 -0.04 -0.05 - -0.05 -0.03 -0.03 - -0.04 -0.05 -0.05
ICEWS18 0.02 - -0.02 -0.02 -0.02 - -0.02 -0.02 -0.02 - -0.04 -0.04
GDELT -0.04 -0.12 - -0.09 -0.07 -0.15 - -0.10 -0.08 -0.17 - -0.11
YAGO -0.08 -0.11 -0.09 - -0.07 -0.09 -0.06 - -0.02 -0.06 -0.03 -

∆(−ICL)

ICEWS14 - 0.05 0.05 0.04 - -0.01 -0.01 0.00 - -0.02 -0.03 0.01
ICEWS18 0.08 - 0.03 0.03 0.04 - 0.02 0.02 0.05 - 0.04 0.07
GDELT 0.05 -0.02 - 0.00 0.04 -0.08 - -0.03 0.03 -0.11 - 0.00
YAGO -0.05 -0.04 -0.09 - -0.05 -0.04 -0.09 - -0.09 -0.07 -0.10 -

Table 3: Appendix table for few-shot results of conventional methods and GenTKG.

Top 5% Top 10% Top 20% Top 30% Top 50% Top 75% Top 100%
Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10

RE-GCN 13.79 22.09 30.27 16.47 25.23 34.19 19.63 29.67 39.83 19.30 30.66 42.97 24.05 36.72 48.84 27.23 40.42 54.04 31.30 47.30 62.60
xERTE 06.95 14.17 25.46 15.27 26.79 39.43 17.80 29.26 42.08 20.56 31.39 43.63 22.51 34.15 46.59 24.25 36.07 48.27 33.00 45.40 57.00
TANGO 11.29 17.18 22.97 11.34 17.47 22.98 11.25 17.38 23.38 11.25 17.39 23.40 14.37 17.51 22.77 11.25 16.90 22.50 27.20 40.80 55.00

Timetraveler 21.06 34.78 49.10 23.10 35.71 49.96 26.69 39.42 51.78 27.98 40.14 53.23 30.05 42.82 54.74 32.11 45.33 57.14 31.90 45.40 57.50
TLogic Original 26.03 37.42 46.50 27.65 39.55 48.72 28.72 40.48 50.71 29.11 41.79 51.90 29.84 42.40 53.37 31.89 45.01 57.37 33.20 47.60 60.20

GenTKG 30.60 42.20 49.30 34.00 45.40 52.10 34.90 46.60 54.00 34.70 46.90 54.40 36.00 48.70 55.50 36.50 48.30 55.30 37.20 48.80 56.30

Table 4: Dataset statistics.

Datasets #train #valid #test #entity #relations time gap
ICEWS14 74854 8514 7371 7128 230 1 day
ICEWS18 373018 45995 49545 23033 256 1 day
GDELT 79319 9957 9715 5850 238 15 mins
YAGO 220393 28948 22765 10778 23 1 year
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