
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GRADIENT INVERSION TRANSCRIPT: A GENERATIVE
MODEL TO RECONSTRUCT TRAINING DATA BY GRA-
DIENT LEAKAGE

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose Gradient Inversion Transcript (GIT), a generic approach for recon-
structing training data from gradient leakage in distributed learning using a gener-
ative model. Unlike traditional gradient matching techniques, GIT only requires
the model architecture information, without access to the model’s parameters,
making it more applicable to real-world distributed learning settings. Addition-
ally, GIT operates offline without intensive gradient requests or online optimiza-
tion. Compared to existing generative methods, GIT adaptively constructs a gen-
erative network, with an architecture specifically tailored to the structure of the
distributed learning model. Our extensive experiments demonstrate that GIT sig-
nificantly improves reconstruction accuracy, especially in the case of deep models.
In summary, we offer a more effective and theoretically grounded strategy for ex-
ploiting vulnerabilities of gradient leakage in distributed learning, advancing the
understanding of privacy risks in collaborative learning environments.

1 INTRODUCTION

In distributed learning, each client trains its model on local data and shares the gradients with a
central server, which aggregates them to update the global model (Jochems et al., 2016; McMahan
et al., 2017; Yang et al., 2019). Gradient sharing is also common in federated learning (Huang et al.,
2021), but unlike distributed learning, which involves a more centrally coordinated distribution of
data across nodes, federated learning (FL) focuses on preserving client privacy by ensuring that
data remains localized. While these methods are effective in improving model performance and
training efficiency without directly exposing the client’s data to public, recent research has shown
that sharing gradients can still lead to sensitive information leakage, as attackers may exploit the
shared gradients to reconstruct the original training data used by the individual client (Phong et al.,
2017; Zhu et al., 2019; Zhao et al., 2020), posing significant privacy risks in real-world distributed
learning systems.

There is a considerable amount of work proposed to reconstruct the training data from its gradi-
ent (Phong et al., 2017; Zhu et al., 2019; Geiping et al., 2020; Wang et al., 2020; Zhu & Blaschko,
2020; Wu et al., 2023; Pan et al., 2020), based on varying levels of model access. These works can
generally be divided into two major categories: gradient matching, which optimizes reconstructed
data to align its gradient with the leaked one, and generative methods, which train generative models
to map the leaked gradient to the corresponding training data. Gradient matching methods typically
need repeated requests for gradients from the model under attack (Zhu et al., 2019; Wei et al., 2020;
Geiping et al., 2020; Wang et al., 2020) or full access to the model parameters (Zhu & Blaschko,
2020; Wang et al., 2023), which are usually not satisfied in practice.

We focus on generative methods in this work, which train a generative model called the “threat
model” using several input-gradient pairs. The architectures of the threat model are usually pre-
defined in existing methods. That is to say, the architectures of the threat model, such as a multi-layer
perception (MLP) (Rosenblatt, 1958) or a UNet Ronneberger et al. (2015), are used irrespective of
the model under attack. By contrast, we introduce Gradient Inversion Transcript (GIT) in this
work to adaptively choose the architecture of the threat model to improve its effectiveness. It is a
framework generally applicable to models of different architecture under attack.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Problem Settings In this work, we consider a practical distributed learning scenario in which an
attacker is able to gain and store the gradient updates sent by each local client but does not have
direct access to the clients’ raw data or labels. Additionally, the attacker is not able to interact with
the central server’s global model, meaning the global parameters remain unknown. The attacker
also cannot request gradient returns from the global model or modify its architecture to enhance the
attack. This setting reflects a more realistic threat model where attackers rely solely on gradient
information to attempt data reconstruction.

Assumptions Reconstruction by gradient matching has two main assumptions: (1) attackers know
private label (Zhu et al., 2019; Wei et al., 2020) or at least label distribution in a data batch (Zhao
et al., 2020; Yin et al., 2021; Ma et al., 2023). (2) attackers have access to the back propagation
process of the FL model, i.e., attackers are able to obtain returned gradients when they input data
(Zhu et al., 2019; Wei et al., 2020; Wang et al., 2020), or global model parameters Zhu & Blaschko
(2020). In our settings, similar to prior works that employ generative approaches (Wu et al., 2023;
Pan et al., 2020; Huang et al., 2021), we do not rely on the above assumptions. Instead, we assume
that attackers have access to multiple input-gradient pairs. This setting is more practical, as labels
are not shared in distributed learning, and it is challenging for attackers to gain access to the back
propagation process.

Our main contributions are as follows:

• We propose a theory-driven training data reconstruction scheme using a generative ap-
proach. This method relies solely on gradient information, without requiring access to the
backpropagation process or the global model’s parameters, as was necessary in previous
work. We systematically compare the differences between gradient matching and genera-
tive methods, along with their respective attack performance.

• We introduce a new generative model designed based on theoretical derivations. Instead
of using a fixed architecture, our generative model is tailored to the structure of the model
under attack. Unlike previous empirical approaches, our method is theoretically grounded,
resulting in superior performance.

• Unlike gradient matching, our method is based on offline learning. Once the generative
model is trained, it can infer the input data without further training, while gradient matching
requires repeated online learning for each data batch and necessitates continuous requests
for gradients from the global model.

Notation and Terminology The federated learning (FL) model from which gradients are leaked to
attackers is referred to as the ”leaked model,” while the network proposed by attackers to reconstruct
the training dataset is referred to as the ”threat model.” In this work, we use Lθ(x, y) to represent
the loss objective of an FL model, parameterized by θ, on an input-label pair (x, y). The model’s
weights and batch-averaged gradients are represented by W and∇W, respectively.

2 RELATED WORK

Before discussing gradient-based training data reconstruction, it is worth noting that reconstructing
datasets using model parameters only is also viable. Methods under this setting require significantly
less information than gradient-based methods because they do not need gradient information which
is data-dependent. Haim et al. (2022) was the first to reconstruct the training dataset solely based on
leaked model parameters by a method grounded in the theoretical analysis from Lyu & Li (2019).
Despite using less information, the method is unable to recover high-quality data and fails to achieve
pixel-wise accuracy. Consequently, gradient inversion attacks are more widely investigated in the
context of the leaked gradients.

Gradient Matching Training set reconstruction by gradient matching was initially explored by
Phong et al. (2017), which discusses the feasibility of reconstructing training data from shared gra-
dients in distributed learning. Zhu et al. (2019) demonstrated its practicality by proposing a method
called Deep Leakage from Gradients (DLG). DLG optimizes a randomly generated dummy input
to match the training data by minimizing the distance between the dummy gradients and the leaked
ground truth gradients. Building on DLG, Wei et al. (2020) evaluate the impact of different feder-
ated learning configurations, such as batch size, on the performance of gradient matching. Geiping

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

et al. (2020) extend DLG by leveraging only the direction of the gradient and replace the optimizer
LBFGS with Adam. Wang et al. (2020) propose a Gaussian-kernel-based cost function to recon-
struct training data at any training phase. Zhu & Blaschko (2020) introduce a closed-form recursive
procedure to recover data in which all gradients and parameters are exposed to the attacker. Further-
more, Wang et al. (2023) propose a provable gradient inversion attack focusing on reconstructing a
batch of data by querying a model with malicious parameter.

Reconstruction By Generative Models Unlike reconstruction by gradient matching, the generative
approaches train a threat model to generate the reconstructed training data with the leaked gradi-
ents as the input. The idea of employing a generative model for training data reconstruction was
originally proposed in Wu et al. (2023), which uses a three-layer MLP with fixed hidden size as
the generated model. Pan et al. (2020) propose a theoretically grounded method to train generative
models, leveraging the presence of exclusively activated neurons. In addition, Huang et al. (2021)
demonstrate that generative techniques can exhibit strong performance even when attackers lack ac-
cess to precise batch norm statistics. Furthermore, pretrained generative models, such as the ones
trained on other samples from the training data distribution (Jeon et al., 2021) or public datasets (Li
et al., 2022), have also shown the potential to improve the performance of generative training data
reconstruction.

The mentioned generative methods above employ a threat model of a fixed architecture regardless of
the leaked model, which may not be optimal. In contrast, we introduce a framework that dynamically
selects the architecture of the threat model based on the leaked model to enhance performance.

Challenges of Training Data Reconstruction One key challenge is to restore the label information,
which is the key to reconstructing the training data. Although many methods require the attacker’s
access to the label information (Zhu et al., 2019; Wei et al., 2020) or label distribution (Zhao et al.,
2020; Yin et al., 2021; Ma et al., 2023), several attempts have been made to restore the label in-
formation based on the leaked gradients. These methods usually tackle one particular scenario or
have additional assumptions, including small batch size (Zhao et al., 2020), no duplicate labels in
a mini-batch (Yin et al., 2021), and access to the output probability of each class (Ma et al., 2023).
By contrast, a recent work Chen & Vikalo (2024) considers a more realistic scenario, which takes
multiple local epochs, heterogeneous data and various optimizers into consideration.

Another key challenge is dealing with large batch sizes. The dimensionality of the leaked gradient is
fixed, but a large batch size means more information to reconstruct. Restoring the label information
has been shown effective in improving the performance in large batch size regime (Yin et al., 2021).
In addition, there are several works (Fowl et al., 2021; Wen et al., 2022; Wang et al., 2023; Hayes
et al., 2024) proposed to improve the performance of reconstructing large batch training data under
different settings. However, there are still considerable performance gaps between small batch and
large batch regimes.

In our framework, we do not assume any access to the label information. In addition, we evaluate
our methods against baselines across varying batch sizes. Comprehensive experiments validate the
effectiveness of our methods despite these challenges.

3 ANALYTIC GRADIENT INVERSION ATTACK

3.1 RECONSTRUCTION OF LINEAR MODEL

We first consider an N -layer feedforward neural network as follows:

Lθ(x, y) = ℓ(zN , y) = ℓ(WNaN−1, y); ai = σi(zi), zi = Wiai−1, i = 1, 2, ..., N − 1 (1)

Here, we denote the width of the neural network or namely the number of hidden nodes for the i-th
layer as {di}N−1

i=1 . The input data batch a0 = x ∈ RB×d0 , where B is the batch size. In addition,
we define aN = WNaN−1 as the output logit of the model. {Wi ∈ Rdi×di−1}Ni=1 refer to the
parameters of N linear layers, including convolutional layers and fully connected layers. {σi}N−1

i=1
are the nonlinear activation functions of different layers. zN = WNaN−1 is the output logit, and ℓ
is the function calculating the classification error, such as the softmax cross-entropy function. In this
context, {zi ∈ RB×di}N−1

i=1 and{ai ∈ RB×di}N−1
i=1 represent the pre-activation and post-activation

of intermediate layers, respectively.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

We use gi = ∇Wi
Lθ(x, y) to represent the gradient of each weight matrix. In distributed learning

or federated learning, each client reports gradient averaged on their local data batch S with size B,
i.e., ḡi := 1

BΣB
b=1∇Wi

Lθ(x
(b), y(b)), S = {(x(1), y(1)), (x(2), y(2)), ..., (x(B), y(B))}. Based on

back-propagation, we have the following equations according to the chain rule:

gi =

N−1∏
j=i

WT
j+1 ⊙ σ′

j(zj)

⊗ ∂L
∂zN

⊗ aT
i−1, i = 1, 2, ..., N (2)

Here we define two operators, namely ⊗ and ⊙. ⊗ denotes tensor multiplication. ⊙ denotes
broadcast row-wise product. Specifically, we let WT

j+1 ⊙ σ′(zj) := Vj ∈ RB×dj×dj+1 where
Vj [i1, i2, :] = σ′

j(zj [i1, i2])W
T
j+1[i2, :]. In addition, ∂L

∂zN
is broadcast as a tensor of a shape

B×dN ×1 and aT
i−1 is broadcast as a tensor of a shape B×1×di−1. Therefore, gi ∈ RB×di×di−1

is a third-order tensor. This tensor encapsulates the gradient information across the entire batch. In
distributed learning or federated learning, we average it along the batch dimension before sharing it
with the central server, formally expressed as ḡi = Eb[gi[b, :, :]].

Based on Equation (2), we can approximate the value of aT
i−1 as follows:

aT
i−1 ≃

(
∂L
∂zN

)+

⊗
i∏

j=N−1

(
WT

j+1 ⊙ σ′
j(zj)

)+ ⊗ gi, i = 1, 2, ..., N (3)

Here, we use (·)+ to represent the Moore–Penrose inverse of a matrix. For a third-order tensor,
(·)+ calculate the Moore-Penrose inverse of each of its subspace via the first dimension. Similar to
Equation (2), we broadcast ∂L

∂zN
, aT

i−1 and treat them as third-order tensors. Approximation in (3)
still involves the product of a sequence, but we can re-organize (3) to approximate ai−1 by ai:

aT
i−1 ≃ aT

i ⊗ g+
i+1 ⊗ (WT

i+1 ⊙ σ′
i(zi))

+ ⊗ gi, i = 1, 2, ..., N − 1 (4)

Applying (4) iteratively, we can derive a recursive training data reconstruction method, which prop-
agates from aN to a0 and thereby facilitate the recovery of the original training data.

3.2 RECONSTRUCTION OF ACTIVATION FUNCTION

The right hand side of (4) involve the term σ′(zi) which introduces nonlinearity. When applying
(4) iteratively, we can estimate the value of σ′(zi) based on ai. Since both σ and derivative of σ
are applied elementwisely, the mapping from ai to σ′(zi) is also elementwise. Although function
σi may not be an injective function, we demonstrate in Table 1 below that we can uniquely identify
σ′(zi) given ai for the most popular activation functions used in practice.

Name ReLU Leaky ReLU Sigmoid Tanh
ai = σi(zi) max(0, zi) max(kzi, zi)

1
1+e−zi

ezi−e−zi

ezi+e−zi

σ′
i(zi)

{
1 if ai > 0

0 if ai = 0

{
1 if ai > 0

k if ai ≤ 0
ai(1− ai) 1− a2

i

Table 1: Mappings from ai to σ′(zi) for popular activation functions. Operations are elementwise.

In practice, when we are using ReLU as the activation function, σ′(zi) will be a sparse matrix. This
may cause numerical instability when we calculate (WT

i+1⊙ σ′
i(zi))

+ on the right hand side of (4).
In this case, we replace zero elements with a small pre-defined constant ϵ in σ′(zi).

3.3 MORE GENERAL ARCHITECTURE

Equation (1) formulates a feedforward neural network consisting of linear layers and activation func-
tions alternatively. In practice, we may use more complicated architecture to boost performance. For
example, skip connections are widely used in deep neural networks: their application in ResNet (He
et al., 2016) has proven effective in addressing challenges such as gradient vanishing. Therefore, it
is necessary and important to generalize the analyses above to these architectures.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Without the loss of generality, we consider a neural network with one single shortcut connection
which links k-th layer to l-th layer (k < l). Specifically, the shortcut connection links the post-
activation ak to the pre-activation zl with a weight parameter S ∈ Rdk×dl . Therefore, {zi}Ni=1 and
{ai}Ni=1 are calculated in the same manner except that zl = Wlal−1 + Sak. Based on the back
propagation, gi is calculated in the same way as in Equation (2) when i > k. When i ≤ k, gi is
calculated as follows. For notation simplicity we define Mj = WT

j+1 ⊙ σ′
j(zj).

gi =

k−1∏
j=i

Mj ⊗

l−1∏
j=k

Mj + S⊙ σ′
k(zk)

⊗ N−1∏
j=l

Mj ⊗
∂L
∂zN

⊗ aT
i−1 (5)

Following a similar analysis to (3) and (4), we can derive an approximation of ai−1 using ai. The
approximation is the same as (4) except for the case i = k. This is because the shortcut connection
contributes to the gradient gk but not gk+1: gk+1 is calculated based on Equation (2) while gk
is calculated based on Equation (5). In this regard, combining Equation (2) with i = k + 1 and
Equation (5) with i = k, we obtain the following approximation:

aT
k−1 ≃

((
WT

k+1 ⊙ σ′
k(zk)

)
⊗ gk+1 ⊗ (aT

k)
+ + (S⊙ σ′

k(zk))⊗ gl ⊗ (al−1)
+
)+ ⊗ gk (6)

Compared to (4), the estimation in (6) incorporates not only gk and gk+1 but also gl to estimate
aT
k−1. Since ak is connected to zl via skip connection, gradients can flow directly from the l-th

layer to the k-th layer in back propagation. The insight provided by approximation (6) reveals how
preceding activations are estimated based on gradients in a general neural network architecture. The
reconstruction sequence aligns with the gradient flow during back propagation. In the subsequent
section, we delve into the implementation of such reconstruction using a generative model.

4 METHODOLOGY: GRADIENT INVERSE TRANSCRIPT

Building upon the principles and assumptions of distributed learning and federated learning as elu-
cidated in Section 1, we train a generative model, denoted as the threat model, utilizing multiple
input-gradient pairs (x, {gi}Ni=1). Note that we do not have any knowledge about the leaked model
other than its architecture and do not have the access to call back propagation as in DLG Zhu et al.
(2019). In addition, we do not have access to the parameters of the leaked model or the label of the
training data. Upon completion of training, the threat model utilizes the leaked gradients as input to
generate the training data batch as output.

Most existing generative reconstruction methods use fixed architectures (Zhu et al., 2019; Li et al.,
2022), such as multi-layer perceptrons (MLP) or UNets. However, these designs are heuristic and
may not be the optimal for leaked models of different architectures. Based on the analyses in Sec-
tion 3, we propose a novel generative reconstruction scheme called Gradient Inverse Transcript
(GIT), illustrated in Figure 1. In approximation (4) and (6), all the variables except the gradients
{gi}Ni=1 are unknown. In this regard, we can represent the unknown variables as the trainable pa-
rameters of the generative model. By applying approximation (4) and (6) iteratively, we can build a
neural network as the generative model to reconstruct the training data. It is important to note that
the architecture of this generative model adapts to the one of the leaked model and is a “translation”
of its back propagation as demonstrated in Figure 1. (A more general architecture for networks with
skip connections are shown in Appendix D.)

Based on the analyses in Section 3.2, the value of {σ′
i(zi)}

N−1
i=1 can be calculated based on the

estimated value of {zi}N−1
i=1 . By applying the approximation (4) or (6) iteratively, we can find

{Wi}Ni=1 are the only unknown variables, so we include these variables as model parameters in the
threat model. In addition, we need the value of ∂L

∂zN
to estimate the value of aN−1 by aN−1 ≃(

∂L
∂zN

)+

⊗ gN so that we can iteratively estimate the value of the preceding layers. When the last
layer of the neural network has a bias term bN , i.e., aN = WNaN−1 + bN , following the idea
of Ma et al. (2023), we have ∂L

∂zN
= ∂L

∂bN
. That is to say, we can directly utilize the gradient of

the bias term in the last year as ∂L
∂zN

. When the last layer of the neural network does not have a
bias term, we cannot directly obtain ∂L

∂zN
. In addition, considering that ∂L

∂zN
depends on the input

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

ia 1ia 2ia

1iW 2iW

1ig 2ig

forwardpropagate

. . . .

Na

. . . . class

leaked network
threat network

. . . .
1Na

b
LgN

，

1iaia1ia

. . . .

treconstruc

Figure 1: (Top half) The leaked model which leaks the gradient to the attakers. (Bottom half)
The threat model constructed by Inverse Gradient Transcript (GIT) based on the approximation (4).
The threat model is a generative model utilizing the leaked gradients to reconstruct the training
mini-batch data. In FineGIT mode, we estimate ai based on the approximation (4) with unknown
variables as trainable parameters. In CoarseGIT mode, we use an MLP to estimate ai with the
gradient and activation estimation based on (4) as the input.

data, we cannot treat it as a parameter, either. In this scenario, we introduce a multi-layer perception
(MLP) model to concatenate the gradient information {gi}Ni=1 and map it to ∂L

∂zN
. This MLP model

is trained jointly with the threat model.

In addition to strictly following the computation in the backward estimation such as the one in (4)
and (6) and only including {Wi}Ni=1 as the parameters of the threat model, we can also model the
inference from aN−1 to its preceding layers in a more coarse-grained manner. Specifically, for the
i-th layer we use a shadow but nonlinear multi-layer perception (MLP) model represented by the
function mi to model the mapping from ai to ai−1. Besides ai, the inputs of this MLP also include
the gradient information used to infer ai. That is to say, based on the topology of the neural network,
when we use approximation (4), we have ai−1 = mi(ai, gi+1, gi); when we use approximation (6),
we have ak−1 = mk(ak, gk+1,al−1, gl, gk). We do not include the Moore-Penrose inverse in
the formulation, because we find it may cause numerical instability and the MLP employed here
has the capacity to model the inverse operation. Under this coarse setting, the threat model is the
composition of these MLP models, which are trained jointly.

Based on the parameterization of the threat model discussed above, we name the corresponding
methods Fine-grained Gradient Inverse Transcript (FineGIT) and Coarse-grained Gradient Inverse
Transcript (CoarseGIT), respectively. FineGIT is more aligned with the back propagation calcula-
tion and has fewer parameters to train, but it lacks flexibility and may suffer from numerical insta-
bility. This is because we use the approximated value of {ai}N−1

i=1 to estimate {σ′
i(zi)}

N−1
i=1 , which

may cause approximation error to propagate. In addition, we need to calculate the Moore-Penrose
inverse of the trainable parameters in approximation (4) and (6), which may cause numerical insta-
bility, especially in the cases of low-rank matrices. CoarseGIT, on the other hand, is more flexible,
stable but has more parameters to train. Our observation in practice indicates that FineGIT is more
stable when the leaked model’s feature map is smaller and the model’s width is narrow.

When training the threat model, we use mean squared error ∥a0−â0∥2 as the loss objective function
where a0 = x is the ground truth mini-batch inputs and â0 is the estimation for the input data by
the threat model.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

We formally present analytic reconstruction procedure of GIT in Algorithm 1 in the appendix.

5 EXPERIMENTS

We assess our methods on classification tasks using the CIFAR-10 (Krizhevsky et al., 2009) im-
age dataset. In the realm of distributed learning or federated learning, a central server refines a
classification model by aggregating gradients shared by user devices, derived from their individual
training data. Our experiment operates under the assumption that user-side local datasets are subsets
of CIFAR-10. The attacker, with access to a subset of gradient-input pairs, endeavors to reconstruct
the remaining input data using the gradients shared by others. These pairs for training the threat
models are sampled from CIFAR-10’s training set (unless otherwise specified, in the subsequent
experiments, we use one-tenth of the training data, which consists of 5,000 samples), we evaluate
the performance of the recontruction methods on CIFAR-10’s test set. To quantitatively evaluate
model efficacy, we utilize mean squared error (MSE) as the metric for evaluating the performance
of training data reconstruction.

We mainly use LeNet (LeCun et al., 1998) and ResNet (He et al., 2016) of various depth as the
architecture of the leaked model in our experiments. We use the approximation in (4) for LeNet
and the approximation in (6) for ResNet, since ResNet includes shortcut connections. For layers
other than linear layers, including pooling layers and batch normalization layers (Ioffe, 2015), as
discussed in Section 3.3, we can construct the corresponding architecture of the threat model based
on the back propagation through these layers.

Baselines We benchmark our methods against two approaches: (1) Deep Leakage from Gradients
(DLG) (Zhu et al., 2019), which belongs to the category of gradient matching methods; (2) The
generative approach utilizing a fixed MLP architecture (Wu et al., 2023). We select these two as our
baselines, because both of them achieve competitive performance in their respective category. For
generative methods, we do not use UNet as the fixed architecture, because UNet-based generative
models leverage priors from the public data. However, we do not assume any access to the public
data by the attacker.

Although the gradient matching methods diverge from our assumptions and configurations stud-
ied, we opt to compare with these methods due to its widespread application. Gradient matching
techniques necessitate a complete optimization process for each batch data recovery, whereas gener-
ative methods need to train a generative model capable of retrieving data from any batch used in its
training. That is to say, the major computational overhead for gradient matching methods is the per-
batch optimization process during reconstruction, while the major overhead for generative methods
is to train a generative model. To ensure a fair comparison, we keep the computational complexity
approximately the same for methods of both categories.

5.1 RECONSTRUCTION IN VARIOUS BATCH SIZES AND NETWORK ARCHITECTURES

Table 3 compares the performance of our proposed method (GIT) against baselines across different
network architectures and batch sizes. The results indicate that the reconstruction is more challeng-
ing with a larger batch size and a deeper architecture. Our proposed GIT outperforms baselines in
all cases except LeNet with batch size being 1, where DLG performs the best and almost perfectly
recover the input data. It is not surprising because DLG can obtain more information from the
model through repetitive online requests. However, as the batch size increases, DLG’s performance
declines significantly, revealing its inability to handle larger batches effectively. GIT, on the other
hand, outperforms other methods when the batch size exceeds 1, indicating its ability to recontruct
multiple input data at the same time.

Among the generative models, GIT outperforms the baseline that uses a fixed MLP as the threat
model in all cases. The results validate the effectiveness of using an adaptive architecture for the
threat model as discussed in Section 3. Moreover, we notice the issue of overfitting when train-
ing generative models. Specifically, the training loss in MSE for both GIT and MLP models can
drop below 0.005 while the test loss demonstrated in Table 3 is significantly larger. We believe
the overfitting issue arises from insufficient training data and lack of regularization schemes. We
leave mitigating overfitting of generative reconstruction methods as our future works. The first 8

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

reconstructed images in CIFAR-10 test set are shown in Appendix E.1, illustrating the visual quality
corresponding to the first column of Table 3.

Table 2: Quantitative Comparison of GIT with prior works on different networks and batch sizes. We
use MLP & UNet to represent the generative method using a fixed MLP & UNet architecture, which
shares similar number of parameters to our proposed method. The numbers in the table represent
the MSE & PSNR between the reconstructed data and the ground truth on the test set. We use 10000
samples to train generative models.

Leaked Model Method Metrics Batch Size = 1 Batch Size = 2 Batch Size = 4

LeNet (5 layers)

DLG MSE 0.0008 0.0472 0.0975
PSNR 30.97 13.26 10.11

MLP MSE 0.0241 0.0332 0.0571
PSNR 16.18 14.79 12.43

GIT MSE 0.0099 0.0122 0.0254
PSNR 20.04 19.14 15.95

UNet MSE 0.0316 0.0393 0.0435
PSNR 15.00 14.06 13.62

ResNet (20 layers)

DLG MSE 0.1202 0.1347 0.1365
PSNR 9.20 8.71 8.65

MLP MSE 0.0354 0.0473 0.0589
PSNR 14.51 13.25 12.30

GIT MSE 0.0193 0.0246 0.0388
PSNR 17.14 16.09 14.11

UNet MSE 0.0515 0.0560 0.0619
PSNR 12.88 12.52 12.02

Table 3: Results for different methods with varying batch sizes and network depths.

For datasets with larger resolutions, such as TinyImageNet-200, the MSE for varying batch sizes
and network architectures, along with the reconstructed images, are presented in Appendix E.2. The
results demonstrate that high-frequency information, including object contours and background de-
tails, is effectively recovered. Although the MSE and visual quality are lower compared to CIFAR10
under the same configuration, reconstructing data from higher-resolution images poses a significant
challenge. Notably, resolutions larger than CIFAR10 have not been explored in baseline methods
MLP and DLG.

5.2 RECONSTRUCTION BY NOISY GRADIENTS

Gradient perturbation is a commonly used defense method against gradient leakage (Zhu et al.,
2019). As shown in prior work Wu et al. (2023), the generative model demonstrates superior per-
formance over DLG in countering privacy defenses. Our results in the left half of Table 4 validate
this conclusion for GIT when encountering gradient perturbation with varying noise variance. In
addition, GIT demonstrates better performance than using a fixed MLP model in all cases. We apply
Gaussian noise with standard deviation (std) of 0.01 and 0.1. DLG is shown to be highly sensitive
to the noise added to the gradients, Gaussian noise with a std of 0.01 is sufficient to prevent DLG
from accurately recovering the input image, and noise with a std of 0.1 will result in reconstructed
images being entirely comprised of noise. In contrast, GIT maintains a mean squared error (MSE) of
approximately 0.01 even when the noise std reaches 0.1, showing minimal susceptibility to noise. In
addition, we notice that the sixth recovered image in the validation set shows an inverse trend com-
pared to the other seven images, where the quality improves as the training dataset size decreases.
This anomaly could be attributed to the image being an outlier in the CIFAR-10 distribution. We
will leave this observation for future work.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Comparison of the MSE under gradient perturbation with varying noise variance (left) and
varying volumes of training data (right). The batch size is fixed at 1, and the leaked model is LeNet
with 5 layers.

std of noise DLG MLP GIT Volume GIT MLP
None 0.001 0.024 0.009 1000 0.016 0.035
0.01 0.105 0.024 0.009 5000 0.013 0.028
0.1 0.163 0.024 0.010 10000 0.009 0.024

5.3 RECONSTRUCTION BY DIFFERENT VOLUMES OF TRAINING DATA

In this section, we evaluate the performance of GIT using varying amounts of training data: 1, 000,
5, 000 and 10, 000 samples. The right half of Table 4 shows impact of training data volume on
generative approach. Considering the generative models can achieve almost the perfect performance
on the training set, we can conclude that a larger training set can help mitigate overfiting and thus
enhance the performance of the model. In addition, GIT is shown to achieve better performance
than using a fixed MLP architecture in all cases. The first 8 reconstructed images in CIFAR-10 test
set is illustrated in Figure 6. It shows that even with only 1000 input-gradient pairs, GIT is still
able to reconstruct reasonable images, indicating that with a small amount of training data, effective
recovery is still achievable.

Figure 2: Comparison the first 8 reconstructed images in CIFAR-10 test set using different amount
of training data. The leaked model model is LeNet and batch size is 1. (From top to bottom)
ground truth images, reconstructed images using 10000 samples, reconstructed images using 5000
samples and reconstructed images using 1000 samples

5.4 ABLATION STUDIES FOR MODEL COMPLEXITY

Since GIT learns to invert gradients based on the architecture dependent on the model under attack,
its model complexity varies for different FL models and differs from the generative approach that
employs a fixed architecture. Generally speaking, during inference, the complexity of running GIT
is proportional to running the model under attack, because their architectures are related.

To understand this dependence, we conduct ablation studies by varying the depth and width of
an MLP. The results are shown in table 5. All ablation studies are performed with a LeNet FL
model and a batch size of 1. In the generative approach with a fixed MLP, a three-layer structure is
adopted, each with 1000 hidden units. The first ablation study keeps the model depth constant but
increases the depth of each layer to match the number of parameters of GIT, allowing us to evaluate
the differences between our method and a standard MLP under the same model complexity. The
second experiment maintains the hidden size of each MLP layer but increases the model depth to
match that of GIT. However, in these configurations, all gradients are flattened and input from the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

first layer, rather than fed incrementally through layers as in Coarse GIT. The results show that our
proposed GIT model performs better than all configurations of baselines, highlighting its superior
performance under fair conditions of equal computational complexity.

Table 5: Ablation Studies for Model Complexity. All ablation studies are performed with a LeNet
FL model and a batch size of 1.

MLP MLP with Fixed Depth MLP with Fixed Width GIT
0.0241 ± 0.0003 0.0224 ± 0.0003 0.0129 ± 0.0004 0.0099 ± 0.0001

5.5 ANALYSIS OF THE TREND OF LEARNED WEIGHTS

In this section, a complementary experiment is conducted to measure the L2 distance between the
weights of the optimized neural network and those of the leaked neural network. This serves as
an additional metric for evaluating the effectiveness of GIT. The experiment is conducted on Fine-
GIT, as its parameters are estimations of the leaked model’s weights (as detailed in Algorithm 1 in
Appendix C), whereas the parameters of CoarseGIT represent a black-box approximation.

Figure 3 illustrates the L2 distance curve between the attack model’s weights and the leaked model’s
weights, alongside the MSE between the reconstructed inputs and the ground truth inputs. As shown
in the figure, when FineGIT converges, its weights align closely with the ground truth weights.
This convergence highlights the effectiveness of FineGIT in extracting weight information from the
leaked model.

0 200 400 600 800 1000
Epochs

101

102

L2
 D

ist
an

ce

100

101

102

103

Te
st

 L
os

s (
M

SE
)

L2 Distance between Weights and Test Loss Across Epochs

Figure 3: The red curve represents L2 distance between weights of the attack model and the leaked
model. The blue curve represents MSE between reconstructed input and the ground truth input.
The experiment is conducted on leaked model with two convolutional layers for 1000 epochs. The
dataset is CIFAR10, 5000 samples are leaked to the attacker. These curves show the trend of L2
distance during training.

6 CONCLUSIONS

This work introduces the Generative Gradient Inversion Transcript (GIT), a method for reconstruct-
ing training data in distributed learning by exploiting gradient leakage. We formulate and solve
a reconstruction system that leverages gradients to recursively reconstruct the hidden layer neuron
outputs, based on the back propagation. Our framework is generic and considers different categories
of layers and network topologies. Our experiments demonstrate the effectiveness of our proposed
methods: compared with using a fixed architecture as the generative model for reconstruction, GIT
is more adaptive to different architectures of the leaked models. GIT has competitive performance
in various scenarios, including noisy gradients and limited amount of training data. Our future
work will focus on mitigating the overfitting issue to further improve the performance of generative
reconstruction methods.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Huancheng Chen and Haris Vikalo. Recovering labels from local updates in federated learning.
arXiv preprint arXiv:2405.00955, 2024.

Liam Fowl, Jonas Geiping, Wojtek Czaja, Micah Goldblum, and Tom Goldstein. Robbing the
fed: Directly obtaining private data in federated learning with modified models. arXiv preprint
arXiv:2110.13057, 2021.

Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients-
how easy is it to break privacy in federated learning? Advances in neural information processing
systems, 33:16937–16947, 2020.

Niv Haim, Gal Vardi, Gilad Yehudai, Ohad Shamir, and Michal Irani. Reconstructing training data
from trained neural networks. Advances in Neural Information Processing Systems, 35:22911–
22924, 2022.

Jamie Hayes, Borja Balle, and Saeed Mahloujifar. Bounding training data reconstruction in dp-sgd.
Advances in Neural Information Processing Systems, 36, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Yangsibo Huang, Samyak Gupta, Zhao Song, Kai Li, and Sanjeev Arora. Evaluating gra-
dient inversion attacks and defenses in federated learning. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, volume 34, pp. 7232–7241. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/3b3fff6463464959dcd1b68d0320f781-Paper.pdf.

Sergey Ioffe. Batch normalization: Accelerating deep network training by reducing internal covari-
ate shift. arXiv preprint arXiv:1502.03167, 2015.

Jinwoo Jeon, Kangwook Lee, Sewoong Oh, Jungseul Ok, et al. Gradient inversion with generative
image prior. Advances in neural information processing systems, 34:29898–29908, 2021.

Arthur Jochems, Timo M Deist, Johan Van Soest, Michael Eble, Paul Bulens, Philippe Coucke,
Wim Dries, Philippe Lambin, and Andre Dekker. Distributed learning: developing a predictive
model based on data from multiple hospitals without data leaving the hospital–a real life proof of
concept. Radiotherapy and Oncology, 121(3):459–467, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Zhuohang Li, Jiaxin Zhang, Luyang Liu, and Jian Liu. Auditing privacy defenses in federated learn-
ing via generative gradient leakage. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 10132–10142, June 2022.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.
arXiv preprint arXiv:1906.05890, 2019.

Kailang Ma, Yu Sun, Jian Cui, Dawei Li, Zhenyu Guan, and Jianwei Liu. Instance-wise batch
label restoration via gradients in federated learning. In The Eleventh International Conference on
Learning Representations, 2023.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

11

https://proceedings.neurips.cc/paper_files/paper/2021/file/3b3fff6463464959dcd1b68d0320f781-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/3b3fff6463464959dcd1b68d0320f781-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xudong Pan, Mi Zhang, Yifan Yan, Jiaming Zhu, and Min Yang. Theory-oriented deep leakage
from gradients via linear equation solver. arXiv preprint arXiv:2010.13356, 1, 2020.

Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and Shiho Moriai. Privacy-
preserving deep learning: Revisited and enhanced. In Applications and Techniques in Information
Security: 8th International Conference, ATIS 2017, Auckland, New Zealand, July 6–7, 2017, Pro-
ceedings, pp. 100–110. Springer, 2017.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234–241. Springer, 2015.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization
in the brain. Psychological review, 65(6):386, 1958.

Yijue Wang, Jieren Deng, Dan Guo, Chenghong Wang, Xianrui Meng, Hang Liu, Caiwen Ding, and
Sanguthevar Rajasekaran. Sapag: A self-adaptive privacy attack from gradients. arXiv preprint
arXiv:2009.06228, 2020.

Zihan Wang, Jason Lee, and Qi Lei. Reconstructing training data from model gradient, provably. In
International Conference on Artificial Intelligence and Statistics, pp. 6595–6612. PMLR, 2023.

Wenqi Wei, Ling Liu, Margaret Loper, Ka-Ho Chow, Mehmet Emre Gursoy, Stacey Truex, and
Yanzhao Wu. A framework for evaluating gradient leakage attacks in federated learning. arXiv
preprint arXiv:2004.10397, 2020.

Yuxin Wen, Jonas Geiping, Liam Fowl, Micah Goldblum, and Tom Goldstein. Fishing for user data
in large-batch federated learning via gradient magnification. arXiv preprint arXiv:2202.00580,
2022.

Ruihan Wu, Xiangyu Chen, Chuan Guo, and Kilian Q Weinberger. Learning to invert: Simple adap-
tive attacks for gradient inversion in federated learning. In Uncertainty in Artificial Intelligence,
pp. 2293–2303. PMLR, 2023.

Wensi Yang, Yuhang Zhang, Kejiang Ye, Li Li, and Cheng-Zhong Xu. Ffd: A federated learning
based method for credit card fraud detection. In Big Data–BigData 2019: 8th International
Congress, Held as Part of the Services Conference Federation, SCF 2019, San Diego, CA, USA,
June 25–30, 2019, Proceedings 8, pp. 18–32. Springer, 2019.

Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz, and Pavlo Molchanov. See
through gradients: Image batch recovery via gradinversion. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 16337–16346, 2021.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from gradients.
arXiv preprint arXiv:2001.02610, 2020.

Junyi Zhu and Matthew Blaschko. R-gap: Recursive gradient attack on privacy. arXiv preprint
arXiv:2010.07733, 2020.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/60a6c4002cc7b29142def8871531281a-Paper.pdf.

12

https://proceedings.neurips.cc/paper_files/paper/2019/file/60a6c4002cc7b29142def8871531281a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/60a6c4002cc7b29142def8871531281a-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A NOTATION

L Loss objective function

σ An activation function

zi pre-activation output of i-th hidden layer in a neural net-
work

ai post-activation output of of i-th hidden layer in a neural
network

Wi A weight tensor of i-th layer in a neural network

gi A gradient tensor of i-th layer in a neural network

B Batch size

N Number of hidden layers in a neural network

x A single data batch

X A series of data batches

y Label of a data sample

y Labels of a single data batch

Y Labels of a series of data batches

(.)(i) The i-th sample in the set

x+ Moore-Penrose inverse of each of x’s subspace via the first
dimension

⊗ Tensor Multiplification

⊙ Broadcast row-wise product

B EXPERIMENT CONFIGURATION

In our experiments described in Section 5, we reconstruct training data using a five-layer LeNet and
a twenty-layer ResNet, both employing a kernel size of 5 and with each output channel set to 12.
The last layers of both models are fully connected layers. In ResNet, every two convolutional layers
form a basic block, connected by skip connections.

For the generative approach using a Multi-Layer Perceptron (MLP), we design the hidden size to
be 3000, with a total of three hidden layers, consistent with the architecture proposed by Wu et al.
(2023). In this experiment, we utilize the CoarseGIT model instead of FineGIT. The reconstruction
results are presented on the test set of CIFAR-10, showcasing the first eight images to illustrate the
visible reconstruction performance.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

C ALGORITHM PSEUDOCODE

Algorithm 1 Generative Gradient Inverse Transcript (GIT)

1: Setup: Set network width for layer-i in leaked model as {di}N−1
i=1 . With M known batches of

training data-gradient pairs for distributed learning D = {(X1,y1), (X2,y2), . . . , (XM ,yM)},
we have shared gradients gm

i = ∇Wi
L(Xm;ym), for i = 1, . . . , N and m = 1, . . . ,M ; as

well as update of final layer’s bias { ∂L
∂bN
}m for m-th batch.

2: Initialization: Current GIT model parameters Θ := {W1,W2, . . . ,WN} are initialized ran-
domly as:

Wi ∼ N (0, σ2), i = 1, 2, . . . , N

3: Training:
4: Set ϵ as the learning rate. GIT is trained on D for E epochs.
5: for each epoch e = 1 to E do
6: for each batch m = 1 to M do
7: Input: Gradients gm

i , for i = 1, . . . , N − 1.

8: Compute the embedding aT
N−1 = gmN

(
{ ∂L
∂bN
}m

)−1

.
9: for each layer i = N − 1 to 1 do

10: a′
i(j) =

{
1, if ai(j) > 0

0, if ai(j) = 0
∀j ∈ {1, 2, ..., di}

11: aT
i−1 = aT

i ⊗ (gm
i+1)

−1 ⊗
(
WT

i+1 ⊙ a′
i

)−1 ⊗ gm
i ,

12: end for
13: Output: Recovered estimated input X̂m = a0.
14: Compute LGIT = ||X̂m −Xm||2 as the reconstruction error
15: Update model parameters Wi: Wi ←Wi − ϵ∇WiLGIT (g

m;Xm), i = 1, 2, . . . , N
16: end for
17: end for
18: Reconstruction: To reconstruct a batch of unknown training data X for distributed learning

with corresponding gradient gi, for i = 1, . . . , N .
19: Input: Gradients gi, for i = 1, . . . , N − 1

20: Compute the embedding aT
N−1 = gN

(
∂L
∂bN

)−1

.
21: for each layer i = N − 1 to 1 do

22: a′
i(j) =

{
1, if ai(j) > 0

0, if ai(j) = 0
∀j ∈ {1, 2, ..., di}

23: aT
i−1 = aT

i ⊗ (gi+1)
−1 ⊗

(
WT

i+1 ⊙ a′
i

)−1 ⊗ gi,
24: end for
25: Output: Recovered estimated input X̂ = a0.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

D GIT ARCHITECTURE FOR LEAKED MODEL WITH SKIP CONNECTIONS

ka 1ka 2ka

1kW 2kW

1kg 2kg

forwardpropagate

. . . .

Na

. . . . class
. . . .

1Na

b
LgN

，

1kaka1ka

. . . .

treconstruc
. . . .

. . . .

la

lg

shortcut

1la

Figure 4: (Top half) The leaked model which leaks the gradient to the attakers. (Bottom half)
The threat model constructed by Inverse Gradient Transcript (GIT) based on the approximation (6).
The threat model is a generative model utilizing the leaked gradients to reconstruct the training
mini-batch data. In FineGIT mode, we estimate ak based on the approximation (6) with unknown
variables as trainable parameters. In CoarseGIT mode, we use an MLP to estimate ak with the
gradient and activation estimation based on (6) as the input.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 RECONSTRUCTED IMAGES FOR DIFFERENT METHODS ON CIFAR10

Figure 5: Comparison the first 8 reconstructed images in CIFAR-10 test set when using different
reconstruction method. The leaked model is ResNet and batch size is 1. (From top to bottom)
DLG, generative approach utilizing MLP, generative approach utilizing GIT. The results show that
both DLG and the generative approach using MLP fail to recover reasonable images on ResNet,
while GIT is able to reconstruct some features of the ground truth images.

E.2 EXPERIMENTAL RESULTS FOR GIT ON TINYIMAGENET-200

Table 6: MSE for reconstructed TinyImageNet with different batch sizes and model types.

Leaked Model Metrics Batch Size = 1 Batch Size = 2 Batch Size = 4

LeNet 5
MSE 0.0317 0.0437 0.0509

PSNR 14.99 13.60 12.93

ResNet 20
MSE 0.0983 0.1147 0.1274

PSNR 10.07 9.40 8.95

Figure 6: The best MSE of the reconstructed images are 0.0317 ± 0.0003. And the corresponding
first 8 reconstructed images (bottom) and ground truth images (top) of TinyImageNet-200, with
10000 training samples.

16

	Introduction
	Related Work
	Analytic Gradient Inversion Attack
	Reconstruction of Linear Model
	Reconstruction of Activation Function
	More General Architecture

	Methodology: Gradient Inverse Transcript
	Experiments
	Reconstruction in Various Batch Sizes and Network Architectures
	Reconstruction by Noisy Gradients
	Reconstruction by Different Volumes of Training Data
	Ablation Studies for Model Complexity
	Analysis of the Trend of Learned Weights

	Conclusions
	Notation
	Experiment Configuration
	Algorithm Pseudocode
	GIT Architecture for leaked model with skip connections
	Additional Experimental Results
	Reconstructed images for different methods on CIFAR10
	Experimental Results for GIT on TinyImageNet-200

