Under review as a conference paper at ICLR 2025

GRADIENT INVERSION TRANSCRIPT: A GENERATIVE
MODEL TO RECONSTRUCT TRAINING DATA BY GRA-
DIENT LEAKAGE

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose Gradient Inversion Transcript (GIT), a generic approach for recon-
structing training data from gradient leakage in distributed learning using a gener-
ative model. Unlike traditional gradient matching techniques, GIT only requires
the model architecture information, without access to the model’s parameters,
making it more applicable to real-world distributed learning settings. Addition-
ally, GIT operates offline without intensive gradient requests or online optimiza-
tion. Compared to existing generative methods, GIT adaptively constructs a gen-
erative network, with an architecture specifically tailored to the structure of the
distributed learning model. Our extensive experiments demonstrate that GIT sig-
nificantly improves reconstruction accuracy, especially in the case of deep models.
In summary, we offer a more effective and theoretically grounded strategy for ex-
ploiting vulnerabilities of gradient leakage in distributed learning, advancing the
understanding of privacy risks in collaborative learning environments.

1 INTRODUCTION

In distributed learning, each client trains its model on local data and shares the gradients with a
central server, which aggregates them to update the global model (Jochems et al., [2016; McMahan
et all2017;|Yang et al.| 2019). Gradient sharing is also common in federated learning (Huang et al.
2021), but unlike distributed learning, which involves a more centrally coordinated distribution of
data across nodes, federated learning (FL) focuses on preserving client privacy by ensuring that
data remains localized. While these methods are effective in improving model performance and
training efficiency without directly exposing the client’s data to public, recent research has shown
that sharing gradients can still lead to sensitive information leakage, as attackers may exploit the
shared gradients to reconstruct the original training data used by the individual client (Phong et al.,
2017; |Zhu et al.l 2019;|Zhao et al.| [2020), posing significant privacy risks in real-world distributed
learning systems.

There is a considerable amount of work proposed to reconstruct the training data from its gradi-
ent (Phong et al., 2017} Zhu et al., [2019; |Geiping et al., 2020; [Wang et al., |2020; Zhu & Blaschko),
2020; [Wu et al.| [2023; [Pan et al.| 2020), based on varying levels of model access. These works can
generally be divided into two major categories: gradient matching, which optimizes reconstructed
data to align its gradient with the leaked one, and generative methods, which train generative models
to map the leaked gradient to the corresponding training data. Gradient matching methods typically
need repeated requests for gradients from the model under attack (Zhu et al.,|2019; Wei et al., 2020;
Geiping et al., 2020; [Wang et al., |2020) or full access to the model parameters (Zhu & Blaschko)
2020; |Wang et al.| 2023)), which are usually not satisfied in practice.

We focus on generative methods in this work, which train a generative model called the “threat
model” using several input-gradient pairs. The architectures of the threat model are usually pre-
defined in existing methods. That is to say, the architectures of the threat model, such as a multi-layer
perception (MLP) (Rosenblatt, |1958)) or a UNet |Ronneberger et al.|(2015)), are used irrespective of
the model under attack. By contrast, we introduce Gradient Inversion Transcript (GIT) in this
work to adaptively choose the architecture of the threat model to improve its effectiveness. It is a
framework generally applicable to models of different architecture under attack.

Under review as a conference paper at ICLR 2025

Problem Settings In this work, we consider a practical distributed learning scenario in which an
attacker is able to gain and store the gradient updates sent by each local client but does not have
direct access to the clients’ raw data or labels. Additionally, the attacker is not able to interact with
the central server’s global model, meaning the global parameters remain unknown. The attacker
also cannot request gradient returns from the global model or modify its architecture to enhance the
attack. This setting reflects a more realistic threat model where attackers rely solely on gradient
information to attempt data reconstruction.

Assumptions Reconstruction by gradient matching has two main assumptions: (1) attackers know
private label (Zhu et al., 2019; [Wei et al., 2020) or at least label distribution in a data batch (Zhao
et al.| [2020; [Yin et al., [2021; [Ma et al} 2023)). (2) attackers have access to the back propagation
process of the FL. model, i.e., attackers are able to obtain returned gradients when they input data
(Zhu et al.,|2019; |Wei et al., 20205 [Wang et al.| 2020), or global model parameters Zhu & Blaschko
(2020). In our settings, similar to prior works that employ generative approaches (Wu et al.||[2023;
Pan et al.| 2020; Huang et al., [2021), we do not rely on the above assumptions. Instead, we assume
that attackers have access to multiple input-gradient pairs. This setting is more practical, as labels
are not shared in distributed learning, and it is challenging for attackers to gain access to the back
propagation process.

Our main contributions are as follows:

* We propose a theory-driven training data reconstruction scheme using a generative ap-
proach. This method relies solely on gradient information, without requiring access to the
backpropagation process or the global model’s parameters, as was necessary in previous
work. We systematically compare the differences between gradient matching and genera-
tive methods, along with their respective attack performance.

* We introduce a new generative model designed based on theoretical derivations. Instead
of using a fixed architecture, our generative model is tailored to the structure of the model
under attack. Unlike previous empirical approaches, our method is theoretically grounded,
resulting in superior performance.

* Unlike gradient matching, our method is based on offline learning. Once the generative
model is trained, it can infer the input data without further training, while gradient matching
requires repeated online learning for each data batch and necessitates continuous requests
for gradients from the global model.

Notation and Terminology The federated learning (FL) model from which gradients are leaked to
attackers is referred to as the ”leaked model,” while the network proposed by attackers to reconstruct
the training dataset is referred to as the “threat model.” In this work, we use Lq(,y) to represent
the loss objective of an FL. model, parameterized by 6, on an input-label pair (x,y). The model’s
weights and batch-averaged gradients are represented by W and VW, respectively.

2 RELATED WORK

Before discussing gradient-based training data reconstruction, it is worth noting that reconstructing
datasets using model parameters only is also viable. Methods under this setting require significantly
less information than gradient-based methods because they do not need gradient information which
is data-dependent. Haim et al.| (2022) was the first to reconstruct the training dataset solely based on
leaked model parameters by a method grounded in the theoretical analysis from |Lyu & Li (2019).
Despite using less information, the method is unable to recover high-quality data and fails to achieve
pixel-wise accuracy. Consequently, gradient inversion attacks are more widely investigated in the
context of the leaked gradients.

Gradient Matching Training set reconstruction by gradient matching was initially explored by
Phong et al.| (2017), which discusses the feasibility of reconstructing training data from shared gra-
dients in distributed learning. |[Zhu et al.[|(2019)) demonstrated its practicality by proposing a method
called Deep Leakage from Gradients (DLG). DLG optimizes a randomly generated dummy input
to match the training data by minimizing the distance between the dummy gradients and the leaked
ground truth gradients. Building on DLG, Wei et al.| (2020) evaluate the impact of different feder-
ated learning configurations, such as batch size, on the performance of gradient matching. |Geiping

Under review as a conference paper at ICLR 2025

et al.[(2020) extend DLG by leveraging only the direction of the gradient and replace the optimizer
LBFGS with Adam. |Wang et al.| (2020) propose a Gaussian-kernel-based cost function to recon-
struct training data at any training phase. |[Zhu & Blaschko| (2020) introduce a closed-form recursive
procedure to recover data in which all gradients and parameters are exposed to the attacker. Further-
more, Wang et al.| (2023) propose a provable gradient inversion attack focusing on reconstructing a
batch of data by querying a model with malicious parameter.

Reconstruction By Generative Models Unlike reconstruction by gradient matching, the generative
approaches train a threat model to generate the reconstructed training data with the leaked gradi-
ents as the input. The idea of employing a generative model for training data reconstruction was
originally proposed in |Wu et al| (2023)), which uses a three-layer MLP with fixed hidden size as
the generated model. |Pan et al.| (2020) propose a theoretically grounded method to train generative
models, leveraging the presence of exclusively activated neurons. In addition, Huang et al.| (2021)
demonstrate that generative techniques can exhibit strong performance even when attackers lack ac-
cess to precise batch norm statistics. Furthermore, pretrained generative models, such as the ones
trained on other samples from the training data distribution (Jeon et al., 2021} or public datasets (Li
et al., [2022), have also shown the potential to improve the performance of generative training data
reconstruction.

The mentioned generative methods above employ a threat model of a fixed architecture regardless of
the leaked model, which may not be optimal. In contrast, we introduce a framework that dynamically
selects the architecture of the threat model based on the leaked model to enhance performance.

Challenges of Training Data Reconstruction One key challenge is to restore the label information,
which is the key to reconstructing the training data. Although many methods require the attacker’s
access to the label information (Zhu et al., [2019; |Wei et al., [2020) or label distribution (Zhao et al.}
2020; |Yin et al, |2021; [Ma et al., 2023)), several attempts have been made to restore the label in-
formation based on the leaked gradients. These methods usually tackle one particular scenario or
have additional assumptions, including small batch size (Zhao et al., 2020), no duplicate labels in
a mini-batch (Yin et al., 2021)), and access to the output probability of each class (Ma et al., [2023).
By contrast, a recent work (Chen & Vikalo| (2024)) considers a more realistic scenario, which takes
multiple local epochs, heterogeneous data and various optimizers into consideration.

Another key challenge is dealing with large batch sizes. The dimensionality of the leaked gradient is
fixed, but a large batch size means more information to reconstruct. Restoring the label information
has been shown effective in improving the performance in large batch size regime (Yin et al.|[2021).
In addition, there are several works (Fowl et al., 2021; |Wen et al., 2022; [Wang et al., [2023; [Hayes
et al.l 2024) proposed to improve the performance of reconstructing large batch training data under
different settings. However, there are still considerable performance gaps between small batch and
large batch regimes.

In our framework, we do not assume any access to the label information. In addition, we evaluate
our methods against baselines across varying batch sizes. Comprehensive experiments validate the
effectiveness of our methods despite these challenges.

3 ANALYTIC GRADIENT INVERSION ATTACK

3.1 RECONSTRUCTION OF LINEAR MODEL

We first consider an [N-layer feedforward neural network as follows:
Lo(x,y) =L(zn,y) =L(Wnan—_1,Yy); a; = 0i(2;), zi = W;a;—1,i=1,2,.,N—-1 (1)

Here, we denote the width of the neural network or namely the number of hidden nodes for the i-th
layer as {di}i-v:_ll. The input data batch ag = « € RE*do where B is the batch size. In addition,
we define ay = Wyay—_1 as the output logit of the model. {W,; € RdiXdi*1}£1 refer to the
parameters of N linear layers, including convolutional layers and fully connected layers. {ai}f\; El
are the nonlinear activation functions of different layers. zy = W yay_1 is the output logit, and ¢
is the function calculating the classification error, such as the softmax cross-entropy function. In this
context, {z; € RE*4 1N 1and{a; € RE*%} N1 represent the pre-activation and post-activation
of intermediate layers, respectively.

Under review as a conference paper at ICLR 2025

We use g; = Vw, Lo(x,y) to represent the gradient of each weight matrix. In distributed learning
or federated learning, each client reports gradient averaged on their local data batch S with size B,
ie., g; := %Ef”:lvwiﬁe(w(b), y(b))’ S = {(w(1)7 y(1))7 (m(z)’ y(2))’ - (m(B)7 y(B))}. Based on
back-propagation, we have the following equations according to the chain rule:

piy oL
T T .
gi = E Wj-&-l @U‘;(Zj) ®%®ai_l, i=1,2,... N 2)

Here we define two operators, namely ® and ®. ® denotes tensor multiplication. © denotes

broadcast row-wise product. Specifically, we let WjT+1 ® 0'(z;) = V; € RBXdiXdit1 where
Vilit,de,:] = a}(zj[il,iQ])WJal[ig,:]. In addition, % is broadcast as a tensor of a shape

B xdy x1and a?f1 is broadcast as a tensor of a shape B x 1 x d;_;. Therefore, g; € REB*dixdi—1
is a third-order tensor. This tensor encapsulates the gradient information across the entire batch. In
distributed learning or federated learning, we average it along the batch dimension before sharing it
with the central server, formally expressed as g; = Ep[g;[b, :, :]].

Based on Equation , we can approximate the value of @ ;| as follows:

oL\ ; .
aZT_l ~ (M) & H (Wf+1 © O';(Zj)) ®g,1=12. N 3)
j=N-1

Here, we use ()+ to represent the Moore—Penrose inverse of a matrix. For a third-order tensor,
()" calculate the Moore-Penrose inverse of each of its subspace via the first dimension. Similar to
Equation H we broadcast fz—LN, al | and treat them as third-order tensors. Approximation in ||
still involves the product of a sequence, but we can re-organize (3) to approximate a;_; by a;:

al | ~al ®9¢++1 ® (WZTH oo(z) T ®g,i=1,2,..,N—1 4)

Applying (@) iteratively, we can derive a recursive training data reconstruction method, which prop-
agates from a to ag and thereby facilitate the recovery of the original training data.

3.2 RECONSTRUCTION OF ACTIVATION FUNCTION

The right hand side of (4)) involve the term ¢’(z;) which introduces nonlinearity. When applying
iteratively, we can estimate the value of ¢’(z;) based on a;. Since both ¢ and derivative of o
are applied elementwisely, the mapping from a; to o’(z;) is also elementwise. Although function
o; may not be an injective function, we demonstrate in Table [I|below that we can uniquely identify
o’(z;) given a; for the most popular activation functions used in practice.

. Name | ReLU LeakyReLU Sigmoid Tanh
a; = 0;(z;) max (0, z;) max(kz;, z;) 1+el—z1 2:;2::
1 ifa; >0 1 ifa; >0
1 ! ‘ 3 1— i 1— 2
oi(z) {0 if a; =0 {k ifa, <o U —a) %

Table 1: Mappings from a; to ¢’ (z;) for popular activation functions. Operations are elementwise.

In practice, when we are using ReLU as the activation function, ¢’ (z;) will be a sparse matrix. This
may cause numerical instability when we calculate (W1, ; © ¢}(2;))™ on the right hand side of .
In this case, we replace zero elements with a small pre-defined constant € in ¢’(z;).

3.3 MORE GENERAL ARCHITECTURE

Equation (T)) formulates a feedforward neural network consisting of linear layers and activation func-
tions alternatively. In practice, we may use more complicated architecture to boost performance. For
example, skip connections are widely used in deep neural networks: their application in ResNet (He
et al., |2016) has proven effective in addressing challenges such as gradient vanishing. Therefore, it
is necessary and important to generalize the analyses above to these architectures.

Under review as a conference paper at ICLR 2025

Without the loss of generality, we consider a neural network with one single shortcut connection
which links k-th layer to [-th layer (k < [). Specifically, the shortcut connection links the post-
activation ay, to the pre-activation z; with a weight parameter S € R4 *di Therefore, {z;} ZNzl and
{ai}lN:l are calculated in the same manner except that z; = W;a;_; + Saj. Based on the back
propagation, g; is calculated in the same way as in Equation (2) when ¢« > k. When ¢ < k, g; is
calculated as follows. For notation simplicity we define M; = W7, | © o/(z;).

k—1 -1
=[IMie | []M+Sooi(z) ®HM® ®aZ . ©)
j=i j=k

Following a similar analysis to (3) and @), we can derive an approximation of a;_; using a;. The
approximation is the same as (4) except for the case ¢ = k. This is because the shortcut connection
contributes to the gradient g; but not gi1: gx+1 is calculated based on Equation @) while gy,
is calculated based on Equation (3. In this regard, combining Equation () with i = k + 1 and
Equation (5) with ¢ = k, we obtain the following approximation:

al | = (Wl 00h(21) ® grsr ® (al)* + (S @ oh(21) @ g1 @ (ar-1)) @ gp (6

Compared to (), the estimation in (6)) incorporates not only gj and gx41 but also g; to estimate
al_,. Since ay, is connected to z; via skip connection, gradients can flow directly from the I-th
layer to the k-th layer in back propagation. The insight provided by approximation (6) reveals how
preceding activations are estimated based on gradients in a general neural network architecture. The
reconstruction sequence aligns with the gradient flow during back propagation. In the subsequent
section, we delve into the implementation of such reconstruction using a generative model.

4 METHODOLOGY: GRADIENT INVERSE TRANSCRIPT

Building upon the principles and assumptions of distributed learning and federated learning as elu-
cidated in Section [T} we train a generative model, denoted as the threat model, utilizing multiple
input-gradient pairs (x, {g;}Y,). Note that we do not have any knowledge about the leaked model
other than its architecture and do not have the access to call back propagation as in DLG Zhu et al.
(2019). In addition, we do not have access to the parameters of the leaked model or the label of the
training data. Upon completion of training, the threat model utilizes the leaked gradients as input to
generate the training data batch as output.

Most existing generative reconstruction methods use fixed architectures (Zhu et al. [2019; [Li et al.,
2022)), such as multi-layer perceptrons (MLP) or UNets. However, these designs are heuristic and
may not be the optimal for leaked models of different architectures. Based on the analyses in Sec-
tion 3] we propose a novel generative reconstruction scheme called Gradient Inverse Transcript
(GIT) illustrated in Figure [I] In approximation (@) and (6), all the variables except the gradients
{gi}, are unknown. In this regard, we can represent the unknown variables as the trainable pa-
rameters of the generative model. By applying approximation (@) and (6) iteratively, we can build a
neural network as the generative model to reconstruct the training data. It is important to note that
the architecture of this generative model adapts to the one of the leaked model and is a “translation”
of its back propagation as demonstrated in Figure[I} (A more general architecture for networks with
skip connections are shown in Appendix [D})

Based on the analyses in Section the value of {o/(2;)}Y ;! can be calculated based on the
estimated value of {zi}f\i _11. By applying the approximation H or @ iteratively, we can find
{W,}, are the only unknown variables, so we include these variables as model parameters in the

threat model. In addition, we need the value of (rfz—fv to estimate the value of ay_1 by any_1 =~

+
(aazfv) ® gn so that we can iteratively estimate the value of the preceding layers. When the last

layer of the neural network has a bias term by, ie., any = Wyan_1 + by, following the idea
of Ma et al.| (2023)), we have 87 = ab . That is to say, we can directly utilize the gradient of

the bias term in the last year as W When the last layer of the neural network does not have a
bias term, we cannot directly obtain z7=. In addition, considering that ‘9[: depends on the input

Under review as a conference paper at ICLR 2025

propagate forward 4, —> a,, —> a,,, ay
1 1

. class
it 4 leaked network
I I ¥ threat network
reconstruct a,_, < a, < a,, ay.,
)
. . oL
. L gN’
. L] 6b
/

Figure 1: (Top half) The leaked model which leaks the gradient to the attakers. (Bottom half)
The threat model constructed by Inverse Gradient Transcript (GIT) based on the approximation (&).
The threat model is a generative model utilizing the leaked gradients to reconstruct the training
mini-batch data. In FineGIT mode, we estimate a; based on the approximation with unknown
variables as trainable parameters. In CoarseGIT mode, we use an MLP to estimate a; with the
gradient and activation estimation based on (4) as the input.

data, we cannot treat it as a parameter, either. In this scenario, we introduce a multi-layer perception
(MLP) model to concatenate the gradient information {g; }?, and map it to aaz—EN. This MLP model
is trained jointly with the threat model.

In addition to strictly following the computation in the backward estimation such as the one in (@)
and @) and only including {W,}¥ | as the parameters of the threat model, we can also model the
inference from a_; to its preceding layers in a more coarse-grained manner. Specifically, for the
i-th layer we use a shadow but nonlinear multi-layer perception (MLP) model represented by the
function m; to model the mapping from a; to a;_;. Besides a;, the inputs of this MLP also include
the gradient information used to infer a;. That is to say, based on the topology of the neural network,
when we use approximation , we have a;—1 = m;(a;, gi+1, g;); when we use approximation @,
we have ax—1 = my(ak, gk+1,ai1-1,91,9x). We do not include the Moore-Penrose inverse in
the formulation, because we find it may cause numerical instability and the MLP employed here
has the capacity to model the inverse operation. Under this coarse setting, the threat model is the
composition of these MLP models, which are trained jointly.

Based on the parameterization of the threat model discussed above, we name the corresponding
methods Fine-grained Gradient Inverse Transcript (FineGIT) and Coarse-grained Gradient Inverse
Transcript (CoarseGIT), respectively. FineGIT is more aligned with the back propagation calcula-
tion and has fewer parameters to train, but it lacks flexibility and may suffer from numerical insta-
bility. This is because we use the approximated value of {a;}x ;' to estimate {0/ (z;)}*;*, which
may cause approximation error to propagate. In addition, we need to calculate the Moore-Penrose
inverse of the trainable parameters in approximation (4) and (6), which may cause numerical insta-
bility, especially in the cases of low-rank matrices. CoarseGIT, on the other hand, is more flexible,
stable but has more parameters to train. Our observation in practice indicates that FineGIT is more
stable when the leaked model’s feature map is smaller and the model’s width is narrow.

When training the threat model, we use mean squared error ||ag — @yl as the loss objective function
where ag = x is the ground truth mini-batch inputs and @ is the estimation for the input data by
the threat model.

Under review as a conference paper at ICLR 2025

We formally present analytic reconstruction procedure of GIT in Algorithm I]in the appendix.

5 EXPERIMENTS

We assess our methods on classification tasks using the CIFAR-10 (Krizhevsky et al.| [2009) im-
age dataset. In the realm of distributed learning or federated learning, a central server refines a
classification model by aggregating gradients shared by user devices, derived from their individual
training data. Our experiment operates under the assumption that user-side local datasets are subsets
of CIFAR-10. The attacker, with access to a subset of gradient-input pairs, endeavors to reconstruct
the remaining input data using the gradients shared by others. These pairs for training the threat
models are sampled from CIFAR-10’s training set (unless otherwise specified, in the subsequent
experiments, we use one-tenth of the training data, which consists of 5,000 samples), we evaluate
the performance of the recontruction methods on CIFAR-10’s test set. To quantitatively evaluate
model efficacy, we utilize mean squared error (MSE) as the metric for evaluating the performance
of training data reconstruction.

We mainly use LeNet (LeCun et al., [1998) and ResNet (He et al., 2016) of various depth as the
architecture of the leaked model in our experiments. We use the approximation in () for LeNet
and the approximation in (6) for ResNet, since ResNet includes shortcut connections. For layers
other than linear layers, including pooling layers and batch normalization layers (loffel 2015)), as
discussed in Section [3.3] we can construct the corresponding architecture of the threat model based
on the back propagation through these layers.

Baselines We benchmark our methods against two approaches: (1) Deep Leakage from Gradients
(DLG) (Zhu et al) 2019), which belongs to the category of gradient matching methods; (2) The
generative approach utilizing a fixed MLP architecture (Wu et al.|2023)). We select these two as our
baselines, because both of them achieve competitive performance in their respective category. For
generative methods, we do not use UNet as the fixed architecture, because UNet-based generative
models leverage priors from the public data. However, we do not assume any access to the public
data by the attacker.

Although the gradient matching methods diverge from our assumptions and configurations stud-
ied, we opt to compare with these methods due to its widespread application. Gradient matching
techniques necessitate a complete optimization process for each batch data recovery, whereas gener-
ative methods need to train a generative model capable of retrieving data from any batch used in its
training. That is to say, the major computational overhead for gradient matching methods is the per-
batch optimization process during reconstruction, while the major overhead for generative methods
is to train a generative model. To ensure a fair comparison, we keep the computational complexity
approximately the same for methods of both categories.

5.1 RECONSTRUCTION IN VARIOUS BATCH S1ZES AND NETWORK ARCHITECTURES

Table [3|compares the performance of our proposed method (GIT) against baselines across different
network architectures and batch sizes. The results indicate that the reconstruction is more challeng-
ing with a larger batch size and a deeper architecture. Our proposed GIT outperforms baselines in
all cases except LeNet with batch size being 1, where DLG performs the best and almost perfectly
recover the input data. It is not surprising because DLG can obtain more information from the
model through repetitive online requests. However, as the batch size increases, DLG’s performance
declines significantly, revealing its inability to handle larger batches effectively. GIT, on the other
hand, outperforms other methods when the batch size exceeds 1, indicating its ability to recontruct
multiple input data at the same time.

Among the generative models, GIT outperforms the baseline that uses a fixed MLP as the threat
model in all cases. The results validate the effectiveness of using an adaptive architecture for the
threat model as discussed in Section E} Moreover, we notice the issue of overfitting when train-
ing generative models. Specifically, the training loss in MSE for both GIT and MLP models can
drop below 0.005 while the test loss demonstrated in Table [3 is significantly larger. We believe
the overfitting issue arises from insufficient training data and lack of regularization schemes. We
leave mitigating overfitting of generative reconstruction methods as our future works. The first 8

Under review as a conference paper at ICLR 2025

reconstructed images in CIFAR-10 test set are shown in Appendix [E.1] illustrating the visual quality
corresponding to the first column of Table 3]

Table 2: Quantitative Comparison of GIT with prior works on different networks and batch sizes. We
use MLP & UNet to represent the generative method using a fixed MLP & UNet architecture, which
shares similar number of parameters to our proposed method. The numbers in the table represent
the MSE & PSNR between the reconstructed data and the ground truth on the test set. We use 10000
samples to train generative models.

Leaked Model Method | Metrics | Batch Size =1 Batch Size =2 Batch Size =4
DLG MSE 0.0008 0.0472 0.0975
PSNR 30.97 13.26 10.11
MLP MSE 0.0241 0.0332 0.0571
LeNet (5 layers) PSNR 16.18 14.79 12.43
GIT MSE 0.0099 0.0122 0.0254
PSNR 20.04 19.14 15.95
UNet MSE 0.0316 0.0393 0.0435
PSNR 15.00 14.06 13.62
MSE 0.1202 0.1347 0.1365
DLG | ponRr 9.20 8.71 8.65
MLP MSE 0.0354 0.0473 0.0589
ResNet (20 layers) PSNR 14.51 13.25 12.30
GIT MSE 0.0193 0.0246 0.0388
PSNR 17.14 16.09 14.11
UNet MSE 0.0515 0.0560 0.0619
PSNR 12.88 12.52 12.02

Table 3: Results for different methods with varying batch sizes and network depths.

For datasets with larger resolutions, such as TinylmageNet-200, the MSE for varying batch sizes
and network architectures, along with the reconstructed images, are presented in Appendix[E.2} The
results demonstrate that high-frequency information, including object contours and background de-
tails, is effectively recovered. Although the MSE and visual quality are lower compared to CIFAR10
under the same configuration, reconstructing data from higher-resolution images poses a significant
challenge. Notably, resolutions larger than CIFARI10 have not been explored in baseline methods
MLP and DLG.

5.2 RECONSTRUCTION BY NOISY GRADIENTS

Gradient perturbation is a commonly used defense method against gradient leakage (Zhu et al.,
2019). As shown in prior work [Wu et al.| (2023)), the generative model demonstrates superior per-
formance over DLG in countering privacy defenses. Our results in the left half of Table [4] validate
this conclusion for GIT when encountering gradient perturbation with varying noise variance. In
addition, GIT demonstrates better performance than using a fixed MLP model in all cases. We apply
Gaussian noise with standard deviation (std) of 0.01 and 0.1. DLG is shown to be highly sensitive
to the noise added to the gradients, Gaussian noise with a std of 0.01 is sufficient to prevent DLG
from accurately recovering the input image, and noise with a std of 0.1 will result in reconstructed
images being entirely comprised of noise. In contrast, GIT maintains a mean squared error (MSE) of
approximately 0.01 even when the noise std reaches 0.1, showing minimal susceptibility to noise. In
addition, we notice that the sixth recovered image in the validation set shows an inverse trend com-
pared to the other seven images, where the quality improves as the training dataset size decreases.
This anomaly could be attributed to the image being an outlier in the CIFAR-10 distribution. We
will leave this observation for future work.

Under review as a conference paper at ICLR 2025

Table 4: Comparison of the MSE under gradient perturbation with varying noise variance (left) and
varying volumes of training data (right). The batch size is fixed at 1, and the leaked model is LeNet
with 5 layers.

std of noise DLG MLP GIT Volume GIT MLP
None 0.001 0.024 0.009 1000 0.016 0.035
0.01 0.105 0.024 0.009 5000 0.013 0.028
0.1 0.163 0.024 0.010 10000 0.009 0.024

5.3 RECONSTRUCTION BY DIFFERENT VOLUMES OF TRAINING DATA

In this section, we evaluate the performance of GIT using varying amounts of training data: 1, 000,
5,000 and 10,000 samples. The right half of Table 4] shows impact of training data volume on
generative approach. Considering the generative models can achieve almost the perfect performance
on the training set, we can conclude that a larger training set can help mitigate overfiting and thus
enhance the performance of the model. In addition, GIT is shown to achieve better performance
than using a fixed MLP architecture in all cases. The first 8 reconstructed images in CIFAR-10 test
set is illustrated in Figure [6] It shows that even with only 1000 input-gradient pairs, GIT is still
able to reconstruct reasonable images, indicating that with a small amount of training data, effective

recovery is still achievable.
H !

sl
TSR]
demZNEEN
Hlem=NREN

Figure 2: Comparison the first 8 reconstructed images in CIFAR-10 test set using different amount
of training data. The leaked model model is LeNet and batch size is 1. (From top to bottom)
ground truth images, reconstructed images using 10000 samples, reconstructed images using 5000
samples and reconstructed images using 1000 samples

5.4 ABLATION STUDIES FOR MODEL COMPLEXITY

Since GIT learns to invert gradients based on the architecture dependent on the model under attack,
its model complexity varies for different FL models and differs from the generative approach that
employs a fixed architecture. Generally speaking, during inference, the complexity of running GIT
is proportional to running the model under attack, because their architectures are related.

To understand this dependence, we conduct ablation studies by varying the depth and width of
an MLP. The results are shown in table [5] All ablation studies are performed with a LeNet FL
model and a batch size of 1. In the generative approach with a fixed MLP, a three-layer structure is
adopted, each with 1000 hidden units. The first ablation study keeps the model depth constant but
increases the depth of each layer to match the number of parameters of GIT, allowing us to evaluate
the differences between our method and a standard MLP under the same model complexity. The
second experiment maintains the hidden size of each MLP layer but increases the model depth to
match that of GIT. However, in these configurations, all gradients are flattened and input from the

Under review as a conference paper at ICLR 2025

first layer, rather than fed incrementally through layers as in Coarse GIT. The results show that our
proposed GIT model performs better than all configurations of baselines, highlighting its superior
performance under fair conditions of equal computational complexity.

Table 5: Ablation Studies for Model Complexity. All ablation studies are performed with a LeNet
FL model and a batch size of 1.

MLP MLP with Fixed Depth MLP with Fixed Width GIT
0.0241 £ 0.0003 0.0224 £ 0.0003 0.0129 £ 0.0004 0.0099 £ 0.0001

5.5 ANALYSIS OF THE TREND OF LEARNED WEIGHTS

In this section, a complementary experiment is conducted to measure the L2 distance between the
weights of the optimized neural network and those of the leaked neural network. This serves as
an additional metric for evaluating the effectiveness of GIT. The experiment is conducted on Fine-
GIT, as its parameters are estimations of the leaked model’s weights (as detailed in Algorithm 1 in
Appendix [C)), whereas the parameters of CoarseGIT represent a black-box approximation.

Figure [3]illustrates the L2 distance curve between the attack model’s weights and the leaked model’s
weights, alongside the MSE between the reconstructed inputs and the ground truth inputs. As shown
in the figure, when FineGIT converges, its weights align closely with the ground truth weights.
This convergence highlights the effectiveness of FineGIT in extracting weight information from the
leaked model.

L2 Distance between Weights and Test Loss Across Epochs

L2 Distance

0 200 400 600 800 1000

Figure 3: The red curve represents L2 distance between weights of the attack model and the leaked
model. The blue curve represents MSE between reconstructed input and the ground truth input.
The experiment is conducted on leaked model with two convolutional layers for 1000 epochs. The
dataset is CIFAR10, 5000 samples are leaked to the attacker. These curves show the trend of L2
distance during training.

6 CONCLUSIONS

This work introduces the Generative Gradient Inversion Transcript (GIT), a method for reconstruct-
ing training data in distributed learning by exploiting gradient leakage. We formulate and solve
a reconstruction system that leverages gradients to recursively reconstruct the hidden layer neuron
outputs, based on the back propagation. Our framework is generic and considers different categories
of layers and network topologies. Our experiments demonstrate the effectiveness of our proposed
methods: compared with using a fixed architecture as the generative model for reconstruction, GIT
is more adaptive to different architectures of the leaked models. GIT has competitive performance
in various scenarios, including noisy gradients and limited amount of training data. Our future
work will focus on mitigating the overfitting issue to further improve the performance of generative
reconstruction methods.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Huancheng Chen and Haris Vikalo. Recovering labels from local updates in federated learning.
arXiv preprint arXiv:2405.00955, 2024.

Liam Fowl, Jonas Geiping, Wojtek Czaja, Micah Goldblum, and Tom Goldstein. Robbing the
fed: Directly obtaining private data in federated learning with modified models. arXiv preprint
arXiv:2110.13057, 2021.

Jonas Geiping, Hartmut Bauermeister, Hannah Droge, and Michael Moeller. Inverting gradients-
how easy is it to break privacy in federated learning? Advances in neural information processing
systems, 33:16937-16947, 2020.

Niv Haim, Gal Vardi, Gilad Yehudai, Ohad Shamir, and Michal Irani. Reconstructing training data
from trained neural networks. Advances in Neural Information Processing Systems, 35:22911—
22924, 2022.

Jamie Hayes, Borja Balle, and Saeed Mahloujifar. Bounding training data reconstruction in dp-sgd.
Advances in Neural Information Processing Systems, 36, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Yangsibo Huang, Samyak Gupta, Zhao Song, Kai Li, and Sanjeev Arora. Evaluating gra-
dient inversion attacks and defenses in federated learning. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, volume 34, pp. 7232-7241. Curran Associates, Inc.,
2021. URL hhttps://proceedings.neurips.cc/paper_files/paper/2021/
file/3b3fff6463464959dcdlb68d0320f781-Paper.pdfl

Sergey loffe. Batch normalization: Accelerating deep network training by reducing internal covari-
ate shift. arXiv preprint arXiv:1502.03167, 2015.

Jinwoo Jeon, Kangwook Lee, Sewoong Oh, Jungseul Ok, et al. Gradient inversion with generative
image prior. Advances in neural information processing systems, 34:29898-29908, 2021.

Arthur Jochems, Timo M Deist, Johan Van Soest, Michael Eble, Paul Bulens, Philippe Coucke,
Wim Dries, Philippe Lambin, and Andre Dekker. Distributed learning: developing a predictive
model based on data from multiple hospitals without data leaving the hospital-a real life proof of
concept. Radiotherapy and Oncology, 121(3):459-467, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Zhuohang Li, Jiaxin Zhang, Luyang Liu, and Jian Liu. Auditing privacy defenses in federated learn-
ing via generative gradient leakage. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 10132-10142, June 2022.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.
arXiv preprint arXiv:1906.05890, 2019.

Kailang Ma, Yu Sun, Jian Cui, Dawei Li, Zhenyu Guan, and Jianwei Liu. Instance-wise batch
label restoration via gradients in federated learning. In The Eleventh International Conference on
Learning Representations, 2023.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273-1282. PMLR, 2017.

11

https://proceedings.neurips.cc/paper_files/paper/2021/file/3b3fff6463464959dcd1b68d0320f781-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/3b3fff6463464959dcd1b68d0320f781-Paper.pdf

Under review as a conference paper at ICLR 2025

Xudong Pan, Mi Zhang, Yifan Yan, Jiaming Zhu, and Min Yang. Theory-oriented deep leakage
from gradients via linear equation solver. arXiv preprint arXiv:2010.13356, 1, 2020.

Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and Shiho Moriai. Privacy-
preserving deep learning: Revisited and enhanced. In Applications and Techniques in Information
Security: 8th International Conference, ATIS 2017, Auckland, New Zealand, July 67, 2017, Pro-
ceedings, pp. 100-110. Springer, 2017.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention—
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234-241. Springer, 2015.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization
in the brain. Psychological review, 65(6):386, 1958.

Yijue Wang, Jieren Deng, Dan Guo, Chenghong Wang, Xianrui Meng, Hang Liu, Caiwen Ding, and
Sanguthevar Rajasekaran. Sapag: A self-adaptive privacy attack from gradients. arXiv preprint
arXiv:2009.06228, 2020.

Zihan Wang, Jason Lee, and Qi Lei. Reconstructing training data from model gradient, provably. In
International Conference on Artificial Intelligence and Statistics, pp. 6595-6612. PMLR, 2023.

Wenqi Wei, Ling Liu, Margaret Loper, Ka-Ho Chow, Mehmet Emre Gursoy, Stacey Truex, and
Yanzhao Wu. A framework for evaluating gradient leakage attacks in federated learning. arXiv
preprint arXiv:2004.10397, 2020.

Yuxin Wen, Jonas Geiping, Liam Fowl, Micah Goldblum, and Tom Goldstein. Fishing for user data
in large-batch federated learning via gradient magnification. arXiv preprint arXiv:2202.00580,
2022.

Ruihan Wu, Xiangyu Chen, Chuan Guo, and Kilian Q Weinberger. Learning to invert: Simple adap-
tive attacks for gradient inversion in federated learning. In Uncertainty in Artificial Intelligence,
pp- 2293-2303. PMLR, 2023.

Wensi Yang, Yuhang Zhang, Kejiang Ye, Li Li, and Cheng-Zhong Xu. Ffd: A federated learning
based method for credit card fraud detection. In Big Data—BigData 2019: 8th International
Congress, Held as Part of the Services Conference Federation, SCF 2019, San Diego, CA, USA,
June 25-30, 2019, Proceedings 8, pp. 18-32. Springer, 2019.

Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz, and Pavlo Molchanov. See
through gradients: Image batch recovery via gradinversion. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 16337-16346, 2021.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from gradients.
arXiv preprint arXiv:2001.02610, 2020.

Junyi Zhu and Matthew Blaschko. R-gap: Recursive gradient attack on privacy. arXiv preprint
arXiv:2010.07733, 2020.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/60a6c4002cc7b29142def8871531281la-Paper.pdf.

12

https://proceedings.neurips.cc/paper_files/paper/2019/file/60a6c4002cc7b29142def8871531281a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/60a6c4002cc7b29142def8871531281a-Paper.pdf

Under review as a conference paper at ICLR 2025

A NOTATION

L

g

8 RN

S Xs oz we g

8
+ =

O ®

Loss objective function
An activation function

pre-activation output of ¢-th hidden layer in a neural net-
work

post-activation output of of i-th hidden layer in a neural
network

A weight tensor of i-th layer in a neural network
A gradient tensor of i-th layer in a neural network
Batch size

Number of hidden layers in a neural network

A single data batch

A series of data batches

Label of a data sample

Labels of a single data batch

Labels of a series of data batches

The i-th sample in the set

Moore-Penrose inverse of each of x’s subspace via the first
dimension

Tensor Multiplification

Broadcast row-wise product

B EXPERIMENT CONFIGURATION

In our experiments described in Section 5, we reconstruct training data using a five-layer LeNet and
a twenty-layer ResNet, both employing a kernel size of 5 and with each output channel set to 12.
The last layers of both models are fully connected layers. In ResNet, every two convolutional layers

form a basic block, connected by skip connections.

For the generative approach using a Multi-Layer Perceptron (MLP), we design the hidden size to
be 3000, with a total of three hidden layers, consistent with the architecture proposed by Wu et al.
(2023)). In this experiment, we utilize the CoarseGIT model instead of FineGIT. The reconstruction
results are presented on the test set of CIFAR-10, showcasing the first eight images to illustrate the

visible reconstruction performance.

13

Under review as a conference paper at ICLR 2025

C

ALGORITHM PSEUDOCODE

Algorithm 1 Generative Gradient Inverse Transcript (GIT)

1:

10:

11:
12:
13:
14:
15:
16:
17:
18:

19:
20:
21:

22:

23:
24:
25:

Y R Nk

Setup: Set network width for layer-i in leaked model as {d; };*;*. With M known batches of
training data-gradient pairs for distributed learning D = {(X!, y!), (X2, 4?),..., (XM yM)},
we have shared gradients g7* = Vw, L(X™;y™), fori = 1,...,Nandm = 1,..., M; as
well as update of final layer’s bias { 6%‘; }™ for m-th batch.

: Initialization: Current GIT model parameters © := {W;, Wy, ..., Wy} are initialized ran-
domly as:
W, ~N(0,0%), i=1,2,...,N
Training:
Set € as the learning rate. GIT is trained on D for E epochs.
for each epoch e = 1 to F do
for each batch m = 1to M do
Input: Gradients g, for: =1,...,N — 1.
-1
Compute the embedding a’; | = g% ({aab—fV m) .
for each layeri = N — 1to 1 do
. 1, ifa;(y) >0)
ai_y =al ®(glt,) "' ® (W, ©aj) ‘ogr,

end for A

Output: Recovered estimated input X™ = ag.

Compute L = ||X™ — X™||? as the reconstruction error

Update model parameters W;: W, « W, — eVw, Lorr(g™; X™), i =1,2,...,N

end for

end for
Reconstruction: To reconstruct a batch of unknown training data X for distributed learning
with corresponding gradient g;, fori =1,..., N.
Input: Gradients g;, forte =1,..., N —1

-1
Compute the embedding aX; | = gn (%) .

for each layeri = N — 1to 1 do
. 1, ifa;(j) >0 .
=<7 v 1,2,..,d;
@) {0, ita () =0 7 C R

_ -1
al | =al @ (gi1) ' ® (WL,04d]) ©g,
end for R
Output: Recovered estimated input X = ay.

14

Under review as a conference paper at ICLR 2025

D GIT ARCHITECTURE FOR LEAKED MODEL WITH SKIP CONNECTIONS

ay
ﬁclass
Ay
%g N’

propagate forward | shortcut v
G —> Q) —> Gy q

i1 8i+2 &
] |

3

reconstruct a,, < a, Ay Ly

oL
ob

O

Figure 4: (Top half) The leaked model which leaks the gradient to the attakers. (Bottom half)
The threat model constructed by Inverse Gradient Transcript (GIT) based on the approximation (6).
The threat model is a generative model utilizing the leaked gradients to reconstruct the training
mini-batch data. In FineGIT mode, we estimate ay, based on the approximation (€) with unknown
variables as trainable parameters. In CoarseGIT mode, we use an MLP to estimate a; with the
gradient and activation estimation based on (€] as the input.

15

Under review as a conference paper at ICLR 2025

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 RECONSTRUCTED IMAGES FOR DIFFERENT METHODS ON CIFAR10

Figure 5: Comparison the first 8 reconstructed images in CIFAR-10 test set when using different
reconstruction method. The leaked model is ResNet and batch size is 1. (From top to bottom)
DLG, generative approach utilizing MLP, generative approach utilizing GIT. The results show that
both DLG and the generative approach using MLP fail to recover reasonable images on ResNet,
while GIT is able to reconstruct some features of the ground truth images.

E.2 EXPERIMENTAL RESULTS FOR GIT ON TINYIMAGENET-200

Table 6: MSE for reconstructed TinyImageNet with different batch sizes and model types.

Leaked Model | Metrics Batch Size=1 Batch Size =2 Batch Size =4
MSE 0.0317 0.0437 0.0509
LeNet 5
PSNR 14.99 13.60 12.93
MSE 0.0983 0.1147 0.1274
ResNet 20
PSNR 10.07 9.40 8.95

e | . e el
" '

Figure 6: The best MSE of the reconstructed images are 0.0317 £ 0.0003. And the corresponding

first 8 reconstructed images (bottom) and ground truth images (top) of TinyImageNet-200, with
10000 training samples.

16

	Introduction
	Related Work
	Analytic Gradient Inversion Attack
	Reconstruction of Linear Model
	Reconstruction of Activation Function
	More General Architecture

	Methodology: Gradient Inverse Transcript
	Experiments
	Reconstruction in Various Batch Sizes and Network Architectures
	Reconstruction by Noisy Gradients
	Reconstruction by Different Volumes of Training Data
	Ablation Studies for Model Complexity
	Analysis of the Trend of Learned Weights

	Conclusions
	Notation
	Experiment Configuration
	Algorithm Pseudocode
	GIT Architecture for leaked model with skip connections
	Additional Experimental Results
	Reconstructed images for different methods on CIFAR10
	Experimental Results for GIT on TinyImageNet-200

