Published in Transactions on Machine Learning Research (06/2024)

Accurate Neural Network Pruning Requires
Rethinking Sparse Optimization

*

Denis Kuznedelev denis.kuznedelev@skoltech.ru

Skoltech & Yandex

Eldar Kurtic* eldar.kurtic@ista.ac.at
IST Austria

Eugenia Iofinova* eugenia.iofinova@ista.ac.at
IST Austria

Elias Frantar elias. frantar@ista.ac.at
IST Austria

Alexandra Peste alexandra.peste@ista.ac.at
IST Austria

Dan Alistarh dan.alistarh@ista.ac.at
IST Austria € Neural Magic

Reviewed on OpenReview: https: //openreview. net/ forum? id=vgthYeRBAF

Abstract

Obtaining versions of deep neural networks that are both highly-accurate and highly-sparse
is one of the main challenges in the area of model compression, and several high-performance
pruning techniques have been investigated by the community. Yet, much less is known
about the interaction between sparsity and the standard stochastic optimization techniques
used for training sparse networks, and most existing work uses standard dense schedules
and hyperparameters for training sparse networks. In this work, we examine the impact of
high sparsity on model training using the standard computer vision and natural language
processing sparsity benchmarks. We begin by showing that using standard dense training
recipes for sparse training is suboptimal, and provide evidence that this results in under-
training, loosely defined as using a suboptimal number of passes over the training data. We
present training recipes for mitigating this issue for both sparse pre-training of vision models
(e.g. ResNet50/ImageNet) and sparse fine-tuning of language models (e.g. BERT/GLUE),
achieving state-of-the-art results in both settings in the high-sparsity regime, and providing
detailed analyses for the difficulty of sparse training in both scenarios. Our work sets a new
benchmark in terms of the accuracies that can be achieved under high sparsity, and should
inspire further research into improving sparse model training, to reach higher accuracies
under high sparsity, but also to do so efficiently.

1 Introduction

The difficulty of finding deep neural networks (DNNs) that are both accurate and sparse, i.e., closely match
the accuracy of dense models while having a large majority of their weights set to zero, is one of the main

*These authors contributed equally. Author order was determined by experimental load (highest first).


https://openreview.net/forum?id=vgthYeRBAF

Published in Transactions on Machine Learning Research (06/2024)

challenges in the area of model compression. On the conceptual side, this challenge connects to fundamental
questions related to the Lottery Ticket Hypothesis (LTH) (Frankle & Carbinl 2019} [Frankle et al.,[2019), which
posited that such sparse masks exist, and that, in some cases, they can even allow accurate training of sparse
models from scratch, that is, applying the sparsity mask at initialization. On the practical side, obtaining
highly-sparse and accurate networks can lead to significant practical speedups, both for inference (NeuralMagic,
2022) and training (Nikdan et al., [2023]).

In this work, we focus on the challenge of obtaining accurate DNNs in the high-sparsity regime, and investigate
the barriers to obtaining highly-sparse and highly-accurate variants of DNNs for standard vision and
language tasks. We mainly focus on two tasks that are, arguably, the standard benchmarks for sparsity in
vision and language, respectively: image classification using the ResNet50 model (He et al.| 2016]) on the
ImageNet-1K dataset (Russakovsky et al.l 2015, e.g. [Hoefler et al.| (2021)); Dong et al.| (2017); |Gale et al.
(2019); [Evci et al.| (2020)); |Singh & Alistarhl (2020); [Savarese et al.| (2021)); [Peste et al.| (2021)), and language
modelling using the BERT-base model (Devlin et all 2019) on the GLUE benchmark datasets (Wang et al.,
2018)), e.g. [Sanh et al.| (2020); [Hoefler et al.| (2021); [Kurtic & Alistarh| (2022)); Kurtic et al.| (2022). Roughly,
for both benchmarks, it is known that sparsities lower than 90% can be achieved with approximately 1%
accuracy loss relative to the original dense model, but accuracy rapidly decreases in the 90-95% range (Hoefler
et al. 2021} [Evci et all, 2020), and that decreases are drastic at higher (> 95%) sparsities (Singh & Alistarh),
2020; [Kurtic et al., [2022). In this paper, we investigate the reasons behind this accuracy loss due to sparsity,
mainly targeting high sparsity, i.e. sparsities between 90% and 99%, studying the difficulty of obtaining
accurate models in this range, and providing ways to circumvent it.

Contribution. We begin from the observation that, when training sparse models from scratch, following
standard dense training schedules, sparse models show clear evidence of undertraining: both their accuracy
and loss fail to saturate under standard number of training epochs, and their output continues to have high
entropy. This finding suggests that maximization of the accuracy of sparse models requires longer training
than the dense optimization recipes adopted in most of the work on model sparsification.

Motivated by this observation, we propose a combination of techniques which can mitigate the inherent
difficulty of sparse training. As a consequence, we significantly improve on the best currently-known sparsity-
accuracy trade-offs on standard sparsity benchmarks for both image classification and language modelling.
Specifically, we consider the two classic sparsification benchmarks in this setting: image classification (ResNet50
on ImageNet) and language modelling (BERT or SQuAD and GLUE tasks), and set new state-of-the-art
results in both settings.

For image classification, we obtain, for the first time, highly-accurate sparse versions of ResNet50, such as
a 90%-sparse model with 78.5% Top-1 accuracy, a 95%-sparse model with 77.7% Top-1 accuracy, and a
98%-sparse model with 75.2% Top-1 accuracy. In the same context, the highest accuracy for a dense model
we could obtain is 78.78% Top-1. In addition, we show that stable results can be obtained even for extreme
sparsities (e.g., 99%).

We also extend our results to language models from the BERT family |Devlin et al.| (2019), where we show
that on challenging modeling tasks, as measured by the drop in accuracy relative to the dense model, similar
techniques can improve results by 3 points in accuracy relative to the current state-of-the-art results at 90%
sparsity. We arrive at these results as follows:

e We perform an analysis of the output and training characteristics of models trained using current
state-of-the-art techniques, relative to their dense counterparts. First, we show that sparse DNNs
obtained via many current techniques behave similarly to dense models that have been undertrained,
i.e. executed for a sub-optimal number of epochs: specifically, they tend to have high output entropy
(alternatively, low “output confidence”), which correlates with their reduced accuracy.

o This analysis provides clear evidence that optimizing sparse models is more difficult than standard
dense optimization (Evci et al., [2019). This observation stands in contrast to the fact that most
current sparsification techniques use standard dense training recipes for fine-tuning and recovery. We
exploit this insight to obtain state-of-the-art accuracy for sparse models in two popular scenarios:



Published in Transactions on Machine Learning Research (06/2024)

sparse pretraining, i.e. training sparse models from scratch, and sparse transfer, i.e. optimizing a
sparse pretrained model onto a target transfer task.

e In the sparse pretraining scenario, illustrated by the standard task of obtaining a highly-sparse
ResNet50 model on the ImageNet dataset, we show that we can circumvent the difficulty of sparse train-
ing by adopting a variant of the Alternating Compressed /Decompressed (AC/DC) algorithm (Peste
et al., 2021)) for training sparse DNNs, which has convergence guarantees for sparse recovery. Specifi-
cally, we show that, by scaling the algorithm’s runtime, we can obtain state-of-the-art results for
sparse pretraining on ImageNet for ResNet50 and MobileNet models, and reach extremely high
sparsities (e.g. 98% and 99%) while still obtaining stable converegence. Moreover, only sparse models
benefit from extended training, whereas dense models start to overfit with longer training.

e We complement our analysis with a study of the sparse transfer scenario, popular in language
modeling. Here, the difficulty of sparse training can manifest itself through both undertraining
and overfitting, depending on the parametrization of the chosen transfer learning recipe, specifically
on the training length. We address this via a modified version of the gradual layer unfreezing
approach (Howard & Ruder} 2018)), tailored towards a sparse transfer learning scenario, which allows
us to obtain state-of-the-art results in the case of BERT-base transfer on downstream datasets.

Discussion. Overall, our results suggest that the difficulty of obtaining highly-accurate sparse models
is closely linked to the difficulty of accurate sparse optimization using current state-of-the-art techniques.
Specifically, our work improves the best known results on standard sparsity benchmarks, for both sparse
pretraining and sparse finetuning, both in terms of absolute accuracy, and accuracy loss relative to the dense
baseline. Moreover, we observe the following:

o Achieving state-of-the-art sparsity-vs-accuracy trade-offs currently requires using significant additional
computational complexity and more epochs for training the sparse models, relative to the best known
dense training methods. In turn, this suggests that sparse optimization may be inherently harder
than its dense counterpart.

e Reaching high validation accuracy for sparse models is strongly linked to reaching low training loss,
which occurs at a slower rate for sparse models in the case of SGD-based optimization. At the same
time, we do observe overfitting behavior (decrease of validation accuracy w.r.t. increased training
time), especially at lower sparsities.

o To further investigate the hardness of sparse optimization, we perform an analysis of the loss landscape
of accurate sparse networks both in terms of sharpness and loss interpolation / mode connectivity.
We observe that achieving highly-accurate sparse networks from initialization requires overcoming
multiple loss barriers, and that sparsity mask exploration may be a key ingredient for overcoming
these barriers.

e In addition, we investigate the relationship between standard hyperparameters such as weight decay,
on the one hand, and sparsity structure, on the other. We find that careful setting of weight decay is
critical for accurate sparsity, and that weight decay additionally induces (partial) structured sparsity
in highly-sparse models. This provides a first explanation to the emergence of structured sparsity in
unstructured sparse networks, which has been observed previously (Peste et al., [2021; [lofinova et al.,
2022; |Yin et al., |2023]).

In summary, our results set new accuracy thresholds for sparse models using relatively simple techniques,
and can be reproduced in reasonable time on commodity hardware. As such, they should serve as motivation
for the community to investigate improved sparsity-aware optimization techniques, specifically allowing for
faster, more efficient accuracy recovery.



Published in Transactions on Machine Learning Research (06/2024)

2 Background and Motivation

Formally, accurate pruning is a constrained optimization problem which, given the objective of minimizing a
loss function £, aims to find an “optimal” sparsity mask M* with a given target sparsity s, fraction of zero
parametersﬂ and weights W* such that

M*, W* = argmin, . m, weights w [£(M © W)]  with nnz(M) < (1 — s)numel(M). (1)

In its general form, where both the optimal mask and the optimal weights must be determined, this question
is NP-hard (Blumensath & Davies), 2008]), even for simple least-squares loss. However, this problem can be
made tractable if we assume a fixed mask, or we wish to approximate the sparsity of the mask, e.g. [Axiotis &
Sviridenko| (2020)).

In the context of pruning, this procedure can be logically split into 1) determining the sparsity mask M,
which is often separated from 2) the optimization procedure over the non-zero weights. For instance, the
standard Lottery Ticket Hypothesis (LTH) approach (Frankle & Carbin) 2019; |Chen et al., 2021b) is to first
identify a “ticket” mask by performing weight selection by magnitude over an already-trained model, followed
by SGD-based finetuning, using the initialization and the same set of hyperparameters as for dense training.

While several novel ways of choosing or updating the sparsity mask choice (step 1), have been investigated,
by and large, for the second step, that of optimizing the remaining weights, sparse training methods largely
emulate the hyperparameters of the baseline dense model, including the total number of training epochs
(Gale et al., [2019; [Jayakumar et al., 2020 Evci et al., [2020; |[Peste et al., [2021)). However, it is intuitive that
the problem of simultaneously finding near-optimal weights and a near-optimal mask may be harder to solve
than a standard dense loss minimization problem.

This naturally motivates an in-depth investigation into the following questions: can optimization over sparse
networks converge with the same rate as over dense ones?, and are dense training recipes well-suited for sparse
training? In this paper, we provide evidence that the answer to both questions is negative, suggesting that
improved optimizers may be required for obtaining accurate sparse models under reduced training budgets.

3 Related Work

The goal of most sparsification methods (Hoefler et al.,|2021)) is to create a DNN that is as accurate as possible,
while maximizing sparsity. This goal can be achieved via different strategies: for instance, post-training
sparsification methods assume a pretrained dense model, from which weights are removed either in a single step
(one-shot) or progressively (gradual pruning). By contrast, in sparse training methods, parameters are pruned
from the model during training from scratch, either close to initialization (Evci et al., |2020; |[Jayakumar et al.
2021} [Lee et al.l [2019; Vanholder, |2017; [Schwarz et al. 2021)), or progressively as the model is trained (Han
et al., 2015} (Gale et al.l |2019; [Savarese et al., 2021)). A subset of sparse training methods are dynamic, in the
sense that weights may be reintroduced during training (Evci et al., [2020; [Peste et al., [2021)).

In this work, we mainly focus on the high-sparsity regime, in which sparse training methods provide the
best known accuracy-vs-sparsity trade-offs. We begin by discussing methods for computer vision. Here,
Gradual Magnitude Pruning (GMP), in which the lowest-magnitude weights are progressively removed
throughout training, is a common baseline. In Gale et al.| (2019)), GMP was shown to be competitive with
more sophisticated pruning methods on image classification models when properly tuned; similar results were
later shown for language models (Kurtic & Alistarhl 2022)).

The RigL pruning method (Evci et al., |2020)) is a common, high-performing benchmark for dynamic sparse
training. In this method, the weights are initially pruned to the target sparsity and trained through (sparse)
stochastic gradient descent. Periodically, however, the mask is updated by selecting weights with the highest
magnitude gradient, subject to a limit on the total mask change. The authors run this method using two
sparsity targets - Uniform sparsity, where all layers (except the first and last) are pruned to the same

1A sparsity mask is simply a binary tensor of the same dimensions as the model, with 0 at the indices of the sparsified entries,
and 1 at the other indices.



Published in Transactions on Machine Learning Research (06/2024)

proportion, and Erdds—Rényi Kernel (ERK), where layer sparsity targets are set to optimize performance.
The authors test their method in the normal-schedule (100 epochs on Imagenet) and 5x training regime,
getting results of 73.22% validation accuracy and 74.63% validation accuracy at 95% global (ERK) and
uniform sparsity, respectively when training for 500 epochs. Extending training to 10 000 epochs (100x)
further allowed the authors to produce 99% sparse (ERK) ResNet50 models with 68.5% accuracy on ImageNet.
RigL, was improved by combining it with ITOP (Liu et al.,2021)), by altering training hyperparameters to
encourage mask exploration, which was shown to improve RigL results at medium (80-90%) sparsity (see

Table .

The GraNet(Liu et al.) method extends this approach by making it gradual - either starting from a dense
network and performing Rigl-like updates while simultaneously increasing sparsity until the target sparsity
is achieved, or by starting by a partially sparse (50%) network and doing the same. Models trained with the
sparse-init version of GraNet achieved 72.3% validation accuracy at 95% global sparsity when training for
100 epochs.

The AC/DC pruning method (Peste et al [2021)) alternates dense and sparse pruning phases of several epochs
each, effectively co-training dense and sparse models. Similar to Rigl, AC/DC was tested in the normal
and extended training regime, creating 95% globally sparse ImageNet-1K ResNet50 models with 73.14%
top-1 accuracy, and 68.44% top-1 accuracy 98% sparse models after 100 epochs of training. The authors
also experiment with extended training times, producing 95% uniform sparsity ResNet50 models with 74.3%
validation accuracy.

Another successful pruning approach is the combination of Powerpropagation (Schwarz et al., 2021) with Top-
KAST (Jayakumar et al.| 2021). In Powerpropagation, the weights are reparametrized using f(w) = w|w|*~1
for a > 1, effectively encouraging high-magnitude weights to continue increasing while lower-magnitude
weights are driven toward 0. Top-KAST is a dynamic sparse training scheme that is largely similar to
RigL: in Top-KAST, for a target density D, the gradients of the top D’ < D weights are computed in
each backpropagation round and allowed to accumulate, and the masks at these respective sparsities are
periodically recomputed. The combination of these two methods results in 77.16% accuracy at 90% sparsity
when trained for 3x their baseline of 32K steps.

The recently-proposed ST-3 method (Vanderschueren & Vleeschouwer) 2023)) uses the technique of soft
thresholding with straight-through gradient estimation to progressively prune neural networks while allowing
weights to move more smoothly between the dense and sparse states. Using this method, the authors were
able to achieve ImageNet accuracies of between 74% and 75% at 96% sparsity on ResNet-50, depending on
the method variant used.

Additionally, some works have explored the difficulty of sparse optimization (Evci et al., [2019), explored
changes to dense training pipelines to improve sparse training (ab Tessera et al., |2021; |Jaiswal et al., [2022), or
focused on the creation of sparse accurate neural networks outside of the standard paradigm of simultaneously
searching for the optimal mask and weights. Notably, (Liu et al. |2021)) explored the impact of mask
exploration (that is, the total number of explored parameters at any point in sparse training), demonstrating
the positive effect of extended training on both sparse network performance and total number of explored
parameters. The STEP (Lu et all 2023) learning method explored the interaction of sparsity with the Adam
optimizer (Kingma & Bay, 2015), finding that the masked weights lead to an incorrect estimate of the second
moment during optimization; these observations led to their proposal of a new method for N:M sparsity that
alleviates these effects. The GradMax method (Evci et al., [2022)) initializes a small neural network, then uses
predicted gradients to grow a larger (while still small) neural network by adding additional neurons.

The problem of the sparse optimization also emerges in the context of the optimal transport (Peyré & Cuturi,
2020; [Cuturi, |2013)). It is often desirable to have a sparse assignment between the source and target domain.
Several works have studied this question with applications to color transfer (Blondel et al.| |2018) and sparse
mixture of experts (Liu et al., 2022)).

Language models For language models, the standard compression pipeline consists of two stages: pre-
training on a large unlabeled text corpus followed by fine-tuning on a small and labeled task-specific dataset.
The former is used to capture the statistical patterns and relationships that exist in the natural language,



Published in Transactions on Machine Learning Research (06/2024)

allowing the model to recognize and even generate various linguistic patterns. The latter stage, fine-tuning
on a downstream task, builds on top of the learned representations and adapts them to solve specific tasks
such as text classification, sentiment analysis, duplicate detection, etc. Sparsity has been explored in both
stages: pruning during pre-training and pruning during fine-tuning.

Methods such as Movement Pruning (Sanh et all|[2020) and The Optimal BERT Surgeon (0BERT) (Kurtic
et al., |2022) make use of first-order (gradient) and second-order (curvature) information, respectively, to
guide pruning decisions during the fine-tuning stage. However, recent work observed two problems with
this approach when applied on small datasets: (Zhang et al.l 2022)) demonstrated instability due to large
variability of estimated importance scores, while (Huang et al., 2021)) observed overfitting despite reduced
expressive power due to pruning. From the practical side, this approach is less favorable for practitioners as
it requires extensive pruning-domain knowledge to properly configure pruners for each model and dataset
combination. Therefore, the main focus of our work is on the other stage, leveraging already sparse pre-trained
models with transfer learning to obtain highly accurate task-specific fine-tuned models. Prune Once for All
(Prune OFA) (Zafrir et al |2021) and oBERT (Kurtic et al., |2022) represent the most recent state-of-the-art
techniques addressing this problem. Both methods first prune the model during the pre-training stage, and
then apply transfer learning with a fixed sparsity mask to obtain fine-tuned and sparse models on various
downstream datasets.

Impact of sparsification beyond top-1 accuracy An open area of research is the impact that pruning
in general, and the choice of pruning method in particular, have on the resulting model. In particular, pruned
models have been shown to be more vulnerable to bias (Hooker et al., 2019; [2020; Iofinova et al., [2023),
and worse at prediction accuracy under distribution shift (Liebenwein et al.l [2021). Recent works by (Chen
et al., 2021a)) and (lofinova et al., 2023)) investigate the effects of pruning on a range of model trustworthiness
metrics and find mixed results, with sparse neural networks having better calibration, but exaggerating
spurious patterns in the existing data. Finally, works such as (lofinova et al., |2022) and (Chen et al., |2021b)
investigated the capacity of sparse CNNs for domain adaptation via transfer learning, finding that sparsely
trained networks can have more generalizable features than dense ones.

4 The Difficulty of Sparse Pretraining of Vision Models

4.1 Sparse Vision Models Show Evidence of “Undertraining”

We begin by investigating correlations between the performance and output characteristics of dense and
sparse models trained for increasing number of epochs. Specifically, we examine two key metrics: Top-1
accuracy on the validation/test set, and the loss on the train set for the trained models, while scaling the
number of training epochs and the associated hyperparameters correspondingly.

We will examine the evolution of these metrics as we increase the number of epochs, in parallel for sparse and
dense models. We specifically look out for instances where sparse models behave similar to dense ones that
have been trained for a sub-optimal (too low) number of epochs, a phenomenon we simply call undertraining.

Metrics: Output Loss and Entropy. We examine model fit to the training data via the training loss at
the last epoch of training. For multiclass classification, traditionally cross-entropy loss is used. We compute
the cross-entropy loss by taking the softmax over the vector of output values of the network and then
applying the standard cross-entropy formula, where the cross-entropy is taken with respect to the correct label
distribution for the model (1 for the correct class and 0 otherwise). For an output of a network outputting a
vector Z = (21, 22, ..., 2¢) of size C with correct label L, cross-entropy C'E is given by the following formula:

(&

C
2

Jj=1

CE(Z) = —log

(2)

ZL
e%i



Published in Transactions on Machine Learning Research (06/2024)

Intuitively, the loss of the model is related to its “confidence” in the correct predictions, or equivalently could
be said to measure the model’s fit to the training data.

We use this quantity as it is conventional with respect to measuring model convergence; however, we consider
the entropy computed over test data to be an equally good choice, as it captures the model’s confidence in its
predictions (whether they be correct or incorrect) and can be computed on a test set, without access to the
correct labels. We show in Appendix [C] that the two metrics give nearly identical results in our experiments.

We expect a sufficiently large and well-trained model to have low loss on the training data. However, as is
conventionally known, continued training on dense and low-sparsity models can result in in overfitting will
lower these metrics further. Here we investigate whether the same rule applies to models with higher sparsity.

Experimental setup. We examine validation accuracy on trained sparse and dense ResNet50 models on
the ImageNet-1K dataset and compare it to the train loss on the last epoch of training. All models were
trained using standard hyperparameters (see Appendix except for the difference in number of training
of epochs in different experiments. Measurements represent the final accuracy and training loss after the
last training epoch, so each marker on the plots represents a full experiment, rather than an intermediate
checkpoint. Sparse models were pruned with Alternating Compression/Decompression (AC/DC) (Peste et al.,
2021)), likewise adjusting the total number of compressed and decompressed phases to the total run length.
AC/DC was chosen as it was among the best-performing methods across all sparsities and training lengths
(see Section . We use the FFCV library (Leclerc et al.l 2022) for fast loading of the data. In contrast
with other runs presented in this paper, we do not use progressive resizing or label smoothing, as the latter
explicitly encourages high prediction entropy and cross-entropy. In these experiments, we keep the first and
last layer dense.

0.77 Sparsity
g 12 — 0 — 90 — 98
= 0.76 /—’/—‘ ' 80 — 95
]
g 0.75 21.0 \\.
~ ]
20.74 = \(
@ .
o Sparsity =
5 @ 0.8
E 0.73 — 9 & \\
80

- 0.72 — 90 0.6 TR ST T e
f=1
£ 0.71 — 9%

— 98

4
0.70 0
0 100 200 300 400 500 0 100 200 300 400 500
Number of training epochs Number of training epochs

Figure 1: Average validation accuracy (left), and Train loss at final epoch (right) for sparse and dense
ImageNet models trained for different numbers of epochs. The highest-accuracy model for each sparsity level
is highlighted with a larger marker. The cross-entropy loss and entropy level of the dense model is also shown
with a dashed line, to simplify comparison.

Results. Our results are presented in Figure [I} On the left panel, we show the top-1 accuracy of the final
models. We observe that 80% and 90% sparse models reach an accuracy that is similar to dense models, even
slightly exceeding dense accuracy at 80% sparsity. Accuracy drops at higher sparsity (95% and 98%); this is
consistent with the original AC/DC paper and results from other pruning methods. Examining accuracy
across epoch budgets, and focusing on the best-performing model for each sparsity level, we observe the
following:

o The dense model requires the fewest epochs (88) to reach its best validation accuracy, and extending
the training recipe results in worse performance for the dense model, commonly known as “overfitting.”

e The outcome changes if we examine sparse models, for which the ideal training length increases with
sparsity: 250 epochs for 80% and 90% sparse models, and at least 500 epochs—the longest schedule



Published in Transactions on Machine Learning Research (06/2024)

we tried in this experiment—for 95% and 98% sparse models. Even at 500 epochs, the accuracy
increase/loss decrease for these models does not appear to be saturated.

We now examine loss on the training dataset in more detail. We observe that the training loss always
decreases when the number of training epochs is increased. However, sparse models trained for the standard
100 epochs show similar training loss to dense models trained for far fewer epochs. For example, dense models
trained for 24 epochs have a similar training loss to 95% sparse models trained for 100 epochs, while dense
models trained for 100 epochs have a slightly lower training loss than 80%-sparse models trained for 250
epochs. When we consider the best-performing models at their respective sparsity levels, we find that they
have similar training loss to the top-performing dense model, in cases where such low loss/entropy can be
achieved in a reasonable number of epochs (at 80% and 90% sparsity); at all sparsities. Further, continuing
to train sparse models to until training loss drops below the training loss of the optimal dense model results
in worse validation accuracy (overfitting).

Discussion. These findings further support our hypothesis that, due to the inherent difficulty of sparse
optimization, using standard training recipes is not sufficient for sparse training, and suggests that longer
training may mitigate this effect. Further, results suggest that training loss can act as a useful criterion to
validate that the sparse models are properly trainedEl, with the latter criterion being also useful in cases
where access to train data, or to any labeled data, is not possible.

In Appendix Section [C] we consider the alternative Validation entropy metric, and present a similar validation
on the Celeb-A dataset.

4.2 State-of-the-Art Accurate Sparse Pre-Training on ImageNet

The above observations for vision models suggest that successful sparse training may benefit from an
extended training schedule. We now build on this idea to achieve state-of-the-art results for the classic
ResNet50/ImageNet benchmark by using an extended-training version of AC/DC, which we call AC/DC++.

4.2.1 Comparing Sparse Training Methods

For the following experiments, we start from the current state-of-the-art training approach for
ResNet50/ImageNet training, using the Pytorch FFCV package (Leclerc et all 2022)). In addition to
an extended training schedule, we use label smoothing and a linear learning rate decay with warm-up,
as well as progressive resizing of input samples E[ In this context, we implemented three leading sparse
training methods: Gradual Magnitude Pruning (GMP) (Zhu & Guptal [2017)), RigL (Evci et al., [2020) and
AC/DC (Peste et al., [2021]), which we execute for an increasing number of epochs between 100 (standard)
and 1000 (10x). For this, we scale the original training schedule proportionally, following the proportions
employed by the original methods. For this experiment, models are compressed to 80%, 90%, and 95%
sparsity. Following the most common experimental setup, we prune all weights in convolutional and linear
layers (including input convolution and classification head). The exact training recipe is presented in detail
in Appendix [A] We note that each of the experiments presented in the paper takes less than a day on a
standard 8-GPU NVIDIA RTX 3090 server. The results, in terms of accuracy and loss vs number of training
epochs are presented in Figure [2| for 95% sparsity and in Figure

Results. The results show a strong correlation between how well the methods achieve reduction in loss and
their validation accuracy. This reinforces the point that sparse training methods saturate slower, both in
terms of training loss and validation accuracy. This has also been investigated by prior work: Gale et al. (Gale
et al., [2019)) found that extended training did improved results for GMP in some cases, while RigL (Evci
et al} |2020) and Powerpropagation (Schwarz et al.l |2021]) found diminishing improvements. At the same time,

2The 98% sparse model will likely never reach the entropy of the optimal dense model, suggesting that the accuracy
may continue to improve with very long training schedules. In fact, the authors of RigL trained a 99% sparse model for
100 times the dense training time and were not able to saturate its accuracy. See www.github.com/google-research/rigl#
extended-training-results.

>We follow the setup from the FFCV ImageNet example repository for ResNet50.


www.github.com/google-research/rigl#extended-training-results
www.github.com/google-research/rigl#extended-training-results
https://github.com/libffcv/ffcv-imagenet

Published in Transactions on Machine Learning Research (06/2024)

Sparsity=95% Sparsity=95%

77 2.3
> 76
& B 22
S 75 Q
8 —
O 74 o 2.1
< Method = Method
73 —— RigL SQ 20 — RigL
- AC/DC AC/DC

—— GMP 19 —— GMP
71
100 250 500 1000 100 250 500 1000
Epochs Epochs

Figure 2: (left) Validation accuracy on ImageNet-1k vs number of epochs for different sparse training methods.
(right) Training loss on ImageNet-1k vs number of epochs for different sparse training methods.

we notice a significant difference between methods: specifically, AC/DC starts at a slightly better accuracy
point, and consistently outperforms other methods both in terms of loss achieved, and in terms of validation
accuracy, as we increase training time. (This is consistent with the AC/DC original results, executed at 100
epochs (Peste et al.l [2021).) We observe that this correlates with the theoretical computational cost (FLOPs)
of the methods: AC/DC will use more FLOPs than other methods due to the dense training phases, while
GMP uses more FLOPs than RigL due to gradually increasing sparsity. In turn, this could also be correlated
with the amount of mask exploration performed by the algorithm during training. At low sparsity RigL
performs slightly better than GMP, but for higher sparsity GMP appears to perform better. For the smallest
80%, 90% AC/DC reaches a saturation point, whereas in all other setups model performance continues to
improve with training budget.

4.2.2 Sparsity-vs-Accuracy Results

Pruning method
—— AC/DC++ (Ours)
-5 RigL 5x
—— Top-KAST (50 bck)

Pruning method
-12 —— AC/DC++ (Ours)
RigL 5x - ERK
—— Powerprop + Top-KAST (0 bck) 3x - ERK

Accuracy change from dense
&
Accuracy change from dense

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0.5 1.0 1.5 2.0 2.5 3.0 3.5
GFLOPs, inference GFLOPs, inference

Figure 3: Comparison of Accuracy change from dense baseline as a function of Inference FLOPs for leading
sparse training methods, under uniform sparsity constraints (left) and global sparsity constraints (right).
Due to a lack of a standard benchmark, global and Erdés—Rényi Kernel (ERK) sparsity constraints were
grouped together. Both sparsity schedules of AC/DC++ (with all layers sparsified and with the first and last
layer kept dense) are plotted together.

Goals and Metrics. Based on these results, in this section, we aim to improve the best known sparsity-
versus-accuracy trade-offs by performing a thorough ablation over sparsities and training length parameters.
We compare our results to the highest-performing previously published sparse training methods. In particular,



Published in Transactions on Machine Learning Research (06/2024)

Top-1 accuracy (%) A Accuracy Sparsity  Remaining Inference FLOPs
Method Dense (D) Sparse (S) 100 x @ (%) # of params prop. of dense

Sparse Training

AC/DC (Peste et al.|2021 76.8 75.03 -1.77 90 2.56 M 0.18
GraNet(sg = 0.5) (Liu et al.| 76.80 745 -1.3 90 - 0.20
Powerpropagation + Top-KAST FLD (Schwarz et al.; 76.8 75.23 -1.57 90 - -
Powerpropagation + To KAST ERK ( 76.80 75.74 -1.06 90 - 0.24
RIGL ERK 1x (Evei et al.| 76.80 73.00 -4.94 90 - 0.24
RIGL-ITOP ERK 1x 1m|| 76.80 73.82 -2.98 90 - 0.24
ST-3 (Vanderschueren & Vleescl & Vleeschouwer 77.10 75.28 -1.82 90 - 0.24
STR (Kusupati et al.|[2020] 77.01 74.31 -3.51 90.23 2.49 M -
Variational Dropout (Molchanov et al. 76.69 73.84 -3.72 90.27 249 M -
Post-training sparsification
Global Magnitude (Singh & Alistarh|[2020 77.01 75.15 -2.42 90 2.56 M -
WoodFisher (Singh & Alistarh|[2020} 77.01 75.21 -2.34 90 2.56 M -
Extended sparse training
AC/DC++ 5x (this work) 78.78 78.49 -0.29 90 2.60 M 0.2
AC/DC++ FLD 5x (this work 78.78 78.6 -0.18 90 4.45 M 0.22
76.69 75.16 -1.53 90 - -
76.80 76.4 -0.4 90 - 0.20
76.80 77.16 +0.36 90 - 0.24
76.80 76.42 -0.38 90 - 0.24
76.80 75.50 -1.30 90 - 0.24
76.8 73.14 -3.66 95 1.28 M 0.11
76.80 72.3 -6.5 95 - 0.12
Powerpropagatlon + op— KAST FLD 2021 76.8 73.25 -3.55 95 - -
RIGL ERK 1x (E 76.80 70.00 -8.85 95 - 0.12
ST-3 Vanderschuerex 77.10 74.46 -2.64 95 - 0.13
STR (Kusup: -] 77.01 70.40 -8.58 95.03 1.27T M -
Variational Dropout (M al.{12017 76.69 71.81 -6.36 94.94 1.30 M -
Post-training sparsification
Global Magnitude (Sing 2020 77.01 7172 -6.29 95 1.28 M -
WoodFisher (Singh & Alistarh|[2020; 77.01 72.12 -6.89 95 1.28 M -
M-FAC (Frantar et al.||2021] 77.01 72.6 -4.41 95 1.28 M -
Extended sparse training
AC/DC++ 10x (this work) 78.78 7727 -1.48 95 1.33 M 0.13
AC/DC++ FLD 10x (this work 78.78 77T -1.08 95 3.28 M 0.14
GMP FLD 1.5x 76.69 72.71 -3.98 95 128 M -
RIGL ERK 5x (Evci et al.|[2020 76.80 74.63 -2.17 95 1.28 M 0.12
Sparse training
AC/DC (Peste et al.|[2021 76.8 68.44 -9.36 98 0.7M 0.06
ST-3 (Vanderschueren & Vlees 77.10 70.46 -6.64 98 - 0.07
STR ( -] 77.01 70.40 -8.58 98 - -
Variational Dropout (Molchanov et al. 76.69 64.52 -15.87 98.57 0.36 M -
Post—tramm sparslﬁcatlon
77.01 67.5 -9.51 98 - -
77.01 65.55 -11.46 98 0.51M -
Extended sparse training
AC/DC++ 10x (this work) 78.78 74.06 472 98 0.51 M -
AC/DC++ FLD 10x (this work) 78.78 76.6 -2.28 98 2.58 M 0.09

Sparse training
ST-3 annderschueren & Vleeschouwerl 2023 77.10 63.88 -13.22 99 - 0.04

Extended sparse training

AC/DC++ FLD 10x (this work, 78.78 72.7 -6.08 99 2.34 M 0.06
RIGL ERK 5x (Evci et al.|[2020} 76.80 61.86 -15.94 99 - 0.05
RIGL ERK 10x (Evei et al.|[2020) 76.80 63.89 -12.91 99 - 0.05
RIGL ERK 50x 1|,=gm| 76.80 66.94 -9.86 99 - 0.05
RIGL ERK 100x (Evci et al. 76.80 68.15 -8.65 99 - 0.05

Table 1: Comparison between modern sparse training methods on ImageNet-1k with ResNet-50 models for
various sparsity targets. ERK refers to the Erdos-Renyi Kernel sparsity distribution. FLD refers to the first
and last layers being dense (AC/DC++) or the first layer being dense and the last layer being 80% sparse
(GMP, PowerPropagation).

we compare an extended-training version of AC/DC, which we call AC/DC++, results reported in the original
RigL, ST-3, and Powerpropagation papers, as well as many other existing pruning methodsEI All methods
are described in Section [3] In cases where the authors conducted extended training using their method,
we present those numbers, and we use the FLOPs-optimized ST-37 variant. AC/DC++ candidate models
were trained for four preset training lengths (1x, 2.5x, 5x and 10x the standard ImageNet training time on
ResNet50) at all sparsity levels, and we chose the best results obtained by ablating over the length of the
training run.

4The most successful Powerpropagation approach presented in the paper combines this method with Top-KAST; we use this
benchmark, as it performs better than Top-KAST alone.

10



Published in Transactions on Machine Learning Research (06/2024)

As different methods have different computational budgets and different dense baselines, to ensure a fair
comparison, we examine the model performance both in terms of Top-1 Validation accuracy, and the Top-1
Validation accuracy difference from the corresponding dense baseline. We use the best available numbers
originally reported in the papers introducing the methods for comparisons.

Experimental Setup. We compare two pruning regimes. First, we consider Uniform Pruning, in which
every layer is pruned exactly to the target sparsity, except for the first and last layer, which are left dense.
Second, we consider the Global/Nonuniform Pruning regime, in which the sparsity budget is set globally.
Different works apportion the global budget differently, and also differ with respect to which parts of the
network are subject to the global constraint. In particular, Extended GMP (Gale et al., 2019)) and Top-KAST
do not prune the first layer, prune the last layer to a fixed 80% sparsity, and prune the other layers using
a global magnitude criterion. Rigl: uses an Erdés—Rényi-Kernel distribution for layer sparsity targets, and
leaves only the first layer dense. The original AC/DC work uses global sparsity and prunes all convolutional
and FC layers. Therefore, to create a more fair comparison, we consider estimated Floating-Point Operations
(FLOPs) necessary for inference; these are computed as in (Evci et al.l 2020). Using FLOPs also equalizes
methods across slight variations in ResNet50 architectures, and so we use it also for the Uniform pruning
comparison. In addition, we use two pruning schedules for AC/DC++: one which leaves the first and last
layer dense and prunes the remaining layers using a global magnitude criterion, and one that prunes all layers
using the global magnitude criterion. We do not ablate between the two, but rather present both sets of
results in Figure [3| (jointly) and Table [1] (separately).

We emphasize two key points regarding our comparisons:

1. Looking at accuracy alone favors AC/DC++, as it has a higher dense baseline: since we use several
recent training innovations, the dense model can reach 78.78% dense accuracy over 100 epochs.
Therefore, it becomes more challenging to maintain the performance of the dense model for highly
sparse model compared to less-optimized baseline.

2. This is why we also examine accuracy difference relative to the dense baseline: this favors other
methods, as they are benchmarked against a standard-recipe model that reaches lower 76.8% accuracy
(77.1% for ST-3).

Results. The results are presented in Figure |3| and Table |1l We observe that, for uniform pruning budgets,
the AC/DC++ models outperform other methods, both in terms of absolute and relative validation accuracy.
This is true even when we consider extended-training schedules for other methods, although we believe we
are the first to systematically investigate the impact of increasing training schedules at these sparsity levelsﬂ
When looking at models trained with global pruning budgets, we observe that AC/DC++ obtains the highest
absolute validation accuracy, compared to results reported previously in literature. When considering accuracy
change from the dense line, AC-DC++ loses less accuracy than other methods at very high sparsities (lowest
FLOPs), despite having the highest-performing dense baseline; at lower sparsity (90%), it is competitive with
other extended training methods.

4.3 Additional validations and ablations

We performed additional analysis and ablations, to validate the performance and hyperparameters of the
AC/DCH++ model, and better understand the factors contributing to its high performance. These studies are
summarized briefly below, and available in the Appendix.

4.3.1 Additional Evaluations

Additional quality evaluations. Having demonstrated that extended training has a strong positive effect
on sparse model top-1 test accuracy, we further investigate the impact of extended training on other aspects
of model quality. We consider two additional quality metrics: their performance in transfer learning scenarios
and robustness to common image perturbations.

5In prior work, RigL executed >5x extended training for a 99%-sparse model only (Evci et al., [2020)).

11



Published in Transactions on Machine Learning Research (06/2024)

Tofinova et al.| (2022) demonstrated that equally sparse models with comparable performance on the original
task can vary widely in their performance once finetuned on other, smaller transfer tasks. We compare the
transfer performance of dense and 95% sparse AC/DC++ models, both trained for 100 and 1000 epochs
in two transfer learning regimes: linear finetuning, where the hidden layers of the model are trained only
on the larger (ImageNet) task, and only the final FC layer is trained on the transfer task, and full-network
finetuning, where all layers are finetuned on the transfer task. We find that extended training improves
the transfer performance for both transfer scenarios for 95% sparse models, but is largely neutral for dense
models. Full details of the experiment and evaluation are given in Appendix [E]

We test robustness by measuring model performance on the ImageNet-C dataset (Hendrycks & Dietterich),
2019), which digitally adds 19 types of perturbations to the ImageNet-1K validation set. (Liebenwein et al.l
2021)) and (Hooker et al., 2019)) have found that compressed models are less robust under many types of
perturbations, compared to dense models. As before, we consider dense and 95% sparse AC/DC++ models
trained for 100-1000 total epochs. We find that robustness to perturbations increases with training time for
sparse models, but stays the same for dense ones. Full details of the experiment and evaluation are given in

Appendix [F]

Additional models. In Appendix Ewe show that extended training with AC/DC++ produces state-of-
the-art results on the MobileNet-V1 architecture as well.

4.3.2 Parameter Ablations

AC/DC dense fraction. We note that AC/DC is relatively expensive in terms of training FLOPs as
compared to other sparse training methods. In Appendices [H] and [[] we investigate if this can be improved by
shortening the duration of the decompression phase relative to the compression phase, and by using a lower,
but nonzero sparsity during the decompression phases of AC/DC, respectively. We find that, for models with
a target sparsity of 95%, spending 50% of the training time in each phase is optimal, consistent with the
original model recipe. However, shortening the decompression phase so that the model spends only 20% of
the training time in that phase has a small 0.2% accuracy drop. Additionally, we find that, for 95% sparse
models, decompression phases that are up to 70% sparse have matching or better performance to the original
AC/DC models with 0% sparse decompression phases. Therefore, if minimizing floating-point operations
during training is an objective, it is possible to make the training more efficient in that regard.

AC/DC phase duration. In Appendix [l we confirm that for ResNet50 models trained on ImageNet and
assuming equally-sized compression and decompression phases, the 5-epoch phase duration used in the initial
paper is optimal.

Impact of weight decay. in Appendix [L} we consider the impact of weight decay on AC/DC model
performance and sparsity. We find that using high values of weight decay (1e-3) results in models that stay
largely sparse even during the decompression phase, and that are considerably less accurate. Conversely, using
low values of weight decay (le-5 and le-6) result in models with very low sparsity during the decompression
phase, and also decreased performance.

4.3.3 Additional Analyses

Mask Analysis. We investigate the importance of mask updates during sparse training. Specifically, we
examine how much masks change as training progresses. We find (see Figure [4| (left)) that for both RigL and
AC/DC, masks change substantially more early in the training, with an Intersection/Union scores of 0.3-0.4
for AC/DC 95% sparse models and 0.92-0.95 for RigL, during the first 20% of training steps (recall that RigL
masks are updated far more frequently than AC/DC masks). Later in the training, masks stabilize, with less
change in consecutive masks. Full results are provided in Appendix [J}

Loss landscape analysis. In Appendix we investigate the sharpness of the loss landscape (as measured

by an approximation to the highest eigenvalue of the Hessian matrix at the point of convergence). We find (see
Figure [4] (left)) that, across all methods, sharpness increases with the length of the training run, indicating

12



Published in Transactions on Machine Learning Research (06/2024)

that sharper minima require extended training to be reached via SGD. Additionally, sharpness decreases with
the increase of sparsity. All sparse training methods attain lower sharpness compared to the dense model.

Sparsity=95% GMP RigL AC/DC

1.0 7/—

0.9

3

40 e 40

0.8

Lle Cé 30 &, 30 o 30
D07 o 3 k
3% — omp E
0.6 RigL 5 Y
= 20 20 /2 20 /7
0.5 » —e— 0.80 / —— 0.80 / —e— 0.80
0.90 0.90 0.90
0.4 10 —e— 0.95 10 —e— 0.95 10 —e— 0.95
03 --- 0.00 ---- 0.00 ---- 0.00
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
Epoch Epochs Epochs Epochs

Figure 4: (left) Mask IoU between two consecutive checkpoints at 95% sparsity. (right) Sharpness (highest
eigenvalue) of the loss surface vs number of epochs. Dashed lines correspond to the dense model.

Structured sparsity. In Appendix [K] we measure the number of channels that have been completely
zeroed out during (unstructured) sparse training. We find that AC/DC and AC/DC++ models have a
considerable amount of sparse channels, with AC/DC++ models having considerably higher structured
sparsity than AC/DC for every sparsity.

Comparison with smaller dense model. In Appendix we confirm that a 95% sparse ResNet50 model
substantially outperforms a half-width dense ResNet50 model trained for the same budget.

Different sparsity patterns. In Appendix [N] we confirm that adding constraints on the sparsity pattern
(such as uniform per-layer sparsity and block-4 sparsity) lowers model accuracy.

5 The Difficulty of Sparse Transfer in Language Modelling

Next, we extend the analysis to language models, specifically to the very common scenario in which a large
language model (BERT-base) is adapted to a specific task via finetuning. Thus, here we will examine the
impact of sparsity target, number of iterations, loss function, and hyper-parametrization on the optimal
recipe for the task of finetuning sparse models on the downstream dataset.

In the context of our study, this setup naturally leads to the following questions: “do finetuned sparse
language models suffer from being undertrained on the downstream task?”, and “if yes, does the simple recipe
of extended training suffice to mitigate the issue?”. In this section, we will show that when dense finetuning
recipes are used for sparse transfer learning in language models, the resulting models are indeed undertrained
and have poor transfer performance. However, we also note an additional difficulty: extended training does
not suffice to mitigate the issue, because sparse language models quickly shift from being undertrained to an
overfitting regime. The latter is a far larger problem in language understanding tasks than in visual ones,
which is likely why we don’t observe the same issues with visual transfer learning in Appendix [E] - there we
simply use a long finetuning schedule in all cases. In this section, we explore the problem of balancing under-
and over-training in sparse language models and propose a sparse finetuning recipe for creating properly
tuned sparse models.

5.1 Under Standard Dense Transfer Learning Recipes, Sparse Models are Undertrained

Experimental Setup. In our experiments, we make use of open-sourced sparse pre-trained BERT-base
models obtained by (Kurtic et all |2022). On top of these, we apply various transfer learning recipes to
obtain fine-tuned sparse models on datasets from the popular GLUE benchmark (Wang et al., |2018]). For fair
comparisons with results from prior work, we employ early stopping for all methods. We provide more details
about each dataset in Appendix

13



Published in Transactions on Machine Learning Research (06/2024)

The most popular and widely adopted dense transfer learning recipe consists of fine-tuning all weights
with linearly decaying learning rate for as much as two or three epochs on the target downstream task. In
Table [2| we present results obtained with this approach when applied to sparse models, and denote it as a
dense-transfer recipe. Under the same transfer learning recipe, we clearly observe significant gaps (up to 14
accuracy points on RTE and CoLA) between the transfer accuracy of the dense model (Dense BERT-base),
and the transfer accuracy of the sparse model (Dense-transfer recipe).

5.2 Extended Training Shifts from Undertraining to Overfitting

Observing that the dense transfer learning recipe does not produce competitive sparse finetuned models, we
attempt to scale the length of the recipe to mitigate undertraining. Surprisingly, for sparse language models,
this simple technique does not yield a unique setup with consistently better results as models quickly shift
from undertraining to an overfitting regime, in which training loss goes to zero, while validation accuracy
decreases sharply. To demonstrate this overfitting effect with the extended recipe, in Table [2] we compare
results obtained with this approach (Eztended dense-transfer recipe) against doing a full sweep of finetuning
runs with rescaled recipes to #epochs € {1,2,3, ...,extended — 1} (Full sweep of rescaled recipes).

Table 2: Sparse-transfer performance of 90% sparse pre-trained BERT-base model on the dev-set of the
corresponding GLUE task, obtained with dense and extended dense (#epochs=8) transfer learning recipes,
as well as with the full sweep of rescaled recipes (#epochs € {1,2,...,7}).

RTE QNLI MRPC SST-2 CoLA STS-B MNLI QQP
Acc Acc Acc Acc Mcc Pear Acc Acc
Dense BERT-base (baseline) 66.1  91.3 85.5 93.0 56.8 88.9 84.6 915

Dense-transfer recipe 52.4 88.9 82.8 91.2 42.5 87.1 82.2 90.0

Extended dense-transfer recipe | 55.2  88.7 85.6 91.4 47.2 87.6 81.6 90.3

Full sweep of rescaled recipes | 57.0 89.3 84.1 92.0 48.5 88.0 82.2 904
Best recipe length Sep 2ep 5 ep 2 ep 7 ep 4 ep 3 ep 5 ep

Sparse-transfer

The results suggest that with the existing recipes, there is no one-size-fits-all solution. Versions of this
rescaling approach have been utilized by prior works like (Kurtic et al.l 2022)) and (Zafrir et al., |2021) to
obtain accurate sparse models on various downstream datasets. However, this approach comes with a huge
computational burden: for each rescaled recipe, a full hyperparameter sweep over relevant parameters has to
be done in order to obtain competitive finetuned sparse models. Due to practicality and associated costs, this
is not a desirable solution in practice.

5.3 Sparse Transfer Learning for Language Models

In the previous section, we have demonstrated the following three problems with the existing approach of
either using the dense finetuning recipe, or simply extending it for sparse finetuning:

1. following dense-transfer recipes, sparse language models are undertrained;

2. even at high sparsities, these models can still exhibit overfitting behavior under the extended training
regime;

3. finding the optimal recipe to mitigate undertraining and overfitting has major computational burdens.

To address these issues, we propose a simple approach for sparse transfer in NLP, which produces highly
accurate and competitive sparse models on a wide range of downstream datasets with minimal hyperparameter
tuning. Our technique is inspired by the idea of gradual layer unfreezing presented in the ULMFiT
framework (Howard & Ruder} 2018)), which introduced a universal framework for fine-tuning dense language
models for text-classification tasks, with a focus on LSTM models (Hochreiter & Schmidhuber] {1997; [Merity
et al.l [2017)). Based on ULMFiT and findings of (Yosinski et al., [2014]), which suggests that different layers

14



Published in Transactions on Machine Learning Research (06/2024)

Table 3: Our sparse-transfer performance of 90% sparse pre-trained BERT-base model on the dev-set of the
corresponding GLUE tasks, benchmarked against the current state-of-the-art sparse-transfer results from
Prune OFA (Zafrir et al., [2021) and oBERT (Kurtic et al., 2022).

g ¢ f RTE QNLI MRPC SST-2  CoLA STS-B MNLI QQP
parse-iransier Acc  Acc F1 / Acc Acc Mcc  Pear / Spear m / mm Acc / F1
Dense BERT-base 66.1 91.3 89.8 /855 93.0 56.8 88.9 / 88.5 84.6 /834 91.5/88.5
Prune OFA (Zafrir et al.[[2021) | N/A  89.1 N/A 909 N/A N/A 81.5 /824 90.9 / 87.6
oBERT Kurtlc et al. ”@ 57.0 89.3 89.3/85.6 92.0 48.5 88.0 / 87.6 822 /825 90.4 /871
This work 60.1 90.5 89.7 /852 91.8 51.4 87.2 /87.1 83.7 / 83.8 90.9 / 87.6

capture different information and therefore should be fine-tuned to different extents, we adopt the idea of
gradual unfreezing and adjust it for transformer-based (Vaswani et all 2017) sparse language models.

More specifically, we focus on the popular BERT-base model which consists of three groups of layers:
embeddings, 12 identical transformer blocks, and a task-specific classifier head. Sparsified versions of this
model, which are the main interest of this work, prune all linear layers across all transformer blocks, which
is the standard practice in literature (Sanh et al., 2020; Kurtic & Alistarhl| [2022; Kurtic et al., 2022} Zafrir|
and brings the best accuracy-vs-latency trade-offs (Kurtic et al, [2022).

0.80 90
0.75 Method
—— Ours
0.70 88
2 —— OBERT
2 0.65
p /
© 0.60 /
bl
k] 0.55
[ 84
>
5 0-50
0.45
82
0.40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Epoch Epoch

F1 score

Method
—— Ours
—— O0BERT

Figure 5: Evaluation loss (lower is better) and F1 score (higher is better) during sparse-transfer with
oBERT (Kurtic et al.,|2022)) and our approach on MRPC dataset.

»—\
N

133

=3

Method /
—— Ours /
—— OBERT /

=) -
© o

w w

1= o

N
S

Evaluation loss
s o
I =

Method
—— Ours
—— OBERT

e

o
-
o

Matthew's correlation coefficient

o
3
o

Epoch Epoch

Figure 6: Evaluation loss (lower is better) and Matthew’s correlation coefficient (higher is better) during
sparse-transfer with oBERT (Kurtic et al. 2022) and our approach on CoLA dataset.

Our approach can be summarized as follows. For each downstream task, we start from a sparse pre-trained
model produced by (Kurtic et al. [2022) and randomly initialize a task-specific classifier head. Then we freeze
all embeddings and sparsified linear weights, while keeping their biases and corresponding LayerNorm
layers unfrozen and trainable. We start by finetuning only the classifier head and all other
trainable parameters (biases and LayerNorms) for one epoch, and then follow the same process from back-
to-front by unfreezing the unpruned linear weights in preceding transformer blocks. After the last layer is
unfrozen and finetuned, we continue finetuning all layers together for one more epoch.

15



Published in Transactions on Machine Learning Research (06/2024)

Given that at each epoch we have a different model architecture (one more sparse transformer block unfrozen
relative to the previous epoch), we finetune it with the linearly decaying learning rate and then rewind back
to the initial value for the next epoch. We have also tried the slanted triangular learning rate schedule
proposed in ULMFiT, but we found the warmup phase not very helpful as it is known that sparse language
models usually require much higher learning rates relative to their dense counterparts in order to train and
converge successfully (Kurtic & Alistarh) 2022).

To validate the effectiveness of our proposed sparse transfer approach, we benchmark it against the two
current state-of-the-art sparse-transfer results presented in Prune Once for All (Prune OFA) (Zafrir et al.)
2021) and The Optimal BERT Surgeon (oBERT) (Kurtic et al.l 2022) papers. The former makes use of
knowledge distillation from a finetuned dense teacher model, while the latter uses a full sweep over extended
and rescaled dense transfer recipes, such as the ones we presented in Section As can be seen from Table
our approach outperforms highly competitive results by Prune OFA in all, and oBERT in eight out of twelve
datasets, setting new state-of-the-art accuracy-vs-sparsity results for many tasks in the GLUE benchmark
suite. It is worth emphasizing that all of our results are obtained with significantly less hyperparameter
tuning than the other two competing methods, which aligns with our goal of finding a stable one-size-fits-all
solution for the sparse-transfer problem. We search and tune the initial learning rate in {le-4, 2e-4, 3e-4}, and
dropout in {0.05, 0.1}, and report mean performance over the two best runs. Thus, our grid consists of only 6
different combinations for each considered dataset, whereas competing approaches sweep over 54 (Zafrir et al.,
2021) and 24 (Kurtic et al. [2022) different combinations. It is worth emphasizing that all of the considered
methods, including ours, have noticeable variability in results on small datasets across different seeds and
hyperparameter configurations, which aligns with findings of (Devlin et al.| |2019)).

To better understand what happens during our proposed sparse transfer learning setup, and to develop an
intuition about why it is able to provide stable and competitive results across many different datasets ranging
in sizes from 2.4k (RTE) and 392k (MNLI) labeled samples, we visualize evaluation loss and evaluation
accuracy metrics over the entire transfer learning process in Figures 5] and [f] As can be seen, our approach
enables slower and therefore more stable transfer learning on the target datasets which effectively prevents
overfitting, even though the total number of epochs is two times larger than the extended dense-transfer
recipes analyzed in Section [5.2] This aligns with findings in ULMFiT, which demonstrates that gradual
unfreezing in combination with a carefully designed learning rate schedule prevents catastrophic forgetting
and enables robust transfer learning across a wide range of different downstream tasks.

6 Conclusion

In this work, we examined the impact of high sparsity on model training under standard computer vision
and natural language recognition scenarios, and provided evidence that traditional training recipes used
for dense models are generally too short for sparse training. Starting from this observation, we were able
to produce state-of-the-art models for sparse computer vision on two classic benchmarks for pruning: the
ResNet50/ImageNet from-scratch training benchmark, and transfer learning from BERT-base on several
NLP datasets. Our work focused on the differences between sparse and dense training dynamics and their
effect on optimal training, providing additional analysis towards the difficulty of sparse training. In our work
we showed that very high levels of both sparsity and accuracy are possible simply by carefully adapting the
number of training epochs and using sensible values for basic hyperparameters. We hope that these new
results will encourage additional research on adapting training schedules, hyperparameters, optimizers, and
data selection that will allow for the creation of sparsely-trained models that match these accuracy targets
within a smaller training budget. We leave this as a challenge to the community.

References

Kale ab Tessera, Sara Hooker, and Benjamin Rosman. Keep the gradients flowing: Using gradient flow to
study sparse network optimization, 2021.

Kyriakos Axiotis and Maxim Sviridenko. Sparse convex optimization via adaptively regularized hard
thresholding. In International Conference on Machine Learning (ICML), 2020.

16



Published in Transactions on Machine Learning Research (06/2024)

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Thomas Berg, Jiongxin Liu, Seung Woo Lee, Michelle L. Alexander, David W. Jacobs, and Peter N. Belhumeur.
Birdsnap: Large-scale fine-grained visual categorization of birds. In Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2019-2026, 2014. doii10.1109/CVPR.2014.259.

Mathieu Blondel, Vivien Seguy, and Antoine Rolet. Smooth and sparse optimal transport. In International
conference on artificial intelligence and statistics, 2018.

Thomas Blumensath and Mike E Davies. Iterative thresholding for sparse approximations. Journal of Fourier
Analysis and Applications, 14(5-6):629-654, 2008.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 — mining discriminative components with
random forests. In European Conference on Computer Vision (ECCV), 2014.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semantic textual similarity-
multilingual and cross-lingual focused evaluation. In SEMVAL International Workshop on Semantic
Fvaluation, 2017.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374, 2021a.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, and Zhangyang
Wang. The lottery tickets hypothesis for supervised and self-supervised pre-training in computer vision
models. Conference on Computer Vision and Pattern Recognition (CVPR), 2021b.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describing
textures in the wild. In Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

Jeremy M. Cohen, Simran Kaur, Yuanzhi Li, J. Zico Kolter, and Ameet Talwalkar. Gradient descent on
neural networks typically occurs at the edge of stability, 2022.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Conference on Neural
Information Processing Systems (NeurIPS), 2013.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In North American Chapter of the Association for Computational
Linguistics (NAACL), 2019.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In Third
International Workshop on Paraphrasing (IWP2005), 2005.

Xin Dong, Shangyu Chen, and Sinno Jialin Pan. Learning to prune deep neural networks via layer-wise
optimal brain surgeon. In Conference on Neural Information Processing Systems (NeurIPS), 2017.

Utku Evci, Fabian Pedregosa, Aidan Gomez, and Erich Elsen. The difficulty of training sparse neural networks.
arXiw preprint arXiv:1906.10732, 2019.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery: Making
all tickets winners. In International Conference on Machine Learning (ICML), 2020.

Utku Evci, Max Vladymyrov, Thomas Unterthiner, Bart van Merrienboer, and Fabian Pedregosa. Grad-
max: Growing neural networks using gradient information. In International Conference on Learning
Representations (ICLR), 2022.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations (ICLR), 2019.

17


https://doi.org/10.1109/CVPR.2014.259

Published in Transactions on Machine Learning Research (06/2024)

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Stabilizing the lottery
ticket hypothesis. arXiv preprint arXiv:1903.01611, 2019.

Elias Frantar, Eldar Kurtic, and Dan Alistarh. M-FAC: Efficient matrix-free approximations of second-order
information. In Conference on Neural Information Processing Systems (NeurIPS), 2021.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. In International
Conference on Machine Learning (ICML), 2019.

Noah Golmant, Zhewei Yao, Amir Gholami, Michael Mahoney, and Joseph Gonzalez. pytorch-hessian-
eigenthings: efficient pytorch hessian eigendecomposition, 2018. URL https://github.com/noahgolmant/
pytorch-hessian-eigenthings.

Gregory Griffin, Alexander D. Holub, and Pietro Perona. The Caltech 256. Caltech Technical Report, 2006.

Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections for efficient
neural networks. In Conference on Neural Information Processing Systems (NeurIPS), 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions
and perturbations. In International Conference on Learning Representations (ICLR), 2019.

Sepp Hochreiter and Jirgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735-1780, nov
1997. ISSN 0899-7667. doii10.1162/neco.1997.9.8.1735. URL https://doi.org/10.1162/neco.1997.9.8|
1735.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep learning:
Pruning and growth for efficient inference and training in neural networks. arXiv preprint arXiv:2102.00554,
2021.

Sara Hooker, Aaron Courville, Gregory Clark, Yann Dauphin, and Andrea Frome. What do compressed deep
neural networks forget? arXiv preprint arXiv:1911.05248, 2019.

Sara Hooker, Nyalleng Moorosi, Gregory Clark, Samy Bengio, and Emily Denton. Characterising bias in
compressed models. arXiv preprint arXiv:2010.03058, 2020.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. MobileNets: Efficient convolutional neural networks for mobile vision
applications. arXiw preprint arXiv:1704.04861, 2017.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification. arXiv
preprint arXiv:1801.06146, 2018.

Shaoyi Huang, Dongkuan Xu, Ian EH Yen, Yijue Wang, Sung-En Chang, Bingbing Li, Shiyang Chen, Mimi
Xie, Sanguthevar Rajasekaran, Hang Liu, et al. Sparse progressive distillation: Resolving overfitting under
pretrain-and-finetune paradigm. arXiv preprint arXiv:2110.08190, 2021.

Eugenia Iofinova, Alexandra Peste, and Dan Alistarh. How well do sparse imagenet models transfer? In
Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

Eugenia Iofinova, Alexandra Peste, and Dan Alistarh. Bias in pruned vision models: In-depth analysis and
countermeasures. In Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

Ajay Jaiswal, Haoyu Ma, Tianlong Chen, Ying Ding, and Zhangyang Wang. Training your sparse neural
network better with any mask. In International Conference on Machine Learning (ICML), 2022.

Siddhant Jayakumar, Razvan Pascanu, Jack Rae, Simon Osindero, and Erich Elsen. Top-KAST: Top-K
always sparse training. In Conference on Neural Information Processing Systems (NeurIPS), 2020.

18


https://github.com/noahgolmant/pytorch-hessian-eigenthings
https://github.com/noahgolmant/pytorch-hessian-eigenthings
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

Published in Transactions on Machine Learning Research (06/2024)

Siddhant M Jayakumar, Razvan Pascanu, Jack W Rae, Simon Osindero, and Erich Elsen. Top-KAST: Top-K
always sparse training. arXiv preprint arXiw:2106.03517, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International Conference
on Learning Representations (ICLR), 2015.

Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better ImageNet models transfer better? In
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3D Object Representations for Fine-Grained
Categorization. In 4th International IEEE Workshop on 8D Representation and Recognition (3dRR-13),
Sydney, Australia, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Eldar Kurtic and Dan Alistarh. Gmp*: Well-tuned global magnitude pruning can outperform most bert-
pruning methods. arXiv preprint arXiv:2210.06384, 2022.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael Goin,
and Dan Alistarh. The optimal BERT surgeon: Scalable and accurate second-order pruning for large
language models. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, Abu Dhabi, United Arab Emirates, 2022.

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham Kakade, and
Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In International Conference
on Machine Learning (ICML), 2020.

Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman, and Aleksander Madry.
ffcv. https://github.com/libffcv/ffcv/, 2022.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. SNIP: Single-shot network pruning based on
connection sensitivity. International Conference on Learning Representations (ICLR), 2019.

Fei-Fei Li, R. Fergus, and Pietro Perona. Learning generative visual models from few training examples: an
incremental Bayesian approach tested on 101 object categories. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2004.

Lucas Liebenwein, Cenk Baykal, Brandon Carter, David Gifford, and Daniela Rus. Lost in Pruning: The
Effects of Pruning Neural Networks beyond Test Accuracy. Conference on Machine Learning and Systems
(MLSys), 2021.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atashgahi, Lu Yin, Huanyu Kou, Li Shen, Mykola
Pechenizkiy, Zhangyang Wang, and Decebal Constantin Mocanu. Sparse training via boosting pruning
plasticity with neuroregeneration. In Conference on Neural Information Processing Systems (NeurIPS).

Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and Mykola Pechenizkiy. Do we actually need dense

over-parameterization? in-time over-parameterization in sparse training. In International Conference on
Machine Learning (ICML), 2021.

Tianlin Liu, Joan Puigcerver, and Mathieu Blondel. Sparsity-constrained optimal transport. arXiv preprint
arXiv:2209.15466, 2022.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of the IEEE international conference on computer vision, 2015.

Yucheng Lu, Shivani Agrawal, Suvinay Subramanian, Oleg Rybakov, Christopher De Sa, and Amir Yazdan-
bakhsh. Step: Learning n:m structured sparsity masks from scratch with precondition, 2023.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained visual
classification of aircraft. arXiv preprint ArXiv:1306.5151, 2013.

19


https://github.com/libffcv/ffcv/

Published in Transactions on Machine Learning Research (06/2024)

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing Istm language
models. arXiv preprint arXiv:1708.02182, 2017.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep neural networks.
In International Conference on Machine Learning (ICML), 2017.

NeuralMagic. The DeepSparse Inference Engine. https://github.com/neuralmagic/deepsparse, 2022.

Mahdi Nikdan, Tomasso Pegolotti, Eugenia Iofinova, Eldar Kurtic, and Dan Alistarh. Sparseprop: Efficient
sparse propagation for faster training of neural networks. arXiv preprint arXiv:2302.04852, 2023.

Maria-Elena Nilsback and Andrew Zisserman. A visual vocabulary for flower classification. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2006.

Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2012.

Alexandra Peste, Eugenia Iofinova, Adrian Vladu, and Dan Alistarh. AC/DC: Alternating com-
pressed /decompressed training of deep neural networks. In Conference on Neural Information Processing
Systems (NeurIPS), 2021.

Gabriel Peyré and Marco Cuturi. Computational optimal transport. arXiv preprint arXiv:1803.00567, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211-252, 2015.

Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do adversarially
robust ImageNet models transfer better? Conference on Neural Information Processing Systems (NeurIPS),
2020.

Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by fine-tuning.
Conference on Neural Information Processing Systems (NeurIPS), 2020.

Pedro Savarese, Hugo Silva, and Michael Maire. Winning the lottery with continuous sparsification. arXiv
preprint arXiv:1912.04427, 2021.

Jonathan Schwarz, Siddhant Jayakumar, Razvan Pascanu, Peter Latham, and Yee Teh. Powerpropagation:
A sparsity inducing weight reparameterisation. In Conference on Neural Information Processing Systems
(NeurIPS), 2021.

Sidak Pal Singh and Dan Alistarh. WoodFisher: Efficient second-order approximation for neural network
compression. In Conference on Neural Information Processing Systems (NeurIPS), 2020.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In
Conference on empirical methods in natural language processing (EMNLP), 2013.

Antoine Vanderschueren and Christophe De Vleeschouwer. Are straight-through gradients and soft-
thresholding all you need for sparse training? In 2023 IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), 2023.

Han Vanholder.  Efficient inference with TensorRT. NVIDIA GTC On-Demand. Slides avail-
able at https://on-demand-gtc.gputechconf.com/gtenew /sessionview.php?sessionName=23425-
efficient+inference+with+tensorrt, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Conference on Neural Information Processing Systems
(NeurIPS), 2017.

20



Published in Transactions on Machine Learning Research (06/2024)

Richard von Mises and Hilda Pollaczek-Geiringer. Praktische verfahren der gleichungsauflésung . Zamm-
zeitschrift Fur Angewandte Mathematik Und Mechanik, 1929.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue: A multi-
task benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461,
2018.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments. Trans-
actions of the Association for Computational Linguistics, 2019.

Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for sentence
understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database: Large-scale
scene recognition from abbey to zoo. In 2010 IEEE computer society conference on computer vision and
pattern recognition, pp. 3485-3492. IEEE, 2010.

Lu Yin, Gen Li, Meng Fang, Li Shen, Tianjin Huang, Zhangyang Wang, Vlado Menkovski, Xiaolong Ma,
Mykola Pechenizkiy, and Shiwei Liu. Dynamic sparsity is channel-level sparsity learner. arXiv preprint
arXiv:2305.19454, 2023.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep neural
networks? Advances in neural information processing systems, 27, 2014.

Ofir Zafrir, Ariel Larey, Guy Boudoukh, Haihao Shen, and Moshe Wasserblat. Prune once for all: Sparse
pre-trained language models. arXiv preprint arXiv:2111.05754, 2021.

Qingru Zhang, Simiao Zuo, Chen Liang, Alexander Bukharin, Pengcheng He, Weizhu Chen, and Tuo
Zhao. Platon: Pruning large transformer models with upper confidence bound of weight importance. In
International Conference on Machine Learning, 2022.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878, 2017.

21



	Introduction
	Background and Motivation
	Related Work
	The Difficulty of Sparse Pretraining of Vision Models
	Sparse Vision Models Show Evidence of ``Undertraining''
	State-of-the-Art Accurate Sparse Pre-Training on ImageNet
	Comparing Sparse Training Methods
	Sparsity-vs-Accuracy Results

	Additional validations and ablations
	Additional Evaluations
	Parameter Ablations
	Additional Analyses


	The Difficulty of Sparse Transfer in Language Modelling
	Under Standard Dense Transfer Learning Recipes, Sparse Models are Undertrained
	Extended Training Shifts from Undertraining to Overfitting
	Sparse Transfer Learning for Language Models

	Conclusion
	Appendix

