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Abstract

Mixture-of-experts (MoE) architectures could
achieve impressive computational efficiency with
expert parallelism, which relies heavily on all-to-
all communication across devices. Unfortunately,
such communication overhead typically consti-
tutes a significant portion of the total runtime,
hampering the scalability of distributed training
and inference for modern MoE models (consum-
ing over 40% runtime in large-scale training). In
this paper, we first define collaborative commu-
nication to illustrate this intrinsic limitation, and
then propose system- and algorithm-level innova-
tions to reduce communication costs. Specifically,
given a pair of experts co-activated by one token,
we call them as collaborated, which comprises 2
cases as intra- and inter-collaboration, depending
on whether they are kept on the same device. Our
pilot investigations reveal that augmenting the
proportion of intra-collaboration can accelerate
expert parallel at scale. It motivates us to strate-
gically optimize collaborative communication
for accelerated MoE training and inference,
dubbed Occult. Our designs are capable of
either delivering exact results with reduced com-
munication cost, or controllably minimizing the
cost with collaboration pruning, materialized by
modified fine-tuning. Comprehensive experi-
ments on various MoE-LLMs demonstrate that
Occult can be faster than popular state-of-the-
art inference or training frameworks (more than
1.5× speed up across multiple tasks and models)
with comparable or superior quality compared
to the standard fine-tuning. Code is available at
https://github.com/UNITES-Lab/Occult.
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Figure 1. Latency Comparison with Multiple Models & Tasks.
Occult can accelerate training & inference for modern MoE-
LLMs on communication-intensive tasks.

1. Introduction
Transformer-based (Vaswani, 2017) large language mod-
els (LLMs) (Achiam et al., 2023; Touvron et al., 2023) have
demonstrated tremendous success in a broad spectrum of
downstream tasks, and scaling up model parameters is the
de facto approach to train more powerful LLMs (Jiang et al.,
2024; Liu et al., 2024b). Mixture-of-experts (MoE) empow-
ers LLMs with efficient parameter scaling via sparsity. It
replaces the standard feed-forward network with a group
of experts, and each token only activates a subset, which
significantly improves computation efficiency.

However, the giant scale of MoE parameters and the limited
memory of a single GPU make it necessary to shard an MoE
layer across multiple GPUs for parallelized training and in-
ference. Among the common techniques, expert parallelism
is a scalable and efficient approach (Lepikhin et al., 2021; Fe-
dus et al., 2022), which distributes experts on multiple GPUs
and dispatches tokens to the corresponding devices via all-
to-all communication. As illustrated in Figure 2(a), we can
outline a typical forward pass as Dispatch → All-to-All →
Computing → All-to-All → Combine.
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Previous work has demonstrated that all-to-all communica-
tion is the main bottleneck (Li et al., 2023a) for both training
and inference, especially under heavy workloads (Hwang
et al., 2023), where it can count for over 40% runtime. The
reason is that communication across GPUs is much slower
than computation on a single one. GPUs on the same ma-
chine are typically connected via PCIe or NVLink, where
the former provides low bandwidth, and the latter is higher
but only available on some cutting-edge devices. This makes
communication efficiency a pivotal subject for scalable MoE
deployment. For modern LLMs, heavy workload is a com-
mon teaser, usually emerging in the following tasks:

⋆ Training: Large batch can better utilize hardware re-
sources, accelerating both pre-training and fine-tuning.

⋆ Long Sequence Prompting (Prefilling Stage of Infer-
ence): A single forward pass can batch massive tokens.

⋆ Concurrent Generation Requests (Decoding Stage of
Inference): Requests from different users are batched
together, and decoding is implemented step by step.

The above motivates us to explore how to optimize commu-
nication across devices to achieve lower latency and higher
throughput. Previous MoE libraries (Hwang et al., 2023;
Gale et al., 2023) typically make k replicas for each token
in expert parallelism, and dispatch them to different devices,
constituting the content of all-to-all communication. In fact,
not all content is necessary: if a subset of activated experts
for one token is kept on the same device, then only one
replica would be required for this device. In the ideal case,
if the activated experts are all kept on the same device, then
the all-to-all cost would turn out to be almost negligible.

To implement this efficient communication, we develop a
novel sparse matrix multiplication kernel tailored for ef-
ficient all-to-all. Note that if only reusing previous libraries,
the streamlined token replicas for efficient communication
cannot directly serve as the input/output of expert comput-
ing, otherwise extra memory footprint would be required.
Therefore, we build a new sparse matrix multiplication ker-
nel for both forward and backward passes in Section 3.1,
aiming at reducing unnecessary memory allocation or ac-
cess. Based on this, expert placement turns out to be critical
for communication efficiency: an ideal placement should
make the routed experts for each token fall into as few de-
vices as possible.

To this end, we propose to reformulate all-to-all in MoE
workflow as Collaborative Communication. Given expert
Ei and Ej co-activated by a token x, we denote them as col-
laborated. Furthermore, expert collaboration can be divided
into two categories: (1) Intra Collaboration: if Ei and Ej

are kept on the same device, and (2) Inter Collaboration: if
Ei and Ej are kept on different devices.

This collaborative perspective inspires us with innovative
solutions to advance MoE communication efficiency:

Table 1. Approximated Linear Correlation between CT and
runtime. 214 prompt tokens at the prefilling stage are examined.

OLMoE MegaBlocks Occult
Trivial

Occult
Rescheduled

Occult
Prune, 2 GPUs

Occult
Prune, 1 GPUs

C̄T 8 4 4 2 1

E(CT ) 8 3.68 3.02 1.98 1

Intra / Inter 0.33/0.67 0.33/0.67 0.46/0.54 0.60/0.40 1/0

Latency (s) 24.50 15.93 12.53 9.22 5.82

⋆ For intra collaboration, only one replica of x is re-
quired in the Dispatch stage. For Combine stage the
output of Ei and Ej can be pre-aggregated locally.

⋆ For inter-collaboration, typically the token should be
duplicated twice. But if it can be transformed into intra-
collaboration, only one replica would be required.

Therefore, the communication cost for expert parallelism
can be optimized via maximizing intra-collaboration and
minimizing inter-collaboration. To formulate it, we first
propose a simple and practical criterion to measure the com-
munication budget, i.e., the average number of replicas for
each token, denoted as CT . In Table 1, we present the strong
linear correlation between CT and runtime. To push the effi-
ciency of expert parallel to the limit, Occult first resched-
ules expert placement leveraging profiled collaboration.
We utilize the statistics of intra- and inter-collaboration
from a profiling dataset to derive a rescheduled placement,
which delivers around 20% reduction on CT and runtime,
as shown in Table 1. Furthermore, we propose collabora-
tion pruning for controllable and minimized CT , which
pushes communication efficiency to the limit controllably.

As an algorithm-system co-design scheme, Occult can ac-
celerate MoE training and inference with expert parallelism
on communication-intensive tasks. Our contributions are:

⋆ Novel Perspective for Efficient Expert Parallel. We
propose to view the all-to-all communication in ex-
pert parallelized MoE workflow from a novel collab-
orative perspective, and propose an algorithm-system
co-design scheme dubbed Occult to accelerate both
training and inference for MoE-LLMs.

⋆ Higher Quality than Top-k Routing. We evaluate the
performance of MoE-LLMs tuned with collaboration
pruning on extensive benchmarks, where Occult can
achieve comparable or better performance than top-k
routing with improved computational efficiency.

⋆ Faster Training and Inference. Occult achieves
wall-clock speedup for training and inference with
MoE-LLMs on communication-intensive tasks. 3 fron-
tier models and 3 tasks, including prefilling, decoding,
and training, are examined, with an outlined compari-
son in Figure 1. Occult consistently surpasses other
libraries and popular frameworks to varying degrees.
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(a) Classical MoE workflow (CT = 2).
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(b) Occult workflow w/o collaborative pruning (CT = 1.5).
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(c) Occult workflow w. collaborative pruning (CT = 1).
Figure 2. MoE workflows with 3 all-to-all communication
strategies. We take 2 devices (D0 and D1) for expert parallel,
and Dj

i denotes tokens from device i dispatched to device j.

2. Preliminary
2.1. Mixture-of-Experts and Expert Collaboration

Given an input token embedding x, the output of an MoE
layer is the weighted sum of outputs from the Ne experts
{E0, . . . ,ENe−1}:

MoE(x) =
Ne−1∑
i=0

R(x)i · Ei(x), (1)

where R(x)i is the output of router network R(·) for the i-th
expert. For each token, the MoE layer aggregates the output
of k experts based on the top-k highest scores obtained from
the Softmax value of a gating function g(·), which is usually
a single linear projection layer:

R(x) = Top-K(Softmax(g(x)), k),

Top-K(v, k) =

{
v, if v is in the top k,

0, otherwise.

(2)

To quantify the interactions among experts, we construct a
graph C based on the expert co-activation patterns within a
token batch B. Each edge represents the co-activation times
between 2 co-activated experts:

Ci,j =
∑
x∈B

1{R(x)i ̸= 0 ∧R(x)j ̸= 0}. (3)

We further normalize all edge values in C by dividing by the
maximum edge value, yielding a matrix P ∈ RNe×Ne with
values in the interval [0, 1]:

Pi,j = Ci,j/ max
0≤i,j≤Ne−1

Ci,j . (4)

2.2. Measuring All-to-All Communication Complexity

We propose to measure the all-to-all communication com-
plexity with CT , motivated by 2 aspects:

1. In the Dispatch stage, typically k replicas are prepared
for each token, serving as the all-to-all content. An in-
dividual replica may be reserved locally or transmitted
to another GPU, based on the routing choices.

2. Exactly measuring the communication volume leads to
varied evaluations on different datasets. CT can tackle
this issue, since it is the supremum of inter-device all-
to-all communication volume, making it task-agnostic.

As shown in Table 1, CT exhibits a strong linear correla-
tion with wall-clock runtime, since it is highly related to
communication overhead and memory footprint. Based on
this empirical relationship, we formulate the boundaries of
the all-to-all communication budget: Consider a distributed
system with Ne experts and Nd devices implementing top-k
routing, where Ne is divisible by Nd. We define CT and CT
as the lower and upper bounds of CT respectively, where:

1 ≤ ⌈k ·Nd

Ne
⌉ ≤ CT ≤ CT ≤ min{k,Nd}.1 (5)

Therefore the theoretically optimal budget for all-to-all com-
munication can be formulated as CT = ⌈k·Nd

Ne
⌉.

2.3. Optimizing All-to-All Communication Complexity
In Figure 2, we progressively optimize CT to improve com-
munication efficiency of expert parallelism. Figure 2(a)
shows the conventional expert parallelism. A key obser-
vation is that not all tokens require k replications: the red
and green tokens necessitate only a single copy, since both
replicas are transmitted to the same device. Figure 2(b) de-
picts how leveraging this insight reduces the communication
cost CT from 2 to 1.5. Nonetheless, the yellow and blue
tokens still incur duplicate transmissions. Through strategic
optimization of the routing policy, as shown in Figure 2(c),
we can achieve a further reduction in CT to 1, i.e., reaching
the theoretically minimum communication overhead.

2.4. Why Collaboration Pruning?
To minimize the communication complexity CT , two poten-
tial approaches emerge:

❶ Pure system design: Dynamically optimize expert
placement for each mini-batch to reduce CT .

❷ Algorithm-system co-design: Adapt the routing policy
to align with a pre-defined expert placement, thereby
reducing CT while maintaining model performance.

Our empirical analysis demonstrates the unfeasibility of the
pure system design approach. For a collaboration graph C
constructed from a mini-batch B, we analyze the number of
experts in the maximal connected subgraph as the number
of tokens in B increases. Figure 3 shows this analysis across

1The lower bound of CT is the number of devices that k can
cover, which equals to ⌈k/(Ne/Nd)⌉ = ⌈ k·Nd

Ne
⌉.
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Figure 3. Empirical correlation between the expert amount in the maximal connected sub-graph and token amount in a mini-batch
for top-2, 4, 6, and 8 routing. We examine the last MoE layer for each model with the same inputs.

four MoE-LLMs with top-2, 4, 6, and 8 routing. The results
show that the maximal connected subgraph converges to
the complete graph as the mini-batch token count increases,
implying that optimal expert partitioning across distributed
devices for minimal CT is practically unattainable. There-
fore, we adopt an algorithm-system co-design approach to
minimize the communication budget.

3. Method
In this section, we introduce Occult, an algorithm-system
co-design approach that accelerates the MoE pipeline with
expert parallelism by optimizing collaborative communi-
cation. Section 3.1 introduces our tailored sparse matrix
multiplication (SMM) implementation for efficient all-to-
all communication. Section 3.2 describes the algorithmic
design for expert placement rescheduling, which critically
impacts the communication budget. Section 3.3 presents our
collaboration pruning schemes that push CT to the limit.

3.1. Sparse Matrix Multiplication for Efficient All-to-All

Our system design originates from the key insights for effi-
cient all-to-all communication. Consider 2 experts Ei and
Ej that are co-activated by a token x, where the expert com-
puting results of them must be aggregated along with k − 2
other experts for x. When Ei and Ej are intra-collaborated,
the forward MoE pass exhibits the following properties:

⋆ The Dispatch stage requires only a single replica of x
for all-to-all communication.

⋆ The Combine stage allows pre-aggregation of expert
computing results from Ei and Ej , maintaining consis-
tency with Dispatch.

⋆ To implement this symmetric and efficient communica-
tion, the aggregation in Equation 1 should be split into
two stages, i.e., summing the intra-collaboration results
before all-to-all, and summing the inter-collaboration
results after all-to-all, for each token x.

To implement these ideas and enhance efficiency, we need to
deal with multiple tensor states, since tokens are selectively
repeated. In this paper, we outline them as 3 states:

⋆ Original (ORI): The raw input and output tensors for
an MoE layer, where each token appears exactly once.

⋆ Simplified (SFD): The communication tensors for all-
to-all operations, serving as the input of the first linear
layer and the output of the second linear layer. Each
token is replicated fewer than k times.

⋆ Expanded (EPD): The intermediate token tensors be-
tween the first and second linear projection layer,
where each is replicated exactly k times.

The token counts across states follow ORI < SFD < EPD.
All token tensors are maintained continuously in GPU HBM.
Each expert computing operator bridges two states for mem-
ory efficiency, taking one as input and producing another as
output. However, direct implementation across these states
presents challenges. State transitions require either token
replication or reduction during computation on SRAM, ne-
cessitating token indexing. Moreover, this parallel token
indexing process is still complex, due to the simultaneous
consideration of devices, experts, and tokens.

To tackle this teaser, we introduce Bidirectional Re-
Index Matrix (BRIM), a novel data structure for unified data
management. Each MoE layer requires 2 BRIMs, as pre-
sented in Figure 6. A BRIM provides two functions, namely
Scattering and Merging, which support basic MoE opera-
tions including Dispatch, Combine, and expert computing.
Each function implements a two-stage process, aligned with
our two-stage aggregation for Equation 1:

⋆ Merging: Stage one (EPD → SFD) integrates with
SMM, while stage two (SFD → ORI) integrates with
Dispatch & Combine. As shown in the left part of
Figure 5, merging operates along the 1st dim of BRIM.

⋆ Scattering: Stage one (ORI → SFD) integrates with
Dispatch & Combine, while stage two (SFD → EPD)
integrates with SMM. As shown in the right part of Fig-
ure 5, scattering operates along the 2nd dim of BRIM.

We implement the basic MoE operations in Occult with
Triton (Tillet et al., 2019). For BRIM-based SMM operators,
each thread-block is assigned a sub-vector with a fixed num-
ber of elements in a single BRIM1 row to enable tiled matrix
multiplication.2 The expert can be determined by the sub-
vector’s x-coordinate, ensuring that each thread-block loads

2Since BRIM is very sparse, directly splitting it into vectors
with fixed length would cause a decrease in GPU utilization. There-
fore, we further condense the obtained vectors from BRIM to re-
duce the total number of thread-blocks during runtime.
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Figure 5. Functions of 2 BRIMs. Both BRIM0 and BRIM1 are
2D matrices. BRIM0’s dimensions are defined by the number of
devices for expert parallelism (first dimension) and the token count
in the ORI tensor (second dimension). BRIM1’s dimensions are
defined by the number of local experts per device (first dimension)
and the token count in the SFD tensor (second dimension).

weights from one expert. Merging and scattering functions
primarily differ in their I/O patterns:
⋆ For merging (first stage): Each thread-block reads from

the EPD tensor based on the BRIM1 sub-vector values,
and writes the cumulative dot-product results to the
SFD tensor based on the BRIM1 vector’s y-coordinates.
Multiple thread-blocks may write to the same HBM
region since results from different BRIM1 rows in the
same column require aggregation (Figure 5(b)). This
can be handled either through atomic add 3 or by se-
rially aggregating results across local experts, yielding
identical results with similar runtime.

⋆ For scattering (second stage), each thread-block reads
from the SFD tensor based on the BRIM1 sub-vector’s
y-coordinates and writes the cumulative dot-product
results to the EPD tensor based on the values in the
BRIM1 sub-vector.

We provide the implementation details for each basic op-
eration in our refactored MoE workflow in Appendix A.2,

3Some data types may not be supported for atomic add on
NVIDIA GPUs. We initialize the output tensor with Float32, and
transform it to the target type after computing.

Algorithm 1 Building expert placement.
Require: Collaboration graph P ∈ RNe×Ne , number of devices

Nd for expert parallelism.
Initialize expert placement L with Nd empty lists.
for d← 0, Nd − 1 do

if d == 0 then ▷ Choose the 2 most collaborative experts.
i, j = argmax(P) and push i, j to L[d].

else ▷ Expert with the least collaboration with used ones.
Initialize Cinter as an empty dict.
for e← 0, Ne − 1 do

if e not in L then ▷ Traverse the unused experts.
Set Cinter[e] as 1

|L| ·
∑

t∈L P[t,e].
end if

end for ▷ Expert with least collaboration with used ones.
Index the minimal value from Cinter, and push it to L[d].

end if ▷ Initialize L[d] with 1 or 2 experts.
while len(L[d]) ≤ Ne/Nd do ▷ Progressive expert selection.

Initialize Cintra as an empty dict.
for e← 0, Ne − 1 do

if e not in L then ▷ Traverse the unused experts.
Set Cintra[e] as 1

L[d]
·
∑

t∈L[d]
P[t,e].

end if ▷ Collaboration with experts on device d.
end for ▷ Expert with the most collaboration with L[d].
Index the maximal value from Cintra, and push it to L[d].

end while
end for
return L.

together with a PyTorch-style pseudo-code for the whole
pipeline in Appendix A.1.

3.2. Expert Placement Rescheduling
Since Occult’s communication efficiency CT improves
with increased intra-collaboration and decreased inter-
collaboration, expert placement becomes critical for op-
timizing all-to-all communication. However, determining
optimal placement is challenging due to the high variability
in routing choice distributions across different mini-batches.
As discussed in Section 2.4, we propose determining a fixed
near-optimal expert placement for off -the-shelf MoE-LLMs
using a profiling dataset.

We build a collaboration frequency graph P and formulate
the rescheduling objective as evenly partitioning P into Nd
sub-graphs, maximizing intra-collaboration while minimiz-
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𝙾𝚁𝙸 𝚂𝙵𝙳Dispatch All-to-All MLP-0𝚂𝙵𝙳 𝙴𝙿𝙳 MLP-1 𝚂𝙵𝙳 All-to-All Combine 𝙾𝚁𝙸Pipeline:

BR
IM

0 Scattering-0

Merging-1 BR
IM

1 Scattering-1 Merging-0

Merging-0 Scattering-1 BR
IM

0 Merging-1

Scattering-0
Functions:

𝚂𝙵𝙳

Figure 6. Correlation between the functions of BRIM and the basic operations in MoE workflow. Each BRIM provides 2 functions.
BRIM0 is employed for Dispatch & Combine, while BRIM1 is adopted for the sparse matrix multiplication.

ing inter-collaboration. Each sub-graph represents device-
specific expert assignments. The assigned expert placement
L comprises Nd lists. We quantify collaboration metrics:

⋆ Intra-collaboration for device d is measured from the
average collaboration frequency among all expert pairs
on device d. With expert pair set Sd = {(i, j)|i ∈
Ld ∧ j ∈ Ld ∧ i ̸= j}:

Cd
intra =

1

|Sd|
·
∑

(i,j)∈Sd

P[i,j].

⋆ Inter-collaboration between devices d1 and d2 mea-
sures the average collaboration frequency across all
feasible cross-device expert pairs:

Cd1,d2

inter =
1

|Ld1
| · |Ld2

|
·
∑

i∈Ld1
,j∈Ld2

P[i,j].

To derive a near-optimal expert allocation scheme from P ,
we develop a clustering algorithm in Algorithm 1, inspired
by farthest point sampling in point cloud learning (Qi et al.,
2017). Compared to trivial expert placement, our reschedul-
ing algorithm reduces CT by ∼ 20% while maintaining
exact computation results, as shown in Table 1.

3.3. Expert Collaboration Pruning
We further optimize collaborative communication through
algorithm-level collaboration pruning. This approach re-
stricts the routing choice of each token to a pre-defined
range of Nd devices. Collaborations outside this scope are
pruned and replaced by a legal alternative. The Nd devices
are determined by traversing the tokens’ k routed experts
in descending order of routing score until Nd devices are
reached. 4. Expert replacement follows two proposed crite-
ria for pruning implementation.
Routing-Score-based Pruning. We start by getting the
gating scores for all experts as the router network output,
denoted as {r(x)i}Ne−1

i=0 . While conventional top-k routing
selects the largest k values for forward pass and weighted
aggregation (Equations 1 and 2), we modify it with 2 steps:

❶ Gating score sorting: Sort {r(x)i}Ne−1
i=0 as

{r(x)′i}
Ne−1
i=0 in descending order.

❷ Expert selection: Select top-k experts within the range
of the Nd devices based on {r(x)′i}

Ne−1
i=0 .

4Pruning would not be required if the k routed experts cover
less than Nd devices

Expert-Similarity-based Pruning. We prepare an expert
similarity table for each MoE layer, named as T ∈ ZNe×Ne ,
and then traverse the k routed experts in descending order
of routing score. Experts outside the Nd devices range are
replaced with the most similar available alternative from T
that satisfies two conditions: (1) falls within the range of
Nd devices, and (2) has not been selected before.

Following the empirical insights from MC-MoE (Li et al.,
2023b), we measure the expert similarity using router logits
obtained from the inference process on a profiling dataset.
Implementation details are provided in Appendix A.3.

4. Experiments
4.1. Experimental Setup

Models, Tasks, and Datasets. Models: We examine the
effectiveness of Occult on three frontier MoE-LLMs:
OLMoE-1B-7B (Muennighoff et al., 2024), Qwen1.5-MoE-
A2.7B (Team, 2024), and DeepSeek-MoE (Dai et al., 2024).
The configurations are provided in Table 2. Tasks and
datasets: To validate the effectiveness of collaboration prun-
ing, we tune the models with Alpaca (Taori et al., 2023),
and evaluate on six tasks: Winogrande (Sakaguchi et al.,
2021), WSC (Levesque et al., 2012), PIQA (Bisk et al.,
2020), RACE (Lai et al., 2017), MathQA (Amini et al.,
2019) and RTE (Bentivogli et al., 2009). A more compre-
hensive evaluation with extensive benchmarks is provided
in Appendix B.

Baselines and Evaluation Metrics. Baselines: For infer-
ence, we compare against vllm (Kwon et al., 2023) and
HuggingFace. For training, we compare against PyTorch
fully-sharded data parallel (FSDP) and DeepSpeed (Rajb-
handari et al., 2022). We evaluate two popular MoE li-
braries: Tutel (Hwang et al., 2023) and MegaBlocks (Gale
et al., 2023) (For MegaBlocks, both block sparse matrix mul-
tiplication and grouped GeMM for dMoE are examined).
Since Occult is orthogonal to these general frameworks,
vllm and HuggingFace serve as references only. Evaluation
metrics: We report accuracy for NLP tasks involved in this
section, with F1 score and exact match score results pre-
sented in Appendix B.
Hardware and Software. All the experiments are con-
ducted on a single node using PCIe-connected NVIDIA
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Figure 7. Performance Comparison for Collaboration Pruning. Comprehensive evaluation across three MoE architectures shows
performance trends under different pruning strategies. Note that 4-device collaboration pruning is equivalent to standard training with
original top-k routing.

Figure 8. Collaboration Analysis for OLMoE using 4-way ex-
pert parallelism. Examining expert 0 in the first MoE layer shows
stable collaboration between no-pruning and 2-GPU scenarios,
while 1-GPU pruning leads to some patterns’ vanishing.

A6000 GPUs, each with 48GB HBM memory. We take
BFloat16 for MoE parameters and activations, and Occult
implements atomic add operations in Float32. Batch
size and token amounts are recorded for individual devices.

4.2. Performance of Collaboration Pruning
Effectiveness of Collaboration Pruning. Figure 7
presents performance comparisons for both router- and
similarity-based pruning strategies with various device
amounts. Our results demonstrate that:

❶ While restricting collaboration within 1 device may
hamper the model performance, expanding the con-
straint to 2 devices can achieve comparable or superior
quality than standard training.

❷ Although router-based pruning is easier to implement,
similarity-based pruning consistently outperforms it.

Explanation for Performance Enhancement. To inter-
pret the collaboration mechanism, we visualize an expert
from OLMoE’s first MoE layer in Figure 8. Single-device
pruning only preserves certain correlations while others are
wiped out. In contrast, two-device pruning can ensure the
potential collaboration between any pair of experts, main-
taining correlation patterns that more closely align with the
original model’s structure.

4.3. Accelerated Expert Parallelism
Prefilling. Figure 9 demonstrates Occult’s superior la-
tency performance compared to existing frameworks on
communication-intensive tasks. Using 214 prompt tokens
with Occult, pruning on two devices, as our benchmark:

⋆ For OLMoE, it is 8.66× faster than Tutel, 1.70×
faster than MegaBlocks and 1.86× faster than vllm.

⋆ For Qwen-MoE, it is 2.74× faster than Tutel, 0.71×
faster than MegaBlocks and 1.60× faster than vllm.

⋆ For DeepSeek-MoE, it is 5.64× faster than Tutel,
0.66× faster than MegaBlocks and 1.51× than vllm.

Pruning within 1 device can achieve the highest efficiency,
but with slightly inferior quality, while pruning within 2
devices can achieve a superior trade-off.

Decoding. We visualize the latency comparison for full
generation in Figure 10. While Occult excels with large
batch generation and demonstrates the most consistent scal-
ing across MoE-LLMs, indicating superior throughput, its
acceleration is limited for small batch sizes where commu-
nication is not necessarily a bottleneck.
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Figure 9. Prefilling Latency Comparison with 4 GPUs. Occult achieves superior efficiency under scaled workload.

Figure 10. Decoding Latency Comparison with 4 GPUs. Analysis with fixed prompt tokens (12800) and batch size (512) demonstrates
Occult’s consistent latency advantages on communication-intensive decoding tasks.

Figure 11. Training Latency Comparison with 4 GPUs. With
fixed sequence length of 512 tokens, Occult demonstrates supe-
rior performance across varying batch sizes.

Training. We evaluate the average latency per training
step over 1k iterations with sequence length 512. We evalu-
ate on OLMoE (Muennighoff et al., 2024) and DeepSeek-
MoE (Dai et al., 2024) through tuning all the MoE mod-
ules and freezing other parameters. We take a compre-
hensive comparison among popular training frameworks
with 4 GPUs in Figure 11, and examine the expert paral-
lelism training frameworks with 8 and 16 GPUs in Figure 12.
Experimental results demonstrate that Occult possesses
superior memory efficiency, supporting the largest batch
size under the same memory budget. Occult can also
speed up fine-tuning for MoE-based LLMs. For batch size
8, Occult (two-device pruning) achieves 1.54×, 2.65×,

∼ 9×, and ∼ 20× speedup compared to MegaBlocks (Gale
et al., 2023), FSDP (PyTorch Fully Sharded Data Par-
allelism (Zhao et al., 2023)), DeepSpeed (Rajbhandari
et al., 2022), and Tutel (Hwang et al., 2023), respectively.
Occult is scalable for increasing GPUs involved in ex-
pert parallelism, while exhibiting the most stable latency
increasing trend with batch size growth compared to other
expert-parallel frameworks.

5. Related Works
Open-Source MoE-based LLMs. Most of the modern
MoE-LLMs adopt top-k routing with k ≥ 2, implying that
collaborative communication is universal. This enables
Occult as a general approach to advance efficiency for
scalable expert parallelism. We investigate some frontier
open-source MoE-LLMs in Table 2. The attempts in the
early stage for sparsely scaling language models include
Nllb (Costa-jussà et al., 2022) and Switch-Transformers (Fe-
dus et al., 2022). In recent years, we have witnessed the
vibrant development of modern MoE-LLMs. For instance,
Mixtral (Jiang et al., 2024) outperforms Llama2-70B (Tou-
vron et al., 2023) with 8×7B parameters. Phi-3.5-MoE (Ab-
din et al., 2024) contains 16 × 3.8B parameters, which is
on par with Gemini-1.5-Flash and GPT-4o-mini. Qwen1.5-
MoE (Team, 2024) activates 2.7B parameters and matches
the performance of 7B models. DeepSeek-MoE (Dai et al.,
2024) introduces shared experts to learn common knowl-
edge. OLMoE (Muennighoff et al., 2024) open-sources
all data related to model training. PowerMoE (Shen et al.,
2024b) trains the MoE model with a new learning rate sched-
uler. JetMoE (Shen et al., 2024a) surpasses Llama2-7B (Tou-
vron et al., 2023) with low training cost.
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Figure 12. More training latency comparison for expert parallelism frameworks. Owning to the communication- and memory-efficient
design, Occult achieves superior training efficiency under both 8- and 16-way expert parallelism configurations.

Table 2. Frontier Open-Source MoE-LLMs. The models we
used for experiments are highlighted in bold.

Model k # Experts # MoE Layers # Params

Mixtral-8x7B (Jiang et al., 2024) 2 8 32 46.7 B

Mixtral-8x22B (Jiang et al., 2024) 2 8 56 141 B

Phi-3.5-MoE (Abdin et al., 2024) 2 16 32 41.9 B

Minimax-01 (Li et al., 2025) 2 32 80 456 B

Qwen1.5-MoE (Team, 2024) 4 60 24 14.3 B

DeepSeek-MoE (Dai et al., 2024) 6 64 27 16.4 B

DeepSeek-V2 (Liu et al., 2024a) 6 160 59 236 B

OLMoE (Muennighoff et al., 2024) 8 64 16 6.92 B

Qwen3-30B-A3B (Team, 2025) 8 128 48 30.5 B

Qwen3-235B-A22B (Team, 2025) 8 128 94 235 B

DeepSeek-V3 (Liu et al., 2024b) 8 256 58 685 B

System Designs for Efficient MoE. DeepSpeed-
MoE (Rajbhandari et al., 2022) designs a new MoE
architecture and an optimized inference system for efficient
and scalable serving. Tutel (Hwang et al., 2023) provides a
scalable MoE framework with adaptive parallelism/pipelin-
ing optimization at runtime. MegaBlocks (Gale et al.,
2023) proposes block-sparse matrix multiplication to
enable no discard of tokens. Hexa-MoE (Luo et al.,
2024) proposes expert-specific operators as an alternative
to GeMM or grouped GeMM to make MoE-training
heterogeneous-aware. Janus (Liu et al., 2023) proposes a
data-centric strategy to eliminate all-to-all communication
overhead under a large workload. APTMoE (Wei et al.,
2024) proposes an affinity-aware offloading technique to
enhance pipeline parallelism for fine-tuning MoE-LLMs.

Algorithm Designs for Efficient MoE. Hash-
Layer (Roller et al., 2021) replaces the gating layer
in the common MoE model with a precomputed hash
function to reduce computation cost. MoE-I2 (Yang
et al., 2024) proposes a two-stage compression scheme,
including inter-expert pruning and intra-expert low-rank
decomposition. Pre-gated MoE (Hwang et al., 2024)
proposes a pre-gating function to enable the pre-fetching
of MoE parameters so that it can be efficiently served on
memory-constrained devices. Expert Pruning (Lu et al.,
2024) proposes post-training approaches for task-agnostic
and task-specific expert pruning and skipping with
MoE-LLMs to reduce the model size and improve inference

efficiency. MC-MoE (Li et al., 2023b) merges the experts
into low-rank and structurally sparse alternatives for better
efficiency of inference.
Principles of GPU Acceleration. Modern GPUs provide
massive threads for parallel execution. Threads are grouped
into thread-blocks, which are executed on streaming multi-
processors (SMs). GPUs have a memory hierarchy, outlined
as large but slow-accessed high bandwidth memory (HBM)
and small but faster-accessed shared memory (SRAM). Ma-
trix multiplication is optimized on GPU using tiling, i.e.,
partitioning the output matrix into small 2D blocks, where
each block is computed using a thread-block in parallel.
The size of an individual block can be manually adjusted to
improve runtime performance.

6. Conclusion
In this paper, we introduce Occult, an algorithm-system
co-design approach to optimize all-to-all communication
in expert parallelism for accelerated MoE training and in-
ference. Comprehensive experiments show that it can con-
sistently speed up communication-intensive tasks for MoE-
LLMs. Occult is orthogonal to popular frameworks, there-
fore, it can be further integrated with them for enhanced
efficiency. As preliminary research to advance efficiency in
expert parallelism, some problems remain unsolved, such as
workload balancing. We will continue to explore this topic
and try to provide improved solutions.
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A. Algorithm Details.
A.1. Refactored MoE Pipeline

We demonstrate the refactored MoE pipeline in Algorithm 2. Notice that the routing weights for the top-k experts are
modulated in the intermediate tokens rather than the output to ensure a symmetric pipeline. We will provide the details for
each basic MoE operator in the following.

Algorithm 2 PyTorch-style pseudocode of MoE pipeline.
1 # x.shape: (num_tokens_ori, hidden_size)
2 def MoE_forward(self, x):
3 # (1) Assign tokens to experts.
4 # ids.shape: (num_tokens_ori, self.top_k), w.shape: (num_tokens_ori, self.top_k)
5 ids, w = router(x)
6
7 # (2) Build BRIM-0 for dispatch & combine.
8 # brim_0.shape: (num_devices, num_tokens_ori)
9 brim_0 = build_brim_0(x, ids)

10
11 # (3) Dispatch
12 # x.shape: (num_tokens_sfd_0, hidden_size), ids.shape: (num_tokens_sfd_0, self.top_k)
13 # w.shape: (num_tokens_sfd_0, self.top_k)
14 x, ids, w = dispatch(x, ids, w, brim_0)
15
16 # (4) 1st all-to-all communication
17 # x.shape: (num_tokens_sfd_1, hidden_size), ids_sfd.shape: (num_tokens_sfd_1, self.top_k)
18 # w_sfd: (num_tokens_sfd_1, self.top_k)
19 x, ids_sfd, w_sfd = all_to_all_0(x, ids, w, brim_0)
20
21 # (5) Build BRIM-1 for expert computing
22 # brim_1.shape: (num_local_exps, num_tokens_sfd_1)
23 # brim_w.shape: (num_local_exps, num_tokens_sfd_1)
24 brim_1, brim_w = build_brim_1(x, ids_sfd, w_sfd)
25
26 # (6) Computing with local experts
27 # x_epd.shape: (num_tokens_epd, intermediate_size), x.shape: (num_tokens_sfd_1, hidden_size)
28 x_epd = smm_scattering(x, self.w1, brim_1)
29 x_epd = weight_modulate(x_epd, brim_1, brim_w)
30 x = smm_merging(x_epd, self.w2, brim_1)
31
32 # (7) 2nd all-to-all communication
33 # x.shape: (num_tokens_sfd_0, hidden_size)
34 x = all_to_all_1(x, brim_1)
35
36 # (8) Combine
37 # x.shape: (num_tokens_ori, hidden_size)
38 x = combine(x, brim_0)
39
40 return x

weight modulate: assign weights to tokens with EPD state in parallel.

A.2. Algorithms Details for Basic MoE Operations

Build BRIM0. BRIM0 is constructed on each device before Dispatch as an guidance. We provide the details in Algorithm 3.

Algorithm 3 Building BRIM0.
Require: Input tokens x shaped as (Nori, D), routing choice r shaped as (Nori, Ne), number of devices Nd for expert parallel, expert

placement L shaped as (Nd, ⌈Ne/Nd⌉).
Initialize BRIM0 with an empty tensor shaped as (Nd, Nori).
Initialize ctr ← 0.
for d← 0, Nd − 1 do

for t← 0, Nori − 1 do
if token xt,∗ activates experts kept on device d then

BRIM0[d, t]← ctr.
ctr ← ctr + 1

else
BRIM0[d, t]← −1.

end if
end for

end for
return BRIM0.
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Dispatch. In Dispatch stage, tokens, routing choices, and routing weights are processed together to selectively repeat for
each token. We provide the algorithm details in Algorithm 4, where only tokens are processed as an example.

Algorithm 4 Dispatch.
Require: Input tokens x shaped as (Nori, D), BRIM0 shaped as (Nd, Nori), tile size (M,N).

Initialize Nsfd with the amount of non-negative elements in BRIM0.
Initialize xsfd with an empty tensor shaped as (Nsfd, D).
Prepare Nd · ⌈Nori/M⌉ · ⌈D/N⌉ thread-blocks
parfor d← 0, Nd − 1 do

parfor tm ← 0, ⌈Nori/M⌉ − 1 do
parfor tn ← 0, ⌈D/N⌉ − 1 do

Load BRIM0[d, tm · M : (tm + 1) · M] from HBM to SRAM, denoted as v.
Load x[tm · M : (tm + 1) · M, tn · N : (tn + 1) · N] from HBM to SRAM, denoted as c.
Write c to xsfd[v, tn · N : (tn + 1) · N] from SRAM to HBM.

end parfor
end parfor

end parfor
return xsfd.

All-to-All. We take the all to all single interface of torch.distributed to implement the all-to-all commu-
nication in Occult. On each device, the tokens after Dispatch can be further transmitted to device d based on the non-zero
elements in BRIM0[d, ∗], which serve as the indices.

Build BRIM1. BRIM1 is constructed after the 1st all-to-all communication to guide the sparse matrix multiplication
kernels. The details for construction are provided in Algorithm 5.

Algorithm 5 Building BRIM1.
Require: Input tokens xsfd shaped as (Nsfd, D), routing choice rsfd shaped as (Nsfd, Nlocexp), local expert list Lloc shaped as (Nlocexp, ).

Initialize BRIM1 with an empty tensor shaped as (Nlocexp, Nsfd).
Initialize ctr ← 0.
for e← 0, Nlocexp − 1 do

for t← 0, Nsfd − 1 do
if token xsfd[t, ∗] activates expert Lloc[e] then

BRIM1[e, t]← ctr
ctr ← ctr + 1

else
BRIM1[e, t]← −1

end if
end for

end for
return BRIM1.

Sparse Matrix Multiplication (Scattering). Sparse matrix multiplication with scattering function takes a token tensor
with SFD state and weights as input, and a token tensor with EPD state as output, where the weight tensor is dense while the
others are sparse. Details are provided in Algorithm 6.
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Algorithm 6 Sparse Matrix Multiplication with Scattering.
Require: Input tokens xsfd shaped as (Nsfd, Din), expert weights w shaped as (Nlocexp, Din, Dout), BRIM1 shaped as (Nlocexp, Nsfd), tile

size (M,K,N).
Initialize output tokens xepd with an empty tensor shaped as (Nepd, Dout).
Prepare Nlocexp · ⌈Nsfd/M⌉ · ⌈Dout/N⌉ thread-blocks.
parfor e← 0, Nlocexp − 1 do

parfor tm ← 0, ⌈Nsfd/M⌉ − 1 do
parfor tn ← 0, ⌈Dout/N⌉ − 1 do

On chip: Initialize c = 0 ∈ RM×N

for k ← 0, ⌈Din/K⌉ − 1 do
Load xsfd[tm · M : (tm + 1) · M, k · K : (k + 1) · K] from HBM to SRAM as a.
Load w[e, k · K : (k + 1) · K, tn · N : (tn + 1) · N] from HBM to SRAM as b.
On chip: c← c+ a · b.

end for
Load BRIM1[e, tm · M : (tm + 1) · M] from HBM to SRAM, denoted as v.
Write c to xepd[v, tn · N : (tn + 1) · N] from SRAM to HBM.

end parfor
end parfor

end parfor
return xepd.

Weight Modulation. Since the MoE pipeline of Occult is symmetric, we modulate the routing weights on the interme-
diate tokens rather than the output, which delivers the same results. Details are provided in Algorithm 7.

Algorithm 7 Weight Modulation.
Require: Intermediate tokens xepd shaped as (Nepd, D), routing weights w shaped as (Nsfd, Ne), BRIM1 shaped as (Nlocexp, Nsfd), local

expert list Lloc shaped as (Nlocexp, ), tile size (N, ).
Initialize modulated tokens x′

epd with empty tensor shaped as (Nepd, D).
Prepare Nlocexp ·Nsfd · ⌈D/N⌉ thread-blocks.
parfor e← 0, Nlocexp − 1 do

parfor t← 0, Nsfd − 1 do
parfor tn ← 0, ⌈D/N⌉ − 1 do

if BRIM1[e, t] ≥ 0 then
Load xepd[BRIM1[e, t], tn · N : (tn + 1) · N] from HBM to SRAM, denoted as c.
Write c ·w[t,Lloc[e]] to x′

epd[BRIM1[e, t], tn · N : (tn + 1) · N] from SRAM to HBM.
end if

end parfor
end parfor

end parfor
return x′

epd.

Sparse Matrix Multiplication (Merging). Sparse Matrix Multiplication with merging function takes a token tensor with
EPD state and weights as input, and a token tensor with SFD state as output, where the weight tensor is dense while the
others are sparse. Details are provided in Algorithm 8.
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Algorithm 8 Sparse Matrix Multiplication with Merging.
Require: Input tokens xepd shaped as (Nepd, Din), expert weights w shaped as (Nlocexp, Din, Dout), BRIM1 shaped as (Nlocexp, Nsfd), tile

size (M,K,N).
Initialize output tokens xsfd with a zero tensor shaped as (Nsfd, Dout).
Prepare Nlocexp · ⌈Nsfd/M⌉ · ⌈Dout/N⌉ thread-blocks.
parfor e← 0, Nlocexp − 1 do

parfor tm ← 0, ⌈Nsfd/M⌉ − 1 do
parfor tn ← 0, ⌈Dout/N⌉ − 1 do

On chip: Initialize c = 0 ∈ RM×N.
Load BRIM1[e, tm · M : (tm + 1) · M] from HBM to SRAM, denoted as v.
for k ← 0, ⌈Din/K⌉ − 1 do

Load xepd[v, k · K : (k + 1) · K] from HBM to SRAM as a.
Load w[e, k · K : (k + 1) · K, tn · N : (tn + 1) · N] from HBM to SRAM as b.
On chip: c← c+ a · b.

end for
Write c to xsfd[tm · M : (tm + 1) · M, tn · N : (tn + 1) · N] from SRAM to HBM via Atomic Add.

end parfor
end parfor

end parfor
return xsfd.

Combine. In Combine stage, different replicas of the same token computed on different devices are merged into the final
output of an MoE layer. Details are provided in Algorithm 9.

Algorithm 9 Combine.
Require: Input tokens xsfd shaped as (Nsfd, D), BRIM0 shaped as (Nd, Nori), tile size (M,N).

Initialize xori with a zero tensor shaped as (Nori, D).
for d← 0, Nd − 1 do

parfor tm ← 0, ⌈Nori⌉ − 1 do
parfor tn ← 0, ⌈D⌉ − 1 do

Load BRIM0[d, tm · M : (tm + 1) · M] from HBM to SRAM, denoted as v.
Load xsfd[v, tn · N : (tn + 1) · N] from HBM to SRAM, denoted as c.
Add c to xori[tm · M : (tm + 1) · M, tn · N : (tn + 1) · N] from SRAM to HBM.

end parfor
end parfor

end for
return xori.

A.3. Similarity Table Construction

The empirical insights of MC-MoE (Li et al., 2023b) inspire us to measure the expert similarity with router logits, i.e.,
experts with similar router logits tend to be more interchangeable with each other. A profiling dataset is required in this way.
We denote the profiled router logits from model inference as H ∈ RNt·Ne , including Nori tokens and Ne experts. Similarity
table T ∈ ZNe×Ne can be constructed via the cosine similarity between HT and H:

Ti,j =
⟨HT∗,i,H∗,j⟩

∥H∗,i∥2 · ∥H∗,j∥2
, (6)

To make the similarity table more representative, the profiled token amount should be large enough. However, directly
compute cosine similarity for it would cause overflow for floating point number. Therefore we change to compute the
squared similarity:

T 2
i,j =

⟨HT∗,i,H∗,j⟩2

∥H∗,i∥22 · ∥H∗,j∥22
, (7)

We further take an average for both numerator and denominator to normalize their scope:

T 2
i,j =

1
Nori

· ⟨HT∗,i · H∗,j⟩2
1

Nori
· ∥H∗,i∥22 · ∥H∗,j∥22

, (8)
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This can be computed via accumulating small batches for both numerator and denominator.

B. Full Evaluation Results
We implement comprehensive evaluation to validate the effectiveness of collaboration pruning on model performance with
23 popular benchmarks.

For OLMoE, we provide the results in Table 3, where the raw off-the-shelf model performs best on 5 benchmarks. Apart from
these tasks, router-based pruning outperforms similarity-based pruning on 12 benchmarks in total, while similarity-based
pruning outperforms router-based pruning on 8 benchmarks.

Table 3. Full Evaluation Results for Collaboration Pruning with OLMoE.

Method Metric Raw
Router-based
Prune, 1 GPU

Router-based
Prune, 2 GPUs

Sim-based
Prune, 1 GPU

Sim-based
Prune, 2 GPUs

Standard
SFT

Router-based
Better

Sim-based
Better

WSC (Levesque et al., 2012) accuracy 83.52 75.09 86.45 73.63 83.52 86.08 ✓

Winogrande (Sakaguchi et al., 2021) accuracy 68.35 61.40 68.11 61.56 68.82 69.53 ✓

ASDiv (Miao et al., 2020) accuracy 4.56 2.86 9.59 2.86 8.33 9.37 ✓

OpenBookQA (Mihaylov et al., 2018) accuracy 33.20 26.00 34.60 23.60 32.40 34.20 ✓

PIQA (Bisk et al., 2020) accuracy 80.09 73.45 80.41 71.98 80.47 80.85 ✓

HellaSwag (Zellers et al., 2019) accuracy 58.07 48.14 57.53 47.14 56.99 59.91 ✓

SST-2 (Socher et al., 2013) accuracy 62.61 75.92 86.35 74.66 85.44 83.94 ✓

MultiNLI (Williams et al., 2018) accuracy 40.96 35.82 41.93 33.64 43.23 45.04 ✓

QASPER (Dasigi et al., 2021) F1 score 90.53 93.88 97.03 97.03 97.03 97.79 ✓

MRPC (Dolan & Brockett, 2005) accuracy 51.96 66.18 67.65 68.63 68.14 65.93 ✓

MRPC (Dolan & Brockett, 2005) F1 score 59.84 79.09 80.65 81.34 81.05 79.35 ✓

MultiRC (Khashabi et al., 2018) accuracy 57.16 57.22 57.24 56.70 57.10 57.16 ✓

WNLI (Wang et al., 2018) accuracy 54.93 53.52 60.56 59.15 57.75 53.52 ✓

RTE (Bentivogli et al., 2009) accuracy 55.60 57.76 58.12 60.65 61.73 63.18 ✓

QNLI (Wang et al., 2018) accuracy 52.65 51.35 50.94 50.28 49.99 50.05 ✓

MMLU (Hendrycks et al., 2021) accuracy 50.54 38.30 47.86 37.59 46.88 49.46 ✓

RACE (Lai et al., 2017) accuracy 37.22 39.23 39.62 37.42 38.28 39.62 ✓

MathQA (Amini et al., 2019) accuracy 29.92 27.67 29.85 26.93 30.62 31.02 ✓

SciQ (Welbl et al., 2017) accuracy 94.60 91.20 94.40 91.00 94.20 94.70 ✓

PROST (Aroca-Ouellette et al., 2021) accuracy 28.24 25.80 28.99 26.80 27.84 29.16 ✓

BoolQ (Clark et al., 2019) accuracy 74.50 71.96 76.64 68.59 75.96 77.77 ✓

COPA (Roemmele et al., 2011) accuracy 89.00 80.00 85.00 75.00 86.00 89.00 ✓

LogiQA (Liu et al., 2021) accuracy 23.35 23.04 23.04 22.73 20.89 22.73 ✓

COQA (Reddy et al., 2019) exact match score 56.42 50.90 56.37 47.63 53.23 55.35 ✓

COQA (Reddy et al., 2019) F1 score 71.20 66.17 70.99 63.28 68.85 70.84 ✓
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For Qwen-MoE, we provide the results in Table 4, where the raw off-the-shelf model performs best on 5 benchmarks. Apart
from these tasks, router-based pruning outperforms similarity-based pruning on 9 tasks, while similarity-based pruning
outperforms router-based pruning on 11 tasks.

Table 4. Full Evaluation Results for Collaboration Pruning with Qwen-MoE.

Method Metric Raw
Router-based
Prune, 1 GPU

Router-based
Prune, 2 GPUs

Sim-based
Prune, 1 GPU

Sim-based
Prune, 2 GPUs

Standard
SFT

Router-based
Better

Sim-based
Better

WSC (Levesque et al., 2012) accuracy 82.05 79.49 81.68 78.39 82.78 80.59 ✓

Winogrande (Sakaguchi et al., 2021) accuracy 68.43 68.11 69.06 66.06 70.24 70.01 ✓

ASDiv (Miao et al., 2020) accuracy 4.38 16.36 12.28 12.49 10.63 11.28 ✓

OpenBookQA (Mihaylov et al., 2018) accuracy 30.40 27.80 29.40 28.60 32.20 29.60 ✓

PIQA (Bisk et al., 2020) accuracy 79.71 78.62 80.25 78.51 79.87 80.36 ✓

HellaSwag (Zellers et al., 2019) accuracy 57.95 55.29 57.19 54.73 57.74 57.42 ✓

SST-2 (Socher et al., 2013) accuracy 68.46 78.21 77.41 73.17 87.04 82.22 ✓

MultiNLI (Williams et al., 2018) accuracy 49.77 49.83 51.88 46.41 54.40 52.50 ✓

QASPER (Dasigi et al., 2021) F1 score 90.81 98.78 97.03 98.04 86.65 97.54 ✓

MRPC (Dolan & Brockett, 2005) accuracy 76.47 71.57 78.19 76.72 75.49 78.92 ✓

MRPC (Dolan & Brockett, 2005) F1 score 85.62 82.48 85.19 83.76 84.52 83.10 ✓

MultiRC (Khashabi et al., 2018) accuracy 37.50 43.15 39.62 38.72 40.14 36.67 ✓

WNLI (Wang et al., 2018) accuracy 57.75 43.66 54.93 56.34 56.34 54.93 ✓

RTE (Bentivogli et al., 2009) accuracy 68.23 69.68 69.68 65.34 75.45 71.12 ✓

QNLI (Wang et al., 2018) accuracy 57.44 53.25 56.05 52.00 51.18 54.99 ✓

MMLU (Hendrycks et al., 2021) accuracy 60.86 56.85 60.13 56.23 57.25 59.99 ✓

RACE (Lai et al., 2017) accuracy 39.43 40.67 41.34 39.43 41.05 41.72 ✓

MathQA (Amini et al., 2019) accuracy 36.15 36.48 38.93 37.09 41.31 39.26 ✓

SciQ (Welbl et al., 2017) accuracy 94.40 95.40 95.60 95.70 95.50 95.20 ✓

PROST (Aroca-Ouellette et al., 2021) accuracy 30.50 30.01 31.22 30.08 32.47 31.41 ✓

BoolQ (Clark et al., 2019) accuracy 79.57 78.38 79.88 77.22 81.41 80.40 ✓

COPA (Roemmele et al., 2011) accuracy 84.00 81.00 86.00 79.00 83.00 83.00 ✓

LogiQA (Liu et al., 2021) accuracy 30.41 30.26 31.03 31.80 31.95 29.03 ✓

COQA (Roemmele et al., 2011) exact match score 64.40 65.93 66.77 66.28 64.48 66.23 ✓

COQA (Roemmele et al., 2011) F1 score 78.60 78.15 80.04 79.30 77.53 79.48 ✓
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For DeepSeek-MoE, we provide the results in Table 5, where the raw off-the-shelf model performs best on 7 benchmarks.
Apart from these tasks, router-based pruning outperforms similarity-based pruning on 11 benchmarks, while similarity-based
pruning outperforms router-based pruning on 7 benchmarks.

Table 5. Full Evaluation Results for Collaboration Pruning with DeepSeek-MoE.

Method Metric Raw
Router-based
Prune, 1 GPU

Router-based
Prune, 2 GPUs

Sim-based
Prune, 1 GPU

Sim-based
Prune, 2 GPUs

Standard
SFT

Router-based
Better

Sim-based
Better

WSC (Levesque et al., 2012) accuracy 84.98 78.75 83.88 82.05 84.62 84.62 ✓

Winogrande (Sakaguchi et al., 2021) accuracy 70.48 66.30 70.40 66.22 70.72 71.19 ✓

ASDiv (Miao et al., 2020) accuracy 0.91 4.77 2.82 1.65 3.08 4.95 ✓

OpenBookQA (Mihaylov et al., 2018) accuracy 32.20 29.60 33.40 29.20 34.20 34.20 ✓

PIQA (Bisk et al., 2020) accuracy 78.73 77.15 79.92 77.26 79.76 79.11 ✓

HellaSwag (Zellers et al., 2019) accuracy 58.06 54.05 58.36 53.71 58.31 58.49 ✓

SST-2 (Socher et al., 2013) accuracy 64.68 65.71 76.72 59.40 73.05 78.33 ✓

MultiNLI (Williams et al., 2018) accuracy 42.30 36.77 45.65 38.01 44.42 41.55 ✓

QASPER (Dasigi et al., 2021) F1 score 93.06 90.24 95.74 98.04 97.03 91.67 ✓

MRPC (Dolan & Brockett, 2005) accuracy 68.63 68.14 68.38 67.65 68.38 68.38 ✓

MRPC (Dolan & Brockett, 2005) F1 score 81.29 80.71 81.17 80.70 81.22 81.22 ✓

MultiRC (Khashabi et al., 2018) accuracy 57.03 54.68 56.72 56.60 56.68 57.01 ✓

WNLI (Wang et al., 2018) accuracy 50.70 43.66 45.07 45.07 52.11 47.89 ✓

RTE (Bentivogli et al., 2009) accuracy 62.82 61.01 62.09 61.01 65.34 60.29 ✓

QNLI (Wang et al., 2018) accuracy 49.50 53.12 50.14 50.17 50.80 49.83 ✓

MMLU (Hendrycks et al., 2021) accuracy 37.95 36.16 42.43 34.69 41.91 38.66 ✓

RACE (Lai et al., 2017) accuracy 38.85 38.56 39.81 38.47 39.62 40.10 ✓

MathQA (Amini et al., 2019) accuracy 31.19 29.21 33.50 30.25 33.63 33.77 ✓

SciQ (Welbl et al., 2017) accuracy 92.80 93.30 93.50 94.70 93.50 93.40 ✓

PROST (Aroca-Ouellette et al., 2021) accuracy 28.72 28.26 29.60 28.91 28.79 28.64 ✓

BoolQ (Clark et al., 2019) accuracy 72.39 68.69 68.87 73.39 70.15 71.93 ✓

COPA (Roemmele et al., 2011) accuracy 90.00 84.00 89.00 86.00 87.00 88.00 ✓

LogiQA (Liu et al., 2021) accuracy 25.35 24.42 25.96 25.65 25.65 25.96 ✓

COQA (Reddy et al., 2019) exact match score 64.15 64.02 63.83 62.25 62.80 63.17 ✓

COQA (Reddy et al., 2019) F1 score 77.79 77.38 77.33 75.46 77.05 76.72 ✓
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