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Abstract
Recent progress in imitation learning has been
enabled by policy architectures that scale to com-
plex visuomotor tasks, multimodal distributions,
and large datasets. However, these methods of-
ten rely on learning from large amount of expert
demonstrations. To address these shortcomings,
we propose Latent Diffusion Planning (LDP), a
modular approach consisting of a planner which
can leverage action-free demonstrations, and an
inverse dynamics model which can leverage sub-
optimal data, that both operate over a learned la-
tent space. First, we learn a compact latent space
through a variational autoencoder, enabling effec-
tive forecasting of future states in image-based
domains. Then, we train a planner and an inverse
dynamics model with diffusion objectives. By
separating planning from action prediction, LDP
can benefit from the denser supervision signals of
suboptimal and action-free data. On simulated vi-
sual robotic manipulation tasks, LDP outperforms
state-of-the-art imitation learning approaches, as
they cannot leverage such additional data. 1

1. Introduction
Combining large-scale expert datasets and powerful imita-
tion learning policies has been a promising direction for
robot learning. Recent methods using transformer back-
bones or diffusion heads (Octo Model Team et al., 2024;
Kim et al., 2024; Zhao et al., 2024; Chi et al., 2023) have cap-
italized on new robotics datasets pooled together from many
institutions (Khazatsky et al., 2024; Open X-Embodiment
Collaboration et al., 2023), showing potential for learning
generalizable robot policies. However, this recipe is funda-
mentally limited by expert data, as robotics demonstration
data can be challenging, time-consuming, and expensive to
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collect. While it is often easier to collect in-domain data that
is suboptimal or action-free, these methods are not designed
to use such data, as they rely on directly modeling optimal
actions.

Prior works in offline RL, reward-conditioned policies, or
imitation learning from suboptimal demonstrations attempt
to leverage suboptimal trajectories, though they are still un-
able to utilize action-free data. Notably, these works often
make restrictive assumptions like access to either reward
labels (Kumar et al., 2020; Chen et al., 2021; Kumar et al.,
2019a), the optimality of demonstrations (Beliaev et al.,
2022), or similar metrics (Zhang et al., 2022), which can be
impractical or noisy to label. Other works implicitly attempt
to use unlabelled, suboptimal data via pretraining on such
data and later fine-tuning the policy on the optimal data (Ra-
dosavovic et al., 2023; Wu et al., 2023b; Cui et al., 2024).
While these approaches can potentially learn representations
during pretraining, it does not necessarily improve planning
capabilities of these methods.

Our key idea is to take a modular approach, where we sepa-
rate learning a video planner from learning an inverse dy-
namics model. Each one of these two components can
leverage different types of data. For instance, a planner
can benefit from action-free data, while an IDM can lever-
age unlabelled suboptimal data. While using a modular
approach has been proposed in recent prior work (Du et al.,
2023a; Black et al., 2023), prior approaches focus on high-
level decision making by forecasting subgoals, limiting its
capabilities for closed loop re-planning in robotics tasks.
These works also operate across images, which are high-
dimensional and expensive to generate. To create an efficient
modular approach that can benefit from all forms of data
(suboptimal, action-free, and optimal), we propose learn-
ing the planner and inverse-dynamics model over a learned,
compact latent space, allowing for closed-loop robot poli-
cies. Our imitation learning objective consists of forecasting
a dense trajectory of latent states, scaling up gracefully to
vision-based domains without the computational complexi-
ties of video generation.

We propose Latent Diffusion Planning (LDP), which learns
a planner that can be trained on action-free data; and an in-
verse dynamics model (IDM) that can be trained on data that
may be suboptimal. First, it trains a variational autoencoder
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Figure 1. Latent Diffusion Planning. Left: LDP separates the control problem into forecasting future states with a diffusion-based planner,
and extracting actions with a diffusion-based inverse dynamics model (IDM). This design enables training on heterogeneous sources of
data, including suboptimal data and action-free data. Right: Unlike action imitation methods such as diffusion policy, LDP is based on
forecasting a dense temporal sequence of latent states as well as actions. Using powerful diffusion models for both of these objectives
enables LDP to have competitive performance to state-of-the-art imitation learning. Further, unlike prior work on forecasting subgoals,
LDP predicts a dense temporal sequence of latent states, which enables scalable closed-loop planning.

with an image reconstruction loss, producing compressed
latent embeddings that are used by the planner and inverse
dynamics model. Then, it learns an imitation learning policy
through two components: (1) a planner, which consumes
demonstration state sequences, which may be action-free,
and (2) an inverse dynamics model, trained on in-domain,
possibly suboptimal, environment interactions. As diffusion
objectives have proven to be effective for imitation learning
in robotics tasks (Chi et al., 2023), we use diffusion for both
forecasting plans (planner) and extracting actions (IDM),
which enables competitive performance. Our method is
closed-loop and reactive, as planning over latent space is
much faster than generating visually and physically consis-
tent video frames.

In summary, our main contributions are threefold:

• We propose a novel imitation learning algo-
rithm, Latent Diffusion Planning, a simple, diffusion
planning-based method comprised of a learned vi-
sual encoder, latent planner, and an inverse dynamics
model.

• We show that Latent Diffusion Planning can be trained
on suboptimal or action-free data, and improves from
learning on such data in the regime where demonstra-
tion data is limited.

• We experimentally show that our method outperforms
prior video planning-based work by leveraging tempo-
rally dense predictions in a latent space, which enables
fast inference for closed-loop planning.

2. Related Work
Imitation Learning in Robotics. One common approach to
learning robot control policies is imitation learning, where
policies are learned from expert-collected demonstration
datasets. This is most commonly done via behavior cloning,
which reduces policy learning to a supervised learning ob-
jective of mapping states to actions. Recently, Diffusion
Policy (Chi et al., 2023) and Action Chunking with Trans-
formers (Zhao et al., 2023) have shown successful results in
complex manipulation tasks using action chunking and more
expressive architectures. Diffusion models have also been
successful in capturing multimodal human behavior (Pearce
et al., 2023). Similarly, Behavior Transformer (Shafiullah
et al., 2022) and VQ-BeT (Lee et al., 2024) improve the
ability of policies to capture multimodal behaviors. In this
work, we focus on forecasting a sequence of future states
instead of actions, and use diffusion to capture multimodal
trajectories.

Learning from Unlabelled Suboptimal and Action-Free
Data. Learning from suboptimal data has long been a goal
of many robot learning methods, including reinforcement
learning. A typical approach is offline reinforcement learn-
ing, which considers solving a Markov decision process
from an offline dataset of states, actions, and reward (Levine
et al., 2020; Kumar et al., 2020; Kostrikov et al., 2021;
Hansen-Estruch et al., 2023; Yu et al., 2022). Particularly
relevant are the approaches that use supervised learning
conditioned on rewards (Schmidhuber, 2019; Kumar et al.,
2019a; Chen et al., 2021). In this work, we want to leverage
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suboptimal, reward-free data, such as play data or failed tra-
jectories. In addition, we would like to avoid the additional
complexity of annotating the data with rewards or training a
value function which the offline RL methods rely on.

Several works have also addressed learning from action-
free data, such as using inverse models (Torabi et al., 2018;
Baker et al., 2022), latent action models (Edwards et al.,
2019; Schmeckpeper et al., 2020; Bruce et al., 2024), or
representation learning (Radosavovic et al., 2023; Wu et al.,
2023b; Cui et al., 2024). In this work we focus on a simple
recipe for robotic imitation learning that is naturally able to
leverage action-free data through state forecasting.

Diffusion and Image Prediction in Robot Learning. Dif-
fusion models, due to their expressivity and training and
sampling stability, have been applied to robot learning
tasks. Diffusion has been used in offline reinforcement
learning (Hansen-Estruch et al., 2023) and imitation learn-
ing (Chi et al., 2023). Diffuser (Janner et al., 2022) learns
a denoising diffusion model on trajectories, including both
states and actions, in a model-based reinforcement learn-
ing setting. Decision Diffuser (Ajay et al., 2023) extends
Diffuser by showing compositionality over skills, rewards,
and constraints, and instead diffuses over states and uses
an inverse dynamics model to extract actions from the plan.
Due to the complexity of modeling image trajectories, Dif-
fuser and Decision Diffuser restrict their applications to
low-dimensional states.

To scale up to diffusing over higher-dimensional plans,
UniPi (Du et al., 2023a; Ko et al., 2023) adapts video models
for planning. Unlike works that rely on foundation models
and video models for planning (Du et al., 2023b; Yang et al.,
2024; Zhou et al., 2024), our method avoids computational
and modeling complexities of generative video modeling by
planning over latent embeddings instead.

Previous works have used world models to plan over images
in a compact latent space (Hansen et al., 2024; Hafner et al.,
2019; 2020). In contrast with these works, we focus on
single task imitation instead of reinforcement learning.

Many prior works argue that state forecasting objectives are
uniquely suitable for robotics to improve planning quality
with trajectory optimization or reinforcement learning (Finn
& Levine, 2017; Yang et al., 2023), by using the model
directly to plan future states (Du et al., 2023b;a), as well as
representation learning (Wu et al., 2023a; Radosavovic et al.,
2023). We follow this line of work by proposing a planning-
based method competitive to state-of-the-art robotic imita-
tion learning that can leverage heterogeneous data sources.

3. Background
Diffusion Models Diffusion models, such as Denoising
Diffusion Probabilistic Models (DDPMs), are likelihood-
based generative models that learn an iterative denoising
process from a Gaussian prior to a data distribution (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020).
During training time, DDPMs are trained to reverse a single
noising step. Then, at sampling time, to reverse the diffusion
process, the model iteratively denoises a sample drawn from
the known Gaussian prior.

Diffusion models may also be conditioned on additional
context. For example, text-to-image generative models are
conditioned on text, Diffusion Policy is conditioned on vi-
sual observations, and Decision Diffuser can be conditioned
on reward, skills, and constraints.

Recent generative models have used Latent Diffusion Mod-
els, which trains a diffusion model in a learned, compressed
latent space (Rombach et al., 2022; Peebles & Xie, 2023;
Blattmann et al., 2023) to improve computational and mem-
ory efficiency. The latent space is typically learned via an
autoencoder, with encoder E and decoder D trained to re-
construct x ≈ x̂ = D(E(x)). Instead of diffusing over x,
the diffusion model is trained on diffusing over z = E(x).

Imitation Learning In the imitation learning framework,
we assume access to a dataset of expert demonstrations,
D ≜ {(s0, x0, a0), . . . , (sT , xT , aT )}, generated by πE , an
expert policy. si, xi, ai correspond to the state, image, and
action at timestep i respectively. The imitation learning ob-
jective is to extract a policy π̂(a|s, x) that most closely imi-
tates πE . In robotics, this is typically approached through
behavior cloning, which learns the mapping between states
and actions directly via supervised learning. We consider
single-task imitation, where the dataset corresponds to a
single task.

Diffusion Policy (Chi et al., 2023) is an instantiation of
diffusion models for imitation learning that has shown suc-
cess in simulated and real-world tasks. Diffusion Policy
uses a DDPM objective to model the distribution of action
sequences, conditioned on observations. The CNN instan-
tiation uses a Conditional U-Net Architecture, based on
the 1D Temporal CNN in (Janner et al., 2022), which en-
courages temporal consistency due to the inductive biases
of convolutions. LDP’s planner architecture is based on
the CNN-based Diffusion Policy, though we forecast latent
states instead of actions.

Datasets of expert demonstrations often do not provide suffi-
cient state distribution coverage to effectively solve a given
task with imitation learning. However, there often exists
additional data in the form of action-free or suboptimal
data, which may consist of failed policy rollouts, play data,
or miscellaneous environment interactions. Unfortunately,

3



Latent Diffusion Planning for Imitation Learning

behavior cloning assumes access to data annotated with
optimal actions, so such additional data cannot be easily
incorporated into training.

4. Latent Diffusion Planning
Latent Diffusion Planning consists of three parts, as shown
in Figure 1: (1) Training an image encoder via an image
reconstruction loss, (2) learning an inverse dynamics model
to extract actions at from pairs of latent states zt, zt+1, and
(3) learning a planner to forecast future latents zt.

Figure 2. After training the encoder, Latent Diffusion Planning
trains two diffusion models. Top: We train a inverse dynamics
model (IDM) with a diffusion objective to directly extract the
actions that will be used for control from pairs of latent states.
Bottom: We train a powerful latent diffusion model to forecast a
chunk of future latent states. The planner and the IDM are used
together to produce an action chunk, similar to (Chi et al., 2023).

4.1. Learning the Latent Space

We circumvent planning over high-dimensional image ob-
servations by planning over a learned latent space. Similar
to prior work in planning with world models (Watter et al.,
2015; Ha & Schmidhuber, 2018; Hafner et al., 2020), we
learn this latent space using an image reconstruction objec-
tive. Our planner thus becomes similar to video models that
forecast image frames in a learned latent space (Yan et al.,
2021; Hong et al., 2022; Blattmann et al., 2023).

In this work, we train a variational autoencoder (Kingma

Algorithm 1 Inference with Latent Diffusion Planning
1: Input: Encoder E , Planner ϵψ, IDM ϵξ, Planner Dif-

fusion Timesteps Tp, IDM Diffusion Timesteps TIDM,
Planning Horizon Hp, Action Horizon Ha

2: Observe initial state s0 and image x0; k = 0
3: while not done do
4: zk ← (E(xk), sk)

// Diffuse over latent embedding plan
5: ẑ k+1, ..., ẑ k+Hp

∼ (0, I)
6: for t = Tp . . . 1 do
7: ϵ̂← ϵψ(ẑ k+1, ..., ẑ k+Hp ; zk, t)
8: Update ẑ k+1, ..., ẑ k+Hp using DDPM update with

ϵ̂
9: end for

// Diffuse over actions between latent embeddings
10: for i = 0 . . . Ha − 1 do
11: âk+i ∼ (0, I) // Predict action for each timestep in

action horizon
12: for t = TIDM . . . 1 do
13: ϵ̂← ϵξ(âk+i; ẑ k+i, ẑ k+i+1, t)
14: Update âk+i using DDPM update with ϵ̂
15: end for
16: end for

// Execute actions
17: for i = 0 . . . Ha − 1 do
18: sk+i+1 ← env.step(sk+i, âk+i)
19: end for
20: k ← k +Ha

21: end while

& Welling, 2014; Rezende et al., 2014) to obtain a latent
encoder E and decoder D. Specifically, we optimize the β-
VAE (Higgins et al., 2017) objective, where x is our original
image, z is our learned latent representation of the image, θ
are the parameters for our decoder, ϕ are the parameters for
our encoder, and β is the weight for the KL regularization
term:

LVAE(θ, ϕ; x, z, β) = Eqϕ(z | x)[log pθ(x | z)]
− βDKL(qϕ(z | x)||p(z))

(1)

In practical scenarios, we may have a limited expert demon-
stration dataset, but much larger and diverse suboptimal or
action-free datasets. In this phase of learning, we can make
use of the visual information in such datasets for training a
more robust latent encoder.

4



Latent Diffusion Planning for Imitation Learning

4.2. Planner and Inverse Dynamics Model

Our policy consists of two separate modules: (1) a plan-
ner over latent embeddings z, and (2) an inverse dynamics
model similarly operating over the latent embeddings. The
planner and IDM are both parameterized as DDPM models,
motivated by the expressivity that diffusion models offer.

The planner is conditioned on the current latent embedding,
which consists of the concatenated latent image embedding
and robot proprioception, and diffuses over a horizon of
future embeddings. We use Diffusion Policy’s Conditional
U-Net architecture, with a CNN backbone. Concretely, we
optimize the following objective:

Lplanner(ψ, z) = Et,ϵ[||ϵψ(ẑ k+1, . . . , ẑ k+H ; zk, t)− ϵ||2]
(2)

where zk is the latent embedding at timestep k of the tra-
jectory; ẑ k+1, . . . , ẑ k+H is the noised latent embedding
sequence, with corresponding noise ϵ; H is the maximum
horizon of the forecasted latent plan; t is the diffusion noise
timestep; and ψ are the parameters of the planner diffusion
model.

Our inverse dynamics model is trained to reconstruct the ac-
tion between a pair of states, conditioned on their associated
latent embeddings. We use the MLPResNet architecture
from IDQL (Hansen-Estruch et al., 2023) to diffuse actions,
as it is more lightweight. We optimize the loss:

LIDM(ξ, z) = Et,ϵ[||ϵξ(âk; zk, zk+1, t)− ϵ||2] (3)

where zk is the latent embedding at timestep k of the trajec-
tory; âk is the noised action, with corresponding noise ϵ; t
is the diffusion noise timestep; and ξ are the parameters of
the inverse dynamics diffusion model.

Because our latent embedding is frozen from the learned
VAE, the planner and IDM do not share parameters and can
be trained separately (Figure 2). Then, at inference time, the
two modules are combined to extract action sequences. First,
the planner forecasts a future horizon of states via DDPM
sampling (Alg. 1 Lines 6-9). Then, we use the inverse
dynamics model to extract actions from latent embedding
pairs produced by the planner, also via DDPM Diffusion
(Alg. 1 Lines 12-15). Like Diffusion Policy, we employ
receding-horizon control (Mayne & Michalska, 1988), and
execute for a shorter horizon than the full forecasted horizon
(Alg. 1 Lines 17-19).

5. Experiments
We seek to answer the following questions:

• Does Latent Diffusion Planning leverage action-free
data for improved planning?

• Is Latent Diffusion Planning comparable to state-of-
the-art imitation learning algorithms that leverage sub-
optimal data?

• Can Latent Diffusion Planning be an effective imita-
tion learning method in a real-world robotics system,
where there may be suboptimal or action-free data?

5.1. Experimental Setup

Simulated Tasks We focus our experiments on 4 image-
based imitation learning tasks: (1) Robomimic Lift, (2)
Robomimic Can, (3) Robomimic Square, and (4) ALOHA
Sim Transfer Cube. Robomimic (Mandlekar et al., 2021) is
a robotic manipulation and imitation benchmark, including
the tasks Lift, Can, and Square. The Transfer Cube task is
a simulated bimanual ALOHA task, in which one ViperX
6-DoF arm grabs a block and transfers it to the other arm
(Zhao et al., 2023).

To demonstrate the effectiveness of Latent Diffusion Plan-
ning, we assume a low demonstration data regime, such
that additional suboptimal or action-free data can improve
performance. For Can and Square, we use 100 out of the
200 demonstrations in the Robomimic datasets; for Lift, we
use 3 demonstrations out of the 200 total; and for Trans-
fer Cube, we use 25 demonstrations. To further emphasize
the importance of suboptimal data, these demonstrations
cover a limited state space of the environment. Our subopti-
mal data consists of 500 failed trajectories from an under-
trained behavior cloning agent. Our action-free data consists
of 100 demonstrations for Lift, Can, and Square from the
Robomimic dataset, and 25 demonstrations for Cube. We
evaluate the success rate out of 50 trials, using the best
checkpoint from the last 5 saved checkpoints, with 2 seeds.

Real World Task We
create a real world
implementation of the
Robomimic Lift task,
where the task is to pick
up a red block from
a randomly initialized
position. We use a
Frank Panda 7 degree
of freedom robot arm,
with a wrist-mounted Zed camera. We use the DROID
setup (Khazatsky et al., 2024) and teleoperate via the
Oculus Quest 2 headset. We use cartesian pose control.
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Table 1. Leveraging Action-Free Data. LDP is able to leverage suboptimal and action-free data. We compare against DP baselines that
leverage action-free data by using an IDM to relabel actions (DP-VPT) and video planning models that may use action-free data for the
video planner (UniPi). We find LDP to perform better than both approaches, especially when combined with suboptimal data.

Method Lift Can Square ALOHA Cube Average

DP 0.60 ± 0.00 0.63 ± 0.01 0.48 ± 0.00 0.32 ± 0.00 0.51
DP-VPT 0.69 ± 0.01 0.75 ± 0.01 0.48 ± 0.04 0.45 ± 0.03 0.59

UniPi-OL + Action-Free 0.09 ± 0.05 0.23 ± 0.03 0.07 ± 0.03 0.02 ± 0.00 0.11
UniPi-CL + Action-Free 0.14 ± 0.02 0.32 ± 0.04 0.09 ± 0.01 0.17 ± 0.03 0.18

LDP 0.69 ± 0.03 0.70 ± 0.02 0.46 ± 0.00 0.64 ± 0.04 0.65
LDP + Action-Free 0.67 ± 0.01 0.78 ± 0.04 0.47 ± 0.03 0.70 ± 0.02 0.66
LDP + Action-Free + Subopt 1.00 ± 0.00 0.98 ± 0.00 0.83 ± 0.01 0.97 ± 0.01 0.95

We collect 82 demonstrations, collect 84 suboptimal
trajectories, and 12 action-free demonstrations.

Our suboptimal data consists of failed trajectories from pol-
icy evaluations. This is an effective way to reuse the data
generated during iterations of training, that algorithms mod-
eling actions, such as Diffusion Policy, cannot use. Action-
Free data may consist of kinesthetic demonstrations, human
videos, or handheld demonstrations (Chi et al., 2024). In our
case, we collect teleoperated demonstrations with actions
removed.

To evaluate our policies, we calculate the success rate across
45 evaluation trials. To thoroughly evaluate performance
across the initial state space, we evaluate across a grid of
3x3 points, with 5 attempts per point. We evaluate 3 seeds
per method.

Baselines We consider two main categories of baselines: (1)
Imitation learning with suboptimal or action-free data (DP,
RC-DP, DP+Repr, DP PT + FT, DP-VPT), and (2) Video
planning (UniPi-OL, UniPi-CL).

• Diffusion Policy (DP) is a state-of-the-art imitation
learning algorithm.

• Reward-Conditioned Diffusion Policy (RC-DP) uti-
lizes suboptimal actions by conditioning the pol-
icy on a binary value indicating whether the action
chunk comes from optimal demonstrations or not.
This method is inspired by reward-conditioned ap-
proaches (Kumar et al., 2019b; Chen et al., 2021).

• Diffusion Policy with Representation Learning
(DP+Repr) uses a VAE pretrained on demonstration,
suboptimal, and action-free data as the observation en-
coder. This is representative of methods that leverage
suboptimal data through representation learning.

• Diffusion Policy Pretrain + Finetune (DP PT + FT)
pretrains on suboptimal trajectories and finetunes on

demos. This is representative of methods that lever-
age suboptimal data through learning trajectory-level
features.

• Diffusion Policy with Video PreTraining (DP-VPT)
trains an inverse dynamics model to relabel action-
free data, inspired by VPT (Baker et al., 2022) and
BCO (Torabi et al., 2018).

• Open-Loop UniPi (UniPi-OL) is based off of
UniPi (Du et al., 2023a), a video planner for robot
manipulation. UniPi-OL generates a single video tra-
jectory, extracts actions, and executes the actions in an
open-loop fashion. We use a goal-conditioned behavior
cloning agent to reach generated subgoals (Wen et al.,
2024).

• Closed-Loop UniPi (UniPi-CL) is a modification that
allows UniPi to perform closed-loop replanning over
image chunks. Like LDP, UniPi-CL generates dense
plans instead of waypoints, though in image space. We
learn an inverse dynamics model to extract actions.

5.2. Imitation Learning with Action-Free Data

In Table 1, we examine how action-free data can be used to
improve imitation learning policies. Imitation learning poli-
cies that model actions, such as DP, are unable to natively
use action-free data, while planning-based approaches can
benefit from this additional data.

One approach is to relabel action-free data using an inverse
dynamics model. We find this to be effective for most
tasks, showing that the reannotated actions are useful for
policy improvement. However, we see that LDP is better
able to leverage action-free data by directly using it for the
planner, rather than generating possibly inaccurate actions
to subsequently learn from.

Like LDP, video planning methods can directly use action-
free data for improving the planner, which for UniPi is the
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Table 2. Leveraging Suboptimal Data. Latent Diffusion Planning can utilize suboptimal data for improved performance across a suite of
tasks. Video planning methods like UniPi consistently struggle, whereas reward-conditioned or pretraining DP approaches are able to
improve DP policy performance. LDP is best able to use suboptimal data, especially when combined with action-free data.

Method Lift Can Square ALOHA Cube Average

DP 0.60 ± 0.00 0.63 ± 0.01 0.48 ± 0.00 0.32 ± 0.00 0.51
RC-DP 0.40 ± 0.04 0.73 ± 0.03 0.66 ± 0.02 0.60 ± 0.04 0.60
DP+Repr 0.66 ± 0.04 0.61 ± 0.01 0.44 ± 0.02 0.25 ± 0.03 0.49
DP PT + FT 0.52 ± 0.02 0.67 ± 0.01 0.57 ± 0.03 0.78 ± 0.00 0.64

UniPi-OL 0.12 ± 0.06 0.28 ± 0.02 0.07 ± 0.01 0.00 ± 0.00 0.12
UniPi-CL 0.12 ± 0.02 0.30 ± 0.02 0.10 ± 0.04 0.15 ± 0.07 0.17

LDP 0.69 ± 0.03 0.70 ± 0.02 0.46 ± 0.00 0.64 ± 0.04 0.65
LDP + Subopt 0.84 ± 0.06 0.68 ± 0.02 0.55 ± 0.03 0.71 ± 0.03 0.70
LDP + Action-Free + Subopt 1.00 ± 0.00 0.98 ± 0.00 0.83 ± 0.01 0.97 ± 0.01 0.95

video generation model. We see limited improvement when
using action-free data, and both DP and LDP still strongly
outperform UniPi-CL and UniPi-OL. UniPi methods par-
ticularly struggle with more complex tasks like Square and
ALOHA Cube, implying that video planning is still ineffec-
tive for tasks that require more precise manipulation skills.

Qualitatively, for UniPi-OL, we find that while the goal-
conditioned agent is able to follow goals effectively, the
policy still struggles with the difficult parts of the task, such
as grasping the object. Forecasting goals does not provide
the dense supervision for exactly how to grasp an object, and
furthermore, UniPi-OL does not support replanning when a
grasp is missed. UniPi-CL is able to address this by dense
image forecasting, and consistently outperforms UniPi-OL.
However, this closed-loop method is not only slow, but faces
issues with video generation, such as regenerating static
frames during parts of the task with less movement, leading
the agent to be stuck in certain positions. This is especially
noticeable for the ALOHA Cube task, where the agent is
often stuck right before picking up the cube. Compared to
UniPi-OL and UniPi-CL, LDP is able to circumvent many of
these issues due to its latent planning and dense forecasting.

5.3. Imitation Learning with Suboptimal Data

In Table 2, we present imitation learning results with sub-
optimal data. First, LDP outperforms DP, which can only
utilize data with optimal actions. We notice, especially,
that LDP with suboptimal data typically improves further
upon LDP, showing the potential of leveraging diverse data
sources outside of the demonstration dataset.

Next, RC-DP, a conditional variant of DP that utilizes sub-
optimal data, outperforms DP. By learning from suboptimal
data, RC-DP can learn priors of robot motions while dis-
tinguishing optimal action sequences. We hypothesize that
for the Can, Square, and ALOHA Cube tasks, the primitive

motions of reaching toward or grasping the object, which
are partially covered by the suboptimal dataset, provides
a useful visuomotor prior for the policy. ALOHA Cube
sees significant improvement, possibly because the larger
action space of bimanual control benefits from additional
reward-labelled data.

Next, we explore using suboptimal data for feature-learning.
DP + Repr uses suboptimal data for pretraining a vision-
encoder, and DP PT + FT for pretraining the visuomotor
policy. DP + Repr only improves policy performance for
the Lift task, implying that end-to-end training of the vi-
sion encoder learns stronger features for complex manipula-
tion tasks. DP PT + FT is particularly successful for tasks
that require more precise manipulation, such as Square and
ALOHA Cube, implying that learned prior motions is a use-
ful policy initialization. Both the success of RC-DP and DP
PT + FT suggest that leveraging the suboptimal trajectories
is a useful way to improve imitation learning results. LDP,
which leverages suboptimal data for the latent encoder and
IDM, has higher overall performance than these methods,
averaging across the suite of simulated tasks.

Next, we compare against UniPi, which plans over image
subgoals (OL) or image chunks (CL). Due to the low demon-
stration data regime, learning effective and accurate video
policies is difficult, and LDP strongly outperforms UniPi-
OL and UniPi-CL. In addition, we notice that UniPi-CL
outperforms UniPi-OL for all tasks, implying that dense
forecasting, even within the image domain, is more effec-
tive than goal-conditioned methods.

Finally, we find that LDP with action-free and suboptimal
data leads to the strongest performance. We find a signif-
icant improvement in all of the simulated tasks, including
compared to the variants of LDP that only use either action-
free or suboptimal data. This suggests that the recipe for
combining these two data sources can lead to a stronger
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Table 3. Real World Results For the Franka Lift task, we find
that LDP consistently outperforms DP. Suboptimal and action-free
data, that DP is unable to use, further improves performance.

Method Success Rate

DP 69.6 ± 4
LDP 73.3 ± 7
LDP + Subopt 74.8 ± 4
LDP + Action-Free 79.3 ± 3

planner and a more robust inverse dynamics model, leading
to the best performing model for these tasks.

5.4. Imitation Learning in the Real World

Real world data is more expensive and time-consuming to
collect; hence, examining the effect of easier-to-collect sub-
optimal and action-free data provides insights for scalable
learning. In Table 3, we provide results on a Franka Lift
Cube task. In this task, we examine the performance of
DP, which can only leverage action-labeled data, with our
method, which can use suboptimal and action-free data.

Figure 3. Visualizations of Generated Plans. LDP produces
dense, closed-loop plans. Here, we visualize decoded latents se-
lected from an LDP trajectory for the Lift, Can, Square, ALOHA
Cube, and Franka Lift tasks.

We find that LDP is able to consistently outperform DP, es-
pecially with the addition of action-free data. For real-world
systems, this is promising, as collecting high-quality demos
can be difficult and time intensive, whereas utilizing subop-
timal trajectories, often a byproduct of evaluating policies,
or collecting action-free trajectories more efficiently, such

as in (Chi et al., 2024), can be a scalable direction.

5.5. Ablation: LDP Hierarchical

In an attempt to understand the effect of LDP’s dense fore-
casting, we compare LDP with a hierarchical version of
LDP (LDP Hierarchical). In this implementation, LDP Hi-
erarchical plans over subgoals 4 steps apart, and extracts 4
actions between pairs of forecasted latent states. Thus, LDP
Hierarchical is closed-loop, yet the planner operates at a
slightly abstracted level compared to non-hierarchical LDP.

In Table 4, we find that LDP outperforms LDP Hierarchical
across the 3 Robomimic tasks. This suggests that dense
forecasting is an important part and contribution of LDP.
This also reflects UniPi results in Table 1 and Table 2 that
show closed-loop planning outperforms open-loop planning.

Table 4. Hierarchical Ablation. LDP’s dense forecasting outper-
forms a hierarchical variant of LDP.

Method Lift Can Square
LDP 0.69 ± 0.03 0.70 ± 0.02 0.46 ± 0.00

LDP Hier. 0.53 ± 0.03 0.62 ± 0.04 0.31 ± 0.01

LDP + Subopt 0.84 ± 0.06 0.68 ± 0.02 0.55 ± 0.03

LDP Hier. + Subopt 0.65 ± 0.03 0.60 ± 0.02 0.43 ± 0.05

6. Discussion
We presented Latent Diffusion Planning, a simple planning-
based method for imitation learning. We show that our
design using powerful diffusion models for latent state fore-
casting enables competitive performance with state-of-the-
art imitation learning. We further show this latent state
forecasting objective enables us to easily leverage heteroge-
neous data sources. In the low-demonstration data imitation
regime, LDP outperforms prior imitation learning work that
does not leverage such additional data as effectively.

Limitations. One limitation of the current approach is that
the latent space for planning is simply learned with a vari-
ational autoencoder and might not learn the most useful
features for control. Future work will explore different rep-
resentation learning objectives. Further, our method requires
diffusing over states, which incurs additional computational
overhead as compared to diffusing actions. However, we
expect continued improvements in hardware and inference
speed will mitigate this drawback. Finally, we did not ex-
plore applying recent improvements in diffusion models
(Peebles & Xie, 2023; Lipman et al., 2022), which may be
important in large data regimes.

Future work. We have validated in simulation and real
the hypothesis that latent state forecasting can leverage het-
erogeneous data sources. Future work can also evaluate
whether this can be used to further improve more complex

8



Latent Diffusion Planning for Imitation Learning

real-world tasks. One direction is to use a diverse dataset
of human collected data, such as with handheld data collec-
tion tools (Young et al., 2021). Another approach would
be to use autonomously collected robotic data (Bousmalis*
et al., 2023). As these alternative data sources are easier
to collect than demonstrations, they represent a different
scaling paradigm that can outperform pure behavior cloning
approaches. By presenting a method that can leverage such
data, we believe this work makes a step toward more perfor-
mant and general robot policies.

Impact Statement
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A. Appendix
A.1. Additional Ablations

A.1.1. LDP WITH PRETRAINED EMBEDDINGS

We evaluate the effectiveness of planning and extracting actions from pretrained embeddings with a DINOv2 ablation. In
this approach, we replace our VAE embeddings with DINOv2 embeddings, with no other changes to the LDP architecture.

The DINOv2 latent embedding is 384-dimensional. We found directly planning over the DINOv2 embeddings does not lead
to good learned behaviors (0% success), which we hypothesize is due to the challenges of planning over a large latent space.
Thus, as an alternative, we fix a random projection matrix, reducing the 384 dim feature space to 16 dim, matching LDP. We
choose this, because this is a straightforward way of using frozen embeddings. It may be possible to plan over the large
embeddings space with a much larger and complex model, or it may be possible to learn alternative ways to project DINOv2
embeddings to a lower-dimensional space, but this may lead to fundamental changes in our method, so we leave more
complicated approaches to use pretrained embeddings for future work. We include results on Robomimic tasks in Table 5.

Table 5. DINOv2 Ablation. Planning over frozen embeddings (DINOv2), even when projected to a lower dimensional space, has
significantly lower success rate than planning over VAE embeddings. This suggests that the learned latent space is crucial to LDP’s
performance, and that a compact, well-structured latent space leads to optimal performance.

Method Latent Dim Lift Can Square
LDP w/ DINOv2 (frozen) 384 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

LDP w/ DINOv2 (frozen, randomly projected) 16 0.44 ± 0.24 0.03 ± 0.01 0.01 ± 0.01

LDP + Action-Free + Subopt 16 1.00 ± 0.00 0.98 ± 0.00 0.83 ± 0.01

A.1.2. UNIPI FROM PRETRAINED MODEL

In our experimental results, we train our UniPi model from scratch on demonstration videos. To provide a comparison to
training UniPi from pre-trained weights, we use the AVDC-THOR pretrained checkpoint (Ko et al., 2023). We finetune for
an additional 50k steps at learning rate 1e-4.

In Table 6 and Table 7, we find that the pretrained UniPi model does not substantially improve performance, likely because
the pretrained model quality is limited. For UniPi-OL, there appears to be slightly improvement when pretraining from
scratch, possibly because without closed-loop planning, the pretrained initialization may be helpful.

Table 6. UniPi from Pretrained Checkpoint

Method Lift Can Square
UniPi-OL (from scratch) 0.09 ± 0.03 0.27 ± 0.01 0.07 ± 0.01

UniPi-OL (from pretrain) 0.13 ± 0.05 0.31 ± 0.01 0.07 ± 0.01

UniPi-CL (from scratch) 0.12 ± 0.02 0.30 ± 0.02 0.10 ± 0.04

UniPi-CL (from pretrain) 0.13 ± 0.05 0.23 ± 0.01 0.08 ± 0.02

Table 7. UniPi + Action-Free from Pretrained Checkpoint

Method Lift Can Square
UniPi-OL (from scratch) 0.11 ± 0.03 0.25 ± 0.03 0.05 ± 0.03

UniPi-OL (from pretrain) 0.10 ± 0.08 0.26 ± 0.00 0.08 ± 0.02

UniPi-CL (from scratch) 0.14 ± 0.02 0.32 ± 0.04 0.09 ± 0.01

UniPi-CL (from pretrain) 0.11 ± 0.03 0.25 ± 0.01 0.10 ± 0.00

A.2. Implementation Details

Diffusion Policy We use a Jax reimplementation of the convolutional Diffusion Policy, which we verify can reproduce
reported Robomimic benchmark results.
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UniPi We use the open-source implementation of UniPi (Ko et al., 2023). For UniPi-OL and UniPi-CL, we predict 7 future
frames. During training time, for UniPi-OL, the 7 future frames are evenly sampled from a training demonstration. For
UniPi-CL, the 7 future frames are the next consecutive frames.

The goal-conditioned behavior cloning agent is implemented as a goal-conditioned Diffusion Policy (Chi et al., 2023) agent,
and it is trained on chunks of 16. The inverse dynamics model is based off of IDQL (Hansen-Estruch et al., 2023), and
shares the same architecture as the IDM used in LDP.

We train the video prediction models for 200k gradient steps with batch size 16.

LDP The LDP VAE is adapted from Diffusion Transformer (Peebles & Xie, 2023). The planner is based directly off of the
convolutional U-Net from Diffusion Policy (Chi et al., 2023), with modifications to plan across latent embeddings instead of
action chunks. The IDM is based off of IDQL (Hansen-Estruch et al., 2023).

Table 8. Diffusion Policy Architecture Hyperparameters
UniPi-OL GCBC DP and LDP LDP - ALOHA Cube

down dims [256, 512, 1024] [256, 512, 1024] [512, 1024, 2048]
n diffusion steps 100 100 100
batch size 256 256 256
lr 1e-4 1e-4 1e-4
n grad steps 500k 500k 500k

Table 9. IDM Architecture Hyperparameters
UniPi-CL IDM LDP IDM

n blocks 3 3 (Lift, Square, ALOHA Cube); 5 (Can)
n diffusion steps 100 100
batch size 256 256
lr 1e-4 1e-4
n grad steps 500k 500k

Table 10. VAE Architecture Hyperparameters
VAE

block out channels [128, 256, 256, 256, 256, 256]
down block types [DownEncoderBlock2D] x6
up block types [UpDecoderBlock2D] x6
latent channels 4
Latent Dim (2, 2, 4)
Lift KL Beta 1e-5
Can KL Beta 1e-6
Square KL Beta 1e-6
ALOHA Cube KL Beta 1e-7
n grad steps 300k

A.3. Simulation Experiments

A.3.1. ENVIRONMENT

For all environments, we use an observation horizon of 1. For Robomimic tasks, we use the third-person view image. For
ALOHA Cube and Franka Lift, we use the wrist camera. All images are 64x64.
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A.3.2. DATASET SIZES

We detail the design decisions for the number of expert, action-free, and suboptimal trajectories. For simulated robotics
tasks, we kept consistent the action-free and suboptimal trajectories: 100 action-free trajectories for robomimic tasks and
500 suboptimal trajectories for all tasks.

Number of Demonstrations Robomimic includes 200 proficient demonstrations per task, and ALOHA includes 50
demonstrations per task. To showcase the effectiveness of our method, we always take half the number of demonstrations–
100 for Robomimic tasks, and 25 for ALOHA tasks. This is a consistent protocol we use to select the number of
demonstrations. However, Lift is a particularly simple task, so in order to not saturate our baseline methods with excessive
numbers of demos, we reduce the number of demonstrations to 3. Without this adjustment, Lift results would not be useful
to discern the effect of different types of data, and furthermore, Lift results would all be saturated.

Number of Action-Free Trajectories We chose to use the remaining half of the demonstrations as action-free trajectories.
Hence, ALOHA uses 25 action-free trajectories, and Robomimic uses 100 action-free trajectories. Note again that Lift only
used 3 expert demonstrations, but in order to keep our numbers as consistent as possible and avoid further confusion, we
opted to use 100 action-free trajectories.

A.3.3. METHOD DETAILS

LDP VAE We train with additional action-free and suboptimal data. This VAE is shared across a single task for all variants
of LDP, and including for DP + Repr.

LDP + Subopt We train the inverse dynamics model with batches of 50% optimal, 50% suboptimal data.

LDP + Action-Free We train only the planner on additional action-free demos. The IDM is trained only on expert
demonstrations.

LDP + Action-Free + Subopt We train only the planner on additional action-free demos. We train the inverse dynamics
model with batches of 50% optimal, 50% suboptimal data.

LDP Hierarchical The IDM is parameterized as a Conditional U-Net, like the planner, but the IDM is smaller and has
down dims=[256, 512].

LDP DINOv2 In this variant, we plan over pretrained DINOv2 (Oquab et al., 2023; Darcet et al., 2023) embeddings instead
of VAE embeddings. We use the ViT-S variant and pad the 64x64 image to be 70x70, which matches the 14x14 patch
size. The batch size is reduced to 128, but the remaining hyperparameters are identical to LDP. We further project the
384-dimensional embedding to 16-dimensional via a random matrix, in order for easier planning. Results are presented in
Appendix A.1.1

DP + Repr We use the same VAE that LDP methods used.

DP PT + FT We pretrain for 300k steps and finetune with a lower learning rate (1e-5) for 200k steps.

DP-VPT We use an inverse dynamics model trained for 500k steps on curated data, as used in LDP, to relabel actions for
the action-free data.

UniPi We train two goal-conditioned agents and two inverse dynamics models and report the average success. For UniPi-OL
evaluations, we predetermine the number of steps for the GCBC to reach each image subgoal based on the demonstration
lengths. For Lift, evaluation episode lengths are 60 steps; Can is 140 steps; and Square is 160 steps. This maximum horizon
is also enforced for UniPi-CL evaluations, for consistency.
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