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Abstract

Influence function, a technique rooted in robust statistics, has been adapted in1

modern machine learning for a novel application: data attribution—quantifying2

how individual training data points affect a model’s predictions. However, the3

common derivation of influence functions in the data attribution literature is limited4

to loss functions that decompose into a sum of individual data point losses, with5

the most prominent examples known as M-estimators. This restricts the application6

of influence functions to more complex learning objectives, which we refer to7

as non-decomposable losses, such as contrastive or ranking losses, where a unit8

loss term depends on multiple data points and cannot be decomposed further. In9

this work, we bridge this gap by revisiting the general formulation of influence10

function from robust statistics, which extends beyond M-estimators. Based on this11

formulation, we propose a novel method, the Versatile Influence Function (VIF),12

that can be straightforwardly applied to machine learning models trained with13

any non-decomposable loss. In comparison to the classical approach in statistics,14

the proposed VIF is designed to fully leverage the power of auto-differentiation,15

hereby eliminating the need for case-specific derivations of each loss function.16

We demonstrate the effectiveness of VIF across three examples: Cox regression17

for survival analysis, node embedding for network analysis, and listwise learning-18

to-rank for information retrieval. In all cases, the influence estimated by VIF19

closely resembles the results obtained by brute-force leave-one-out retraining,20

while being up to 1000 times faster to compute. We believe VIF represents a21

significant advancement in data attribution, enabling efficient influence-function-22

based attribution across a wide range of machine learning paradigms, with broad23

potential for practical use cases.24

1 Introduction25

Influence function (IF) is a well-established technique originating from robust statistics and has been26

adapted to the novel application of data attribution in modern machine learning (Koh & Liang, 2017).27

Data attribution aims to quantify the impact of individual training data points on model outputs,28

which enables a wide range of data-centric applications such as mislabeled data detection (Koh &29

Liang, 2017), data selection (Xia et al., 2008), and copyright compensation (Deng & Ma, 2023).30

Despite its broad potential, the application of IFs for data attribution has been largely limited to loss31

functions that decompose into a sum of individual data point losses—such as those commonly used32

in supervised learning objectives or maximum likelihood estimation, which are also known as M-33

estimators. This limitation arises from the specific way IFs are typically derived in the data attribution34

literature (Koh & Liang, 2017; Grosse et al., 2023), where the derivation involves perturbing the35

weights of individual data point losses. As a result, this restricts the application of IF-based data36
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attribution methods to more complex machine learning objectives, such as contrastive or ranking37

losses, where a unit loss term depends on multiple data points and cannot be decomposed into38

individual data point losses. We refer to these loss functions as non-decomposable losses.39

To address this limitation, we revisit the general formulation of IF in the literature of statistics (Huber40

& Ronchetti, 2009), where statistical estimators are viewed as functionals of probability measures,41

and the IF is derived as a functional derivative in a specific perturbation direction. This formulation42

extends beyond M-estimators and, in principle, applies to any estimator (which corresponds to the43

learned parameters in the context of machine learning) defined as the minimizer of a loss function that44

depends on an (empirical) probability measure. However, directly applying this general formulation45

to modern machine learning models poses significant challenges. Firstly, deriving the precise IF for a46

particular loss function often requires complex, case-by-case mathetical derivations, which can be47

challenging for intricate loss functions and models. Secondly, for non-convex models, the mapping48

from the probability measure to the model parameters is not well-defined, making the IF derivation49

unclear.50

To overcome these challenges, we propose the Versatile Influence Function (VIF), a novel method51

that extends IF-based data attribution to models trained with non-decomposable losses. The proposed52

VIF serves as an approximation of the general formulation of IF but can be efficiently computed using53

auto-differentiation tools available in modern machine learning libraries. This approach eliminates54

the need for case-specific derivations of each loss function. Furthermore, like existing IF-based data55

attribution methods, VIF does not require model retraining and can be generalized to non-convex56

models using similar heuristic tricks.57

We validate the effectiveness of VIF both theoretically and empirically. In special cases like M-58

estimators, VIF recovers the classical IF exactly. For Cox regression, we show that VIF closely59

approximates the classical IF. Empirically, we demonstrate the practicality of VIF across several60

tasks involving non-decomposable losses: Cox regression for survival analysis, node embedding for61

network analysis, and listwise learning-to-rank for information retrieval. In all cases, VIF closely62

approximates the influence obtained from the brute-force leave-one-out retraining while significantly63

reducing computational time—achieving speed-ups of up to 1000 times. We also provide case studies64

demonstrating VIF can help interpret the behavior of the models.65

By extending IF to non-decomposable losses, VIF opens new opportunities for data attribution66

in modern machine learning models, enabling data-centric applications across a wider range of67

domains.68

2 The Versatile Influence Function69

2.1 Non-Decomposable Loss70

In practice, there are many common loss functions that are not decomposable. Below we list a few71

examples. Please refer to Appendix B for detailed information.72

Example 1: Cox’s Partial Likelihood. The Cox regression model (Cox, 1972) is one of the most73

widely used models in survival analysis, designed to predict the time until specific events occur (e.g.,74

patient death or a customer’s next purchase).75

Example 2: Contrastive Loss. Contrastive losses are commonly seen in unsupervised represen-76

tation learning across various modalities, such as word embeddings (Mikolov et al., 2013), image77

representations (Chen et al., 2020), or node embeddings (Perozzi et al., 2014).78

Example 3: Listwise Learning-to-Rank. Learning-to-rank is a core technology underlying infor-79

mation retrieval applications such as search and recommendation. In this context, listwise learning-80

to-rank methods aim to optimize the ordering of a set of documents or items based on their relevance81

to a given query. One prominent example of such methods is ListMLE (Xia et al., 2008).82

A General Loss Formulation. The examples above can be viewed as special cases of the following83

formal definition of non-decomposable loss.84

Definition 2.1 (Non-Decomposable Loss). Given n objects of interest within the training data, let85

a binary vector b ∈ {0, 1}n indicate the presence of the individual objects for training, i.e., for86

i = 1, . . . , n,87

bi =

{
1 if the i-th object presents,
0 otherwise.
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Suppose the machine learning model parameters are denoted as θ ∈ Rd, a non-decomposable is any88

function L : Rd × {0, 1}n → R, that maps given model parameters θ and the object presence vector89

b to a loss value L(θ, b).90

Generalizing the notation θ̂(b) = argminθ L(θ, b) on any non-decomposable loss L(θ, b), the LOO91

effect of data point i on the learned parameters is still well-defined by θ̂(1−i)− θ̂(1).92

However, in this case, we can no longer use the partial derivative with respect to bi to approximate93

the LOO effect, as θ̂(b) is only well-defined for binary vectors b.94

Remark 2.2 (“Non-Decomposable” v.s. “Not Decomposable”). The class of non-decomposable95

loss in Definition 2.1 includes the decomposable loss in Eq. (6) as a special case when L(θ, b) :=96 ∑
i:bi=1 li(θ). In fact, the method we will develop is applicable to all the loss in Definition 2.1 (with97

some nice properties such as convexity), including the decomposable ones (in which case our method98

reduces to the conventional IF-based method as shown in Appendix D). Throughout this paper, we99

will call loss functions that cannot be written in the form of Eq. (6) as “not decomposable”. We name100

the general class of loss functions in Definition 2.1 as non-decomposable loss to highlight that they101

are generally not decomposable.102

Remark 2.3 (Randomness in Losses). Strictly speaking, many contrastive losses are not deterministic103

functions of training data points as there is randomness in the construction of the triplet set D,104

due to procedures such as negative sampling or random walk. However, our method derived for105

the deterministic non-decomposable loss still gives meaningful results in practice for losses with106

randomness.107

2.2 The Statistical Perspective of Influence Function108

The Statistical Formulation of IF. To derive IF-based data attribution for non-decomposable109

losses, we revisit a general formulation of IF in robust statistics (Huber & Ronchetti, 2009). Let Ω be110

a sample space, and T is a vector-valued statistics that maps from a subset of the probability measures111

on Ω to a vector in Rd. Let P and Q be two probability measures on Ω. The IF of a statistics T (P )112

measures the infinitesimal change of the statistics towards a specific perturbation direction Q, which113

is defined as114

IF(T (P );Q) := lim
ε→0

T ((1− ε)P + εQ)− T (P )

ε
.

In the context of machine learning, the learned model parameters, denoted as θ̂(P ), can be viewed as115

statistics derived from the data distribution P . Specifically, the learned model parameters are typically116

obtained by minimizing a loss function, i.e., θ̂(P ) = argminθ L(θ, P ), where the loss depends on117

both the parameters and P .118

Assuming the loss is strictly convex and twice-differentiable with respect to the parameters, the119

learned parameters θ̂(P ) are then implicitly determined by the following equation120

∇θL(θ̂(P ), P ) = 0.

Moreover, the IF of θ̂(P ) for a perturbation towards Q is1121

IF(θ̂(P );Q) = −
[
∇2

θL(θ̂(P ), P )
]−1

lim
ε→0

∇θL(θ̂(P ), (1− ε)P + εQ)−∇θL(θ̂(P ), P )

ε
. (1)

The advantage of the IF formulation in Eq. (1) is that it can be applied to more general loss functions122

by properly specifying P,Q, and L.123

Example: Application of Eq. (1) to M-Estimators. As an example, the following Lemma 2.4124

states that the IF used by Koh & Liang (2017) in Eq. (8) can be viewed as a special case of the125

formulation in Eq. (1). This is a well-known result in robust statistics (Huber & Ronchetti, 2009),126

and the proof of which can be found in Appendix C.2. Intuitively, with the choice of P,Q, and L in127

Lemma 2.4, (1− ε)P + εQ = (1− ε)P + εδzi exactly leads to the effect of upweighting the loss128

weight of zi with a small perturbation, which is how the IF in Eq. (8) is derived.129

Lemma 2.4 (IF for M-Estimators). Eq. (1) reduces to Eq. (8) when we specify that 1) P is the130

empirical distribution over a dataset {zi}ni=1, i.e., Pr(zi) = 1
n , for all i = 1, . . . , n; 2) Q is δzi , i.e.,131

Pr(zi) = 1 and Pr(zj) = 0, j ̸= i; and 3) L(θ, P ) := Ez∼P [ℓ(θ, z)] = 1
n

∑n
i=1 ℓ(θ, zi).132

1See Appendix C.1 for the derivation.
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Challenges of Applying Eq. (1) in Modern Machine Learning. While the IF in Eq. (1) is a133

principled and well-established notion in statistics, there are two unique challenges when applying134

it to modern machine learning models. Firstly, solving the limit in the right hand side of Eq. (1)135

requires case-by-case derivation for different loss functions and models, which can be mathematically136

challenging (see an example of IF for the Cox regression in Appendix C.3). Secondly, the mapping137

θ̂(P ), hence the limit, are not well-defined for non-convex loss functions. A similar problem exists138

in the IF for decomposable loss in Eq. (8) and Koh & Liang (2017) mitigate this problem through139

heuristic tricks specifically designed for Eq. (8). However, the IF in Eq. (1) is more complicated and140

how to generalize it to modern setups like neural networks remains unclear.141

2.3 VIF as A Finite Difference Approximation142

We now derive the proposed VIF method by applying Eq. (1) to the non-decomposable loss while143

addressing the aforementioned challenges through an approximation.144

Properties of P,Q, and L in Eq. (1) for Non-Decomposable Loss. Recall that our goal is to145

derive an IF under non-decomposable loss that approximates the LOO effect θ̂(1−i)− θ̂(1). P is the146

empirical distribution corresponding to all the data objects present, i.e., b = 1. While the exact form147

of P depends on the data, it should satisfy the following property that holds for any θ:148

L(θ, P ) = L(θ,1), (2)

where we have slightly abused the notations of L defined in Section 2.1 and Section 2.2. On the other149

hand, Q should be defined as the direction towards the empirical distribution corresponding to the150

data indexed by b = 1−i. A plausible choice of Q is to directly define it as the empirical distribution151

of data for b = 1−i, which leads to the following property that holds for any θ:152

L(θ,Q) = L(θ,1−i). (3)

As a result of Eqs. (2) and (3), we will also have θ̂(P ) = θ̂(1), θ̂(Q) = θ̂(1−i).153

Sanity Check on M-Estimators. When instantiating P and Q for M-estimators with L(θ, P ) =154

Ez∼P [ℓ(θ, z)], it can be shown that defining P and Q as uniform distributions over {zj}nj=1 and155

{zj}nj=1 \ {zi}, respectively, satisfies Eqs. (2) and (3). In this case, P matches the specification in156

Lemma 2.4 while Q corresponds to a distribution where Pr(zi) = 0 and Pr(zj) =
1

n−1 , j ̸= i. For157

this specification, we have the following result.158

Lemma 2.5 (IF for M-Estimators with Downweighting.). With the specification of P,Q, and L159

above, we have160

IF(θ̂(P );Q) = −IF(θ̂(P ); δzi).

The difference of a negative sign compared to the specification in Lemma 2.4 arises because (1−ε)P+161

εδzi upweights the loss of zi, whereas (1− ε)P + εQ with the current specification downweights the162

loss of zi. Aside from this minor difference, our specification of P,Q, and L leads to the same result163

as the standard derivation of IF for M-estimators.164

Finite Difference Approximation. Next, we address the challenge of solving the limit in Eq. (1) in165

general cases. We propose to approximate the limit with a finite difference with ε = 1, which results166

in the following approximation2:167

lim
ε→0

∇θL(θ̂(P ), (1− ε)P + εQ)−∇θL(θ̂(P ), P )

−ε
≈ ∇θL(θ̂(P ), P )−∇θL(θ̂(P ), Q).

The Proposed VIF. Combining the properties of P and Q in Eqs. (2) and (3), and replacing168

the limit in Eq. (1) with the finite difference approximation, we propose the following method to169

approximate the LOO effect for any non-decomposable loss.170

2We note that, due to the nuance in Lemma 2.5 caused by the choice of upweighting v.s. downweighting, we
have added a negative sign to ε in the denominator to make the result consistent with the standard IF formulation
when applied to M-estimators.
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Definition 2.6 (Versatile Influence Function). The Versatile Influence Function (VIF) that measures171

the influence of a data object i on the parameters θ̂(1) learned from a non-decomposable loss L is172

defined as following173

VIF(θ̂(1); i) := −
[
∇2

θL(θ̂(1),1)
]−1

∇θ

(
L(θ̂(1),1)− L(θ̂(1),1−i)

)
. (4)

Computational Advantages. The VIF defined in Eq. (4) enjoys a few computational advantages.174

Firstly, VIF depends on the parameters only at θ̂(1) and does not require θ̂(1−i). Therefore, it does175

not require model retraining. Secondly, compared to Eq. (1), VIF only involves gradients and the176

Hessian of the loss, which can be easily obtained through auto-differentiation provided in modern177

machine learning libraries. Thirdly, VIF can be applied to more complicated models and accelerated178

with similar heuristic tricks employed by existing IF-based data attribution methods for decomposable179

losses (Koh & Liang, 2017; Grosse et al., 2023). Finally, note that VIF calculates the difference180

L(θ̂(1),1)−L(θ̂(1),1−i) before taking the gradient with respect to the parameters. In some special181

cases (see, e.g., the M-estimator case in Appendix D), this difference significantly simplifies.182

Attributing a Target Function. In practice, we are often interested in attributing certain model183

outputs or performance. Similar to Koh & Liang (2017), given a target function of interest, f(z, θ),184

that depends on both some data z and the model parameter θ, then the influence of a training data185

point i on this target function can be obtained through the chain rule:186

∇θf(z, θ̂(1))
⊤VIF(θ̂(1); i). (5)

187
3 Experiments188

3.1 Experimental setup189

We conduct experiments on three examples listed in Section 2.1: Cox Regression, Node Embedding,190

and Listwise Learning-to-Rank. In this section, we present the performance and runtime of VIF191

compared to brute-force LOO retraining. We also provide two case studies to demonstrate how the192

influence estimated by VIF can help interpret the behavior of the trained model in Appendix F.193

Datasets and Models. We evaluate our approach on multiple datasets across different scenarios.194

For Cox Regression, we use the METABRIC and SUPPORT datasets (Katzman et al., 2018). For195

both of the datasets, we train a Cox model using the negative log partial likelihood following Eq. (9).196

For Node Embedding, we use Zachary’s Karate network (Zachary, 1977) and train a DeepWalk197

model (Perozzi et al., 2014). Specifically, we train a two-layer model with one embedding layer and198

one linear layer optimized via contrastive loss following Eq. (10), where the loss is defined as the199

negative log softmax. For Listwise Learning-to-Rank, we use the Delicious (Tsoumakas et al., 2008)200

and Mediamill (Snoek et al., 2006) datasets. We train a linear model using the loss defined in Eq. (11).201

Please refer to Appendix E for more detailed experiment settings.202

Target Functions. We apply VIF to estimate the change of a target function, f(z, θ), before and203

after a specific data object is excluded from the model training process. Below are our choice of204

target functions for difference scenarios.205

For Cox Regression, we study how the relative risk function, f(xtest, θ) = exp(θ⊤xtest), of a206

test object, xtest, would change if one training object were removed. For Node Embedding,207

we study how the contrastive loss, f((u, v,N), θ) = l(θ; (u, v,N)), of an arbitrary pair of208

test nodes, (u, v), would change if a node w ∈ N were removed from the graph. For List-209

wise Learning-to-Rank, we study how the ListMLE loss of a test query, f((xtest, y
[k]
test), θ) =210

−
∑k

j=1

(
f(xtest; θ)j − log

∑
l∈[n]\{y(1)

test,...,y
(j−1)
test } exp(f(xtest; θ)l)

)
, would change if one item211

l ∈ [n] were removed from the training process.212

3.2 Performance213

We utilize the Pearson correlation coefficient to quantitatively evaluate how closely the influence214

estimated by VIF aligns with the results obtained by brute-force LOO retraining. Furthermore, as215

a reference upper limit of performance, we evaluate the correlation between two brute-force LOO216
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Table 1: The Pearson correlation coefficients of VIF and brute-force LOO retraining under different
experimental settings. Specifically, “Brute-Force” refers to the results of two times of brute-force
LOO retraining using different random seeds, which serves as a reference upper limit of performance.

Scenario Dataset Method Pearson Correlation

Cox Regression
METABRIC VIF 0.997

Brute-Force 0.997

SUPPORT VIF 0.943

Brute-Force 0.955

Node Embedding Karate VIF 0.407

Brute-Force 0.419

Listwise Learning-to-Rank
Mediamill VIF 0.823

Brute-Force 0.999

Delicious VIF 0.906

Brute-Force 0.999

retraining with different random seeds. As noted in Remark 2.3, some examples like contrastive217

losses are not deterministic, which could impact the observed correlations.218

Table 1 presents the Pearson correlation coefficients comparing VIF with brute-force LOO retraining219

using different random seeds. The performance of VIF matches the brute-force LOO in all experi-220

mental settings. Except for the Node Embedding scenario, the Pearson correlation coefficients are221

close to 1, indicating a strong resemblance between the VIF estimates and the retraining results. In222

the Node Embedding scenario, the correlations are moderately high for both methods due to the223

inherent randomness in the random walk procedure for constructing the triplet set in the DeepWalk224

algorithm. Nevertheless, VIF achieves a correlation that is close to the upper limit by brute-force225

LOO retraining.226

3.3 Runtime227

We report the runtime of VIF and brute-force LOO retraining in Tabel 2. The computational advantage228

of VIF is significant, reducing the runtime by factors up to 1097×. This advantage becomes more229

pronounced as the dataset size increases. The improvement ratio on the Karate dataset is moderate230

due to the overhead from the random walk process and potential optimizations in the implementation.231

All runtime measurements were recorded using an Intel(R) Xeon(R) Gold 6338 CPU.232

Table 2: Runtime comparison of VIF and brute-force LOO retraining on different experimental
settings.

Senario Dataset Brute-Force VIF Improvement Ratio

Cox Regression METABRIC 24 min 2.43 sec 593×
SUPPORT 225 min 12.3 sec 1097×

Network Embedding Karate 204 min 109 min 1.87×

Listwise Learning-to-Rank Mediamill 52 min 2.6 min 20×
Delicious 660 min 2.8 min 236×

4 Conclusion233

In this work, we introduced the Versatile Influence Function (VIF), a novel method that extends234

IF-based data attribution to models trained with non-decomposable losses. The key idea behind235

VIF is a finite difference approximation of the general IF formulation in the statistics literature,236

which eliminates the need for case-specific derivations and can be efficiently computed with the237

auto-differentiation tools provided in modern machine learning libraries. Our theoretical analysis238

demonstrates that VIF accurately recovers classical influence functions in the case of M-estimators239

and provides strong approximations for more complex settings such as Cox regression. Empirical240

evaluations across various tasks show that VIF closely approximates the influence obtained by241

brute-force leave-one-out retraining while being orders-of-magnitude faster. By broadening the242

scope of IF-based data attribution to non-decomposable losses, VIF opens new avenues for data-243

centric applications in machine learning, empowering practitioners to explore data attribution in more244

complex and diverse domains.245
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A Preliminaries: IF-Based Data Attribution for Decomposable Loss340

We begin by reviewing the formulation of IF-based data attribution in prior literature (Koh & Liang,341

2017; Schioppa et al., 2022; Grosse et al., 2023). IF-based data attribution aims to approximate342

the effect of leave-one-out (LOO) retraining—the change of model parameters after removing one343

training data point and retraining the model—which could be used to quantify the influence of this344

training data point.345

Formally, suppose we have the following loss function,346

L(θ) =
n∑

i=1

ℓi(θ), (6)

where θ is the model parameters; the total number of training data points is n; and each ℓi(·), i =347

1, . . . , n, corresponds to the loss function of one training data point. The IF-based data attribution348

is derived by first inserting a binary weight wi in front of each ℓi(·) to represent the inclusion or349

removal of the individual data points, transforming L(θ) to a weighted loss3350

L(θ, w) =
n∑

i=1

wiℓi(θ). (7)

Note that w = 1 corresponds to the original loss in Eq. (6); while removing the i-th data point is to351

set wi = 0 or, equivalently, w = 1−i, where 1−i is a vector of all one except for the i-th element352

being zero. Denote the learned parameters as θ̂(w) := argminθ L(θ, w)4. The LOO effect for data353

point i is then characterized by θ̂(1−i)− θ̂(1).354

However, evaluating θ̂(1−i) is computationally expensive as it requires model retraining. Koh &355

Liang (2017) proposed to approximate the LOO effect by relaxing the binary weights in w to the356

continuous interval [0, 1] and measuring the influence of the training data point i on the learned357

parameters as358

∂θ̂(w)

∂wi

∣∣∣∣∣
w=1

= −
[
∇2

θL(θ̂(1),1)
]−1

∇θℓi(θ̂(1)), (8)

which can be evaluated using only θ̂(1), hence eliminating the need for expensive model retraining.359

However, by construction, this approach critically relies on the introduction of the loss weights wi’s,360

and is thus limited to loss functions that are decomposable with respect to the individual training data361

points, taking the form of Eq. (6).362

B Non-Decomposable Loss363

In practice, there are many common loss functions that are not decomposable. Below we list a few364

examples.365

Example 1: Cox’s Partial Likelihood. The Cox regression model (Cox, 1972) is one of the most366

widely used models in survival analysis, designed to predict the time until specific events occur (e.g.,367

patient death or a customer’s next purchase). A unique challenge in survival analysis is handling368

censored observations, where the exact event time is unknown because the event has either not369

occurred by the end of the study or the individual is lost to follow-up. These censored data points370

contain partial information about the event timing and must be properly accounted for to avoid biased371

estimates and inaccurate conclusions in the analysis. Given a set of data points {(Xi, Yi,∆i)}ni=1,372

where Xi represents the features for the i-th data point, Yi denotes the observed time (either the event373

time or the censoring time), and ∆i is the binary event indicator (∆i = 1 if the event has occurred374

3In the rest of the paper, we will overload the notations of L and θ̂ several times for writing convenience. But
their definitions should be clear from context.

4While this definition is technically valid only under specific assumptions about the loss function (e.g., strict
convexity), in practice, methods developed based on these assumptions (together with some heuristics tricks) are
often applicable to more complicated models such as neural networks (Koh & Liang, 2017).
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and ∆i = 0 if the observation is censored), the Cox regression model is defined through specifying375

the hazard function376

h(t | x) = h0(t) exp(θ
⊤x),

where θ is the model parameters to be estimated while h0(t) is called the baseline hazard function377

without parametric parameters and exp(θ⊤x) is called the relative risk function. The parameters θ378

can be learned through minimizing the following negative log partial likelihood379

L(θ) = −
∑

i:∆i=1

θ⊤Xi − log
∑
j∈Ri

exp(θ⊤Xj)

 , (9)

where Ri := {j : Yj > Yi} is called the at-risk set.380

In Eq. (9), each data point may appear in multiple loss terms if it belongs to the at-risk sets of other381

data points. Consequently, we can no longer characterize the effect of removing a training data point382

by simply introducing the loss weight.383

Example 2: Contrastive Loss. Contrastive losses are commonly seen in unsupervised represen-384

tation learning across various modalities, such as word embeddings (Mikolov et al., 2013), image385

representations (Chen et al., 2020), or node embeddings (Perozzi et al., 2014). Generally, contrastive386

losses rely on a set of triplets, D = {(ui, vi, Ni)}mi=1, where ui is an anchor data point, vi is a387

positive data point that is relevant to ui, while Ni is a set of negative data points that are irrelevant to388

ui. The contrastive loss is then the summation over such triplets:389

L(θ) =
m∑
i=1

ℓ(θ; (ui, vi, Ni)), (10)

where the loss l(·) could take many forms. In word2vec (Mikolov et al., 2013) for word embeddings390

or DeepWalk (Perozzi et al., 2014) for node embeddings, θ corresponds to the embedding parameters391

for each word or node, while the loss l(·) could be defined by heirarchical softmax or negative392

sampling (see Rong (2014) for more details).393

Similar to Eq. (9), each single term of the contrastive loss in Eq. (10) involves multiple data points.394

Moreover, taking node embeddings as an example, the set of triplets D is constructed by running395

random walks on the network. Removing one data point, which is a node in this context, could also396

affect the proximity of other pairs of nodes and hence the construction of D.397

Example 3: Listwise Learning-to-Rank. Learning-to-rank is a core technology underlying infor-398

mation retrieval applications such as search and recommendation. In this context, listwise learning-399

to-rank methods aim to optimize the ordering of a set of documents or items based on their relevance400

to a given query. One prominent example of such methods is ListMLE (Xia et al., 2008). Suppose we401

have annotated results for m queries over n items as a dataset {(xi, (y
(1)
i , y

(2)
i , . . . , y

(k)
i )}mi=1, where402

xi is the query feature, y(1)i , y
(2)
i , . . . , y

(k)
i ∈ [n] := {1, . . . , n} indicate the top k items for query i.403

Then the ListMLE loss function is defined as following404

L(θ) = −
m∑
i=1

k∑
j=1

f(xi; θ)j − log
∑

l∈[n]\{y(1)
i ,...,y

(j−1)
i }

exp(f(xi; θ)l)

 , (11)

where f(·; θ) is a model parameterized by θ that takes the query feature as input and outputs n logits405

for predicting the relevance of the n items.406

In this example, Eq. (11) is decomposable with respect to the queries while not decomposable407

with respect to the items. The influence of items could also be of interest in information retrieval408

applications. For example, in a search engine, we may want to detect webpages with malicious search409

engine optimization (Invernizzi et al., 2012); in product co-purchasing recommendation (Zhao et al.,410

2017), both the queries and items are products.411
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C Omitted Derivations412

C.1 Derivation of Eq. (1)413

Consider an ε perturbation towards another distribution Q, i.e., (1 − ε)P + εQ. Note that θ̂((1 −414

ε)P + εQ) solves ∇θL(θ, (1− ε)P + εQ) = 0. We take derivative with respect to ε and evaluate at415

ε = 0 on both side, which leads to416

∇2
θL(θ̂(P ), P ) lim

ε→0

θ̂((1− ε)P + εQ)− θ̂(P )

ε
+lim

ε→0

∇θL(θ̂(P ), (1− ε)P + εQ)−∇θL(θ̂(P ), P )

ε
= 0.

Given the strict convexity, the Hessian is invertible at the global optimal. By plugging the definition417

of IF, we have418

IF (θ̂(P );Q) = −
[
∇2

θL(θ̂(P ), P )
]−1

lim
ε→0

∇θL(θ̂(P ), (1− ε)P + εQ)−∇θL(θ̂(P ), P )

ε
.

C.2 Proof of Lemma 2.4419

Proof. Under M-estimation, the objective function becomes the empirical loss, i.e., L(θ, P ) =420

Ez∼P [ℓ(θ; z)], where P =
∑n

i=1 δzi/n is the empirical distribution over the dataset. Similarly, the421

gradient and Hessian become422

∇θL(θ̂(P ), P ) = Ez∼P [∇θℓ(θ̂(P ); z)] = 0

and423

∇2
θL(θ̂(P ), P ) = Ez∼P [∇2

θℓ(θ̂(P ); z)] =

n∑
i=1

∇2
θℓ(θ̂(P ); zi)/n,

respectively. The infinitesimal change on the gradient towards the distribution Q = δzi equals to424

lim
ε→0

∇θL(θ̂(P ), (1− ε)P + εQ)−∇θL(θ̂(P ), P )

ε

= lim
ε→0

Ez∼(1−ε)P+εQ[∇θL(θ̂(P ), z)]− 0

ε

= lim
ε→0

(1− ε)Ez∼P [∇θL(θ̂(P ), z)] + εEz∼Q[∇θL(θ̂(P ), z)]

ε

= lim
ε→0

(1− ε) · 0 + εEz∼Q[∇θL(θ̂(P ), z)]

ε

=Ez∼Q[∇θL(θ̂(P ), z)] = ∇θL(θ̂(P ), zi).

Plugging the above equations into Eq. (1), it becomes the IF defined in Eq. (8).425

C.3 Analytic Expression of IF and VIF for Cox Regression426

Recall that the objective function for Cox regression is negative log-partial likelihood:427

Ln(θ) = −
n∑

i=1

∆i

θ⊤Xi − log

∑
j∈Ri

exp
(
θ⊤Xj

)
= −

n∑
i=1

∆i

θ⊤Xi − log

 n∑
j=1

I(Yj ≥ Yi) exp
(
θ⊤Xj

) .

Define428

S(0)
n (t; θ) =

1

n

n∑
i=1

I (Yi ≥ t) exp
(
θ⊤Xi

)
,

S(1)
n (t; θ) =

1

n

n∑
i=1

I (Yi ≥ t) exp
(
θ⊤Xi

)
Xi,
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and429

S(2)
n (t; θ) =

1

n

n∑
i=1

I (Yi ≥ t) exp
(
θ⊤Xi

)
XiX

⊤
i .

Note that the maximum partial likelihood estimator θ̂ solves the following score equation:430

∇θLn(θ̂) = −
n∑

i=1

∆i

(
Xi −

S
(1)
n (Yi; θ̂)

S
(0)
n (Yi; θ̂)

)
= 0.

We define ∇θℓn(θ̂;Zi) as shorthand for −∆i

(
Xi − S(1)

n (Yi;θ̂)

S
(0)
n (Yi;θ̂)

)
. It is worth noting that ℓn(θ̂;Zi)431

does not only depend on Zi but also other data points in its at-risk set. The Hessian of the objective432

function at θ̂ is given by433

∇2
θL(θ̂) =

n∑
i=1

∆i

S
(2)
n (Yi; θ̂)

S
(0)
n (Yi; θ̂)

− S
(1)
n (Yi; θ̂)

S
(0)
n (Yi; θ̂)

· S
(1)
n (Yi; θ̂)

S
(0)
n (Yi; θ̂)

⊤
 .

For simplicity, assume there is no tied event. Reid & Crepeau (1985) derived the influence function434

for the observation Zi = (Xi, Yi,∆i) by evaluating the limit in (1) with Q = δZi
:435

IF(i) =− [∇2
θL(θ̂)]−1∇θℓn(θ̂;Zi)− [∇2

θL(θ̂)]−1Ci(θ̂),

where436

Ci(θ̂) =
1

n

n∑
j=1

I(Yj ≤ Yi)∆j exp(θ̂
⊤Xi) ·

Xi · S(0)
n (Yj ; θ̂)− S

(1)
n (Yj ; θ̂)(

S
(0)
n (Yj ; θ̂)

)2 .

The first term is analogous to the standard influence function for M-estimators and the second term437

captures the influence of the i-th observation in the at-risk set. Denote ϵij =
exp(θ̂⊤Xi)/n

S
(0)
n (Yj ;θ̂)

for j such438

that Yj ≤ Yi. The IF can be rewritten as439

IF(i) =− [∇2
θL(θ̂)]−1

∇θℓn(θ̂;Zi) +
∑

j:Yj≤Yi

∆j

(
Xi −

S
(1)
n (Yj ; θ̂)

S
(0)
n (Yj ; θ̂)

)
· ϵij

 .

On the other hand, under the Cox regression, the proposed VIF becomes440

VIF(i) := −
[
∇2

θL(θ̂)
]−1 (

∇θLn(θ̂)−∇θL(−i)
n−1(θ̂)

)
,

where ∇θL(−i)
n−1(θ̂) is the gradient of the negative log-partial likelihood after excluding the i-th data441

point at θ̂. Given no tied events, we can rewrite it as442

∇θL(−i)
n−1(θ̂) =−

∑
j:Yj<Yi

∆j

(
Xj −

S
(1)
n (Yj ; θ̂)− exp(θ̂⊤Xi)Xi/n

S
(0)
n (Yj ; θ̂)− exp(θ̂⊤Xi)/n

)
−

∑
j:Yj>Yi

∆j

(
Xj −

S
(1)
n (Yj ; θ̂)

S
(0)
n (Yj ; θ̂)

)
.

Then it follows that443

VIF(i) =− [∇2
θL(θ̂)]−1

(
∇θLn(θ̂)−∇θL(−i)

n−1(θ̂)
)

=− [∇2
θL(θ̂)]−1

∇θℓn(θ̂;Zi) +
∑

j:Yj<Yi

∆j

(
S
(1)
n (Yj ; θ̂)

S
(0)
n (Yj ; θ̂)

− S
(1)
n (Yj ; θ̂)− exp(θ̂⊤Xi)Xi/n

S
(0)
n (Yj ; θ̂)− exp(θ̂⊤Xi)/n

)
=− [∇2

θL(θ̂)]−1

∇θℓn(θ̂;Zi) +
∑

j:Yj<Yi

∆j

(
Xi −

S
(1)
n (Yj ; θ̂)

S
(0)
n (Yj ; θ̂)

)
·

ϵij

1 − ϵij

 .

12



D Approximation Quality in Special Cases444

To provide insights into how accurately the proposed VIF approximates Eq. (1), we examine the445

following special cases. Although there is no formal guarantee of approximation quality in general,446

our analysis in these cases suggests that VIF may perform well in practice in many situations.447

M-Estimators. Under M-estimation, we have ∇θL(θ̂(1),1) =
∑n

i=1 ∇θℓ(θ̂(P ), zi) and448

∇θL(θ̂(1),1−i) =
∑n

j=1,j ̸=i ∇θℓ(θ̂(P ), zj). Then the VIF in Eq. (4) becomes449

VIF(θ̂(1); i) := −
[
∇2

θL(θ̂(1),1)
]−1

∇θℓ(θ̂(P ), zi),

which indicates that the VIF is identical to the IF obtained by Eq. (1) without approximation under450

M-estimation.451

Cox Regression. The IF obtained by applying Eq. (1) to the Cox regression model exists in the452

statistics literature (Reid & Crepeau, 1985). We also derive and compare analytic expressions of IF453

and VIF for the Cox regression model below. The exact derivations and notation definitions can be454

found in Appendix C.3.455

IF(i) =− [∇2
θL(θ̂)]−1

∇θℓn(θ̂;Zi) +
∑

j:Yj≤Yi

∆j

(
Xi −

S
(1)
n (Yj ; θ̂)

S
(0)
n (Yj ; θ̂)

)
· ϵij

 .

VIF(i) =− [∇2
θL(θ̂)]−1

∇θℓn(θ̂;Zi) +
∑

j:Yj<Yi

∆j

(
Xi −

S
(1)
n (Yj ; θ̂)

S
(0)
n (Yj ; θ̂)

)
·

ϵij

1 − ϵij

 .

As can be seen from the comparison, the analytic expressions of IF and VIF differ only in minor456

terms that may be empirically negligible.457

E Detailed experiment setup458

Datasets. For Cox regression, both METABRIC and SUPPORT datasets are split into training,459

validation, and test sets with a 6:2:2 ratio. The training objects and test objects are defined as the460

full training and test sets. For node embedding, the test objects are all valid pairs of nodes, i.e.,461

34× 34 = 1156 objects, while the training objects are the 34 individual nodes. In the case of listwise462

learning-to-rank, we sample 500 test samples from the pre-defined test set as the test objects. For the463

Mediamill dataset, we use the full label set as the training objects, while for the Delicious dataset,464

we sample 100 labels from the full label set (which contains 983 labels in total). The brute-force465

leave-one-out retraining follows the same training hyperparameters as the full model, with one466

training object removed at a time.467

Scenario Dataset Training obj Test obj

Cox regression METABRIC 1217 samples 381 samples

SUPPORT 5677 samples 1775 samples

Node embedding Karate 34 nodes 1156 pairs of nodes

Listwise learning-to-rank Mediamill 101 labels 500 samples

Delicious 100 labels 500 samples

Table 3: Training objects and test objects in different experiment settings.

Models. For Cox regression, we train a CoxPH model with a linear function on the features for both468

the METABRIC and SUPPORT datasets. The model is optimized using the Adam optimizer with a469

learning rate of 0.01. We train the model for 200 epochs on the METABRIC dataset and 100 epochs470

on the SUPPORT dataset. For node embedding, we sample 1,000 walks per node, each with a length471

of 6, and set the window size to 3. The dimension of the node embedding is set to 2. For listwise472

learning-to-rank, the model is optimized using the Adam optimizer with a learning rate of 0.001,473

weight decay of 5e-4, and a batch size of 128 for 100 epochs on both the Mediamill and Delicious474

datasets. We also use TruncatedSVD to reduce the feature dimension to 8.475
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F Case Studies476

We present two case studies to show how the influence estimated by VIF can help interpret the477

behavior of the trained model.478

Case study 1: Cox Regression. In Table 4, we show the top-5 most influential training samples, as479

estimated by VIF, for the relative risk function of two randomly selected test samples. We observe that480

removing two types of data samples in training will significantly increase the relative risk function481

of a test sample: (1) training samples that share similar features with the test sample and have long482

survival times (e.g., training sample ranks 1, 3, 4, 5 for test sample 0 and ranks 5 for test sample 1)483

and (2) training samples that differ in features from the test sample and have short survival times484

(e.g., training sample ranks 2 for test sample 0 and ranks 1, 2, 3, 4 for test sample 1). These findings485

align with domain knowledge.486

Table 4: The top-5 influential training samples to 2 test samples in the METABRIC dataset. “Features
Similarity” is the cosine similarity between the feature of the influential training sample and the test
sample. “Observed Time” and “Event Occurred” are the Y and ∆ of the influential training sample
as defined in Eq. (9).

Influence Rank Test Sample 0 Test Sample 1

Feature Similarity Observed Time Event Occurred Feature similarity Observed time Event occurred

1 0.84 322.83 False -0.49 16.57 True

2 -0.34 9.13 True -0.22 30.97 True

3 0.77 258.17 True -0.39 15.07 True

4 0.23 131.27 False -0.65 4.43 True

5 0.81 183.43 False 0.72 307.63 False

Case study 2: Node Embedding. in Figure 1b and 1c, we show the influence of all nodes to487

the contrastive loss of 2 pairs of test nodes. The spring layout of the Karate dataset is provided in488

Figure 1a. We observe that the most influential nodes (on the top right in Figure 1b and 1c) are489

the hub nodes that lie on the shortest path of the pair of test nodes. For example, the shortest path490

from node 12 to node 10 passes through node 0, while the shortest path from node 15 to node 13491

passes through node 33. Conversely, the nodes with the most negative influence (on the bottom left in492

Figure 1b and 1c) are those that likely “distract” the random walk away from the test node pairs. For493

instance, node 3 distracts the walk from node 12 to node 10, and node 30 distracts the walk from494

node 15 to node 13.495
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Figure 1: VIF is applied to Zachary’s Karate network to estimate the influence of each node on the
contrastive loss of a pair of test nodes. Figure 1a is a spring layout of the Karate network. Figure 1b
and Figure 1c illustrate the alignment between the influence estimated by VIF (x-axis) and the
brute-force LOO retrained loss difference (y-axis).
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G Related Work496

Data Attribution. Data attribution methods can be roughly categorized into two groups: retraining-497

based and gradient-based methods (Hammoudeh & Lowd, 2024). Retraining-based methods (Ghor-498

bani & Zou, 2019; Jia et al., 2019; Kwon & Zou, 2021; Wang & Jia, 2023; Ilyas et al., 2022) typically499

estimate the influence of individual training data points by repeatedly retraining models on subsets500

of the training dataset. While these methods have been shown effective, they are not scalable for501

large-scale models and applications. In contrast, gradient-based methods (Koh & Liang, 2017;502

Guo et al., 2020; Barshan et al., 2020; Schioppa et al., 2022; Kwon et al., 2023; Yeh et al., 2018;503

Pruthi et al., 2020; Park et al., 2023) estimate the training data influence based on the gradient and504

higher-order gradient information of the original model, avoiding expensive model retraining. In505

particular, many gradient-based methods (Koh & Liang, 2017; Guo et al., 2020; Barshan et al., 2020;506

Schioppa et al., 2022; Kwon et al., 2023; Pruthi et al., 2020; Park et al., 2023) can be viewed as507

variants of IF-based data attribution methods. Therefore, extending IF-based data attribution methods508

to a wider domains could lead to a significant impact on data attribution.509

Influence Function in Statistics. The IF is a well-established concept in statistics, dating back510

at least to Hampel (1974), though it is typically applied for purposes other than data attribution.511

Originally introduced in the context of robust statistics, it was used to assess the robustness of512

statistical estimators (Huber & Ronchetti, 2009) and later adapted as a tool for developing asymptotic513

theories (van der Vaart, 2012). Notably, IFs have been derived for a wide range of estimators beyond514

M-estimators, including L-estimators, R-estimators, and others (Huber & Ronchetti, 2009; van der515

Vaart, 2012). Closely related to an example of this study, Reid & Crepeau (1985) developed the IF516

for the Cox regression model. However, the literature in statistics often approaches the derivation of517

IFs through precise definitions specific to particular estimators, requiring case-specific derivations.518

In contrast, this work proposes an approximation for the general IF formulation in statistics, which519

can be straightforwardly applied to a broad family of modern machine learning loss functions for the520

purpose of data attribution. While this approach involves some degree of approximation, it benefits521

from being more versatile and computationally efficient, leveraging auto-differentiation capabilities522

provided by modern machine learning libraries.523
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