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Abstract

AI for Science (AI4Science), particularly in the form of self-driving labs, has the
potential to sideline human involvement and hinder scientific discovery within the
broader community. While prior research has focused on ensuring the responsible
deployment of AI applications, enhancing security, and ensuring interpretability, we
also propose that promoting openness in AI4Science discoveries should be carefully
considered. In this paper, we introduce the concept of AI for Open Science (AI4OS)
as a multi-agent extension of AI4Science with the core principle of maximizing
open knowledge translation throughout the scientific enterprise rather than a single
organizational unit. We use the established principles of Knowledge Discovery and
Data Mining (KDD) to formalize a language around AI4OS. We then discuss three
principle stages of knowledge translation embedded in AI4Science systems and
detail specific points where openness can be applied to yield an AI4OS alternative.
Lastly, we formulate a theoretical metric to assess AI4OS with a supporting ethical
argument highlighting its importance. Our goal is that by drawing attention to
AI4OS we can ensure the natural consequence of AI4Science (e.g., self-driving
labs) is a benefit not only for its developers but for society as a whole.

1 Introduction

The mission of science is the robust and efficient discovery and translation of knowledge. However,
this process has historically been inefficient due to the inherently disjoint nature of the enterprise
formed of multiple agents acting asynchronously with varied levels of collaboration (if at all). Yet, this
asynchronous and disjoint behavior is natural as it is unrealistic for any single agent to be competent
at all aspects of the knowledge discovery and translation processes, i.e., the processes by which raw
data is collected via experimentation, mined for patterns to develop hypotheses, and tested to validate
knowledge assertions that are disseminated via publication. However, with recent advances in the
field of AI, particularly in deep learning, it is becoming increasingly clear that AI will transform
these processes and usher in this new field of AI for Science (AI4Science) (1) with systems capable
of being end-to-end experts in knowledge translation and discovery.

While this transformation is revolutionary, we contend that AI4Science has the potential to exacerbate
issues, both ethical and practical, regarding effective collaboration and knowledge dissemination
within the scientific community. For instance, self-driving labs, being a natural manifestation of
AI4Science, pose to have the remarkable capacity to automate knowledge discovery, but what happens
when these systems are closed? Further, how will we mitigate misaligned incentives and motivations
that limit the dissemination of derived findings? In essence, what of openness in AI for Science?

It is critical we address these questions before such systems arrive. To that end, we present an
extension of AI4Science under a collaborative multi-agent framing of Open Science (2), namely
AI for Open Science (AI4OS). We represent AI4OS as a Multi-agent Discovery Support System
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Figure 1: An Overview of the KDD process.

(MaDiSS) with the explicit intent of maximizing discovery for all stakeholders, transcending the
limitations of isolated, self-serving systems that could arise in AI4Science implementations agnostic
to openness.

While definitions of Open Science vary, we adopt that Open Science is “a collaborative culture facili-
tated by technology, promoting the open exchange of data, information, and knowledge among the
scientific community and the general public, ultimately expediting scientific research and enhancing
comprehension" (2). Crystallizing this sentiment with established definitions of data, information,
and knowledge from the Knowledge Discovery and Data Mining (KDD) (3; 4) community, we de-
velop a formal language to characterize each stage of the knowledge translation process. Leveraging
this language, we derive a theoretical optimization metric for openness to build an ethical argument
supporting AI4OS. Lastly, we use MaDiSS to offer recommendations for promoting openness in
self-driving labs and other AI-driven systems.

Contributions This work makes three primary contributions:

1. Introduce a formal language for discussing issues of openness in AI4Science,

2. Develop a corresponding openness metric,

3. Construct a robust ethical argument in support of this framing.

2 Background and Related Work

2.1 The Knowledge Discovery and Data Mining Process

KDD provides useful and precise definitions of data, information, and knowledge, central to our
definition of Open Science. The KDD literature (4; 5) defines data as a set of examples collected
using experimentation and a pattern as an expression in some language describing a subset of data
exemplars that is shorter than the enumeration of the entire dataset. We extend these definitions to
include information as a set of these patterns that yield knowledge, a label placed on this information.
The KDD process can be summarized in the following steps and is depicted in Figure 1.

1. Learning the application domain and acquiring prior knowledge necessary for the goals of
the application,

2. Creating a target dataset which includes the selection or filtering over a subset of features or
samples,

3. Data cleaning and preprocessing,

4. Data reduction, projection, and transformation,

5. Choosing the function of data mining, i.e., the required task that will be solved such as
summarization, classification, regression, etc.,

6. Selecting the data mining algorithm and appropriate parameters required to run the model
on the desired data,

7. Data mining or searching for patterns of interest in a particular representation form such as
clustering, dependency analysis, rules, etc.,
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8. Interpretation of the generated patterns and translating the useful ones into terms understand-
able by the user.

As stated by Fayyad et al. (3), the KDD process is iterative and may contain loops between any
two steps in the process. For our purposes, the main limitation of KDD is that it assumes a single-
agent perspective. However, we argue that a single-agent perspective is insufficient to model Open
Science as it is inherently collaborative among many disjoint agents. Rather, it is this multi-agent
communication/collaboration that is crucial to a successful knowledge translation. Therefore, we
should consider three additional elements of the knowledge translation process, which to the best
of our knowledge, have not been formulated into a single coherent framework. These elements
correspond to the successful communication of prior knowledge (1) from the experimenter to the
data miner and/or knowledge interpreter, (2) from the data miner to the knowledge interpreter, and
(3) the decisive review of all propagated knowledge by the interpreter.

2.2 Discovery Support Systems

As our representation of AI4OS is formulated as a MaDiSS, we believe a brief review of traditional
Discovery Support Systems (DiSS) is warranted. The first mention of DiSS came in 1986 when
Don R. Swanson developed a literature-based procedure for generating new hypotheses focused on
biomedical information (6). The first hypothesis emerging from his process proposed that fish oil
could be used to cure Raynaud’s disease and was later tested as well as experimentally and clinically
proved (6; 7; 8). This research launched the field of Literature-Based Discovery (LBD) (9; 10; 11; 12)
to infer new and useful knowledge by logically connecting information fragments from disparate
textual sources. As LBD has developed into an immense field, we point the reader to Gopalakrishnan
et. al. (13) for a complete review of recent LBD approaches focused on the biomedical domain and
for more general applications to Thilakaratne et al. (14) and Hue et al. (15). While LDB techniques
can be leveraged in the context of our definition of MaDiSS, our framework and discussion are more
general than any individual methodology for discovery. Further, these approaches do not focus on
our main contribution which is the knowledge communication between and consideration of each
agent in the translation process.

A prime example of a modern DiSS as well as a MaDiSS is the US National Institute of Health (NIH)
National Center for Advancing Translational Science (NCATS) Translator program (16) which was
founded with the mission to create a “system capable of integrating existing biomedical data sets and
“translating” those data into insights to accelerate translational research, generate new hypotheses,
and drive innovations in clinical care and drug discovery." Importantly, the NCATS program takes an
Open Science approach where knowledge is shared and reasoned over by many different independent
teams via API calls (17). These types of collaborative efforts come with their own set of ethical
considerations as they pertain to Open Science (18; 19; 20; 21; 22), Open Data (23; 24; 25; 26) and
the provenance of such systems (27; 28; 17) and our framing subsumes these issues as well.

3 A Formal Language of AI for Open Science

In this section, our aim is to introduce a formal language to characterize AI4OS. We propose that a
useful way to frame AI4OS is through a MaDiSS that aligns with the principles of Open Science. The
primary motivation is that such a framing should enable researchers to conduct ethical assessments of
AI4Science-inspired systems in a unified manner.

Our formalism begins by considering the three primary roles in a MaDiSS (and KDD in general),
which revolve around dataset curation, information extraction, and knowledge labeling. Recognizing
that multiple agents can participate in each role, we define the knowledge required by each agent to
fulfill their specific role and represent the transfer of this knowledge to downstream collaborators
promoting an open exchange of insights and expertise within their respective roles. These knowledge
priors and roles are as follows:

1. The knowledge base of the experimenting agent, generating the raw data associated with
KDD Steps 1-4,

2. The knowledge base of the data mining agent, in their considerations and selections of the
data mining algorithm of KDD Steps 5-7,
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Figure 2: An overview of MaDiSS. The colored portions of the figure are illustrative of an arbitrary
instantiation of the translation process. (a) the experimenting agent(s) responsible for constructing
any particular dataset di via experimentation. All di represents some sub-population of the global
ground truth data, D̂ with some instrumentation error ∆. (b) The data mining agent(s) responsible for
the standard KDD process up until Step 7. (c) The labeling agent responsible for accepting/labeling
new knowledge as derived from information presented by the data mining agent.

3. The knowledge base of the labeling agent, responsible for accepting, distilling and labeling
the information patterns in KDD Step 8.

We quickly define some common notation that we will assume and exploit later. We assume the
universe of knowledge consists of a (potentially infinite) set of true knowledge K and a set of false
knowledge (also potentially infinite) Kc. We let A denote the set of all agents, human or otherwise,
where ρ “ |A|. Each agent has an assumed set of prior knowledge which is a subset of K Y Kc.
While operating over the three role types (experimenting, mining and labeling) previously introduced,
we allow agents to form teams in which they can belong to multiple or no teams along each role
axis. Therefore, its possible that the same set of agents forming the same team can perform each role
in the pipeline. This situation is analogous to a self-driving lab. However, as in the real world,
it is natural that an experimenting agent may have their data mined by many different data mining
agents. Further, these mined patterns can be labeled by many different labeling agents. Since we
are interested in the collaborative aspect of Open Science, MaDiSS provides a formalism for the
translation of knowledge among teams. A visual depiction of MaDiSS is shown in Figure 2. In the
following sections, we will outline each role more formally.

3.1 The Experimenting Agent

In the experimenting process (Figure 2.a), experimenting agents form sets of experimenting teams,
ti Ď A. Each team forms a team knowledge base, ki, assumed to rectify conflicts from Kc and K
between agents as it pertains to the experimenting process. Data sets, di P D, are collected by some
means of experimentation which we assume to be informed by ki.

Grounding ourselves in KDD formalisms, a team’s knowledge, ki, is a precursor to Step 1 in the
KDD process, which is to say, ki is a set of prior knowledge on a domain that motivates the capture
of data pertaining to that domain. Edges connecting ki to their respective data, di, in Figure 2.a, can
be thought of as a sequence of decisions from steps 2-4 in the KDD processes used to aggregate and
refine data. While ki can contain elements of Kc, di should not be considered as right or wrong as
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data will always represent some sub-population of true data, D̂, up to some measurement noise ∆.
However, since ki instantiates, di, it is possible that the sub-population di may not be suitable to
achieve new knowledge in-line with K.

3.2 The Data Mining Agent

In the mining process (Figure 2.b), data mining agents form data mining teams, tj Ď A. While the
agent pool remains the same, we use different team indices to denote the data mining teams. In other
words, ti “ tj if and only if i “ j. Like experimenting teams, we assume data mining teams have a
rectified set of knowledge kj . kj is used to inform the data mining approach(s), Fj , applied over any
raw dataset di to extract patterns. We call the set of extracted patterns information and denote it Iij .

Under the KDD lens, the edges that connect di and kj to Iij via Fj , in Figure 2.b, can be thought of
as a sequence of decisions from steps 5-7 in the KDD process used to extra patterns from data. This
includes (5) choosing the function of mining, (6) selecting appropriate algorithms and parameters to
produce models, and (7) searching for patterns by leveraging these models, ultimately yielding Iij .
Not included in the KDD pipeline is the explicit distinction between ki and kj . If i “ j then crucial
team knowledge from the experimenting processes is maintained during the data mining process.
This is assumed in the KDD pipeline as it is framed from the perspective of a single agent. However,
if i ‰ j then ki is potentially lost, resulting in potential misuse or misunderstanding of di. We argue
that this results in an Iij less suitable for achieving new knowledge in-line with the K and potentially
subverts the intended use of di in regards to ki.

3.3 The Labeling Agent

In the labeling process (Figure 2.c), labeling agents form labeling teams, tl Ď A. Similar to data
mining teams, we use different team indices for labeling agents to capture distinct teams. That is
to say, ti “ tj “ tl if and only if i “ j “ l. Like the teams that came before, we assume labeling
teams have a rectified set of knowledge qkl. The goal of labeling teams is to interpret patterns in Iij
informed by qkl and label those patterns to form a set of new knowledge labels, kijl, where ideally,
kijl Ă K, though in practice kijl likely contains elements in K and Kc.

In Figure 2.c, the edges that connect Iij and qkl to kijl capture step 8 in the KDD pipeline, which
produces a set of labeled knowledge garnered from Iij . Similarly to the data mining step, the KDD
pipeline does not formalize instances where knowledge is not propagated forward into the labeling
step. If i “ j “ l knowledge is maintained (again, this is assumed in KDD from the perspective of a
single agent). However, if l ‰ j then the labeling team runs the risk of misusing or misunderstanding
Iij , unless tj translated kj onto tl. We argue this potentially results in kijl containing less elements in
K and more elements in Kc. This can be further confounded when j ‰ i from the mining processes,
resulting in a less adequate Iij unless ti translated their ki onto tj . On the other hand, even if l “ j or
tj translated their kj onto tl, if l ‰ i, the labeling team runs the risk of not understanding the initial
bias in di resulting from ki unless ti translated their ki onto tl.

4 Optimizing an Openness Metric in AI for Science

To demonstrate the utility of MaDiSS, we use our language to construct an argument of knowledge
translation among teams asserting that it is imperative teams pass along all provenance required in
fulfilling their role in order to optimize a novel openness metric. A crucial question that we have not
yet considered is whether an agent or team can truly know if any individual piece of their knowledge
is in K or Kc. To address this we will make the following assumption.

Assumption 1 A human or machine cannot know with exact certainty whether any knowledge
element in their knowledge base is a member of K or Kc.

We believe Assumption 1 is justified because no entity has direct access to K, and thereby, cannot
be fully certain on the membership of any individual piece of knowledge in their knowledge base.
Since no upstream team can exactly know if their knowledge is in K or Kc, they should always pass
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all provenance including accompanying confidence scores, allowing downstream teams to consider
their entire context and rectify on their own. The remaining portion of this section will provide a
brief monotonicity argument to justify this claim along with potential entry points to aid knowledge
translation between teams in line with the AI4OS mission.

Consider an arbitrary di constructed by ti informed by ki as well as a data mining approach(s), Fj , of
tj informed by kj . From the data mining team’s perspective, the information, i.e., the set of patterns
as defined by a set of chosen languages, yielded by Fj , denoted Iij , can be defined as the function
Fj : D ˆ PpK Y Kcq Ñ PpPq where D is the set of all possible datasets and PpPq is the power set
of all possible patterns, P, such that

Iij “ Fj

ˆ

di, kj Y ki Y
ď

hPH

kh

˙

(1)

where H is the set of other data mining team’s knowledge for which the team tj may or may not
have access. It should also be noted that tj may or may not have access to ki. Similarly, the labeling
team, tl, also has their interpretation of information, Iijl, under their knowledge base and all the
other team’s knowledge bases of which they have access. This information can be defined as another
function Gl : PpPq ˆ PpK Y Kcq Ñ PpPq such that

Iijl “ Gl

ˆ

Iij , qkl Y kj Y ki Y
ď

hPH

kh

˙

(2)

where kj may also be empty if inaccessible. If the data mining and labeling team are the same, i “ j,
then Iij “ Iijl because both teams have the same set of combined knowledge. However, if these
teams are different, then it may not be the case that Iij “ Iijl.

Consider a simple example in which the data mining team, tj , selects only one data mining approach.
In other words, ||Iij || “ ||Iijl|| “ 1. For the sake of this example, let the form of Iij and Iijl be a
Knowledge Graph (KG) with nodes representing entities in some system and edges representing the
relationships between those entities. For the data mining team, Iij is a construction algorithm Fj that
learns the edges (relationships) from di. Now consider the instance in which qkl contains a piece of
knowledge that is absent in kj . This could be informed by some specific domain knowledge that states
that two potential entities cannot not be directly connected in the KG. If kj is missing this knowledge,
and they produce Iij with said edge, the labeling team could simply correct the information based on
their (assumed to be) more complete knowledge base by removing the erroneous edge. However, this
now transforms Iij into the new set of information, Iijl.

With the concept of information from the perspective of team tl in Equation 2, we lastly define a
function L : PpPq Ñ PpK Y Kcq such that

kijl “ LpIijl,K
` Y K´q (3)

where

K` “

ˆ

qkl Y kj Y ki Y
ď

hPH

kh

˙

X K

K´ “

ˆ

qkl Y kj Y ki Y
ď

hPH

kh

˙

X Kc

and kijl Ă K Y Kc is all the new knowledge translated from the dataset, di, in accordance with
the knowledge and information flow between all the teams in MaDiSS. Equation 3 leads us to the
following assumption about L given the following definition of a monotone sequence of sets.

Definition 1 Let X be a set and S Ď PpXq. A monotone sequence of sets denoted xBnynPN P S
is monotonically increasing if @n P N Bn Ď Bn`1 and is monotonically decreasing if @n P N
Bn Ě Bn`1.

Assumption 2 The quantity ∥Lp¨q X K∥ is monotonically increasing with any monotonically in-
creasing sequence of sets, xK`

n ynPN` Ď PpK`q, and the quantity∥Lp¨q X Kc∥ is monotonically
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increasing with any monotonically increasing sequence of sets, xK´
n ynPN´ Ď PpK´q, where

N` “ r0, ||K||s and N´ “ r0, ||Kc||s.

In other words, Assumption 2 tells us that the more prior knowledge that is incorporated from all
teams in regard to K` the greater amount of new knowledge kijl aligned with K that is produced.
Therefore, if ever a new piece of knowledge k P K is included into K`, the amount of new knowledge
produced that is in K will never decrease. Similarly, the more prior knowledge that is included
from all teams in regard to K´ the greater amount of new knowledge kijl aligned with Kc that is
produced. We believe this is a justified assumption as included knowledge in K would never lead to
a knowledge element Kc and vice versa.

Therefore, if all knowledge is equally important to discover, a natural metric to gauge the success of
a knowledge translation is to measure the quantity:∥∥∥∥∥∥

ď

i,j,l

kijl X K

∥∥∥∥∥∥ ´

∥∥∥∥∥∥
ď

i,j,l

kijl X Kc

∥∥∥∥∥∥ (4)

The goal of knowledge translation, and by extension, a MaDiSS and AI4OS, is to maximize Equation
4. However, recall that Assumption 1 states that the membership of elements in kijl is unknowable,
so Equation 4 is not directly computable. Therefore, it is the job of a MaDiSS to approximate
K, and by extension Kc. In fact, each team’s knowledge resembles their best approximation of
a subset of K already. However, on receiving translated knowledge from upstream, we conclude
that a successful MaDiSS should help process, filter, reframe, and/or reweight this knowledge to
increase the expectation that the amount of knowledge in K` is maximized and the amount in K´ is
minimized. We argue this will maximize Equation 4 under Assumption 2. Lastly, two extensions to
Equation 4 could be to normalize the metric with respect to the cardinality of kijl in order to compare
across domains as well as relax our assumption that all knowledge is equally important.

5 Why Openness in AI for Science

The pursuit of openness in AI4OS can be viewed as an effort to maximize knowledge dissemination,
achieved through the effective conveyance of essential data and algorithmic provenance to the
team responsible for labeling knowledge as well as its intermediaries (Equation 4). Further, the
optimization of this process, which can better align generated knowledge with ground truth, can only
be achieved by open knowledge sharing among collaborators. Therefore, we assert that the primary
ethical concerns in AI4Science revolve around open access to and open communication of AI-derived
knowledge discoveries.

Broad communication of knowledge discoveries is not a new ethical consideration and has been
handled extensively by the Open Science community (18; 19; 20; 21; 22). However, a critical facet
of analyzing the ethics of these systems involves examining their increased speed and autonomy.
If these systems become entirely self-driven, the rapid acceleration of discovery may overwhelm
our society’s capacity to absorb it, as exemplified by the challenge of digesting the vast research
output from predatory journals and conferences (29; 30). Accelerating knowledge discovery through
AI4Science without due consideration could further burden researchers and hinder scholarship.

Another ethical concern is the risk of restricting open access to AI-derived scientific discoveries by
industry, governments, and the military. These entities may attempt to silo AI4Science implementa-
tions for their benefit, limiting the knowledge available for labeling exclusively to their organizational
unit. To uphold operationally moral (31) standards, society should ensure diverse agent participation
in knowledge translation teams and agents through increased regulation, auditing, and disclosure
(32). Given the current self-regulatory environment of most AI companies (33), AI ethicists must
continue to press for specific enforceable and non-voluntary legislation (34; 35) of AI4Science
systems focusing their accessibility, transparency, and openness.

Additionally, we must consider how denial of access could exacerbate existing societal inequities
via socio-technical forces. For instance, if new knowledge generated by a DiSS is used to accelerate
individual knowledge acquisition rather than novel scientific discovery, denying access to such
systems based on social class or identity could further marginalize underprivileged populations,
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perpetuating systemic disparities. For example, consider an AI-driven system that aids in childhood
education by increasing the speed at which a child acquires new knowledge. Then denial of access
based on class or identity could further limit a marginalized child’s performance. This effect would
fortify and continually widen systemic inequities among historically oppressed communities.

Shifting our focus to specific ethical considerations within the MaDiSS formulation, we emphasize the
importance of the experimenting team documenting and transparently communicating assumptions,
biases, and contextual factors affecting dataset collection, processing, or experimentation. This
information is crucial for both the knowledge labeling process and data mining. Neglecting to provide
this information may lead to mislabeled knowledge and exacerbate ethical concerns. While initiatives
like "datasheets for datasets" are steps in the right direction (36), a robust provenance architecture for
communicating this knowledge remains an open challenge.

The significance of Open Data initiatives (23; 24; 25; 26) and the role of provenance in databases
(27; 28) has been extensively studied, particularly within the realm of biomedical data. However,
the adoption of these practices within the machine learning community as part of the knowledge
translation process has been notably sluggish and is poised to face further challenges with the rise
of AI-driven systems. An associated area that has received inadequate attention, evident from a
MaDiSS perspective, is the imperative to communicate data mining or algorithmic provenance to
upstream consumers. The current focus in this domain has primarily centered on the reproducibility
of machine learning algorithms (37; 38). However, MaDiSS underscores the need to go beyond
reproducibility and ensure that downstream labeling teams consider the underlying algorithmic
assumptions, biases, and contexts. Building on the framework proposed by Gebru et al., this could be
implemented through an "information sheet for information systems" approach, fostering community
collaboration to identify intents, assumptions, and contexts that must be captured to enhance the
successful knowledge translation process and supports the adoption of AI4OS.

Our final ethical consideration pertains to the role of the labeling team in acknowledging and
considering the provenance provided by the experimenting and data mining teams. This aspect
relies on human autonomy, as knowledge labelers can choose to ignore provenance. As human
autonomy in the knowledge translation process becomes curtailed by AI4Science manifestations
like self-driving labs, this becomes increasingly problematic. Consequently, fostering ethical work
cultures becomes imperative, wherein all providential knowledge is not only valued but also demanded
from downstream agents. A pragmatic societal solution involves enhancing digital literacy among
labeling teams, emphasizing the significance of these communication channels, and aligning with the
contextualist recommendations for AI use as presented by Chan (32).

Nevertheless, this requirement to thoughtfully consider provenance encounters socio-technical resis-
tance. AI professionals and researchers who currently leverage DiSS and soon AI4Science systems
inevitably contend with external pressures that may hinder their consideration of information or data
context. These pressures could stem from impending deadlines, managerial demands, or market forces.
Therefore, it becomes crucial for researchers to prioritize knowledge transfer, ensuring that their
respective labels are well-informed to avert potentially detrimental consequences. Most significantly,
this underscores a concluding ethical consideration directed at the developers of AI4Science.

6 Conclusions and Future Work

In this paper, we introduced AI for Open Science using a Multi-agent Discovery Support formalism
that aligns with Open Science ideals and highlights the need for openness within the AI for Science
community. We demonstrated the power of this formalism to make assertions that appropriate labeling
of new knowledge is monotonically related to the degree to which the labeling agent understands
the intent, context, and assumptions of the upstream teams. This imposes a clear ethic on all
teams operating within an AI for Open Science paradigm to propagate their prior knowledge to all
downstream teams. Finally, we assessed ethical considerations of openness in the context of AI for
Science justifying the need for systems to adopt an AI for Open Science framing.

Additionally, we believe there are several fruitful directions for future work. First, Assumption 2
must be empirically validated, perhaps through human team-based experimentation. Second, we
need to assess as a field the degree to which current AI-driven systems are effectively closed or open.
However, for this to be accomplished we must develop a proxy for Equation 4 that is computable and
provably optimizes our openness metric.
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