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Figure 1: TivTok explicitly decouples videos into time-invariant (TIV) tokens and time-variant
(TV) tokens, achieving 2.91× higher compression efficiency than traditional tokenizers while main-
taining comparable reconstruction quality in long video tokenization by reusing the TIV tokens.

ABSTRACT

Video tokenization is a critical bottleneck for learned video compression and gen-
eration. Existing methods often fail to adapt to the uneven information density of
videos, underutilize temporal redundancy, and overlook the reusability of shared
content. We present TivTok (Time-Invariant Tokenizer), a transformer-based tok-
enizer that explicitly decouples videos into time-invariant (TIV) tokens, which
capture global information shared across frames, and time-variant (TV) tokens,
which encode frame-specific residual details. The encoder is designed with tai-
lored attention masking to enforce this factorization, enabling the invariant com-
ponent to capture not only static elements but also temporally coherent patterns
such as consistent motion trajectories. In decoding, a broadcast mechanism reuses
TIV tokens across frames, reducing complexity from quadratic to linear in video
length. We further extend this approach to long videos through cross-chunk reuse,
enabling scalable compression. Experiments show that TivTok improves recon-
struction quality with FVD of 12.65 in the traditional 16 × 256 × 256 setting
and achieves a 2.91× gain in compression efficiency for 128× 256× 256 videos
compared to state-of-the-art methods.

1 INTRODUCTION

Generative models have achieved remarkable success across diverse downstream applications, in-
cluding visual content generation (Blattmann et al., 2023a; Rombach et al., 2022; Blattmann et al.,
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2023b; Liu et al., 2024; Huang et al., 2025b), cinematic production (Huang et al., 2024; Chen et al.,
2024b; Huang et al., 2025a), and industrial simulation (Zheng et al., 2024a; Ren et al., 2024a;b; Chen
et al., 2025b; Agarwal et al., 2025). Their success is largely driven by the insight that pixel-space
visuals is highly redundant; projecting these high-dimensional representations into compact latent
spaces significantly reduces computation and shifts focus to semantic structure, enabling sharper
and higher-quality generations (Rombach et al., 2022; Blattmann et al., 2023a). However, video
tokenization remains challenging, since it must compress data far more aggressively than images to
handle the rapid growth in data volume with longer sequences, while handling the large yet intricate
temporal redundancy.

Tokenizing videos requires handling the uneven distribution of information across frames. Encod-
ing each frame or chunk independently introduces large amounts of redundancy, since much of the
content—such as scene structure, object appearance, and smooth motion—persists over time. An
effective tokenizer should capture these shared patterns compactly, while leaving only the unpre-
dictable details to be represented frame by frame. Just as importantly, the representation should be
reusable and extendable as the sequence continues, avoiding the need to re-encode what is already
known. Recent work in video tokenization has begun to move in this direction, going beyond simple
frame-based encoding to capture richer temporal structure.

One direction extends image tokenizers by adding temporal compression layers (Blattmann et al.,
2023b), often with 3D convolutions (Li et al., 2024; Agarwal et al., 2025; Zhao et al., 2024; HaCo-
hen et al., 2024), to handle the extra time dimension. Later methods go further by breaking away
from frame-based structure altogether: they patchify the video into 1D token sequences and use
transformers to compress them into holistic tokens that summarize global information through at-
tention (Yu et al., 2024a; Huang et al., 2025b; Bachmann et al., 2025; Wang et al., 2024a; Yan et al.,
2024; Li et al., 2025). This approach moves beyond a fixed H ×W ×T resolution and allows more
flexible allocation of representation capacity (Beyer et al., 2025), though its quadratic attention cost
makes scaling to long videos difficult.

A second direction tackles temporal redundancy more directly by decomposing videos into a context
frame (often an aggregation of all frames) and relative motion with respect to this frame (Tan et al.,
2024; Tian et al., 2024b; Yu et al., 2024b; Wang et al., 2025). This strategy allows longer video
reconstruction by reusing the stable context, but its explicit decomposition can oversimplify video
structure, which often fails when backgrounds or scenes change dramatically.

Driven by the need to both cut redundancy and promote reusability, we propose TivTok (Time-
Invariant Tokenizer), a tokenizer that extracts temporal invariants through Time-Invariant (TIV)
tokens and reuses them across frames to improve video compression. As is shown in Figure 1, we
decouple videos into two complementary components: time-invariant representations, which capture
semantic invariants rather than pixel persistence; and time-variant representations, which encode
the residual, frame-specific details. To realize this factorization, we design a transformer-based
architecture with masked attention that enforces a clean separation between invariant and variant
tokens. By reusing TIV tokens across video chunks, TivTok naturally scales to long videos and
achieves superior compression: it improves reconstruction quality with FVD of 12.65 in the standard
16 × 256 × 256 setting and delivers a 2.91× gain in compression efficiency for 128 × 256 × 256
videos compared to existing approaches. We summarize our main contributions as follows:

• We propose a new paradigm for efficient video tokenization that separates and reuses shared time-
invariant information across frames while encoding only frame-specific residuals.

• We design a transformer-based framework with tailored attention masking and decoding to control
information flow between time-invariant and time-variant components.

• We enable scalable long video tokenization by reusing time-invariant tokens across frames and
chunks, reducing tokenization complexity from quadratic to linear in video length.

2 RELATED WORK

2.1 FROM IMAGE TOKENIZER TO VIDEO TOKENIZER

Following the tremendous success of the encode-generate paradigm in image generation (Rombach
et al., 2022), researchers have developed video tokenizers by extending the dimensionality of exist-
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ing image tokenization methods. The core idea underlying these approaches is to treat video tok-
enization as a natural extension of image compression by adding temporal dimensions to spatial pro-
cessing architectures. These dimension-extended methods can be categorized into two main lines of
works: Downsample-based Video Tokenizers. Early work (Blattmann et al., 2023b) first explores
adapting image tokenizers for video tokenization by encoding videos frame-by-frame. Subsequent
methods (Zhao et al., 2024; Agarwal et al., 2025; Chen et al., 2024a; Tang et al., 2024) extended 2D
convolutions to 3D convolutions for temporal downsampling, achieving higher compression ratios
while proposing various optimization techniques to facilitate training. CV-VAE (Zhao et al., 2024)
leverages 2D convolutions pretrained on images to regularize video tokenizers, improving training
efficiency. VidTok (Tang et al., 2024) incorporates multiple techniques including FSQ to improve
codebook utilization and compression efficiency. Cosmos (Agarwal et al., 2025) employs 3D Haar
wavelets to enhance model performance. Holistic Tokenizers. TiTok (Yu et al., 2024a) pioneered
the use of transformer architectures to compress images into 1D learnable tokens, enabling higher
compression rates through global receptive fields. This approach has inspired subsequent works ex-
ploring 1D tokenization for images (Huang et al., 2025b; Tian et al., 2024a) and videos (Wang et al.,
2024a; Yan et al., 2024; Li et al., 2025). However, directly applying such methods to videos encoun-
ters significant challenges, as video patches vastly outnumber image patches, leading to quadratic
computational growth and increased learning complexity that hinders effective video compression.
Despite various attempts to explore such compression strategies, these methods remain limited to
low-resolution video compression. Different from these dimension-extension approaches, we focus
on the fundamental temporal redundancy characteristics of videos by reusing shared information
across consecutive frames rather than simply extending spatial processing, thereby achieving supe-
rior compression efficiency.

2.2 DECOMPOSE-BASED VIDEO TOKENIZER

Traditional video compression (e.g., H.264/MPEG-4 AVC (Richardson, 2004) and AV1 (De Ri-
vaz & Haughton, 2019)) has long recognized the fundamental principle of temporal redundancy
exploitation through decomposed encoding strategies. In H.264, for instance, P-frames leverage
motion compensation by referencing spatial blocks up to 16×16 pixels from previously encoded
frames, encoding only the residual differences between the predicted and actual content. This de-
composition strategy effectively eliminates temporal redundancy by avoiding redundant encoding
of similar visual content across consecutive frames. Recently, numerous works (Wu et al., 2024;
Jin et al., 2024; Yu et al., 2024b) have followed this paradigm to explore more efficient video to-
kenizers through learned decomposition. CMD (Yu et al., 2024b) first proposes content-motion
decomposition, encoding videos into a 2D content frame and low-dimensional motion latents to
capture static and dynamic information separately. Reducio (Tian et al., 2024b) employs an image-
conditioned decoder while maintaining a reference image to achieve high-quality video reconstruc-
tion with reduced storage requirements. SweetTok (Tan et al., 2024) separately encodes the first
frame and subsequent residual frames, explicitly modeling temporal dependencies through learned
residual representations. HiVAE (Liu et al., 2025) decomposes videos into high-frequency and low-
frequency components, enabling specialized compression strategies for different temporal scales.
However, these predefined decomposition methods suffer from rigid structures that poorly adapt to
diverse video content and lack reusability, thus failing to scale efficiently to longer sequences. More-
over, the predefined decomposition introduces additional optimization complexities. In contrast, we
propose extracting and reusing temporal invariants across frames, avoiding redundant encoding.
Experiments demonstrate that our temporal invariants easily extend to long video sequences while
achieving 2.91× higher compression efficiency.

3 METHOD

3.1 PRELIMINARY: TRANSFORMER-BASED HOLISTIC VISUAL TOKENIZER

Pioneered by TiTok (Yu et al., 2024a), transformer-based holistic tokenizers have become a popular
choice for visual tokenization. Their key idea is to distill a compact set of 1D global latents from all
input patches by leveraging the transformer’s global receptive field.

3
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Figure 2: TivTok employs a transformer-based tokenizer architecture, consisting of an encoder with
dual-range attention masks and a decoder with a TIV Token Broadcasting mechanism, which isolates
shared versus frame-specific content and ensures reusability of TIV tokens across all time steps.

Given a video V ∈ R3×T×W×H , the tokenizer first patchifies V with a fixed downsampling ra-
tio (fT , fW , fH), producing patch features X ∈ Rd× T

fT
× W

fW
× H

fH . These flattened patches are
concatenated with a set of learnable tokens Z ∈ Rd×Nz to form Z̃ = [Flatten(X);Z].

This combined sequence is then passed through a transformer encoder E(·) . Through self-attention,
the latent tokens absorb global information from all patches across the video. After encoding, the
latent tokens are quantized with Q(·) to form a compact representation Ẑ that captures the essential
content of the video in a discrete code space.

During decoding, learnable patch queries Qp and the latent codes Ẑ are processed by a symmetric
transformer decoder D(·) to recover patch features X̂ = D([Qp; Ẑ]), which are then upsampled to
the original resolution. This entire process can be summarized as

Ẑ = Quant
(
E([patchfy(V );Z])

)
, V̂ = Unpatchify

(
D([Ẑ;Qp])

)
. (1)

However, because the number of patches increases linearly with video length, the computational
cost of self-attention grows quadratically; both encoding and decoding scale as O(T 2).

3.2 DECOUPLING TIME-INVARIANT AND TIME-VARIANT TOKENS

From an information-theoretic perspective, a video sequence can be regarded as a collection of
frames with substantial shared content. Its entropy provides a natural measure of the information
content, and thus reflects the number of tokens (or bits) required for compression.

Consider a video sequence of length T . Explicitly capturing the shared component C across frames
can substantially reduce sequence entropy. In particular, the reduction can be quantified as

Hindep −Hshared ≥
T∑

t=1

I(Xt;C)− I(C;X1:T ) ≈ (T − 1)I(C;X1:T ) ≫ 0, (2)

where Hindep is the sum of per-frame entropies if frames are encoded independently, and Hshared
accounts for the shared information C. A detailed derivation is provided in Appendix A. This
analysis shows that explicitly capturing and reusing temporal redundancy can dramatically reduce
the number of tokens needed to represent a video.

Building on this, we explicitly model the shared time-invariant component C, which captures re-
dundant information persisting across frames—not only pixel-level persistence, but also semantic
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invariants such as scene geometry, object structure, and consistent visual elements that remain sta-
ble throughout the video sequence. Encoding this continuity in the time-invariant component pre-
vents redundant re-encoding of scene-level information in every frame, and leaves the unpredictable,
frame-specific residuals to the time-variant component.

To this end, we propose a decoupled token representation that factorizes a video into two comple-
mentary components:

• Time-Invariant Tokens (TIV), ZTIV ∈ RNTIV ×D, which encode information shared
across frames and can be reused to extend representations to longer videos

• Time-Variant Tokens (TV), ZTV ∈ RT×NTV ×D, which preserve frame-specific details
unique to each time step.

Formally, for a video V ∈ R3×T×H×W , the entire sequence is represented as
[ZTIV , Z

(1)
TV , Z

(2)
TV , . . . , Z

(T )
TV ]. For an individual frame at time step t, its content is compactly de-

scribed by the token pair [ZTIV , Z
(t)
TV ].

3.3 TOKENIZER DESIGN FOR TIV/TV DECOUPLING

We design a transformer-based tokenizer that explicitly decouples and tokenizes the time-invariant
(TIV) and time-variant (TV) components (Figure 2). The encoder isolates shared versus frame-
specific content, and the decoder ensures reusability of TIV tokens across all time steps.

To enforce the intended factorization, we constrain the visibility of tokens in the encoder through an
attention mask. TIV tokens are granted global visibility: for a video V = {X1, . . . , XT }, each TIV
token attends to all frame patches {Xt} as well as all TV tokens. In contrast, each TV token at time
step t has only local visibility, restricted to its own frame patches Xt, the TIV tokens, and itself.

Formally, the encoder updates are defined as

Z ′
TIV = Attn

(
ZTIV, [ZTIV, Z

(1)
TV , . . . , Z

(T )
TV , X1, . . . , XT ]

)
,

Z
(t)′
TV = Attn

(
Z

(t)
TV , [ZTIV, Z

(t)
TV , Xt]

)
.

(3)

This dual-range masking is designed to encourage TIV tokens to aggregate shared information
across the sequence, while guiding TV tokens to primarily capture frame-local residuals. Using
causal masking for TV tokens may seem natural for autoregressive generation, but it would both
duplicate information already stored in the TIV tokens and raise the cost to quadratic in T . Limiting
TVs to single-frame visibility keeps the roles cleanly separated and maintains efficiency, reducing
overall encoding complexity from O

(
T 2 · (NTIV +NTV)

)
to O

(
T 2 ·NTIV + T ·NTV

)
.

In the decoder, we propose a TIV Token Broadcast mechanism to facilitate reuse of shared infor-
mation. After encoding, the TIV tokens are broadcast to every time step and recombined with the
corresponding TV tokens, so that each frame is decoded as

X̂t = D
(
[ZTIV, Z

(t)
TV ]

)
, t = 1, . . . , T, (4)

where D(·) denotes the transformer decoder. Since all frames reuse the same TIV tokens, they can be
decoded in parallel without interfering with one another. This design explicitly reuses shared content
and reduces decoding complexity from quadratic in the video length (O(T 2)) to linear (O(T )),
thereby improving efficiency and scalability for long video generation.
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3.4 BROADCASTING TIV TOKENS FOR LONG VIDEO COMPRESSION

Algorithm 1: TIV-Broadcast Training Algorithm for Long Video Redundancy

Input: Long video {X1:TK} with K chunks of length T , pre-specified distribution p ∈ RK ;
Output: Decoded video X̂1:TK ;
1. Parallel Encoding:
for i = 1, . . . ,K do

Encode chunk X
(i)
1:T → Z

(i)
c , {Z(i,t)

s }Tt=1

2. Shared Token Merging:
Merge TIV tokens: Z̄c =

1
K

∑K
i=1 Z

(i)
c

3. Token Reorganization:

Z = [Z̄c, Z
(1,1)
s , . . . , Z(1,T )

s , . . . , Z(K,1)
s , . . . , Z(K,T )

s ]

4. Propagation Decoding:
for each frame t in parallel do

Broadcast Z(k)
c to frame t and decode with its specific tokens Z(i,t)

s to reconstruct X̂(i,t);

5. Update: Compute L(X̂,X), update parameters
Complexity: Encoding and decoding cost scales as O(K) instead of O(K2).

Following Eq. 2, we extend our analysis to long videos divided into multiple chunks. For a tradi-
tional tokenizer, compressing a K-chunk video requires a proportional increase in the total number
of tokens, and the computational cost grows quadratically with the total length T .

In contrast, motivated by our earlier observations, we explore reusing cross–chunk redundancy to
achieve more efficient video compression. Intuitively, a video’s global shared information is rela-
tively stable, so the common content extracted from one chunk can serve as an estimate of the global
schema of the entire video. Building on this insight, we propose a training strategy for cross–chunk
reuse of shared tokens, as illustrated in Algorithm 1.

Specifically, for a long video {X1:TK} composed of K chunks of length T , we first encode all K
chunks in parallel and merge the temporal invariant tokens by averaging: Z̄c = 1

K

∑K
i=1 Z

(i)
c . We

then retain the merged TIV tokens Z̄c and reorganize the representation of the entire video as:

Z =
[
Z̄c, Z

(1,1)
TV , . . . , Z

(1,T )
TV , . . . , Z

(K,1)
TV , . . . , Z

(K,T )
TV

]
,

where Z
(i,t)
TV denotes the TV tokens of the t-th frame in chunk i.

During decoding, following the broadcasting mechanism in Sec. 3.3, the shared tokens Z̄c are
broadcast to every frame to guide parallel reconstruction across all chunks. This design reduces
token count by exploiting cross-chunk redundancy, improves efficiency by cutting complexity from
quadratic to linear in K, and eases training by shortening token sequences.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Our model ϕ is optimized using a composite loss function that combines reconstruction quality with
perceptual and adversarial objectives:

L = Lrecon + λ1Lpercept + λ2 · λ∇Ladv, λ∇ =
∇ϕ(Lrecon + λ1Lpercept)

∇ϕLadv
, (5)

This objective incorporates L1 reconstruction loss Lrecon, perceptual loss Lpercept (Johnson et al.,
2016; Larsen et al., 2016), and adversarial loss Ladv (Goodfellow et al., 2020), with λ∇ serving
as an adaptive weighting coefficient. We empirically set λ1 = 1 and λ2 = 0.2 throughout our
experiments. More implementation details can be found in Appendix B.
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Table 1: Comparison of Video Reconstruction on UCF-101. We compare different categories
of video tokenizers with similar compression ratios. We additionally report the number of tokens
to pixels ratio (T/P (%)) for intuitive comparison, which is crucial for generation model efficiency.
Gray highlights indicate cases where our method achieves superior or comparable performance.
Bold values indicate best performance; underlined values show second-best results.

Method #Tokens #Dim. T/P(%)↓ PSNR↑ SSIM↑ LPIPS↓ rFVD↓
Downsample-based video tokenizer

SDXL-VAE (Podell et al., 2023) 16384 4 1.563 - - - 23.68
OpenSora (Zheng et al., 2024b) 4096 16 0.391 - - - 67.52
Cosmos-M (Agarwal et al., 2025) 2048 16 0.195 31.70 0.9177 0.0575 13.67
Cosmos-S (Agarwal et al., 2025) 512 16 0.049 28.26 0.8577 0.1046 104.51
CV-VAE (Zhao et al., 2024) 4096 4 0.391 29.47 0.8849 0.0685 52.43

Holistic video tokenizer(∗:Video resolution 16×128×128)

LARP (Wang et al., 2024a)∗ 1024 16 0.391 28.65 0.9003 0.0425 23.93
LARP (Wang et al., 2024a) 1024 16 0.098 25.53 0.8262 0.0973 51.45
ElasticTok (Yan et al., 2024) 1024 16 0.391 - - - 390
AdapTok (Li et al., 2025) 2048 16 0.781 26.38 0.8539 0.0599 27.97

Decompose-based video tokenizer

Omni (Wang et al., 2024b) 4096 8 0.391 29.34 0.9250 0.0487 14.53
Omni-DV (Wang et al., 2024b) 4096 8 0.391 28.06 0.9095 0.0637 27.12
VidTwin (Wang et al., 2025) 1008 4/8 0.126 28.14 0.8044 0.2414 388.86

TivTok-S 128 128 0.012 30.13 0.9010 0.0614 21.29
TivTok-M 512 32 0.049 30.26 0.8982 0.0533 12.65
TivTok-L 1024 16 0.098 29.54 0.8897 0.0607 17.97

4.2 VIDEO RECONSTRUCTION COMPARISON

We conduct comprehensive evaluation of video reconstruction quality on the UCF-101 (Soomro
et al., 2012) dataset, utilizing videos with 256×256 resolution and 16-frame sequences. To en-
sure comprehensive comparison, we evaluate against representative baselines from three major cat-
egories: downsample-based, holistic, and decompose-based video tokenizers, with all methods con-
figured to achieve similar compression ratios for meaningful comparison.

The quantitative results presented in Table 1 demonstrate that our method consistently achieves per-
formance that either exceeds or matches current state-of-the-art approaches across all evaluation
metrics. We further analyze the trade-off between the number of tokens and token dimensions by
comparing TivTok-S, TivTok-M, and TivTok-L, which share the same overall model size. Interest-
ingly, we observe that TivTok-M achieves the best reconstruction performance, suggesting that there
exists an optimal balance between token number and dimensionality: too few tokens limit spatial
resolution, while too low-dimensional tokens may restrict representational capacity. Nevertheless,
the differences among the three models are relatively small, indicating that the framework is robust
to this trade-off. Additionally, Table 5 compares tokenizers trained on different datasets (e.g., Web-
Vid Bain et al. (2021)) while following the same content decomposition approach Yu et al. (2024b);
Liu et al. (2025). The results show that our method achieves stronger compression, as it adopts
a more general decomposition strategy rather than restricting factors to specific components (e.g.,
“motion” or “high-frequency”), which may not generalize to more complex video structures.

4.3 LONG VIDEO TOKENIZATION

To further demonstrate TivTok’s superiority in temporal invariant reuse, we explore long video tok-
enization. The experimental results in Table 2 reveal distinct behavioral patterns as temporal length
T increases. Downsample-based video tokenizers CV-VAE (Zhao et al., 2024) maintain relatively
stable reconstruction quality but suffer from dramatic token count growth. Holistic video tokenizers
LARP (Wang et al., 2024a) experience severe quality degradation while incurring quadratic latency
scaling with respect to T. In contrast, our method achieves 2.91× higher compression efficiency
while maintaining only slight reconstruction quality degradation and mitigating quadratic latency
growth. Remarkably, our approach requires merely 1.1% of the tokens needed by downsample-
based methods, demonstrating substantial potential for improving generation efficiency.
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Table 2: Comparison of long video tokenization. We retrain baseline methods with comparable
compression ratios and compare against CoordTok (Jang et al., 2025). We report results including
inference latency for computational efficiency assessment.

Method #Tokens #Dim. Latency(s)↓ PSNR↑ SSIM↑ LPIPS↓ rFVD↓
Video resolution 32×256×256

CV-VAE (Zhao et al., 2024) 8192 4 1.78 29.12 0.8809 0.0692 64.21
LARP (Wang et al., 2024a) 2048 16 1.75 23.15 0.7479 0.1757 226.79
TivTok-S 160 128 0.20 29.05 0.8831 0.0719 38.49
TivTok-M 640 32 - 30.25 0.8948 0.0591 23.26
TivTok-L 1280 16 - 29.13 0.8857 0.0711 61.46

Video resolution 128×256×256 (∗:Video resolution 128×128×128)

CV-VAE (Zhao et al., 2024) 32768 4 7.12 29.00 0.8831 0.0729 72.91
LARP (Wang et al., 2024a) 8192 16 22.78 14.85 0.2924 0.6251 3223.55
CoordTok (Jang et al., 2025)∗ 1280 8 - 27.25 0.7503 0.2346 1108.76
TivTok-S 352 128 0.71 26.23 0.8210 0.1057 92.09

GTOursOmniOmni-DVCVVAELARP GT

(a)

(b)

(c)

(d)

Figure 3: Long Video Reconstruction Comparison on UCF-101. We provide magnified views
of regions highlighted by red rectangles in the ground truth for detailed comparison. Our method
demonstrates superior detail preservation with higher compression, as indicated by the red circles.

We further provide qualitative visualization comparisons at a resolution of 128× 256× 256 in Fig-
ure 3. Despite using a higher compression rate with fewer tokens, our method achieves comparable
reconstruction quality and even superior detail preservation, as shown in Figure 3: the retained
numerical text and ball in (a), the horse head in (b), the fine details around the foot in (c), and
the subtle hand reflection on the piano surface in (d). These results demonstrate that TivTok’s ex-
plicit extraction and reuse of temporal invariants substantially improve compression capability while
maintaining strong reconstruction performance.

4.4 VIDEO GENERATION COMPARISON

Table 3 reports the generation metrics for class-conditional video generation on the UCF-101 dataset.
The results show that our method achieves substantially lower GPU memory consumption and faster
inference speed compared to the baselines, thanks to the reuse of TIV tokens, which greatly improves
computational efficiency. At the same time, our generated videos remain highly competitive in
quality under the same video length setting.

4.5 DISCUSSION ON TIME INVARIANT TOKENS

A key observation from our visualizations is that TIV tokens do not simply capture static back-
grounds, but the true time-invariant components of a video. For example, in Figure 4(a) (the figure
skating sequence), what changes across frames is primarily the background (advertising boards at
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Table 3: Comprehensive Comparison of Video Generation Methods. The comparison includes
inference speed, GPU memory usage, computational cost (TFLOPs), and generation quality (FVD).
Results of MeBT Yoo et al. (2023), PVDM Yu et al. (2023), HVDM Kim et al. (2024), Coord-
Tok Jang et al. (2025)+SiT-L/2 Ma et al. (2024) are taken from MALT Yu et al. (2025). (∗: Video
resolution 128×128×128).

Method Vid. Len. #Tokens Time / Step (s)↓ GPU Peak Mem. (GB)↓ TFLOPs↓ FVD↓
Cosmos-S 16 512 0.047 2.62 0.49 191
Omni 16 4096 0.437 4.69 5.82 191
LARP 16 1024 0.083 2.73 1.05 107
CVVAE 16 4096 0.437 4.69 5.82 262
TivTok-L 16 1024 0.083 2.73 1.05 99
TivTok-M 16 512 0.047 2.62 0.49 101
TivTok-S 16 128 0.021 2.58 0.12 149

CVVAE 32 8192 1.261 10.82 15.97 370
TivTok-S 32 160 0.021 2.58 0.15 300

MeBT∗ 128 8192 6.53 13.3 - 968
PVDM∗ 128 16384 0.26 4.33 - 505
HVDM∗ 128 32768 1.514 12.1 - 550
CoordTok+SiT-L/2∗ 128 1280 - - - 369
MALT∗ 128 4096 - - - 220
TivTok-S∗ 128 352 0.031 2.60 0.33 208
TivTok-S 128 352 0.031 2.60 0.33 316

Table 4: Ablation studies on the proposed techniques.
Methods PSNR↑ SSIM↑ LPIPS ↓ rFVD↓
w/o decomposed tokens 27.24 0.8530 0.0748 91.99
w/o dual-scope encoder 19.67 0.5691 0.5691 1359.38
w/o parallel decoder 17.69 0.4665 0.6083 3694.34
w/o TIV-Broadcast training 25.81 0.8219 0.1069 93.49

TivTok 29.05 0.8831 0.0719 38.49

different positions in the rink), while the two skaters remain consistent. The TIV tokens clearly cap-
ture the skaters’ detailed appearance, especially the textural pattern of the clothing, indicating that
they encode the essential invariant content rather than just static scenery. Interestingly, in some cases
the time-invariant component is explicitly singled out by the model. In Figure 1 (bottom), although
many balls move on the pool table, only the stationary ones are captured by TIV tokens; similarly,
in the frisbee scene, the relatively immobile player is extracted as invariant. These cases show that
TivTok selectively emphasizes elements that remain stable across time, rather than indiscriminately
encoding all content.

More importantly, TIV tokens capture semantic invariants rather than only pixel-level persistences.
To illustrate this, we compare against a simple intersection of unchanged pixels across frames
(shown with red boxes), which would highlight only regions with minimal pixel variation. If TIV to-

(a)

(b)

(c)

(d)

TiV Tok. Intersection across framesTV Tok. Recon.
Figure 4: TIV Token and TV Token Visualization and Analysis. The intersection images (red
boxes) display pixel-level persistence across frames, where we retain regions with minimal pixel
variation. Results demonstrate that our TIV tokens capture temporal invariants including semantic
information and scene geometry rather than merely pixel-level persistence.

9
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Table 5: Scalability of TivTok. TivTok consistently improves with larger models and datasets, and
maintains strong performance across different video resolutions.

Method Comp. Rate(%)↓ PSNR↑ SSIM↑ LPIPS↓ rFVD↓
Scalability of Model Size. Tested on UCF-101

TivTok-Small 0.52 27.73 0.8611 0.0809 47.31
TivTok-Base 0.52 30.13 0.9010 0.0614 21.29
TivTok-Large 0.52 30.94 0.9116 0.0490 13.11

Scalability of Dataset Size and Resolution

CMD-WebVid-256 Yu et al. (2024b) 6.85 26.55 0.795 0.110 98.623
HiVAE-WebVid-256 Liu et al. (2025) 0.27 29.35 0.834 0.096 61.941
TivTok-WebVid-256 0.26 28.61 0.8288 0.0729 22.96
TivTok-WebVid-256 0.52 31.69 0.8958 0.0477 7.15
TivTok-VidProM-256 0.52 33.17 0.9384 0.0284 5.63
TivTok-VidProM-512 0.52 33.56 0.9 0.0430 9.08

kens only encoded pixel-level persistence, they would align closely to these intersections. However,
our results show otherwise: in cases such as the boxing sequences in Figure 1 and the dynamic scenes
in Figure 4(b)/(c), TIV tokens encode stable scene semantics. For example, in the boxing sequence,
beyond the moving punching bag, the entire gym environment—including the central pillar—is
faithfully represented. This ability to capture semantic invariants provides strong reconstruction
priors, leaving only minimal frame-specific details to be represented by TV tokens. Broadcasting
TIV tokens supplies stable context across longer sequences, whereas broadcasting only pixel-level
invariants would fail. The successful decoupling of TIV and TV tokens thus enables substantial
redundancy reduction by exploiting the reusability of TIV tokens in longer videos.

4.6 ABLATION STUDY

Table 4 presents ablation studies on the 32×256×256 setting. Removing token decomposition
causes significant performance degradation, confirming that direct holistic tokenization complicates
learning. Ablating TIV-Broadcast training reduces performance while maintaining capability, val-
idating temporal invariant sharing. Ablating the specialized encoder or decoder causes complete
failure, indicating that careful architecture design is required for effective broadcasting. All compo-
nents are essential for effective long video compression.

4.7 SCALABILITY OF TIVTOK

Table 5 evaluates the scalability of our method with respect to model size, dataset size, and res-
olution. Performance consistently improves with larger models, reflecting their greater capacity to
capture complex temporal and spatial patterns. Scaling up the dataset, e.g., using WebVid-10M Bain
et al. (2021) and VidProM Wang & Yang (2024), further enhances the model’s capabilities by pro-
viding more diverse training data. Our method also maintains strong reconstruction quality across
different resolutions, demonstrating robustness. Overall, these results confirm that our approach
scales well across model, dataset, and resolution dimensions, thanks to a streamlined design that
includes only the essential modules for realizing our core ideas.

5 CONCLUSION

In this paper, we propose TivTok (Time-Invariant Tokenizer), which decouples videos into time-
invariant (TIV) tokens capturing shared information and time-variant (TV) tokens encoding
frame-specific details. TivTok employs a dual-range attention encoder and parallel decoder with
TIV Token Broadcasting to isolate shared versus frame-specific content and enable token reuse
across video. Experiments reveal that TIV tokens capture semantic information and scene geometry
beyond pixel-level persistence, enabling natural extension to long videos. TivTok achieves supe-
rior reconstruction quality while delivering 2.91× compression efficiency improvement compared
to state-of-the-art methods. By explicitly modeling temporal invariants and enabling their system-
atic reuse, TivTok establishes a new paradigm for efficient video tokenization that addresses the
fundamental challenges of redundancy and scalability in video compression.
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6 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. No human subjects or animal experimentation
was involved. All datasets used, including UCF-101 and K600, were sourced in compliance with
relevant usage guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or
discriminatory outcomes in our research process. No personally identifiable information was used,
and no experiments were conducted that could raise privacy or security concerns. We are committed
to maintaining transparency and integrity throughout the research process.

7 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. The
experimental setup, including training procedures, model configurations, and hardware details, is
described in detail throughout the paper. We have provided comprehensive implementation details
of our TivTok framework to assist others in reproducing our experiments.

All datasets used in the paper, such as UCF-101 and K600, are publicly available, ensuring consis-
tent and reproducible evaluation results. Training hyperparameters, loss function formulations, and
architectural specifications are explicitly documented.

We believe these measures will enable other researchers to reproduce our work and further advance
the field.
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A ENTROPY ANALYSIS OF SHARED VS. INDEPENDENT FRAME ENCODING

Consider a video sequence {X1, . . . , XT }. If each frame is encoded independently, the sequence
entropy is

Hindep=

T∑
t=1

H(Xt)=

T∑
t=1

(
I(Xt;C) +H(Xt | C)

)
, (6)

where C denotes a shared component, I(Xt;C) the mutual information between Xt and C, and
H(Xt | C) the frame-specific residual information.

By explicitly modeling C, the sequence entropy decomposes as

Hshared = H(X1:T ) = H(X1:T | C) + I(C;X1:T ) =

T∑
t=1

H(Xt | C,X1:t−1) + I(C;X1:T ). (7)
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Since H(Xt | C,X1:t−1) ≤ H(Xt | C), when strong temporal invariants exist, we have

Hindep −Hshared ≥
T∑

t=1

I(Xt;C)− I(C;X1:T ) ≈ (T − 1)I(C;X1:T ) ≫ 0, (8)

where the approximation assumes each frame contributes roughly equally to the shared information
C.

Conclusion: explicitly capturing temporal redundancy allows for dramatically fewer tokens while
maintaining representation quality.

B MORE IMPLEMENTED DETAILS

B.1 TRAINING DETAILS

For the tokenizer implementation, our method is built upon SoftVQ-VAE (Chen et al., 2025a). All
tokenizers are trained on a combination of UCF-101 (Soomro et al., 2012) and K600 (Carreira et al.,
2018) datasets using a single node equipped with 8 A800 GPUs for 100,000 iterations, requiring
approximately 1 day. For the second stage training targeting long video compression, we conduct
additional training for 50,000 iterations. For video generation evaluation, we adapt LightningDiT-
XL/1 (Yao et al., 2025) to support video generation, training for 100,000 iterations on 8 A800 GPUs
over approximately 1 day.

Our tokenizer is built upon a ViT-based architecture (except for the scalability experiments, we
use the ViT-Base model), while the generation model is based on LightningDiT. For generation, we
evaluate class-conditional generation on UCF101. Tables 6 and 7 provide the detailed configurations
of TivTok and LightningDiT, respectively.

Table 6: Training configuration of TivTok.

Configuration Value

video resolution 256×256
enc/dec hidden dimension 768
enc/dec #layers 12
enc/dec patch size 4×8×8
enc/dec positional embedding 3D RoPE (video)

optimizer AdamW
weight decay 1e-4
optimizer momentum β1, β2 = 0.9, 0.95
global batch size 64
training steps 100K for 16 frames and 50K for token brocasting training
base learning rate 1e-4
warmup steps 5K
learning rate schedule cosine
augmentation horizontal flip, center crop

perceptual weight λ1 1
discriminator DINOv2-S
discriminator weight λ2 0.2
discriminator start 30K
discriminator LeCAM 0.001

Learnable token details. Following existing image 1D tokenizers, we design the encoder to learn
N independent latent tokens, while the decoder relies on a single mask token. For the time-invariant
and time-variant tokens, we distinguish them in the encoder using an attention mask. In the decoder,
we adopt a frame-wise decoding strategy, where each frame is reconstructed using the time-invariant
token together with the time-variant token corresponding to the current latent frame.
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Table 7: Training and inference configuration of LightningDiT-XL.

Configuration Value

hidden dimension 1152
#heads 16
#layer 28
patch size 1
positional embedding APE

optimizer AdamW
weight decay 0
optimizer momentum β1, β2 = 0.9, 0.95
global batch size 512
training steps 100K
base learning rate 1e-4
learning rate schedule constant
augmentation center crop

diffusion sampler Euler
diffusion steps 50
CFG interval start 0.1
timestamp shift 2

Effect of different loss functions. For completeness, we summarize the effects of commonly used
loss functions in video tokenization:

• L1 reconstruction loss encourages accurate pixel-level reconstruction and is the most sta-
ble term for training tokenizers.

• Perceptual loss improves texture sharpness and semantic alignment by comparing features
in a pretrained network, thereby mitigating over-smoothed outputs.

• Adversarial loss enhances realism and high-frequency details, though it typically con-
tributes less to the overall bitrate–quality trade-off than the reconstruction loss.

B.2 METRICS

For video reconstruction, our assessment employs established metrics including PSNR, SSIM (Wang
et al., 2004), LPIPS (Zhang et al., 2018), and reconstruction FVD (rFVD) (Unterthiner et al., 2018).
For video generation, we use generation FVD (gFVD) to assess the quality of generated video
sequences.

B.3 MORE TIV TOKEN ANALYSIS

We provide additional visualizations of TIV and TV tokens in Figure 5, complementing the analysis
presented in Figure 4 for a more in-depth understanding of their behavior.

C ANALYSIS OF MULTIPLE TIME-INVARIANT (TIV) TOKENS

Figure 8 and Table 8 present a detailed analysis of using multiple TIV tokens for video tokeniza-
tion. As expected, increasing the number of TIV tokens generally improves reconstruction quality,
since more tokens are available to encode information. However, this comes at the cost of reduced
compression efficiency.

Specifically, using 4 TIV tokens leads to higher reconstruction quality than the baseline while moder-
ately improving efficiency. In contrast, using a single TIV token maximizes compression efficiency
(2.91×) while maintaining FVD at a level comparable to models with more TIV tokens. These re-
sults highlight the trade-off between reconstruction quality and compression rate and demonstrate
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TiV Tok. Intersection across framesTV Tok. Recon.

Figure 5: More TIV Token and TV Token Visualization. The intersection images (red boxes)
display pixel-level persistence across frames, where we retain regions with minimal pixel variation.
Results demonstrate that our TIV tokens capture temporal invariants including semantic information
and scene geometry rather than merely pixel-level persistence.

Table 8: Effect of the number of TIV tokens on reconstruction and compression metrics. Ex-
periments are conducted at 128×256×256 resolution.

Method Num TIV Tokens Dim Comp. Ratio (%) PSNR ↑ SSIM ↑ LPIPS ↓ rFVD ↓
CVVAE - 32768 4 0.521 29.00 0.8831 0.0729 72.91
TivTok 8 1024 128 0.521 30.07 0.9003 0.0618 28.96
TivTok 4 640 128 0.326 28.97 0.8825 0.0739 39.84
TivTok 2 448 128 0.228 27.20 0.8453 0.0951 81.18
TivTok 1 352 128 0.179 26.23 0.8210 0.1057 92.09

the flexibility of our approach in adjusting the number of TIV tokens according to different applica-
tion requirements.

Overall, this analysis confirms that multiple TIV tokens can be used to capture more detailed time-
invariant content, but even a single TIV token effectively encodes the essential semantic invariants
while providing strong compression.

D ANALYSIS OF TIV/TV TOKEN RATIO

Figure 7 and Table 9 present an analysis of the effect of different TIV-to-TV token ratios on re-
construction and compression performance. As expected, a smaller TIV/TV ratio tends to improve
compression performance for long videos, because more TV tokens are used, which increases the
total number of tokens. However, this also reduces efficiency.

Specifically, as the TIV/TV ratio decreases, reconstruction metrics such as PSNR and SSIM slightly
decrease, while the compression ratio improves. Experimental results show that, regardless of the
TIV/TV ratio, the compression efficiency of our method consistently surpasses CVVAE. Notably,
when the TIV/TV ratio is set to 1:3 or 1:1, both reconstruction quality and compression performance
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Figure 6: Effect of multiple TIV tokens on reconstruction and compression. This figure shows
how varying the number of time-invariant (TIV) tokens impacts reconstruction quality (PSNR,
SSIM) and compression ratio. More TIV tokens improve reconstruction but reduce compression
efficiency, highlighting the trade-off between quality and token usage.

Table 9: Effect of TIV/TV token ratio on reconstruction and compression metrics. Experiments
are conducted at 128×256×256 resolution.

Method TIV/TV Ratio Compression Ratio PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓
CVVAE - 0.521 29.00 0.8831 0.0729 72.91
TivTok 1:3 0.318 28.24 0.8663 0.0761 41.33
TivTok 1:1 0.229 27.52 0.8503 0.0887 64.76
TivTok 3:1 0.179 26.23 0.8210 0.1057 92.09

significantly outperform CVVAE. These results demonstrate a clear trade-off and provide practical
guidance for selecting the TIV/TV token ratio based on specific application requirements.

Overall, this analysis confirms that adjusting the TIV/TV ratio allows flexible control over recon-
struction versus compression, enabling the tokenizer to adapt to different video characteristics.

E DECOMPOSITION DEMONSTRATION

To validate the decomposition property of our method, we conduct an experiment where the time-
invariant (TIV) tokens are fixed and only the time-variant (TV) tokens are varied. As shown in
Figure 8, this allows the model to generate different video sequences while keeping the shared
content consistent, even when the subject undergoes significant motion. This behavior arises from
our more general decomposition design, which enables TIV tokens to autonomously capture the
information they consider more time-invariant, making it reusable across frames.

F MORE QULITATIVE RESULTS

Figure 9 provides additional qualitative comparisons. Notably, CV-VAE operates at a compression
rate of 0.521%, while Omni and Omni-DV both use a compression rate of 1.04%. In contrast, our
method achieves a substantially lower compression rate of only 0.179% by reusing TIV tokens.
Despite this significantly more constrained setting, our method produces visual results that remain
comparable to existing approaches.
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Figure 7: Effect of different TIV-to-TV token ratios on reconstruction and compression per-
formance. The results illustrate the trade-off between reconstruction quality and compression effi-
ciency.
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T
Figure 8: Demonstration of the decomposition property. Time-invariant (TIV) tokens are fixed
while time-variant (TV) tokens are varied, showing that the model can generate different video
sequences while preserving shared content.
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CVVAE( 0.521%) Omni-DV(1.042%) Omni(1.042%) Ours(0.179%) GT

Figure 9: Additional qualitative examples. Compression ratios for each method are shown in
parentheses. Despite operating at a significantly lower compression ratio, our method produces
visual results that remain comparable to existing approaches.
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