

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TIVTOK: BROADCASTING TIME-INVARIANT TOKENS FOR SCALABLE VIDEO TOKENIZATION

Anonymous authors
Paper under double-blind review

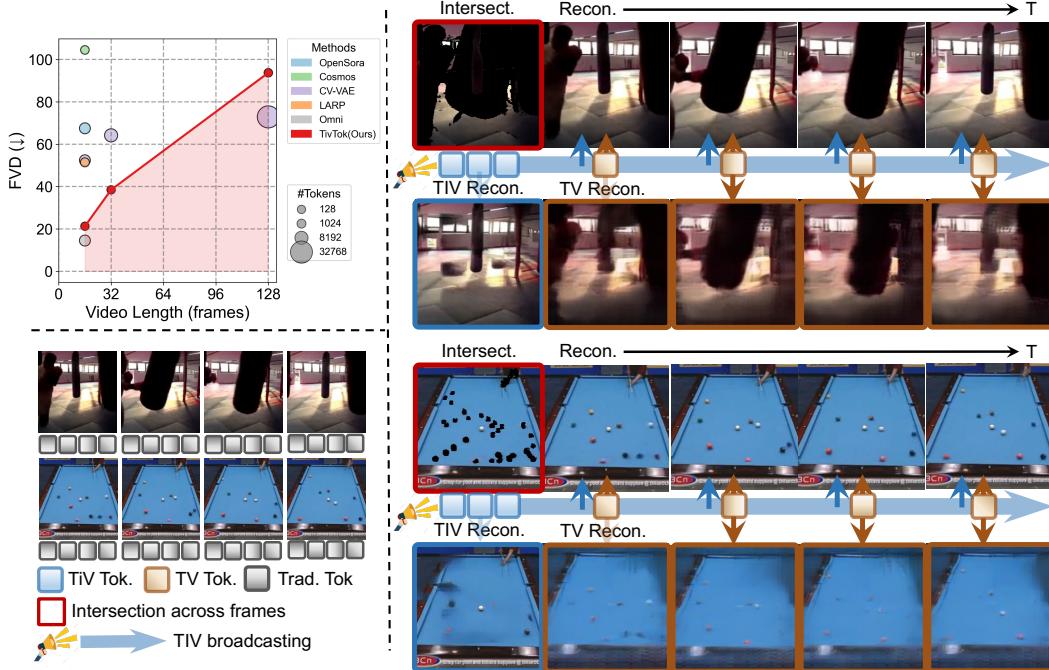


Figure 1: **TivTok** explicitly decouples videos into time-invariant (TIV) tokens and time-variant (TV) tokens, achieving $2.91\times$ higher compression efficiency than traditional tokenizers while maintaining comparable reconstruction quality in long video tokenization by reusing the TIV tokens.

ABSTRACT

Video tokenization is a critical bottleneck for learned video compression and generation. Existing methods often fail to adapt to the uneven information density of videos, underutilize temporal redundancy, and overlook the reusability of shared content. We present **TivTok** (*Time-Invariant Tokenizer*), a transformer-based tokenizer that explicitly decouples videos into **time-invariant (TIV) tokens**, which capture global information shared across frames, and **time-variant (TV) tokens**, which encode frame-specific residual details. The encoder is designed with tailored attention masking to enforce this factorization, enabling the invariant component to capture not only static elements but also temporally coherent patterns such as consistent motion trajectories. In decoding, a broadcast mechanism reuses TIV tokens across frames, reducing complexity from quadratic to linear in video length. We further extend this approach to long videos through cross-chunk reuse, enabling scalable compression. Experiments show that TivTok improves reconstruction quality with FVD of 12.65 in the traditional $16 \times 256 \times 256$ setting and achieves a $2.91\times$ gain in compression efficiency for $128 \times 256 \times 256$ videos compared to state-of-the-art methods.

1 INTRODUCTION

Generative models have achieved remarkable success across diverse downstream applications, including visual content generation (Blattmann et al., 2023a; Rombach et al., 2022; Blattmann et al.,

054 2023b; Liu et al., 2024; Huang et al., 2025b), cinematic production (Huang et al., 2024; Chen et al.,
 055 2024b; Huang et al., 2025a), and industrial simulation (Zheng et al., 2024a; Ren et al., 2024a;b; Chen
 056 et al., 2025b; Agarwal et al., 2025). Their success is largely driven by the insight that pixel-space
 057 visuals is highly redundant; projecting these high-dimensional representations into compact latent
 058 spaces significantly reduces computation and shifts focus to semantic structure, enabling sharper
 059 and higher-quality generations (Rombach et al., 2022; Blattmann et al., 2023a). However, video
 060 tokenization remains challenging, since it must compress data far more aggressively than images to
 061 handle the rapid growth in data volume with longer sequences, while handling the large yet intricate
 062 temporal redundancy.

063 Tokenizing videos requires handling the uneven distribution of information across frames. Encoding
 064 each frame or chunk independently introduces large amounts of redundancy, since much of the
 065 content—such as scene structure, object appearance, and smooth motion—persists over time. An
 066 effective tokenizer should capture these shared patterns compactly, while leaving only the unpre-
 067 dictable details to be represented frame by frame. Just as importantly, the representation should be
 068 reusable and extendable as the sequence continues, avoiding the need to re-encode what is already
 069 known. Recent work in video tokenization has begun to move in this direction, going beyond simple
 070 frame-based encoding to capture richer temporal structure.

071 One direction extends image tokenizers by adding temporal compression layers (Blattmann et al.,
 072 2023b), often with 3D convolutions (Li et al., 2024; Agarwal et al., 2025; Zhao et al., 2024; HaCo-
 073 hen et al., 2024), to handle the extra time dimension. Later methods go further by breaking away
 074 from frame-based structure altogether: they patchify the video into 1D token sequences and use
 075 transformers to compress them into holistic tokens that summarize global information through at-
 076 tention (Yu et al., 2024a; Huang et al., 2025b; Bachmann et al., 2025; Wang et al., 2024a; Yan et al.,
 077 2024; Li et al., 2025). This approach moves beyond a fixed $H \times W \times T$ resolution and allows more
 078 flexible allocation of representation capacity (Beyer et al., 2025), though its quadratic attention cost
 079 makes scaling to long videos difficult.

080 A second direction tackles temporal redundancy more directly by decomposing videos into a context
 081 frame (often an aggregation of all frames) and relative motion with respect to this frame (Tan et al.,
 082 2024; Tian et al., 2024b; Yu et al., 2024b; Wang et al., 2025). This strategy allows longer video
 083 reconstruction by reusing the stable context, but its explicit decomposition can oversimplify video
 084 structure, which often fails when backgrounds or scenes change dramatically.

085 Driven by the need to both cut redundancy and promote reusability, we propose **TivTok** (*Time-
 086 Invariant Tokenizer*), a tokenizer that extracts temporal invariants through Time-Invariant (TIV)
 087 tokens and reuses them across frames to improve video compression. As is shown in Figure 1, we
 088 decouple videos into two complementary components: time-invariant representations, which capture
 089 semantic invariants rather than pixel persistence; and time-variant representations, which encode
 090 the residual, frame-specific details. To realize this factorization, we design a transformer-based
 091 architecture with masked attention that enforces a clean separation between invariant and variant
 092 tokens. By reusing TIV tokens across video chunks, TivTok naturally scales to long videos and
 093 achieves superior compression: it improves reconstruction quality with FVD of 12.65 in the standard
 094 $16 \times 256 \times 256$ setting and delivers a $2.91 \times$ gain in compression efficiency for $128 \times 256 \times 256$
 095 videos compared to existing approaches. We summarize our main contributions as follows:

- 096 • We propose a new paradigm for efficient video tokenization that separates and reuses shared time-
 097 invariant information across frames while encoding only frame-specific residuals.
- 098 • We design a transformer-based framework with tailored attention masking and decoding to control
 099 information flow between time-invariant and time-variant components.
- 100 • We enable scalable long video tokenization by reusing time-invariant tokens across frames and
 101 chunks, reducing tokenization complexity from quadratic to linear in video length.

102 2 RELATED WORK

103 2.1 FROM IMAGE TOKENIZER TO VIDEO TOKENIZER

104 Following the tremendous success of the encode-generate paradigm in image generation (Rombach
 105 et al., 2022), researchers have developed video tokenizers by extending the dimensionality of exist-

108 ing image tokenization methods. The core idea underlying these approaches is to treat video tokenization as a natural extension of image compression by adding temporal dimensions to spatial processing architectures. These dimension-extended methods can be categorized into two main lines of works: **Downsample-based Video Tokenizers**. Early work (Blattmann et al., 2023b) first explores adapting image tokenizers for video tokenization by encoding videos frame-by-frame. Subsequent methods (Zhao et al., 2024; Agarwal et al., 2025; Chen et al., 2024a; Tang et al., 2024) extended 2D convolutions to 3D convolutions for temporal downsampling, achieving higher compression ratios while proposing various optimization techniques to facilitate training. CV-VAE (Zhao et al., 2024) leverages 2D convolutions pretrained on images to regularize video tokenizers, improving training efficiency. VidTok (Tang et al., 2024) incorporates multiple techniques including FSQ to improve codebook utilization and compression efficiency. Cosmos (Agarwal et al., 2025) employs 3D Haar wavelets to enhance model performance. **Holistic Tokenizers**. TiTok (Yu et al., 2024a) pioneered the use of transformer architectures to compress images into 1D learnable tokens, enabling higher compression rates through global receptive fields. This approach has inspired subsequent works exploring 1D tokenization for images (Huang et al., 2025b; Tian et al., 2024a) and videos (Wang et al., 2024a; Yan et al., 2024; Li et al., 2025). However, directly applying such methods to videos encounters significant challenges, as video patches vastly outnumber image patches, leading to quadratic computational growth and increased learning complexity that hinders effective video compression. Despite various attempts to explore such compression strategies, these methods remain limited to low-resolution video compression. Different from these dimension-extension approaches, we focus on the fundamental temporal redundancy characteristics of videos by reusing shared information across consecutive frames rather than simply extending spatial processing, thereby achieving superior compression efficiency.

2.2 DECOMPOSE-BASED VIDEO TOKENIZER

130
 131 Traditional video compression (e.g., H.264/MPEG-4 AVC (Richardson, 2004) and AV1 (De Riva-
 132 z & Haughton, 2019)) has long recognized the fundamental principle of temporal redundancy
 133 exploitation through decomposed encoding strategies. In H.264, for instance, P-frames leverage
 134 motion compensation by referencing spatial blocks up to 16×16 pixels from previously encoded
 135 frames, encoding only the residual differences between the predicted and actual content. This de-
 136 composition strategy effectively eliminates temporal redundancy by avoiding redundant encoding
 137 of similar visual content across consecutive frames. Recently, numerous works (Wu et al., 2024;
 138 Jin et al., 2024; Yu et al., 2024b) have followed this paradigm to explore more efficient video to-
 139 kenizers through learned decomposition. CMD (Yu et al., 2024b) first proposes content-motion
 140 decomposition, encoding videos into a 2D content frame and low-dimensional motion latents to
 141 capture static and dynamic information separately. Reducio (Tian et al., 2024b) employs an image-
 142 conditioned decoder while maintaining a reference image to achieve high-quality video reconstruc-
 143 tion with reduced storage requirements. SweetTok (Tan et al., 2024) separately encodes the first
 144 frame and subsequent residual frames, explicitly modeling temporal dependencies through learned
 145 residual representations. HiVAE (Liu et al., 2025) decomposes videos into high-frequency and low-
 146 frequency components, enabling specialized compression strategies for different temporal scales.
 147 However, these predefined decomposition methods suffer from rigid structures that poorly adapt to
 148 diverse video content and lack reusability, thus failing to scale efficiently to longer sequences. More-
 149 over, the predefined decomposition introduces additional optimization **complexities**. In contrast, we
 150 propose extracting and reusing temporal invariants across frames, avoiding redundant encoding.
 151 Experiments demonstrate that our temporal invariants easily extend to long video sequences while
 152 achieving 2.91× higher compression efficiency.

3 METHOD

3.1 PRELIMINARY: TRANSFORMER-BASED HOLISTIC VISUAL TOKENIZER

153
 154
 155
 156 Pioneered by TiTok (Yu et al., 2024a), transformer-based holistic tokenizers have become a popular
 157 choice for visual tokenization. Their key idea is to distill a compact set of 1D global latents from all
 158 input patches by leveraging the transformer’s global receptive field.

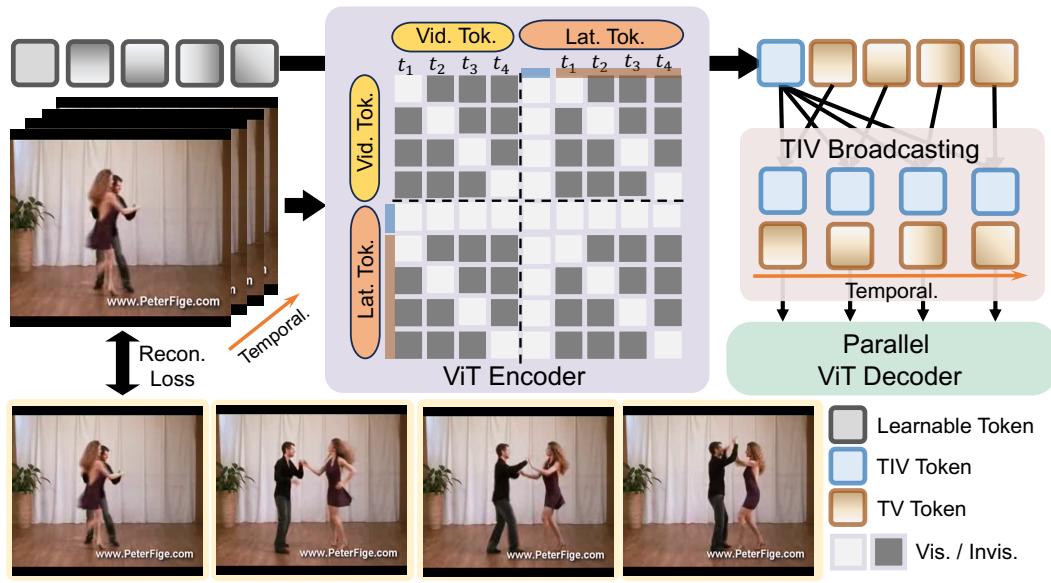


Figure 2: **TivTok** employs a transformer-based tokenizer architecture, consisting of an encoder with dual-range attention masks and a decoder with a TIV Token Broadcasting mechanism, which isolates shared versus frame-specific content and ensures reusability of TIV tokens across all time steps.

Given a video $V \in \mathbb{R}^{3 \times T \times W \times H}$, the tokenizer first *patchifies* V with a fixed downsampling ratio (f_T, f_W, f_H) , producing patch features $X \in \mathbb{R}^{d \times \frac{T}{f_T} \times \frac{W}{f_W} \times \frac{H}{f_H}}$. These flattened patches are concatenated with a set of learnable tokens $Z \in \mathbb{R}^{d \times N_z}$ to form $\tilde{Z} = [\text{Flatten}(X); Z]$.

This combined sequence is then passed through a transformer encoder $E(\cdot)$. Through self-attention, the latent tokens absorb global information from all patches across the video. After encoding, the latent tokens are quantized with $Q(\cdot)$ to form a compact representation \hat{Z} that captures the essential content of the video in a discrete code space.

During decoding, learnable patch queries Q_p and the latent codes \hat{Z} are processed by a symmetric transformer decoder $D(\cdot)$ to recover patch features $\hat{X} = D([Q_p; \hat{Z}])$, which are then upsampled to the original resolution. This entire process can be summarized as

$$\hat{Z} = \text{Quant}(E([\text{patchify}(V); Z])), \quad \hat{V} = \text{Unpatchify}(D([\hat{Z}; Q_p])). \quad (1)$$

However, because the number of patches increases linearly with video length, the computational cost of self-attention grows quadratically; both encoding and decoding scale as $O(T^2)$.

3.2 DECOUPLING TIME-INVARIANT AND TIME-VARIANT TOKENS

From an information-theoretic perspective, a video sequence can be regarded as a collection of frames with substantial shared content. Its *entropy* provides a natural measure of the information content, and thus reflects the number of tokens (or bits) required for compression.

Consider a video sequence of length T . Explicitly capturing the shared component C across frames can substantially reduce sequence entropy. In particular, the reduction can be quantified as

$$H_{\text{indep}} - H_{\text{shared}} \geq \sum_{t=1}^T I(X_t; C) - I(C; X_{1:T}) \approx (T-1)I(C; X_{1:T}) \gg 0, \quad (2)$$

where H_{indep} is the sum of per-frame entropies if frames are encoded independently, and H_{shared} accounts for the shared information C . A detailed derivation is provided in Appendix A. This analysis shows that explicitly capturing and reusing temporal redundancy can dramatically reduce the number of tokens needed to represent a video.

Building on this, we explicitly model the shared *time-invariant* component C , which captures redundant information persisting across frames—not only pixel-level persistence, but also *semantic*

216 *invariants* such as scene geometry, object structure, and consistent visual elements that remain stable throughout the video sequence. Encoding this continuity in the **time-invariant** component prevents redundant re-encoding of scene-level information in every frame, and leaves the unpredictable, frame-specific residuals to the time-variant component.

217 To this end, we propose a *decoupled* token representation that factorizes a video into two complementary components:

- 223 • **Time-Invariant Tokens (TIV)**, $Z_{TIV} \in \mathbb{R}^{N_{TIV} \times D}$, which encode information shared
224 across frames and can be reused to extend representations to longer videos
- 225
- 226 • **Time-Variant Tokens (TV)**, $Z_{TV} \in \mathbb{R}^{T \times N_{TV} \times D}$, which preserve frame-specific details
227 unique to each time step.
- 228

229 Formally, for a video $V \in \mathbb{R}^{3 \times T \times H \times W}$, the entire sequence is represented as
230 $[Z_{TIV}, Z_{TV}^{(1)}, Z_{TV}^{(2)}, \dots, Z_{TV}^{(T)}]$. For an individual frame at time step t , its content is compactly de-
231 scribed by the token pair $[Z_{TIV}, Z_{TV}^{(t)}]$.

236 3.3 TOKENIZER DESIGN FOR TIV/TV DECOUPLING

237 We design a transformer-based tokenizer that explicitly decouples and tokenizes the time-invariant
238 (TIV) and time-variant (TV) components (Figure 2). The encoder isolates shared versus frame-
239 specific content, and the decoder ensures reusability of TIV tokens across all time steps.

240 To enforce the intended factorization, we constrain the visibility of tokens in the encoder through an
241 attention mask. TIV tokens are granted global visibility: for a video $V = \{X_1, \dots, X_T\}$, each TIV
242 token attends to all frame patches $\{X_t\}$ as well as all TV tokens. In contrast, each TV token at time
243 step t has only local visibility, restricted to its own frame patches X_t , the TIV tokens, and itself.

244 Formally, the encoder updates are defined as

$$245 \begin{aligned} Z'_{TIV} &= \text{Attn}(Z_{TIV}, [Z_{TIV}, Z_{TV}^{(1)}, \dots, Z_{TV}^{(T)}, X_1, \dots, X_T]), \\ 246 Z_{TV}^{(t)'} &= \text{Attn}(Z_{TV}^{(t)}, [Z_{TIV}, Z_{TV}^{(t)}, X_t]). \end{aligned} \quad (3)$$

247 This dual-range masking is designed to encourage TIV tokens to aggregate shared information
248 across the sequence, while guiding TV tokens to primarily capture frame-local residuals. Using
249 causal masking for TV tokens may seem natural for autoregressive generation, but it would both
250 duplicate information already stored in the TIV tokens and raise the cost to quadratic in T . Limiting
251 TVs to single-frame visibility keeps the roles cleanly separated and maintains efficiency, reducing
252 overall encoding complexity from $O(T^2 \cdot (N_{TIV} + N_{TV}))$ to $O(T^2 \cdot N_{TIV} + T \cdot N_{TV})$.

253 In the decoder, we propose a *TIV Token Broadcast* mechanism to facilitate reuse of shared information.
254 After encoding, the TIV tokens are broadcast to every time step and recombined with the
255 corresponding TV tokens, so that each frame is decoded as

$$256 \hat{X}_t = D([Z_{TIV}, Z_{TV}^{(t)}]), \quad t = 1, \dots, T, \quad (4)$$

257 where $D(\cdot)$ denotes the transformer decoder. Since all frames reuse the same TIV tokens, they can be
258 decoded in parallel without interfering with one another. This design explicitly reuses shared content
259 and reduces decoding complexity from quadratic in the video length ($O(T^2)$) to linear ($O(T)$),
thereby improving efficiency and scalability for long video generation.

270 3.4 BROADCASTING TIV TOKENS FOR LONG VIDEO COMPRESSION
271272 **Algorithm 1:** TIV-Broadcast Training Algorithm for Long Video Redundancy273 **Input:** Long video $\{X_{1:TK}\}$ with K chunks of length T , pre-specified distribution $p \in \mathbb{R}^K$;274 **Output:** Decoded video $\hat{X}_{1:TK}$;275 **1. Parallel Encoding:**276 **for** $i = 1, \dots, K$ **do**277 Encode chunk $X_{1:T}^{(i)} \rightarrow Z_c^{(i)}, \{Z_s^{(i,t)}\}_{t=1}^T$ 278 **2. Shared Token Merging:**279 Merge TIV tokens: $\bar{Z}_c = \frac{1}{K} \sum_{i=1}^K Z_c^{(i)}$ 280 **3. Token Reorganization:**

281
$$\mathcal{Z} = [\bar{Z}_c, Z_s^{(1,1)}, \dots, Z_s^{(1,T)}, \dots, Z_s^{(K,1)}, \dots, Z_s^{(K,T)}]$$

282 **4. Propagation Decoding:**283 **for** each frame t in parallel **do**284 Broadcast $Z_c^{(k)}$ to frame t and decode with its specific tokens $Z_s^{(i,t)}$ to reconstruct $\hat{X}^{(i,t)}$;285 **5. Update:** Compute $\mathcal{L}(\hat{X}, X)$, update parameters286 **Complexity:** Encoding and decoding cost scales as $\mathcal{O}(K)$ instead of $\mathcal{O}(K^2)$.287
288
289
290 Following Eq. 2, we extend our analysis to long videos divided into multiple chunks. For a *traditional tokenizer*, compressing a K -chunk video requires a proportional increase in the total number
291 of tokens, and the computational cost grows quadratically with the total length T .
292293 In contrast, motivated by our earlier observations, we explore reusing *cross-chunk redundancy* to
294 achieve more efficient video compression. Intuitively, a video’s global shared information is rela-
295 tively stable, so the common content extracted from one chunk can serve as an estimate of the global
296 schema of the entire video. Building on this insight, we propose a training strategy for cross-chunk
297 reuse of shared tokens, as illustrated in Algorithm 1.298 Specifically, for a long video $\{X_{1:TK}\}$ composed of K chunks of length T , we first encode all K
299 chunks in parallel and merge the temporal invariant tokens by averaging: $\bar{Z}_c = \frac{1}{K} \sum_{i=1}^K Z_c^{(i)}$. We
300 then retain the merged TIV tokens \bar{Z}_c and reorganize the representation of the entire video as:
301

302
$$\mathcal{Z} = [\bar{Z}_c, Z_{TV}^{(1,1)}, \dots, Z_{TV}^{(1,T)}, \dots, Z_{TV}^{(K,1)}, \dots, Z_{TV}^{(K,T)}],$$

303

304 where $Z_{TV}^{(i,t)}$ denotes the TV tokens of the t -th frame in chunk i .
305306 During decoding, following the broadcasting mechanism in Sec. 3.3, the shared tokens \bar{Z}_c are
307 broadcast to every frame to guide parallel reconstruction across all chunks. This design reduces
308 token count by exploiting cross-chunk redundancy, improves efficiency by cutting complexity from
309 quadratic to linear in K , and eases training by shortening token sequences.
310311 4 EXPERIMENTS
312313 4.1 IMPLEMENTATION DETAILS
314315 Our model ϕ is optimized using a composite loss function that combines reconstruction quality with
316 perceptual and adversarial objectives:
317

318
$$L = L_{\text{recon}} + \lambda_1 L_{\text{percept}} + \lambda_2 \cdot \lambda_{\nabla} L_{\text{adv}}, \quad \lambda_{\nabla} = \frac{\nabla_{\phi}(L_{\text{recon}} + \lambda_1 L_{\text{percept}})}{\nabla_{\phi} L_{\text{adv}}}, \quad (5)$$

319
320

321 This objective incorporates L1 reconstruction loss L_{recon} , perceptual loss L_{percept} (Johnson et al.,
322 2016; Larsen et al., 2016), and adversarial loss L_{adv} (Goodfellow et al., 2020), with λ_{∇} serving
323 as an adaptive weighting coefficient. We empirically set $\lambda_1 = 1$ and $\lambda_2 = 0.2$ throughout our
experiments. More implementation details can be found in Appendix B.

324 Table 1: **Comparison of Video Reconstruction on UCF-101.** We compare different categories
 325 of video tokenizers with similar compression ratios. We additionally report the number of tokens
 326 to pixels ratio (T/P (%)) for intuitive comparison, which is crucial for generation model efficiency.
 327 Gray highlights indicate cases where our method achieves superior or comparable performance.
 328 **Bold** values indicate best performance; underlined values show second-best results.

Method	#Tokens	#Dim.	T/P(%) \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	rFVD \downarrow
<i>Downsample-based video tokenizer</i>							
SDXL-VAE (Podell et al., 2023)	16384	4	1.563	-	-	-	23.68
OpenSora (Zheng et al., 2024b)	4096	16	0.391	-	-	-	67.52
Cosmos-M (Agarwal et al., 2025)	2048	16	0.195	31.70	0.9177	0.0575	<u>13.67</u>
Cosmos-S (Agarwal et al., 2025)	512	16	<u>0.049</u>	28.26	0.8577	0.1046	104.51
CV-VAE (Zhao et al., 2024)	4096	4	0.391	29.47	0.8849	0.0685	52.43
<i>Holistic video tokenizer</i> (*Video resolution 16 \times 128 \times 128)							
LARP (Wang et al., 2024a)*	1024	16	0.391	28.65	0.9003	0.0425	23.93
LARP (Wang et al., 2024a)	1024	16	0.098	25.53	0.8262	0.0973	51.45
ElasticTok (Yan et al., 2024)	1024	16	0.391	-	-	-	390
AdapTok (Li et al., 2025)	2048	16	0.781	26.38	0.8539	0.0599	27.97
<i>Decompose-based video tokenizer</i>							
Omni (Wang et al., 2024b)	4096	8	0.391	29.34	0.9250	<u>0.0487</u>	14.53
Omni-DV (Wang et al., 2024b)	4096	8	0.391	28.06	0.9095	0.0637	27.12
VidTwin (Wang et al., 2025)	1008	4/8	0.126	28.14	0.8044	0.2414	388.86
TivTok-S	128	128	0.012	30.13	0.9010	0.0614	21.29
TivTok-M	512	32	<u>0.049</u>	<u>30.26</u>	0.8982	0.0533	12.65
TivTok-L	1024	16	0.098	29.54	0.8897	0.0607	17.97

4.2 VIDEO RECONSTRUCTION COMPARISON

350 We conduct comprehensive evaluation of video reconstruction quality on the UCF-101 (Soomro
 351 et al., 2012) dataset, utilizing videos with 256 \times 256 resolution and 16-frame sequences. To en-
 352 sure comprehensive comparison, we evaluate against representative baselines from three major cat-
 353 egories: downsample-based, holistic, and decompose-based video tokenizers, with all methods con-
 354 figured to achieve similar compression ratios for meaningful comparison.

355 The quantitative results presented in Table 1 demonstrate that our method consistently achieves per-
 356 formance that either exceeds or matches current state-of-the-art approaches across all evalua-
 357 tion metrics. We further analyze the trade-off between the number of tokens and token dimensions by
 358 comparing TivTok-S, TivTok-M, and TivTok-L, which share the same overall model size. Interest-
 359 ingly, we observe that TivTok-M achieves the best reconstruction performance, suggesting that there
 360 exists an optimal balance between token number and dimensionality: too few tokens limit spatial
 361 resolution, while too low-dimensional tokens may restrict representational capacity. Nevertheless,
 362 the differences among the three models are relatively small, indicating that the framework is robust
 363 to this trade-off. Additionally, Table 5 compares tokenizers trained on different datasets (e.g., Web-
 364 Vid Bain et al. (2021)) while following the same content decomposition approach Yu et al. (2024b);
 365 Liu et al. (2025). The results show that our method achieves stronger compression, as it adopts
 366 a more general decomposition strategy rather than restricting factors to specific components (e.g.,
 367 “motion” or “high-frequency”), which may not generalize to more complex video structures.

4.3 LONG VIDEO TOKENIZATION

370 To further demonstrate TivTok’s superiority in temporal invariant reuse, we explore long video tok-
 371 enization. The experimental results in Table 2 reveal distinct behavioral patterns as temporal length
 372 T increases. Downsample-based video tokenizers CV-VAE (Zhao et al., 2024) maintain relatively
 373 stable reconstruction quality but suffer from dramatic token count growth. Holistic video tokenizers
 374 LARP (Wang et al., 2024a) experience severe quality degradation while incurring quadratic latency
 375 scaling with respect to T. In contrast, our method achieves 2.91 \times higher compression efficiency
 376 while maintaining only slight reconstruction quality degradation and mitigating quadratic latency
 377 growth. Remarkably, our approach requires merely 1.1% of the tokens needed by downsample-
 based methods, demonstrating substantial potential for improving generation efficiency.

Table 2: **Comparison of long video tokenization.** We retrain baseline methods with comparable compression ratios and compare against CoordTok (Jang et al., 2025). We report results including inference latency for computational efficiency assessment.

Method	#Tokens	#Dim.	Latency(s)↓	PSNR↑	SSIM↑	LPIPS↓	rFVD↓
<i>Video resolution 32×256×256</i>							
CV-VAE (Zhao et al., 2024)	8192	4	1.78	29.12	0.8809	<u>0.0692</u>	64.21
LARP (Wang et al., 2024a)	2048	16	<u>1.75</u>	23.15	0.7479	0.1757	226.79
TivTok-S	160	128	0.20	29.05	0.8831	0.0719	<u>38.49</u>
TivTok-M	640	32	-	30.25	0.8948	0.0591	23.26
TivTok-L	1280	16	-	<u>29.13</u>	<u>0.8857</u>	0.0711	61.46
<i>Video resolution 128×256×256 (*:Video resolution 128×128×128)</i>							
CV-VAE (Zhao et al., 2024)	32768	4	<u>7.12</u>	29.00	0.8831	0.0729	72.91
LARP (Wang et al., 2024a)	8192	16	22.78	14.85	0.2924	0.6251	3223.55
CoordTok (Jang et al., 2025)*	1280	8	-	27.25	0.7503	0.2346	1108.76
TivTok-S	352	128	0.71	26.23	<u>0.8210</u>	<u>0.1057</u>	<u>92.09</u>

Figure 3: Long Video Reconstruction Comparison on UCF-101. We provide magnified views of regions highlighted by red rectangles in the ground truth for detailed comparison. Our method demonstrates superior detail preservation with higher compression, as indicated by the red circles.

We further provide qualitative visualization comparisons at a resolution of $128 \times 256 \times 256$ in Figure 3. Despite using a higher compression rate with fewer tokens, our method achieves comparable reconstruction quality and even superior detail preservation, as shown in Figure 3: the retained numerical text and ball in (a), the horse head in (b), the fine details around the foot in (c), and the subtle hand reflection on the piano surface in (d). These results demonstrate that TivTok’s explicit extraction and reuse of temporal invariants substantially improve compression capability while maintaining strong reconstruction performance.

4.4 VIDEO GENERATION COMPARISON

Table 3 reports the generation metrics for class-conditional video generation on the UCF-101 dataset. The results show that our method achieves substantially lower GPU memory consumption and faster inference speed compared to the baselines, thanks to the reuse of TIV tokens, which greatly improves computational efficiency. At the same time, our generated videos remain highly competitive in quality under the same video length setting.

4.5 DISCUSSION ON TIME INVARIANT TOKENS

A key observation from our visualizations is that TIV tokens do not simply capture static backgrounds, but the true time-invariant components of a video. For example, in Figure 4(a) (the figure skating sequence), what changes across frames is primarily the background (advertising boards at

432 **Table 3: Comprehensive Comparison of Video Generation Methods.** The comparison includes
 433 inference speed, GPU memory usage, computational cost (TFLOPs), and generation quality (FVD).
 434 Results of MeBT [Yoo et al. \(2023\)](#), PVDM [Yu et al. \(2023\)](#), HVDM [Kim et al. \(2024\)](#), Coord-
 435 Tok [Jang et al. \(2025\)](#)+SiT-L/2 [Ma et al. \(2024\)](#) are taken from MALT [Yu et al. \(2025\)](#). (*: Video
 436 resolution 128×128×128).

437 Method	438 Vid. Len.	439 #Tokens	440 Time / Step (s)↓	441 GPU Peak Mem. (GB)↓	442 TFLOPs↓	443 FVD↓
Cosmos-S	16	512	0.047	2.62	0.49	191
Omni	16	4096	0.437	4.69	5.82	191
LARP	16	1024	0.083	2.73	1.05	107
CVVAE	16	4096	0.437	4.69	5.82	262
TivTok-L	16	1024	0.083	2.73	1.05	99
TivTok-M	16	512	0.047	2.62	0.49	101
TivTok-S	16	128	0.021	2.58	0.12	149
CVVAE	32	8192	1.261	10.82	15.97	370
TivTok-S	32	160	0.021	2.58	0.15	300
MeBT*	128	8192	6.53	13.3	-	968
PVDM*	128	16384	0.26	4.33	-	505
HVDM*	128	32768	1.514	12.1	-	550
CoordTok+SiT-L/2*	128	1280	-	-	-	369
MALT*	128	4096	-	-	-	220
TivTok-S*	128	352	0.031	2.60	0.33	208
TivTok-S	128	352	0.031	2.60	0.33	316

451 **Table 4: Ablation studies** on the proposed techniques.

452 Methods	453 PSNR↑	454 SSIM↑	455 LPIPS ↓	456 rFVD↓
w/o decomposed tokens	27.24	0.8530	0.0748	91.99
w/o dual-scope encoder	19.67	0.5691	0.5691	1359.38
w/o parallel decoder	17.69	0.4665	0.6083	3694.34
w/o TIV-Broadcast training	25.81	0.8219	0.1069	93.49
TivTok	29.05	0.8831	0.0719	38.49

460 different positions in the rink), while the two skaters remain consistent. The TIV tokens clearly cap-
 461 ture the skaters’ detailed appearance, **especially the textural pattern of the clothing**, indicating that
 462 they encode the essential invariant content rather than just static scenery. Interestingly, in some cases
 463 the time-invariant component is explicitly singled out by the model. In Figure 1 (bottom), although
 464 many balls move on the pool table, only the stationary ones are captured by TIV tokens; similarly,
 465 in the frisbee scene, the relatively immobile player is extracted as invariant. These cases show that
 466 TivTok selectively emphasizes elements that remain stable across time, rather than indiscriminately
 467 encoding all content.

468 More importantly, TIV tokens capture semantic invariants rather than only pixel-level persistences.
 469 To illustrate this, we compare against a simple intersection of unchanged pixels across frames
 470 (shown with red boxes), which would highlight only regions with minimal pixel variation. If TIV to-

484 **Figure 4: TIV Token and TV Token Visualization and Analysis.** The intersection images (red
 485 boxes) display pixel-level persistence across frames, where we retain regions with minimal pixel
 486 variation. Results demonstrate that our TIV tokens capture temporal invariants including semantic
 487 information and scene geometry rather than merely pixel-level persistence.

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Table 5: **Scalability of TivTok.** TivTok consistently improves with larger models and datasets, and maintains strong performance across different video resolutions.

Method	Comp. Rate(%) \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	rFVD \downarrow
<i>Scalability of Model Size. Tested on UCF-101</i>					
TivTok-Small	0.52	27.73	0.8611	0.0809	47.31
TivTok-Base	0.52	30.13	0.9010	0.0614	21.29
TivTok-Large	0.52	30.94	0.9116	0.0490	13.11
<i>Scalability of Dataset Size and Resolution</i>					
CMD-WebVid-256 Yu et al. (2024b)	6.85	26.55	0.795	0.110	98.623
HivVAE-WebVid-256 Liu et al. (2025)	0.27	29.35	0.834	0.096	61.941
TivTok-WebVid-256	0.26	28.61	0.8288	0.0729	22.96
TivTok-WebVid-256	0.52	31.69	0.8958	0.0477	7.15
TivTok-VidProM-256	0.52	33.17	0.9384	0.0284	5.63
TivTok-VidProM-512	0.52	33.56	0.9	0.0430	9.08

kens only encoded pixel-level persistence, they would align closely to these intersections. However, our results show otherwise: in cases such as the boxing sequences in Figure 1 and the dynamic scenes in Figure 4(b)/(c), TIV tokens encode stable scene semantics. For example, in the boxing sequence, beyond the moving punching bag, the entire gym environment—including the central pillar—is faithfully represented. This ability to capture semantic invariants provides strong reconstruction priors, leaving only minimal frame-specific details to be represented by TV tokens. Broadcasting TIV tokens supplies stable context across longer sequences, whereas broadcasting only pixel-level invariants would fail. The successful decoupling of TIV and TV tokens thus enables substantial redundancy reduction by exploiting the reusability of TIV tokens in longer videos.

4.6 ABLATION STUDY

Table 4 presents ablation studies on the $32 \times 256 \times 256$ setting. Removing token decomposition causes significant performance degradation, confirming that direct holistic tokenization complicates learning. Ablating TIV-Broadcast training reduces performance while maintaining capability, validating temporal invariant sharing. Ablating the specialized encoder or decoder causes complete failure, indicating that careful architecture design is required for effective broadcasting. All components are essential for effective long video compression.

4.7 SCALABILITY OF TIVTOK

Table 5 evaluates the scalability of our method with respect to model size, dataset size, and resolution. Performance consistently improves with larger models, reflecting their greater capacity to capture complex temporal and spatial patterns. Scaling up the dataset, e.g., using WebVid-10M [Bain et al. \(2021\)](#) and VidProM [Wang & Yang \(2024\)](#), further enhances the model’s capabilities by providing more diverse training data. Our method also maintains strong reconstruction quality across different resolutions, demonstrating robustness. Overall, these results confirm that our approach scales well across model, dataset, and resolution dimensions, thanks to a streamlined design that includes only the essential modules for realizing our core ideas.

5 CONCLUSION

In this paper, we propose TivTok (*Time-Invariant Tokenizer*), which decouples videos into **time-invariant (TIV) tokens** capturing shared information and **time-variant (TV) tokens** encoding frame-specific details. TivTok employs a dual-range attention encoder and parallel decoder with TIV Token Broadcasting to isolate shared versus frame-specific content and enable token reuse across video. Experiments reveal that TIV tokens capture semantic information and scene geometry beyond pixel-level persistence, enabling natural extension to long videos. TivTok achieves superior reconstruction quality while delivering $2.91 \times$ compression efficiency improvement compared to state-of-the-art methods. By explicitly modeling temporal invariants and enabling their systematic reuse, TivTok establishes a new paradigm for efficient video tokenization that addresses the fundamental challenges of redundancy and scalability in video compression.

540 **6 ETHICS STATEMENT**
 541

542 This work adheres to the ICLR Code of Ethics. No human subjects or animal experimentation
 543 was involved. All datasets used, including UCF-101 and K600, were sourced in compliance with
 544 relevant usage guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or
 545 discriminatory outcomes in our research process. No personally identifiable information was used,
 546 and no experiments were conducted that could raise privacy or security concerns. We are committed
 547 to maintaining transparency and integrity throughout the research process.

548
 549 **7 REPRODUCIBILITY STATEMENT**
 550

551 We have made every effort to ensure that the results presented in this paper are reproducible. The
 552 experimental setup, including training procedures, model configurations, and hardware details, is
 553 described in detail throughout the paper. We have provided comprehensive implementation details
 554 of our TivTok framework to assist others in reproducing our experiments.

555 All datasets used in the paper, such as UCF-101 and K600, are publicly available, ensuring consist-
 556 ent and reproducible evaluation results. Training hyperparameters, loss function formulations, and
 557 architectural specifications are explicitly documented.

558 We believe these measures will enable other researchers to reproduce our work and further advance
 559 the field.

560
 561 **REFERENCES**
 562

563 Niket Agarwal, Arslan Ali, Maciej Bala, Yogesh Balaji, Erik Barker, Tiffany Cai, Prithvijit Chat-
 564 topadhyay, Yongxin Chen, Yin Cui, Yifan Ding, et al. Cosmos world foundation model platform
 565 for physical ai. *arXiv preprint arXiv:2501.03575*, 2025.

566 Roman Bachmann, Jesse Allardice, David Mizrahi, Enrico Fini, Oğuzhan Fatih Kar, Elmira Amir-
 567 loo, Alaeldin El-Nouby, Amir Zamir, and Afshin Dehghan. Flextok: Resampling images into
 568 1d token sequences of flexible length. In *Forty-second International Conference on Machine
 569 Learning*, 2025.

570 Max Bain, Arsha Nagrani, Gü̈l Varol, and Andrew Zisserman. Frozen in time: A joint video and
 571 image encoder for end-to-end retrieval. In *Proceedings of the IEEE/CVF international conference
 572 on computer vision*, pp. 1728–1738, 2021.

573 L Lao Beyer, Tianhong Li, Xinlei Chen, Sertac Karaman, and Kaiming He. Highly compressed
 574 tokenizer can generate without training. *arXiv preprint arXiv:2506.08257*, 2025.

575 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
 576 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
 577 latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023a.

578 Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
 579 and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion
 580 models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 581 pp. 22563–22575, 2023b.

582 Joao Carreira, Eric Noland, Andras Banki-Horvath, Chloe Hillier, and Andrew Zisserman. A short
 583 note about kinetics-600. *arXiv preprint arXiv:1808.01340*, 2018.

584 Hao Chen, Ze Wang, Xiang Li, Ximeng Sun, Fangyi Chen, Jiang Liu, Jindong Wang, Bhiksha
 585 Raj, Zicheng Liu, and Emad Barsoum. Softvqvae: Efficient 1-dimensional continuous tokenizer.
 586 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 28358–28370,
 587 2025a.

588 Liuhan Chen, Zongjian Li, Bin Lin, Bin Zhu, Qian Wang, Shenghai Yuan, Xing Zhou, Xinhua
 589 Cheng, and Li Yuan. Od-vae: An omni-dimensional video compressor for improving latent video
 590 diffusion model. *arXiv preprint arXiv:2409.01199*, 2024a.

594 Weiliang Chen, Fangfu Liu, Diankun Wu, Haowen Sun, Jiwen Lu, and Yueqi Duan. Dreamcinema:
 595 Cinematic transfer with free camera and 3d character. *arXiv preprint arXiv:2408.12601*, 2024b.
 596

597 Weiliang Chen, Jiayi Bi, Yuanhui Huang, Wenzhao Zheng, and Yueqi Duan. Scenecompleter:
 598 Dense 3d scene completion for generative novel view synthesis. *arXiv preprint arXiv:2506.10981*,
 599 2025b.

600 Peter De Rivaz and Jack Haughton. Av1 bitstream & decoding process specification. *The Alliance*
 601 *for Open Media*, 1:2, 2019.

602 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 603 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the*
 604 *ACM*, 63(11):139–144, 2020.

605 Yoav HaCohen, Nisan Chiprut, Benny Brazowski, Daniel Shalem, Dudu Moshe, Eitan Richardson,
 606 Eran Levin, Guy Shiran, Nir Zabari, Ori Gordon, et al. Ltx-video: Realtime video latent diffusion.
 607 *arXiv preprint arXiv:2501.00103*, 2024.

608 Kaiyi Huang, Yukun Huang, Xintao Wang, Zinan Lin, Xuefei Ning, Pengfei Wan, Di Zhang,
 609 Yu Wang, and Xihui Liu. Filmster: Bridging cinematic principles and generative ai for auto-
 610 mated film generation. *arXiv preprint arXiv:2506.18899*, 2025a.

611 Yuanhui Huang, Wenzhao Zheng, Yuan Gao, Xin Tao, Pengfei Wan, Di Zhang, Jie Zhou, and
 612 Jiwen Lu. Owl-1: Omni world model for consistent long video generation. *arXiv preprint*
 613 *arXiv:2412.09600*, 2024.

614 Yuanhui Huang, Weiliang Chen, Wenzhao Zheng, Yueqi Duan, Jie Zhou, and Jiwen Lu. Spectralar:
 615 Spectral autoregressive visual generation. *arXiv preprint arXiv:2506.10962*, 2025b.

616 Huiwon Jang, Sihyun Yu, Jinwoo Shin, Pieter Abbeel, and Younggyo Seo. Efficient long video
 617 tokenization via coordinate-based patch reconstruction. In *Proceedings of the Computer Vision*
 618 *and Pattern Recognition Conference*, pp. 22853–22863, 2025.

619 Yang Jin, Zhicheng Sun, Kun Xu, Liwei Chen, Hao Jiang, Quzhe Huang, Chengru Song, Yuliang
 620 Liu, Di Zhang, Yang Song, et al. Video-lavit: Unified video-language pre-training with decoupled
 621 visual-motional tokenization. *arXiv preprint arXiv:2402.03161*, 2024.

622 Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
 623 super-resolution. In *European conference on computer vision*, pp. 694–711. Springer, 2016.

624 Kihong Kim, Haneol Lee, Jihye Park, Seyeon Kim, Kwanghee Lee, Seungryong Kim, and Jaejun
 625 Yoo. Hybrid video diffusion models with 2d triplane and 3d wavelet representation. In *European*
 626 *Conference on Computer Vision*, pp. 148–165. Springer, 2024.

627 Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther. Autoen-
 628 coding beyond pixels using a learned similarity metric. In *International conference on machine*
 629 *learning*, pp. 1558–1566. PMLR, 2016.

630 Yan Li, Changyao Tian, Renqiu Xia, Ning Liao, Weiwei Guo, Junchi Yan, Hongsheng Li, Jifeng
 631 Dai, Hao Li, and Xue Yang. Learning adaptive and temporally causal video tokenization in a 1d
 632 latent space. *arXiv preprint arXiv:2505.17011*, 2025.

633 Zhimin Li, Jianwei Zhang, Qin Lin, Jiangfeng Xiong, Yanxin Long, Xinchi Deng, Yingfang Zhang,
 634 Xingchao Liu, Minbin Huang, Zedong Xiao, et al. Hunyuan-dit: A powerful multi-resolution
 635 diffusion transformer with fine-grained chinese understanding. *arXiv preprint arXiv:2405.08748*,
 636 2024.

637 Fangfu Liu, Hanyang Wang, Weiliang Chen, Haowen Sun, and Yueqi Duan. Make-your-3d: Fast and
 638 consistent subject-driven 3d content generation. In *European Conference on Computer Vision*, pp.
 639 389–406. Springer, 2024.

640 Huaize Liu, Wenzhang Sun, Qiyuan Zhang, Donglin Di, Biao Gong, Hao Li, Chen Wei, and
 641 Changqing Zou. Hi-vae: Efficient video autoencoding with global and detailed motion. *arXiv*
 642 *preprint arXiv:2506.07136*, 2025.

648 Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-
 649 ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
 650 transformers. In *European Conference on Computer Vision*, pp. 23–40. Springer, 2024.

651

652 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 653 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 654 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

655

656 Xuanchi Ren, Jiahui Huang, Xiaohui Zeng, Ken Museth, Sanja Fidler, and Francis Williams.
 657 Xcube: Large-scale 3d generative modeling using sparse voxel hierarchies. In *Proceedings of
 the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4209–4219, 2024a.

658

659 Xuanchi Ren, Yifan Lu, Hanxue Liang, Zhangjie Wu, Huan Ling, Mike Chen, Sanja Fidler, Francis
 660 Williams, and Jiahui Huang. Scube: Instant large-scale scene reconstruction using voxelsplats.
 661 *Advances in Neural Information Processing Systems*, 37:97670–97698, 2024b.

662

663 Iain E Richardson. *H. 264 and MPEG-4 video compression: video coding for next-generation
 664 multimedia*. John Wiley & Sons, 2004.

665

666 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 667 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 668 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

669

670 Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
 671 classes from videos in the wild. *arXiv preprint arXiv:1212.0402*, 2012.

672

673 Zhentao Tan, Ben Xue, Jian Jia, Junhao Wang, Wencai Ye, Shaoyun Shi, Mingjie Sun, Wenjin Wu,
 674 Quan Chen, and Peng Jiang. Sweettok: Semantic-aware spatial-temporal tokenizer for compact
 675 video discretization. *arXiv preprint arXiv:2412.10443*, 2024.

676

677 Anni Tang, Tianyu He, Junliang Guo, Xinle Cheng, Li Song, and Jiang Bian. Vidtok: A versatile
 678 and open-source video tokenizer. *arXiv preprint arXiv:2412.13061*, 2024.

679

680 Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
 681 Scalable image generation via next-scale prediction. *Advances in neural information processing
 682 systems*, 37:84839–84865, 2024a.

683

684 Rui Tian, Qi Dai, Jianmin Bao, Kai Qiu, Yifan Yang, Chong Luo, Zuxuan Wu, and Yu-Gang Jiang.
 685 Reducio! generating 1k video within 16 seconds using extremely compressed motion latents.
 686 *arXiv preprint arXiv:2411.13552*, 2024b.

687

688 Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski,
 689 and Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges.
 690 *arXiv preprint arXiv:1812.01717*, 2018.

691

692 Hanyu Wang, Saksham Suri, Yixuan Ren, Hao Chen, and Abhinav Shrivastava. Larp: Tokenizing
 693 videos with a learned autoregressive generative prior. *arXiv preprint arXiv:2410.21264*, 2024a.

694

695 Junke Wang, Yi Jiang, Zehuan Yuan, Bingyue Peng, Zuxuan Wu, and Yu-Gang Jiang. Omnitok-
 696 enizer: A joint image-video tokenizer for visual generation. *Advances in Neural Information
 697 Processing Systems*, 37:28281–28295, 2024b.

698

699 Wenhao Wang and Yi Yang. Vidprom: A million-scale real prompt-gallery dataset for text-to-video
 700 diffusion models. *Advances in Neural Information Processing Systems*, 37:65618–65642, 2024.

701

702 Yuchi Wang, Junliang Guo, Xinyi Xie, Tianyu He, Xu Sun, and Jiang Bian. Vidtwin: Video vae
 703 with decoupled structure and dynamics. In *Proceedings of the Computer Vision and Pattern
 704 Recognition Conference*, pp. 22922–22932, 2025.

705

706 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 707 from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–
 708 612, 2004.

702 Jialong Wu, Shaofeng Yin, Ningya Feng, Xu He, Dong Li, Jianye Hao, and Mingsheng Long.
 703 ivideogpt: Interactive videogpts are scalable world models. *Advances in Neural Information*
 704 *Processing Systems*, 37:68082–68119, 2024.

705 Wilson Yan, Volodymyr Mnih, Aleksandra Faust, Matei Zaharia, Pieter Abbeel, and Hao Liu. Elas-
 706 tictok: Adaptive tokenization for image and video. *arXiv preprint arXiv:2410.08368*, 2024.

708 Jingfeng Yao, Bin Yang, and Xinggang Wang. Reconstruction vs. generation: Taming optimization
 709 dilemma in latent diffusion models. In *Proceedings of the Computer Vision and Pattern Recog-
 710 nition Conference*, pp. 15703–15712, 2025.

711 Jaehoon Yoo, Semin Kim, Doyup Lee, Chiheon Kim, and Seunghoon Hong. Towards end-to-end
 712 generative modeling of long videos with memory-efficient bidirectional transformers. In *Pro-
 713 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22888–
 714 22897, 2023.

715 Qihang Yu, Mark Weber, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh Chen.
 716 An image is worth 32 tokens for reconstruction and generation. *Advances in Neural Information*
 717 *Processing Systems*, 37:128940–128966, 2024a.

719 Sihyun Yu, Kihyuk Sohn, Subin Kim, and Jinwoo Shin. Video probabilistic diffusion models in
 720 projected latent space. In *Proceedings of the IEEE/CVF conference on computer vision and*
 721 *pattern recognition*, pp. 18456–18466, 2023.

722 Sihyun Yu, Weili Nie, De-An Huang, Boyi Li, Jinwoo Shin, and Anima Anandkumar. Effi-
 723 cient video diffusion models via content-frame motion-latent decomposition. *arXiv preprint*
 724 *arXiv:2403.14148*, 2024b.

725 Sihyun Yu, Meera Hahn, Dan Kondratyuk, Jinwoo Shin, Agrim Gupta, José Lezama, Irfan Essa,
 726 David Ross, and Jonathan Huang. Malt diffusion: Memory-augmented latent transformers for
 727 any-length video generation. *arXiv preprint arXiv:2502.12632*, 2025.

729 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 730 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on*
 731 *computer vision and pattern recognition*, pp. 586–595, 2018.

732 Sijie Zhao, Yong Zhang, Xiaodong Cun, Shaoshu Yang, Muyao Niu, Xiaoyu Li, Wenbo Hu, and
 733 Ying Shan. Cv-vae: A compatible video vae for latent generative video models. *Advances in*
 734 *Neural Information Processing Systems*, 37:12847–12871, 2024.

735 Wenzhao Zheng, Weiliang Chen, Yuanhui Huang, Borui Zhang, Yueqi Duan, and Jiwen Lu. Occ-
 736 world: Learning a 3d occupancy world model for autonomous driving. In *European conference*
 737 *on computer vision*, pp. 55–72. Springer, 2024a.

739 Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun
 740 Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all.
 741 *arXiv preprint arXiv:2412.20404*, 2024b.

743 A ENTROPY ANALYSIS OF SHARED VS. INDEPENDENT FRAME ENCODING

744 Consider a video sequence $\{X_1, \dots, X_T\}$. If each frame is encoded independently, the sequence
 745 entropy is

$$748 H_{\text{indep}} = \sum_{t=1}^T H(X_t) = \sum_{t=1}^T (I(X_t; C) + H(X_t | C)), \quad (6)$$

750 where C denotes a shared component, $I(X_t; C)$ the mutual information between X_t and C , and
 751 $H(X_t | C)$ the frame-specific residual information.

753 By explicitly modeling C , the sequence entropy decomposes as

$$754 H_{\text{shared}} = H(X_{1:T}) = H(X_{1:T} | C) + I(C; X_{1:T}) = \sum_{t=1}^T H(X_t | C, X_{1:t-1}) + I(C; X_{1:T}). \quad (7)$$

756 Since $H(X_t | C, X_{1:t-1}) \leq H(X_t | C)$, when strong temporal invariants exist, we have
 757

$$758 \quad H_{\text{indep}} - H_{\text{shared}} \geq \sum_{t=1}^T I(X_t; C) - I(C; X_{1:T}) \approx (T-1)I(C; X_{1:T}) \gg 0, \quad (8)$$

759
 760

761 where the approximation assumes each frame contributes roughly equally to the shared information
 762 C .
 763

764 **Conclusion:** explicitly capturing temporal redundancy allows for dramatically fewer tokens while
 765 maintaining representation quality.
 766

767 B MORE IMPLEMENTED DETAILS

768

769 B.1 TRAINING DETAILS

770

771 For the tokenizer implementation, our method is built upon SoftVQ-VAE (Chen et al., 2025a). All
 772 tokenizers are trained on a combination of UCF-101 (Soomro et al., 2012) and K600 (Carreira et al.,
 773 2018) datasets using a single node equipped with 8 A800 GPUs for 100,000 iterations, requiring
 774 approximately 1 day. For the second stage training targeting long video compression, we conduct
 775 additional training for 50,000 iterations. For video generation evaluation, we adapt LightningDiT-
 776 XL/1 (Yao et al., 2025) to support video generation, training for 100,000 iterations on 8 A800 GPUs
 777 over approximately 1 day.
 778

779 Our tokenizer is built upon a ViT-based architecture (except for the scalability experiments, we
 780 use the ViT-Base model), while the generation model is based on LightningDiT. For generation, we
 781 evaluate class-conditional generation on UCF101. Tables 6 and 7 provide the detailed configurations
 782 of TivTok and LightningDiT, respectively.
 783

Table 6: **Training configuration of TivTok.**

784 Configuration	785 Value
786 video resolution	256×256
787 enc/dec hidden dimension	768
788 enc/dec #layers	12
789 enc/dec patch size	4×8×8
790 enc/dec positional embedding	3D RoPE (video)
791 optimizer	AdamW
792 weight decay	1e-4
793 optimizer momentum	$\beta_1, \beta_2 = 0.9, 0.95$
794 global batch size	64
795 training steps	100K for 16 frames and 50K for token brocasting training
796 base learning rate	1e-4
797 warmup steps	5K
798 learning rate schedule	cosine
799 augmentation	horizontal flip, center crop
800 perceptual weight λ_1	1
801 discriminator	DINOv2-S
802 discriminator weight λ_2	0.2
803 discriminator start	30K
804 discriminator LeCAM	0.001

805 **Learnable token details.** Following existing image 1D tokenizers, we design the encoder to learn
 806 N independent latent tokens, while the decoder relies on a single mask token. For the time-invariant
 807 and time-variant tokens, we distinguish them in the encoder using an attention mask. In the decoder,
 808 we adopt a frame-wise decoding strategy, where each frame is reconstructed using the time-invariant
 809 token together with the time-variant token corresponding to the current latent frame.
 810

810
811
812 Table 7: **Training and inference configuration of LightningDiT-XL.**
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Configuration	Value
hidden dimension	1152
#heads	16
#layer	28
patch size	1
positional embedding	APE
optimizer	AdamW
weight decay	0
optimizer momentum	$\beta_1, \beta_2 = 0.9, 0.95$
global batch size	512
training steps	100K
base learning rate	1e-4
learning rate schedule	constant
augmentation	center crop
diffusion sampler	Euler
diffusion steps	50
CFG interval start	0.1
timestamp shift	2

Effect of different loss functions. For completeness, we summarize the effects of commonly used loss functions in video tokenization:

- **L1 reconstruction loss** encourages accurate pixel-level reconstruction and is the most stable term for training tokenizers.
- **Perceptual loss** improves texture sharpness and semantic alignment by comparing features in a pretrained network, thereby mitigating over-smoothed outputs.
- **Adversarial loss** enhances realism and high-frequency details, though it typically contributes less to the overall bitrate-quality trade-off than the reconstruction loss.

B.2 METRICS

For video reconstruction, our assessment employs established metrics including PSNR, SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018), and reconstruction FVD (rFVD) (Unterthiner et al., 2018). For video generation, we use generation FVD (gFVD) to assess the quality of generated video sequences.

B.3 MORE TIV TOKEN ANALYSIS

We provide additional visualizations of TIV and TV tokens in Figure 5, complementing the analysis presented in Figure 4 for a more in-depth understanding of their behavior.

C ANALYSIS OF MULTIPLE TIME-INVARIANT (TIV) TOKENS

Figure 8 and Table 8 present a detailed analysis of using multiple TIV tokens for video tokenization. As expected, increasing the number of TIV tokens generally improves reconstruction quality, since more tokens are available to encode information. However, this comes at the cost of reduced compression efficiency.

Specifically, using 4 TIV tokens leads to higher reconstruction quality than the baseline while moderately improving efficiency. In contrast, using a single TIV token maximizes compression efficiency (2.91x) while maintaining FVD at a level comparable to models with more TIV tokens. These results highlight the trade-off between reconstruction quality and compression rate and demonstrate

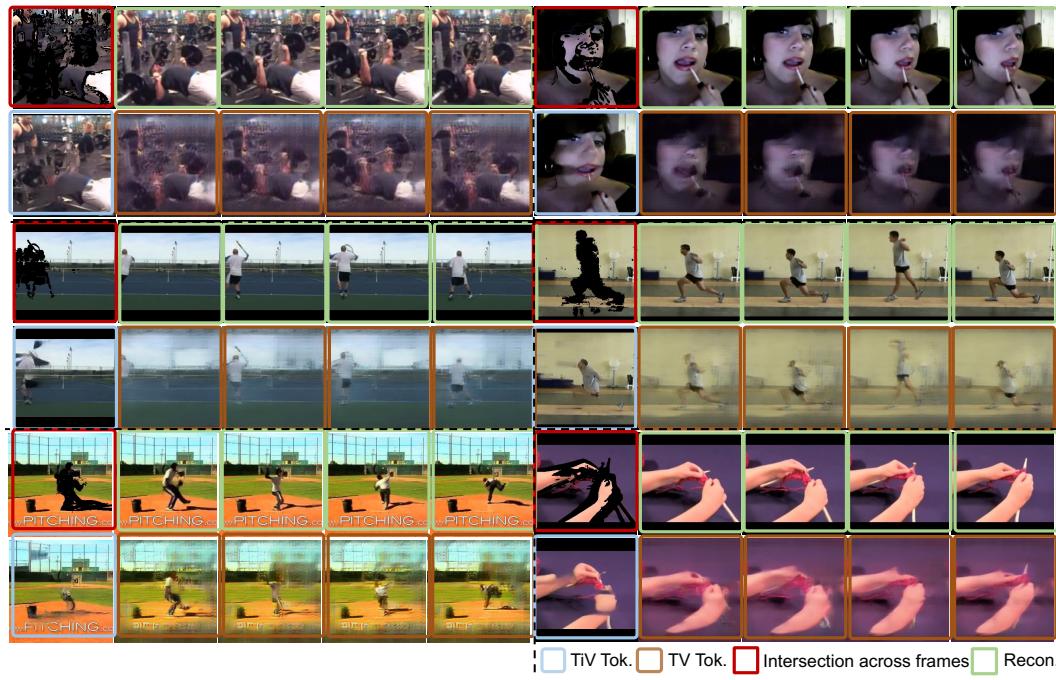


Figure 5: **More TIV Token and TV Token Visualization.** The intersection images (red boxes) display pixel-level persistence across frames, where we retain regions with minimal pixel variation. Results demonstrate that our TIV tokens capture temporal invariants including semantic information and scene geometry rather than merely pixel-level persistence.

Table 8: **Effect of the number of TIV tokens on reconstruction and compression metrics.** Experiments are conducted at $128 \times 256 \times 256$ resolution.

Method	Num TIV	Tokens	Dim	Comp. Ratio (%)	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	rFVD \downarrow
CVVAE	-	32768	4	0.521	29.00	0.8831	0.0729	72.91
TivTok	8	1024	128	0.521	30.07	0.9003	0.0618	28.96
TivTok	4	640	128	0.326	28.97	0.8825	0.0739	39.84
TivTok	2	448	128	0.228	27.20	0.8453	0.0951	81.18
TivTok	1	352	128	0.179	26.23	0.8210	0.1057	92.09

the flexibility of our approach in adjusting the number of TIV tokens according to different application requirements.

Overall, this analysis confirms that multiple TIV tokens can be used to capture more detailed time-invariant content, but even a single TIV token effectively encodes the essential semantic invariants while providing strong compression.

D ANALYSIS OF TIV/TV TOKEN RATIO

Figure 7 and Table 9 present an analysis of the effect of different TIV-to-TV token ratios on reconstruction and compression performance. As expected, a smaller TIV/TV ratio tends to improve compression performance for long videos, because more TV tokens are used, which increases the total number of tokens. However, this also reduces efficiency.

Specifically, as the TIV/TV ratio decreases, reconstruction metrics such as PSNR and SSIM slightly decrease, while the compression ratio improves. Experimental results show that, regardless of the TIV/TV ratio, the compression efficiency of our method consistently surpasses CVVAE. Notably, when the TIV/TV ratio is set to 1:3 or 1:1, both reconstruction quality and compression performance

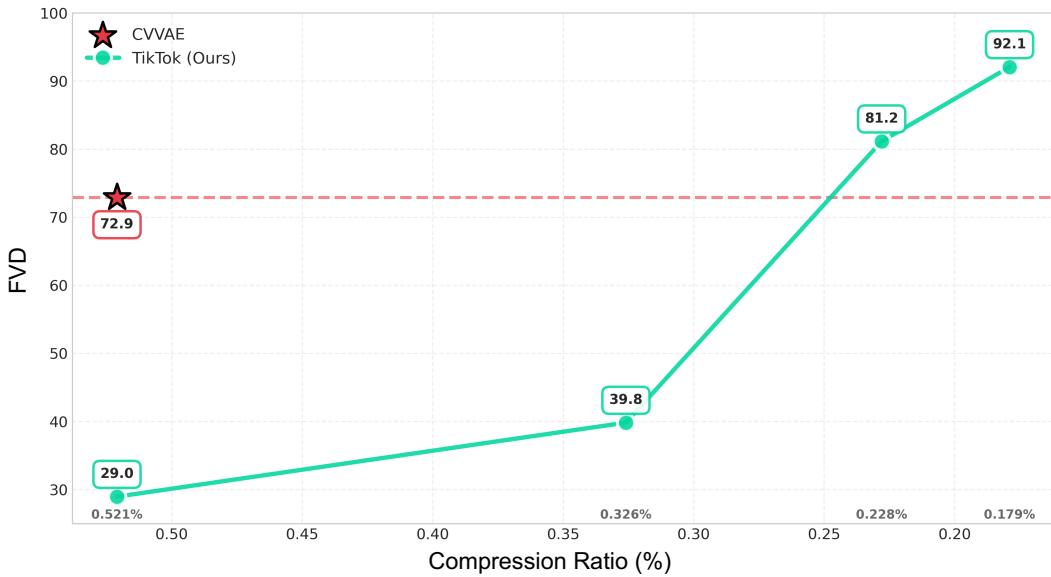


Figure 6: **Effect of multiple TIV tokens on reconstruction and compression.** This figure shows how varying the number of time-invariant (TIV) tokens impacts reconstruction quality (PSNR, SSIM) and compression ratio. More TIV tokens improve reconstruction but reduce compression efficiency, highlighting the trade-off between quality and token usage.

Table 9: **Effect of TIV/TV token ratio on reconstruction and compression metrics.** Experiments are conducted at $128 \times 256 \times 256$ resolution.

Method	TIV/TV Ratio	Compression Ratio	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	FVD \downarrow
CVVAE	-	0.521	29.00	0.8831	0.0729	72.91
TivTok	1:3	0.318	28.24	0.8663	0.0761	41.33
TivTok	1:1	0.229	27.52	0.8503	0.0887	64.76
TivTok	3:1	0.179	26.23	0.8210	0.1057	92.09

significantly outperform CVVAE. These results demonstrate a clear trade-off and provide practical guidance for selecting the TIV/TV token ratio based on specific application requirements.

Overall, this analysis confirms that adjusting the TIV/TV ratio allows flexible control over reconstruction versus compression, enabling the tokenizer to adapt to different video characteristics.

E DECOMPOSITION DEMONSTRATION

To validate the decomposition property of our method, we conduct an experiment where the time-invariant (TIV) tokens are fixed and only the time-variant (TV) tokens are varied. As shown in Figure 8, this allows the model to generate different video sequences while keeping the shared content consistent, even when the subject undergoes significant motion. This behavior arises from our more general decomposition design, which enables TIV tokens to autonomously capture the information they consider more time-invariant, making it reusable across frames.

F MORE QULITATIVE RESULTS

Figure 9 provides additional qualitative comparisons. Notably, CV-VAE operates at a compression rate of 0.521%, while Omni and Omni-DV both use a compression rate of 1.04%. In contrast, our method achieves a substantially lower compression rate of only 0.179% by reusing TIV tokens. Despite this significantly more constrained setting, our method produces visual results that remain comparable to existing approaches.

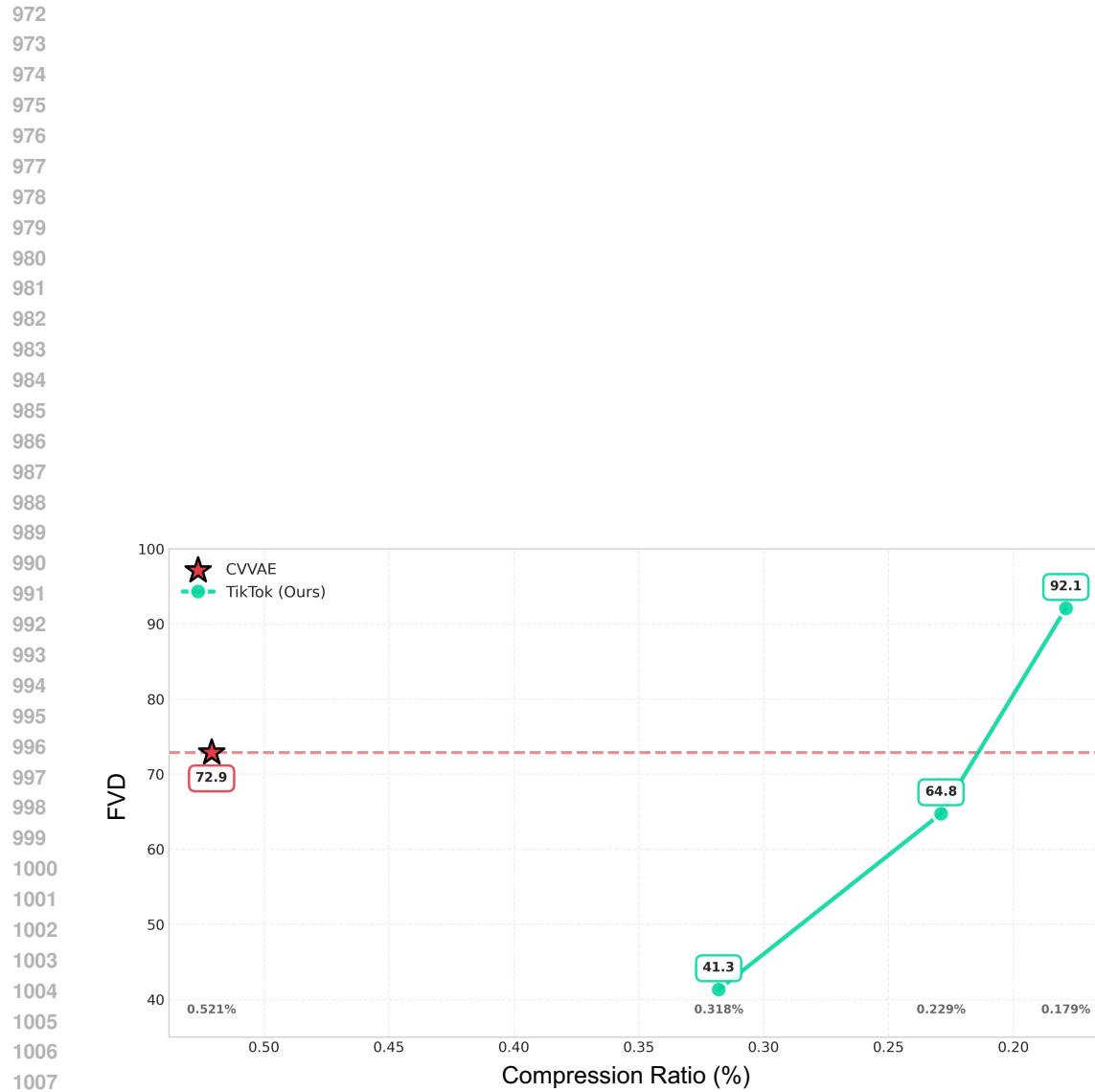
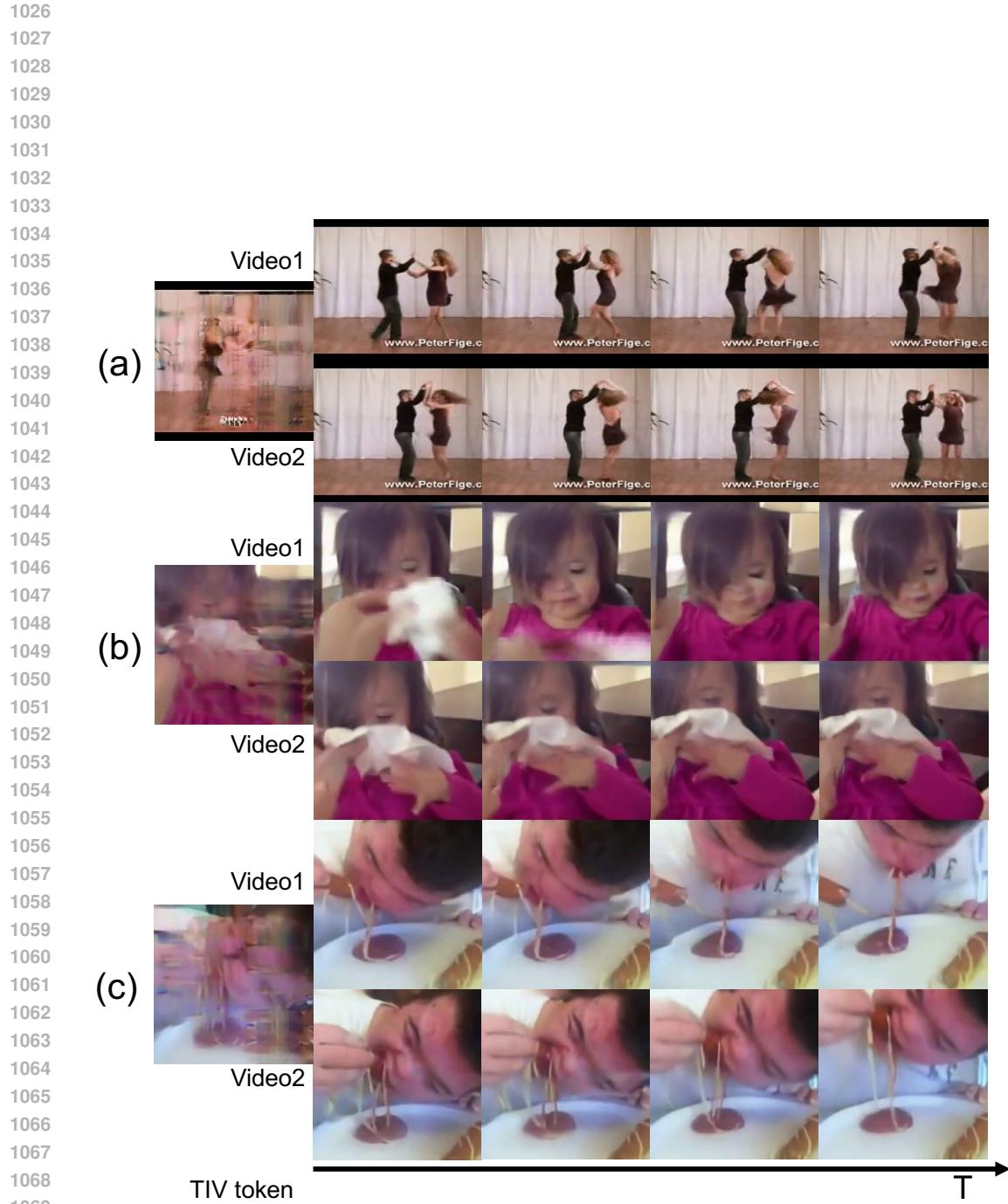


Figure 7: **Effect of different TIV-to-TV token ratios on reconstruction and compression performance.** The results illustrate the trade-off between reconstruction quality and compression efficiency.



1070 Figure 8: **Demonstration of the decomposition property.** Time-invariant (TIV) tokens are fixed
 1071 while time-variant (TV) tokens are varied, showing that the model can generate different video
 1072 sequences while preserving shared content.

1073
 1074
 1075
 1076
 1077
 1078
 1079

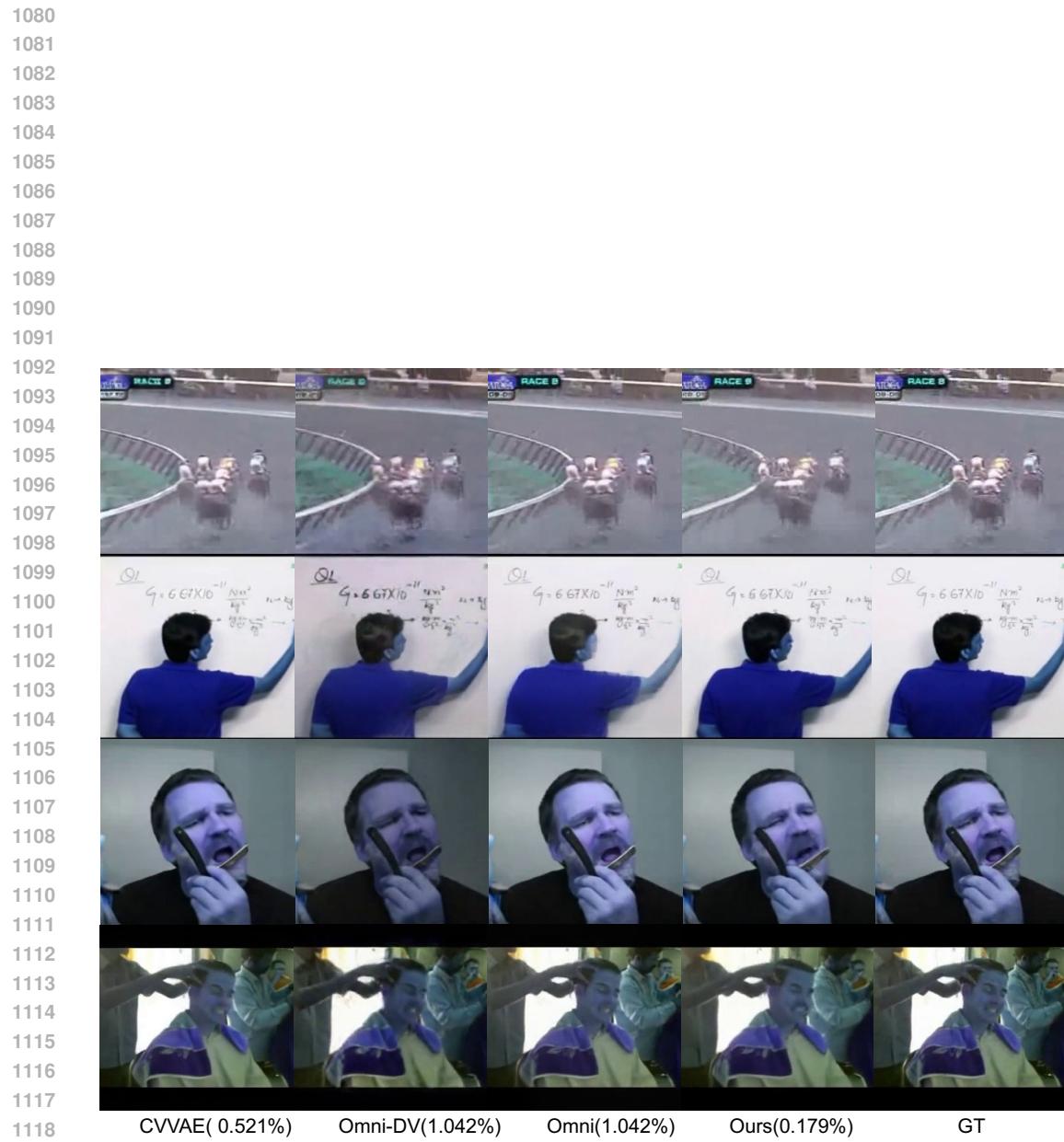


Figure 9: **Additional qualitative examples.** Compression ratios for each method are shown in parentheses. Despite operating at a significantly lower compression ratio, our method produces visual results that remain comparable to existing approaches.

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133