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Abstract

Recent advances in multi-modal models have demonstrated strong performance
in tasks such as image generation and reasoning. However, applying these
models to the fire domain remains challenging due to the lack of publicly
available datasets with high-quality fire domain annotations. To address this
gap, we introduce DetectiumFire, a large-scale, multi-modal dataset comprising
of 22.5k high-resolution fire-related images and 2.5k real-world fire-related
videos covering a wide range of fire types, environments, and risk levels. The
data are annotated with both traditional computer vision labels (e.g., bounding
boxes) and detailed textual prompts describing the scene, enabling applications
such as synthetic data generation and fire risk reasoning. DetectiumFire offers
clear advantages over existing benchmarks in scale, diversity, and data quality,
significantly reducing redundancy and enhancing coverage of real-world scenarios.
We validate the utility of DetectiumFire across multiple tasks, including object
detection, diffusion-based image generation, and vision-language reasoning.
Our results highlight the potential of this dataset to advance fire-related re-
search and support the development of intelligent safety systems. We release
DetectiumFire to promote broader exploration of fire understanding in the Al
community. The dataset is available at https://kaggle.com/datasets/
38b79c344bdfcbbdleed3d22fbaa9c31fad45e27edbbe9e3c529d6e5c4£93890.

1 Introduction

Recent advances in multi-modal models, such as CLIP [[1], Stable Diffusion [2} 3]], and Large Vison
Language Model [4, 13, |6} [7] have demonstrated remarkable success across a wide range of tasks,
including image generation [2} 8], visual question answering [9}16, 10, 11], cross-modal retrieval [[1, 6],
and multi-modal reasoning 9,12, [13]. Despite their transformational impact, little attention has been
given to the field of fire understanding. Existing datasets in this domain are limited to traditional
computer vision tasks, such as image classification and object detection [14}[15,[16,[17,|18]], which are
outdated and inadequate for training or evaluating modern multi-modal models. This lack of attention
can largely be attributed to the challenges of creating large, open, and high-quality datasets for fire
understanding, as such endeavors are often restricted to private companies and remain inaccessible to
the broader research community.

To fill this gap, we present DetectiumFire, a publicly available dataset comprising over 22.5k fire-
related images and 2.5k fire-related videos, annotated for both conventional computer vision tasks
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(e.g., classification, object detection) and modern multi-modal applications (e.g., image generation,
vision-language reasoning). Our motivation for building this multi-modal dataset goes beyond
conventional fire detection tasks and is driven by two core objectives:

1. Addressing the scarcity and diversity gap in fire datasets. Although fire safety is a
globally critical issue with direct implications for public safety, infrastructure, and climate
resilience [19, 20} 21]], collecting high-quality fire data remains extremely challenging.
Like in other safety-critical domains such as medical imaging [22} 23] or autonomous
vehicles [24} [25], fire events are rare and often dangerous to capture, resulting in limited
publicly available datasets. For instance, the largest existing fire dataset, D-Fire [14]],
includes only 5k fire images annotated with bounding boxes, and no large-scale video
dataset currently exists for fire-related scenes. In this context, generative models, such as
diffusion models, are increasingly adopted for augmenting rare data scenarios (e.g., rare
disease imaging) (26, 27, 28]]. Therefore, in addition to solely collecting more real-world
fire data, we also aim at building a multi-modal dataset capable of utilizing modern diffusion
models to generate high-quality synthetic fire data to address the data scarcity and diversity
problem.

2. Enabling modern multi-modal models to reason about fire. Fire understanding requires
more than just detection, it demands contextual reasoning about what is burning, the
environment, and the associated risk. Recent advances in multi-modal models, especially
vision-language models (VLMs), have shown promise in reducing false positives in fire
detection [29,130]. However, real-world scenarios often call for finer-grained distinctions.
For example, a small candle flame in a safe setting should not raise concern, but the same
flame spreading to curtains poses a serious hazard. Existing datasets lack the diversity and
annotation detail necessary to support such nuanced reasoning. DetectiumFire addresses this
by including a wide range of fire scenarios: both controlled and uncontrolled, each paired
with rich captions that describe fire presence, affected objects, environment, and severity.
This enables VLMs to learn critical distinctions for effective fire scene interpretation and
decision-making in safety-critical applications.

Importantly, our dataset was curated by fire safety professionals with domain expertise and familiarity
with Al concepts, ensuring high annotation quality and meaningful scenario coverage. In contrast,
existing datasets often lack domain-specific annotations or focus narrowly on detection without
considering broader tasks.

Equipped with this comprehensive dataset, we demonstrate how DetectiumFire addresses the data
scarcity challenge through diffusion-based generation and how it enables modern vision-language
models (VLMs) to reason about fire. We begin by evaluating the advantages of DetectiumFire
over the previous largest benchmark, D-Fire [14], across multiple dimensions. First, we show that
DetectiumFire offers broader real-world fire coverage, spanning both indoor and outdoor environments
and encompassing a wide range of causes, scales, and risk levels, including many rare or specialized
categories absent in prior datasets. Next, we assess dataset quality in terms of redundancy. Using the
imagededup tool [31], we show that DetectiumFire substantially reduces image duplication, with a
duplication rate of 0.23 compared to 0.55 in D-Fire. Finally, we evaluate the impact of DetectiumFire
on traditional vision tasks such as object detection. Models trained on DetectiumFire significantly
generalize better across different benchmarks and achieve improved performance compared to those
trained on D-Fire.

To examine the value of synthetic data in addressing the fire data scarcity problem, we investigate
two fine-tuning strategies for diffusion models: Supervised Fine-Tuning (SFT) and Reinforcement
Learning from Human Feedback (RLHF), and assess the resulting image quality using GPT-4o0 [32].
Our results show that fine-tuning with DetectiumFire leads to substantial improvements in visual
fidelity, realism, and prompt alignment. Moreover, these improvements translate into stronger
performance on downstream tasks such as object detection. In contrast, models trained on synthetic
datasets with lower visual fidelity, such as SD_Flame [33]], perform significantly worse. These
findings validate the usefulness of our synthetic data and highlight DetectiumFire’s potential to serve
as a new standard for fire image generation, offering practical advantages over existing methods such
as 3D simulation [34}35] and alternative generative approaches [36].

Lastly, we assess DetectiumFire’s potential for enabling fire reasoning in modern multi-modal models.
To this end, we fine-tune the LLaMA-3.2-11B-Vision-Instruct model [37] to infer three key fire-



related attributes from images: the burning object, the surrounding environment, and the severity of
the fire. The fine-tuned model achieves strong accuracy across all three tasks, demonstrating its ability
to extract meaningful, domain-specific information from DetectiumFire. This capability supports a
range of real-world applications, including automated alarm filtering [38]], post-incident analysis [39],
and early-stage risk assessment [40].

In summary, DetectiumFire fills a longstanding gap by offering a large-scale, richly annotated, and
multi-modal dataset for fire understanding. It enables advances in both discriminative and generative
modeling, and serves as a foundation for reasoning-centered applications critical to public safety.
We hope this resource inspires new research directions at the intersection of vision, language, and
safety-critical decision-making. The methodology and insights developed here are also transferable to
adjacent domains such as disaster response [41], industrial monitoring, and rare event modeling [42],
where data scarcity, domain complexity, and high stakes similarly intersect. We believe this work
contributes meaningfully to both applied Al and real-world safety-critical research.

2 Related Work

Fire Detection Datasets. The collection of real-world fire images for computer vision tasks such
as classification and object detection has been an active area of research. [14}[15, (16|17, [18]. The
largest publicly available dataset for fire detection to date is the D-Fire [[14], which includes 5,822
images of fire annotated with YOLO-format bounding boxes and 9,838 non-fire images. However, a
significant portion of this dataset consists of frames extracted from videos, leading to highly similar
and repetitive images. After removing duplicate and near-duplicate images, only half of the dataset
remains, limiting the diversity of fire scenarios represented. In contrast, DetectiumFire offers a more
comprehensive dataset with over 22.5k fire-related images and 2.5k real-world fire-related videos,
encompassing a diverse range of fire-related scenarios and eliminating duplications.

Synthetic Fire Image Generation. Advancements in generative models have facilitated synthetic fire
image generation. The FLAME Diffuser [33]] is a diffusion-based framework designed to synthesize
realistic wildfire images with precise flame location control. This model employs augmented masks,
sampled from real wildfire data, and applies Perlin noise to guide the generation of realistic flames.
However, FLAME Diffuser is a training-free framework and does not leverage large-scale real-world
fire datasets, which may limit the realism and contextual accuracy of the generated images. In
contrast, our synthetic data is generated using diffusion models fine-tuned with two distinct pipelines:
Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF) on our
large-scale text-to-image real-world fire dataset. This approach enables the generation of fire images
that are not only more realistic but also semantically coherent, accurately reflecting real-world fire
scenarios.

Fire Visual Reasoning Benchmarks. In the realm of fire visual reasoning, the HAZARD bench-
mark [43]] has been proposed to assess the decision-making abilities of Al agents in dynamic situations
involving hazards like fire, flood, and wind. HAZARD operates entirely within a simulation en-
vironment (TDW), where fire is rendered procedurally with limited realism. While valuable for
evaluating decision-making in controlled settings, the lack of real-world data limits its applicability
to real-world scenarios. In contrast, DetectiumFire provides a large-scale, diverse real-world dataset
with precise annotations, including environmental context, burning objects, and risk levels. This
real data is significantly more useful for training deployable models in real-world safety-critical
applications compared to virtual images. Moreover, our focus on fire is a deliberate and necessary
step toward addressing one of the most high-impact, under-resourced problems in the Al for disaster
safety community.

To the best of our knowledge, DetectiumFire is the largest publicly available real-world fire dataset,
containing both images and videos. It is the first dataset to include image-to-text annotations with
detailed fire domain knowledge specifically designed for multi-modal model training and evaluation.

3 DetectiumFire Dataset

DetectiumFire is a comprehensive dataset comprising over 14.5k high-quality real-world fire images
and 2.5k fire-related videos. In addition to real-world data, it includes 8k synthetic fire images
generated using diffusion-based models, along with 12k preference pairs curated during the RLHF



process to enhance model alignment, both of which, as detailed in Section[3.2] contribute to addressing
data scarcity in fire-related applications. Some examples of the dataset can be found in Appendix

3.1 Real-World Dataset

Each sample in this branch of the dataset is annotated with bounding boxes and accompanied by
detailed prompts describing fire-related content. To ensure the dataset’s quality and utility, we
implemented a rigorous data processing pipeline consisting of: (1) data sourcing, (2) quality analysis
and filtering, (3) annotation, and (4) human verification. All annotations and verifications were
performed by experts in fire-related fields proficient in computer vision and Al techniques.

Data Collection. To assemble a diverse collection of fire data, we conducted extensive web searches
for relevant images, videos, and short clips across multiple platforms, including Google, Twitter,
YouTube, and TikTok. Text-based queries were employed to retrieve data related to fire incidents
and common fire-related scenarios, such as cooking, campfires, burning candles, and incense. While
English was primarily used for searches, these platforms index fire-related visual content from around
the world, encompassing a wide range of regions and event types, thereby mitigating potential
geographic biases. To further enhance comprehensiveness and cultural coverage, we also employed
multilingual search strategies, incorporating languages such as Chinese, which is among the most
widely spoken languages globally [44] and is associated with large and active online communities
across the aforementioned platforms. Future work should explore additional languages to further
diversify the dataset. We also include some images collected using IoT devices during controlled fire
demonstrations. Moreover, we integrated fire samples from several existing benchmarks. A detailed
breakdown of all data sources, including licensing information and any modifications performed on
each dataset, is provided in Appendix [B.T} We fully acknowledge the contributions of prior datasets
and ensure adherence to all stated licenses.

Preprocessing. To construct the image dataset, we aggregated all collected images and extracted
individual frames from the videos and short clips containing fire scenes. To ensure quality and
uniqueness, we removed exact duplicates and near-duplicates using the imagededup tool [31].
Subsequently, our human annotators manually evaluated the remaining images, ensuring they provided
meaningful fire-related information. Images deemed low-quality or irrelevant were removed during
this stage. For the video dataset, human annotators meticulously reviewed each video and short clip
to confirm the presence of fire scenes. They assessed whether the fire was clearly identifiable and
excluded videos or clips that were of low quality or lacked significant fire-related content.

Annotation and Verification. Following preprocessing, our human annotators generated bounding
box annotations for the filtered fire images using the Roboflow platform [45]]. This annotation
process, which spanned several months, was carefully conducted to ensure the resulting annotations
were accurate, comprehensive, and consistent across the dataset. Further information on annotation
quality and inter-annotator agreement is available in Appendix [B.2] After completing this step, we
curated a final set of 7k high-quality fire images with 7k non-fire images, providing a contrast for
fire recognition tasks. For the video dataset, annotators extracted clips containing identifiable fire
scenes. Each extracted clip was required to be at least 10 seconds long to ensure sufficient context.
This process resulted in 1.7k video clips featuring fire and an additional 757 non-fire video clips,
which were included to facilitate more robust model training and evaluation.

To construct fire-related prompts for each sample, we first use GPT-4o [32] to generate detailed
descriptions that capture the burning objects, surrounding environment, and fire severity. The prompt
templates used to query GPT-4o, along with the rationale for leveraging GPT models in the annotation
process, are detailed in Appendix All generated captions are then reviewed and manually edited
by human annotators. To streamline this process, we developed a custom Python annotation tool,
described in Appendix [B.4] to assist with verification and refinement. During this step, annotators
validated the correctness of each caption, removed irrelevant or misleading content, and revised
phrasing to ensure alignment with our fire-focused data generation objectives. In particular, fire
severity labels were manually corrected based on a four-level taxonomy: No Risk (e.g. candle
flame or contained stove fire), Low Risk (requires continued attention, but not immediate action),
Moderate Risk (spreading fire needing action), and High Risk (uncontrolled fires requiring immediate
intervention). Because these captions serve as input to diffusion models for synthetic data generation,
one of our key goals was to ensure focus and consistency. We observed that longer prompts containing
unrelated scene-level details, such as human actions or complex backgrounds, often caused diffusion



models to diverge from rendering accurate fire phenomena. To mitigate this, we limit captions to 75
tokens, emphasizing the key aspects: what is burning, the surrounding environment, and the fire’s
severity or stage. Despite their brevity, these captions effectively convey the core attributes needed for
high-quality fire image synthesis and multi-modal reasoning. In future work, we plan to incorporate
richer scene-level annotations that support more advanced reasoning tasks, such as modeling fire
progression, assessing human presence and safety risk, and generating multi-step incident reports for
intelligent fire response systems.

Dataset Diversity and Real-World Fire Coverage. The final real-world portion of DetectiumFire
dataset covers a wide range of fire domains and scenarios, making it significantly more general than
previous datasets. It includes both indoor and outdoor scenes, covering a wide spectrum of fire
causes, scales, and severity levels, including many rare or underrepresented categories that are
often overlooked in prior work. This diversity is critical for enabling models to generalize across
real-world fire detection tasks. Specifically, the dataset is divided into two major categories: Indoor
Fires (3,374 images) include: Cooking fire (controlled, 54), Stove/fireplace fire (30), Candle flame
(1,076), Lighter flame (1,075), Matches flame (163), Kitchen fire (uncontrolled, 212), Electrical fires
(e.g., phones, fans, wire; 213), and Other indoor accidental fires (551). Outdoor Fires (4,175 images)
include: Campfires (controlled, 347), Vehicle fires (750), Forest/wildfires (1,045), House/residential
fires (1,159), Ship fires (42), Plane fires (14), Trash bin fires (26), LPG/gas tank fires (159), Burning
debris such as leaves or woodpiles (190), Other outdoor fires (418), and Pure flame crops (25). A
full breakdown is provided in Appendix This taxonomy highlights that DetectiumFire is not a
reassembly of prior resources but the result of extensive efforts, scene filtering, and targeted domain
coverage. Crucially, unlike most existing datasets that focus exclusively on destructive fire events,
DetectiumFire includes a range of controlled fire scenarios, such as campfires, stove-top flames, and
candlelight, that are common in daily life and should not trigger alarms. This distinction is essential
for developing fire detection systems that can minimize false positives. By including both controlled
(low-risk) and uncontrolled (high-risk) fires, our dataset supports training models that can reason
about fire severity and improve real-world reliability.

As for non-fire images, we go beyond simply adding visually irrelevant content. Instead, we
deliberately curate challenging negative examples that are known to frequently trigger false positives
in existing fire detection models. These include images of fire-like clouds, sunsets with intense red
hues, and scenes with strong light sources in dark environments, all of which may resemble fire under
certain conditions. Representative examples are provided in Appendix [B.6] These design choices
enhance the dataset’s realism and difficulty, ensuring that DetectiumFire not only supports model
training but also provides a robust benchmark for evaluating false alarm resistance. Together, these
decisions make DetectiumFire more diverse, realistic, and practically useful than previous datasets in
this domain.

3.2 Synthetic Dataset

To investigate whether modern generative models can effectively address data scarcity in the fire
domain, we explore two widely adopted fine-tuning approaches: (1) Supervised Fine-Tuning (SFT)
and (2) Reinforcement Learning from Human Feedback (RLHF). Although these methods are
standard, their application to safety-critical and data-scarce domains like fire understanding yields
valuable insights into model generalization and the role of high-quality synthetic data in real-world
Al systems.

Supervised Fine-Tuning. = We fine-tuned multiple widely used pre-trained diffusion models,
including Stable Diffusion v1.5, Stable Diffusion 2 [46] and Stabe Diffusion XL-1.0 [3], on the text-
image dataset derived in Section[3.1] For efficient and lightweight training, we adopted LoRA [47]]
techniquesﬂ All models were trained for 4,000 steps with a learning rate of 1e — 4, a prior loss weight
of 1, an AdamW8bit optimizer, and mixed precision set to fp16, while keeping all other parameters
at their default values. Hyperparameter optimization was not performed, leaving room for potential
improvements in performance.

Reinforcement Learning from Human Feedback. Reinforcement Learning from Human Feedback
(RLHF) has proven effective in improving multi-modal text-to-image models [48}49,|50]]. To align
the generated images with fire-related preferences, we incorporated an RLHF pipeline into this work.
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To construct a preference dataset for the RLHF pipeline, we began by randomly selecting 4k unique
prompts from our text-to-image dataset. For each prompt, images were generated using the three
diffusion models fine-tuned in the previous step. These generated images were then sent to annotators
for labeling. Annotators meticulously reviewed the images and filtered out invalid preference pairs to
ensure high-quality annotations. Each prompt receives between k = 2 ~ 9 unique images, leading
to C% = k(k — 1)/2 preference pairs. For simplicity, we collected binary feedback from multiple
annotators in this work, though more detailed feedback, such as ranking, may further improve
results [51]]. Each annotator was presented with two images generated from the same prompt and was
tasked with selecting a preference based on the following criteria similar to [SO]J:

1. General Preference: How visually appealing and convincing the generated fire appears
overall.

2. Visual Appeal: The artistic quality, realism, and aesthetic beauty of the generated fire.

3. Prompt Alignment: How accurately the generated fire matches the intent and details
described in the provided prompt.

Notice that we specifically focused on evaluating the quality of fire generation while ignoring other
elements in the image, such as humans or unrelated objects. After removing ties, this process resulted
in a preference dataset comprising 12k labeled pairs: D = {c,z%,x!} |, where each example

contains a prompt ¢ and a pair of images with human preference % = xt.

Next, we applied the Diffusion-DPO pipeline described in [50]] to fine-tune the Stable Diffusion v1.5
modeﬂ This approach was chosen for two primary reasons. First, Direct Preference Optimization
(DPO) [52] is a more effective and lightweight supervised method for learning from human preference
compared to traditional reinforcement learning techniques. Second, it explicitly avoids the need for
reward modeling and instead directly learns preference from the datasets. The model was fine-tuned
using the following hyperparameters: maximum training steps set to 3,000, training batch size of 1,
gradient accumulation steps of 1, learning rate of 1e — 8 with a constant learning rate scheduler, and
a warm-up period of 500 steps. The DPO beta parameter was set to 5,000. Other parameters are set
to default. Similar to SFT, we did not perform extensive hyperparameter tuning.

Synthetic Data Generation. To generate fire-related images, we reused prompts from the real-
world training dataset. Both the SFT and RLHF fine-tuned models were used to produce synthetic
images. We did not perform any hyperparameter tuning and kept the default settings in [53]]. Human
annotators then filtered the generated images based on the criteria outlined in Section [3.2]and added
bounding box annotations, following the procedure described in Section[3.1] This process resulted in
approximately 8k high-quality synthetic fire images

4 Experiments

In this section, we present a comprehensive set of experiments to evaluate the effectiveness of
DetectiumFire across a range of tasks. Our goal is to systematically assess the dataset’s value in
both traditional computer vision and emerging multi-modal settings. We focus on the following key
research questions and leave the additional experiments regarding fire video in Appendix [D.T}

* Benchmark Comparison: How does DetectiumFire compare to existing datasets in terms
of diversity, quality, and utility? How well do standard computer vision models perform on
DetectiumFire versus prior benchmarks?

* Synthetic Data Utility: Does our synthetic data pipeline produce high-quality fire images?
Can this synthetic data improve downstream tasks such as object detection?

* Multi-modal Fire Reasoning: Can DetectiumFire improve the ability of vision-language
models (VLMs) to reason about fire-related scenes?

4.1 Experimental Details

Benchmark Comparison. To highlight the advantages of DetectiumFire over the previous largest
benchmark dataset, D-Fire [[14], we begin by analyzing the duplication issue, which is common in

Implementation from https://github.com/SalesforceAIResearch/DiffusionDPO
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datasets constructed by extracting frames from videos. This often leads to a high proportion of visually
similar or redundant images. To assess and compare duplication levels, we used the imagededup
tool [31], applying two distinct methods: (1) perceptual hashing (PHash) with a maximum Hammin
distance threshold of 1, and (2) a CNN-based method using a pretrained EfficientNet-B4 modeﬁ
with a minimum similarity threshold of 0.9. This dual-method approach allows us to robustly identify
both exact and near-duplicate images across the datasets.

To evaluate the performance and generalization ability of object detection models on both datasets,
we conducted a 5-fold cross-validation. In each fold, 10% of the dataset was randomly sampled as a
fixed test set, while the remaining 90% was split into 70% for training and 20% for validation. We
employed YOLOV11 [54], the most advanced model in the YOLO family. Specifically, we used the
pre-trained YOLOv11m architecture, trained with a mini-batch size of 16 for 300 epochs. All other
hyperparameters followed the default settings.

In addition to YOLOv11m, we also evaluated two baseline models on DetectiumFire: Faster R-
CNN [55] and YOLO-World-M [56]. The Faster R-CNN implementation follows the MMDetection
framework [57]] with a ResNet-101 backbone and Feature Pyramid Network (R-101-FPN), initialized
using OpenXLab’s pre-trained Weightsﬂ We set the learning rate to 0.0025 and used a batch size
of 2 for 300 epochs. For YOLO-World-M, we followed the official instructions El The category
descriptions used for training were extracted from the detailed fire-related captions included in
DetectiumFire. All hyperparameters were left at their default settings. All models are trained on the
training set, with the best-performing checkpoint selected based on validation loss. Final results are
reported on the held-out test set. All training is conducted using a single NVIDIA Tesla T4 GPU. We
report three key metrics to assess detection performance: (1) Mean Average Precision (mAP). (2)
Mean Average Precision at 50% Intersection over Union (mAP50IoU), and (3) Mean Average Recall
with a maximum of 100 detections (mAR @ 100).

Synthetic Data Utility. To evaluate the quality and diversity of synthetic data generated by different
methods, we use GPT-40 [32] to create 770 unique prompts describing diverse fire scenes, which are
distinct from those in our dataset captions. These prompts are used to generate images with three
models: the original Stable Diffusion v1.5 and two fine-tuned variants introduced in Section[3.2]
While human evaluation is considered the gold standard for generative quality assessment, its high
cost and limited scalability motivate the use of automated methods [38]]. Following prior work [59],
we adopt GPT-40 as a proxy evaluator. Specifically, GPT-40 compares image pairs generated
from the same prompt by different models and scores them along three dimensions introduced
in Section[3.2] The full evaluation prompt is included in Appendix [C.2] To enable a robust and
quantitative comparison, we compute Elo scores from pairwise win rates across models, a metric
commonly used in LLM evaluations [60}(58161]. Further details about our Elo computation procedure
are included in Appendix [C.1]

To assess whether synthetic data improves downstream performance, we train YOLOv11m and Faster
R-CNN models using synthetic datasets generated via both the SFT and RLHF pipelines. As a
baseline, we include FLAME_SD [33]], which contains 10k synthetic fire images generated using a
fine-tuned latent diffusion model. We also explore training with combined synthetic (images generated
from both SFT and RLHF) and real data to assess the additive benefits of synthetic augmentation.

Multi-Modal Fire Reasoning. To investigate the potential of modern vision-language models
(VLMs) in understanding fire-related scenes, we conducted a study using the latest model, LLaMA-
3.2-11B-Vision-Instruct [37]]. Our goal was to assess whether fine-tuning on DetectiumFire improves
the model’s fire reasoning capabilities compared to the original, unmodified model. We fine-tuned the
model using our image-caption pairs with LoRA [62]] and Fully Sharded Data Parallelism (FSDP) [63]],
training on 2x A100 GPUs with a learning rate of le-5 for 3 epochs. The fine-tuning process was
implemented using the official llama-cookbook repository provided by Meta A]ﬂ We then evaluated
the model’s ability to infer three key fire-specific attributes from unseen images in the test set:

*https://pytorch.org/vision/main/models/generated/torchvision.models.
efficientnet_b4.html?highlight=efficientnet_b4_weights#torchvision.models.
EfficientNet_B4_Weights

“https://download.openxlab.org.cn/models/mmdetection/FasterR-CNN/weight/
faster-rcnn_r101-caffe_fpn_1x_coco

>https://github.com/AILab-CVC/YOLO-World

Shttps://github.com/meta-1lama/1lama-cookbook/tree/main
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1. Burning Object: The primary object(s) on fire (e.g., car, tree, stove, building).

2. Surrounding Environment: The contextual setting of the fire (e.g., indoor, outdoor, indus-
trial, urban, wildland).

3. Fire Severity: The level of risk posed by the fire, ranging from no immediate concern (e.g.,
candle flame) to urgent, uncontrolled scenarios (e.g., residential or forest fires).

To measure accuracy, we used GPT-4o [32] to evaluate whether the model’s outputs matched the
ground-truth attributes derived from our human-verified captions.

4.2 Experiment Results

Benchmark Comparison. The result for image duplication can be found in Table [I} which
demonstrates that DetectiumFire significantly reduces image duplication compared to D-Fire. This
is primarily due to differences in how video frames are sampled and curated. In the case of D-Fire,
long fire videos are often processed by extracting every frame without any filtering, resulting in many
near-identical images from the same scene. This leads to a large proportion of duplicated or visually
redundant images. In contrast, DetectiumFire also uses fire videos, but we apply a careful filtering
strategy. For each video, we consider the full fire development process from the early ignition stage to
peak intensity, and sample only 1 or 2 visually distinct frames from each key phase. This ensures that
even when multiple images come from the same scene, they represent different fire shapes, intensities,
or spatial spreads. As a result, our dataset avoids excessive redundancy while still capturing temporal
progression. Even among similar samples, the fire appearance is visually diverse, which improves
overall dataset quality and utility for training.

Table 1: Comparison of image duplication in DetectiumFire and D-Fire using PHash and CNN-based
similarity.

Method  Dataset Total Images  Duplicated  Duplication Ratio
PHash DetectiumFire 7,549 205 0.03
D-Fire 5,822 883 0.15
CNN DetectiumFire 7,549 1,756 0.23
D-Fire 5,822 3,201 0.55

Table 2: Cross-dataset object detection performance using YOLOv11m.

Training Set Test Set mAP (%) mAP@50 (%) mAR (%)

DetectiumFire DetectiumFire 43.74 + 0.64 75.96 +0.62 69.80 + 1.25
D-Fire D-Fire 4028 £1.76  71.66 +2.06 65.12 +£2.66
DetectiumFire  D-Fire 40.32 +1.53 68.94 +1.43 63.72 + 1.46
D-Fire DetectiumFire 24.88 +0.77 48.04 +1.21 4742 +1.62

The performance of YOLOv11m on both datasets is summarized in Table[2] The results show that
models trained on DetectiumFire generalize well to the D-Fire test set, achieving performance com-
parable to models trained directly on D-Fire. Notably, there is no overlap between the two datasets,
which highlights the strong generalization capacity and broad coverage of DetectiumFire. In contrast,
models trained on D-Fire perform significantly worse when evaluated on DetectiumFire. This perfor-
mance gap suggests that D-Fire lacks the diversity and complexity present in DetectiumFire. These
findings confirm that DetectiumFire serves as a more comprehensive and challenging benchmark for
fire detection, supporting the development of models that are better suited for real-world safety-critical
applications.

Synthetic Data Utility. The results and discussion for Elo scores and additional synthetic image
comparisons are provided in Appendix and demonstrating that both SFT and RLHF
leveraging DetectiumFire dataset significantly improve generation quality compared to the original
diffusion model. Furthermore, Table[3|presents detailed object detection results across various training



setups. Notably, we observe that YOLOv1 1m underperforms Faster R-CNN in certain settings—a
finding we further analyze in Appendix In addition, the performance of YOLO-World-M is
particularly promising, highlighting the potential of combining open-vocabulary detectors with richly
annotated fire datasets. Given that each image in DetectiumFire is paired with a detailed description
of the scene, we believe our dataset provides a natural foundation for advancing open-vocabulary
fire understanding, particularly in enabling zero-shot fire detection, detecting unseen object-fire
combinations, and leveraging text-guided detection in dynamic or ambiguous environments.

As for synthetic data, we found that models trained on synthetic data generated via the RLHF pipeline
show slightly lower performance than those trained on SFT-generated data. This suggests that the
RLHF pipeline might have reduced the diversity of the synthetic dataset. On the other hand, the
Flame_SD dataset [33]] yields significantly worse results than all other datasets. We believe the
performance gap highlights important differences in dataset generation strategy, data quality, and
coverage. We included a more detailed discussion in Appendix [D.3] However, this result should not
be interpreted as a limitation of synthetic data in general. The experiments demonstrate that diffusion
models fine-tuned on DetectiumFire, using a standard pipeline (SFT or RLHF), achieve comparable
performance to models trained on real images. This provides strong evidence that high-quality
synthetic fire data generated with semantically relevant prompts is indeed useful for downstream
tasks, validating the utility of synthetic images.

Another interesting observation is that combining real-world and all synthetic data leads to a slight
improvement over using real-world data alone. This is particularly noteworthy given that all prompts
and images used to generate the synthetic dataset are derived from the real-world training dataset.
This indicates that synthetic data acts as an augmentation to the real-world dataset, introducing
additional variations and scenarios that enhance model generalization. The marginal improvement
suggests that synthetic data complements real-world data effectively, although it remains insufficient
on its own to achieve optimal performance. Future work could focus on refining synthetic data
generation methods to further improve diversity and contextual realism, maximizing the benefits of
combining real and synthetic data.

Table 3: Evaluation performance of various models trained on different datasets. Metrics include
mAP, mAP@IoU50, and mAR @100 on the DetectiumFire test set.

TRAINING DATA MODEL DetectiumFireresr
mAP(%)  mAPQIoU50(%) mARQ100(%)
YOLOVI1IM 43.74+0.64 75.96+0.62 69.80+1.25
REAL-WORLD TRAIN SET FASTER-RCNN 41.13+£1.01 80.13+1.51 51.60+0.54
YOLO-WORLD-M  41.28-+0.84 76.5040.90 67.3241.43
YOLOVI1IM 33.50+0.35 59.40+0.75 60.54+2.26
SYNTHETIC SET(SFT)  p\orer-RCNN  24.3240.40  51.180.48 37.98+0.64
YOLOVI1IM 32.1240.29 58.08+0.14 59.4242.35
SYNTHETIC SET (RLHF) o, 1nr RONN 23.76+0.19 50.3140.33 36.8240.40
YOLOV1IM 2.1043.90 6.7142.37 9.3842.83
FLAME_SD FASTER-RCNN 3.4240.24 7.1140.39 10.56+0.15
YOLOVI1IM 44.52+0.50 76.26+0.34 69.92+1.95
REAL + SYNTHETIC FASTER-RCNN 42.56+2.44 81.41+1.93 52.18+0.47

Multi-Modal Fire Reasoning. The results are shown in Table ] which clearly demonstrate the
value of fine-tuning vision-language models (VLMSs) on domain-specific data. Additional qualitative
analyses are provided in Appendix Across all three reasoning tasks, the model fine-tuned
on DetectiumFire outperforms the base LLaMA-3.2-11B-Vision-Instruct by a large margin. The
improvement is especially pronounced in severity classification, where accuracy increases from
56.06% to 83.84%, indicating that the model becomes substantially more capable of interpreting risk
levels from visual clues. Similarly, accuracy in identifying the environment improves by over 17
percentage points, while performance on burning object recognition improves by nearly 25 percentage
points. These gains suggest that the curated image-caption pairs in DetectiumFire provide strong
supervision signals that enhance the model’s capacity to extract and reason about fire-specific visual



information, crucial for applications in automated fire assessment, alarm filtering, and intelligent
decision support.

Table 4: Accuracy of VLM predictions on fire reasoning tasks before and after fine-tuning on
DetectiumFire.

Model Burning Object Environment Fire Severity
LLaMA-3.2-11B-Vision-Instruct (Base) 62.73% 71.82% 56.06%
+ Our Dataset (SFT) 87.37% 89.39% 83.84%

5 Conclusion

In this work, we introduce DetectiumFire, the first large-scale, multi-modal dataset dedicated to
comprehensive fire understanding. Our dataset addresses critical gaps in existing benchmarks by
offering a diverse, high-quality collection of over 14.5k real-world fire images, 2.5k annotated fire
videos, and 8k synthetically generated images with accompanying RLHF preference data. All samples
are richly annotated with captions, bounding boxes, and scene-level metadata, enabling a broad range
of tasks from conventional object detection to advanced multi-modal reasoning.

Through extensive experiments, we demonstrate the strong generalization ability of models trained
on DetectiumFire, outperforming previous benchmarks. We further show that fine-tuning generative
models with our dataset significantly improves the visual quality and semantic alignment of synthetic
fire imagery, which in turn benefits downstream tasks like object detection. Additionally, we showcase
DetectiumFire’s ability to improve the fire reasoning capabilities of vision-language models (VLMs),
enabling them to infer critical scene properties such as fire severity, context, and affected objects.
These findings highlight the potential of our dataset not only as a benchmark but as a foundation for
developing Al systems capable of safe, reliable, and context-aware fire understanding.

We release DetectiumFire in the hope of supporting further research in fire detection, safety-critical
Al synthetic data generation, and vision-language reasoning. We believe our contributions will
inspire new directions in areas such as controllable fire video generation, fine-grained fire assessment,
and Al agent-based safety response systems, ultimately driving progress toward more resilient and
intelligent disaster management technologies.
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* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation of the work is presented in the Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This is a dataset paper and does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the experiment details are included in Section[d.1} We basically follow the
official implementation for each model and set most of the hyperparameters as default. The
experimental result is reproducible.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We upload a sample dataset with necessary metadata of DetectiumFire in the
supplemental material.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All details can be found in Section 1]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We trained our object detection models using 5-fold cross validation and
included the variance for each metric.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: It can be found in Section[4.11
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes.
Guidelines:
» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: It can be found in Appendix [A]
Guidelines:
» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: It can be found in Appendix [A]
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: It can be found in Appendix [B.T]
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: It can be found in Appendix [B.T]
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: We include details about how we curate the dataset in the main paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not applicable.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Not applicable.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Discussions

In this section, we explore potential use cases for our dataset that were not addressed in this work and
highlight its limitations and broader impacts. These aspects are left as future research directions.

A.1 Potential Use Cases

Benchmark for Synthetic Fire Data Generation In addition to generative techniques for synthetic
fire image generation, as demonstrated in this work and by FLAME_Diffuser [33], recent advance-
ments such as Scintilla [64] have shown promising results in simulating and rendering virtual wildfires
using 3D modeling. Their approach realistically captures key aspects of the fire-burning process and
its interaction with environmental factors. Experiments comparing their results to real-world wildfire
data are promising. DetectiumFire can serve as a benchmark for evaluating the quality of synthetic
fire generation across different methods. Furthermore, our real-world dataset can act as ground truth
for comparing the realism of these synthetic outputs, offering a unique resource for benchmarking.

Fire Video Generation Building on our success with diffusion-based fire image synthesis, an
exciting future direction is to extend this capability to the temporal domain using video diffusion
models. By learning spatio-temporal patterns from fire video clips, these models could generate
realistic, temporally coherent sequences that simulate fire behavior over time. Such generated fire
videos would be immensely valuable for applications in safety simulation, risk prediction, and
synthetic training of surveillance or anomaly detection systems, particularly in domains where real-
world dangerous fire footage is scarce or ethically infeasible to capture. Furthermore, conditioning
the generation process on control signals, such as fire type, spread rate, environmental conditions, or
suppression methods, could unlock customizable simulations that serve not only computer vision
research, but also training for first responders, fire risk modeling, and digital twin systems in smart
infrastructure [65]].

Advanced Fire Reasoning with Vision-Language Models and AI Agents While our current
work demonstrates the feasibility of training vision-language models (VLMs) to infer basic fire
attributes such as burning object, environment, and severity, future directions involve integrating these
models into more advanced Al agents capable of dynamic and autonomous fire scene understanding.
Such agents would not only interpret static images or single frames but also perform temporal
reasoning, predicting how a fire is likely to progress over time. They could engage in causal
inference, identifying ignition sources or environmental factors accelerating fire spread. When
combined with external knowledge bases and decision logic, these agents could offer real-time
decision support, advising on context-aware actions, such as whether to trigger alarms, evacuate, or
suppress a fire based on observed conditions.

Moreover, fire-aware Al agents could interact with humans through multi-turn dialogues, generate
structured incident reports, or simulate different intervention outcomes under uncertainty. These
capabilities would transform passive VLMs into proactive, embodied reasoning systems capable of
operating in safety-critical domains like smart buildings, industrial control rooms, or search-and-
rescue missions. Enabling such agents requires richer datasets like DetectiumFire, augmented with
temporal context, multi-modal annotations, and high-level task specifications, laying the foundation
for the next generation of fire-resilient intelligent systems.

A.2 Limitations and Broader Impacts

Despite our efforts to ensure the quality, safety, and diversity of DetectiumFire, several inherent
limitations remain. As described in Section[3.1] our data pipeline includes quality analysis, filtering,
and human verification. However, due to the inherently extreme and unpredictable nature of fire
scenes, some images and captions may still contain content that is unsafe, misleading, or potentially
harmful. This introduces a risk that models trained on the dataset could learn to generate unsafe or
inappropriate outputs, raising concerns about alignment and responsible deployment, especially in
generative settings.

Another limitation arises from data sourcing. A large portion of our real-world dataset is collected
via web search, which may impose legal or ethical restrictions on downstream usage. Although we
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have made every effort to ensure compliance with licensing and proper attribution, this limitation
may constrain the dataset’s applicability to strictly academic or non-commercial research.

Furthermore, while DetectiumFire covers a broad spectrum of fire types and scenes, it is still not
exhaustive. Edge cases, underrepresented geographies, and culturally specific fire-related scenarios
may be missing or under-sampled.

Nonetheless, we believe that releasing DetectiumFire as an open dataset offers substantial positive
impact. With recent wildfires and industrial fires causing widespread devastation, there is an urgent
need for Al systems that can understand, detect, and respond to fire events in a reliable and context-
aware manner. We hope that DetectiumFire can support this mission by enabling the research
community to develop and fine-tune models with a deeper, more nuanced understanding of fire
dynamics, ultimately contributing to safer Al deployments in smart homes, infrastructure monitoring,
public safety, and environmental protection.

B Additional Details of DetectiumFire

B.1 DetectiumFire Real-World Data Sources, Liscening and Ethical Considerations
Table [5] shows a detailed breakdown of all data sources, including licensing information and any

modifications performed on each dataset. We again fully acknowledge the contributions of prior
datasets and ensure adherence to all stated licenses.

Table 5: Summary of real-world data sources in DetectiumFire.

Data Source Size (Img/Vid) License Notes
Web Search 12,920 /2,468 CC BY-NC-SA Collected from Google, YouTube,
4.0 TikTok, Twitter
IoT Device 318/0 CC BY-NC-SA Captured using IoT sensors in con-
4.0 trolled demos
FIRE Dataset! 433/0 CCO Originally for classification; we
added bboxes + prompts
Forest Fire? 37370 CCBY 4.0 Originally classification; we added
bboxes + prompts
FireNET? 485/0 MIT Originally object detection; bboxes

modified + prompts added

Notice that most part of our real-world data was collected via public web search. In accordance with
standard academic practice and ethical use guidelines, these data should be restricted to academic
use only.

B.2 Annotation Quality and Inter-Annotator Agreement

Our annotation pipeline is structured around three key tasks:

1. Bounding box annotation of fire regions in the images.

2. Caption generation: Creating 75-token descriptive captions covering what is burning, where
it is burning, and its severity (no/low/moderate/high risk).

3. Preference annotation: Selecting preferred images between pairs of synthetic samples
generated by different diffusion models and justifying the choice based on general preference,
visual appeal, and prompt alignment.

'https://www.kaggle.com/datasets/phylake1337/fire-dataset
“https://wuw.kaggle.com/datasets/alik05/forest-fire-dataset
*https://github.com/0lafenvaMoses/FireNET
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All annotators are affiliated with Detectiumﬂ a startup focused on reducing industrial fire-related
risks through digital twinning and Al technologies. Annotators either possess prior fire-related
domain experience or have participated in related projects and are familiar with basic computer vision
concepts.

During annotation, each annotator will be allocated one batch of data. To ensure quality, any
ambiguities or disagreements during annotation are recorded and discussed with the technical officers.
Once an annotator completes a batch of data, it is automatically routed for review. Each annotation is
checked, and a minimum 90% agreement rate is required for batch approval. This includes bounding
box accuracy, caption accuracy (coverage of key fire scene elements), and preference validity based
on the established criteria (general preference, visual appeal, and prompt alignment). We chose the
90% threshold acknowledging that 100% agreement is neither practical nor necessarily desirable, as
it may introduce reviewer bias. If a batch falls short of this threshold, the technical officer and the
annotator jointly discuss the issues, and the data is re-annotated.

B.3 GPT Prompts for Captioning

While it is certainly possible to write all captions manually, the cost-to-benefit ratio is not favorable in
our current setup. Given the strong performance of modern GPT models, often approaching human-
level quality, and their widespread adoption in research for automating annotation tasks [9} 166} 67]],
we leverage them to reduce manual workload. Specifically, GPT-generated captions, when followed
by careful human review and editing, offer an effective balance between quality and scalability. To
this end, we first leverage GPT-40 [32] to generate detailed and semantically rich descriptions. Notice
that we also instruct the model to infer contextual information such as the presence of people in our
prompt; however, this information is excluded from the current dataset and reserved for future work
involving advanced reasoning tasks. The full prompt text used for this process is provided below.

System Instruction: You are an expert in fire scene analysis. Given an image, analyze its content
and return a structured JSON response.

Instructions:

1. Provide a detailed description of the image.
2. If the image does not contain fire, return only the description.
3. If the image contains fire, answer the following questions in a structured format:

* Objects on Fire: Identify the specific objects or materials that are burning.
* Fire Severity Level: Classify the fire into one of the following categories:
— Controlled Fire (No Risk): A small fire used for cooking, lighting, or heat-
ing, posing no immediate danger.
— Minor Fire (Low Risk): A small, contained fire (e.g., small trash fire) that
could be extinguished easily.
— Moderate Fire (Medium Risk): A fire spreading but still manageable, posing
some risk to nearby objects or people.
— Severe Fire (High Risk): A large, uncontrolled fire that is rapidly spreading
and endangering structures or lives.
» Affected Area: Describe the extent of the fire’s impact (e.g., a single object, a room,
an entire building).
* Presence of People: Indicate whether people are visible in the scene and describe their
condition (e.g., evacuating, trapped, firefighting).

Expected JSON Output Format:
If fire is present:

{

"description": "A large fire engulfing a residential building with thick black smoke.",

"https://wuw.detectium.io/
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"objects_on_fire": "House, furniture",

"fire_severity": "Severe Fire (High Risk)",
"affected_area": "The entire house and nearby trees",
"people_present": "Yes, firefighters are attempting to control the fire."

If no fire is present:

{

"description": "A quiet urban street with parked cars and people walking on the sidewalk."

}

Always ensure the response follows the correct JSON format.

[Image]
image

[Answer]
B.4 Annotation Tool

[} Fire Annotation Tool EEx

Original Answer:

The inage depicts a forest Fire burning in a uooded area, The Fire is characterized by its intense F
lanes and thick snoke, indicating a high level of severitu. The fire appears to be spreading rapidly
. posing a significant risk to the surrounding envirorment and potentially threatening nearby struct
ures.

*lbjects on Firer*
- Forest
- Tress

Editable Fire Prompt:

Dry leaves and underbrush are burning in & forested area, indicating a moderate wildfire,

Figure 1: Screenshot of the fire annotation tool. The tool displays each image alongside the original
GPT-generated caption and allows human annotators to edit and finalize a concise, domain-specific
prompt.

To facilitate efficient and high-quality prompt annotation, we developed a lightweight Python-based
GUI application for human verification and editing (see Figure[T). The tool displays each image
alongside two text boxes: the first presents the original caption generated by GPT-40, including
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detailed fire-related descriptions such as burning objects and severity level; the second allows human
annotators to review and edit the caption to produce a final, concise fire-specific prompt.

B.5 Fire Scene Taxonomy in DetectiumFire

We divide scenes into two major categories: Indoor Fires (3,374 images) and Outdoor Fires (4,175
images), and further organize them by ignition source and situational relevance. The detail breakdown
can be found in Table[6l

Table 6: Detailed taxonomy of real-world fire scenarios in DetectiumFire.
Indoor Fires (Total: 3,374 images)

Subcategory Description Image Count
Cooking fire (controlled) Stove-top flames from regular cooking 54
Stove/fireplace fire Contained stove or heater fires 30
Candle flame Lit candles in normal use 1,076
Lighter flame Small flame from lighters 1,075
Matches flame Small ignition flames from matchsticks 163
Kitchen fire (uncontrolled) Fires spreading from cookers or frying oil 212
Electrical fire Fires from phones, fans, wire, etc. 213
Other indoor fires (accidental)  Dropped candles, unknown cause fires 551

Outdoor Fires (Total: 4,175 images)

Campfire (controlled) Normal campfires outdoors 347
Vehicle fires Fires from cars, trucks, motorcycles 750
Forest/wildfires Large outdoor or forest-based fires 1,045
House/residential fires Full or partial house fires 1,159
Ship fires Fire incidents on marine vessels 42
Plane fires Fires on aircraft (in-air or grounded) 14
Trash bin fires Fires in dumpsters or public trash bins 26
LPG/gas tank fires Fires from liquefied gas canisters (indoor/outdoor) 159
Burning debris Burning of leaves, paper, woodpiles in the open 190
Other outdoor fires Scenes not covered by the above 418
Pure flame only Cropped flames without scene context 25

B.6 Additional Examples from DetectiumFire

To visually illustrate the breadth and realism of fire scenarios captured in DetectiumFire, we showcase
four representative samples from our dataset in Figure 2] These examples span a range of indoor and
outdoor fire contexts, with high-quality bounding box annotations and captions. These diverse, real-
world examples highlight the fine-grained coverage and detailed annotation quality of DetectiumFire,
reinforcing its utility for both traditional computer vision tasks and advanced reasoning in fire-related
safety applications.

Figure [3|shows additional example videos from the DetectiumFire dataset. The reason for collecting
video for fire examples is that, in many cases, a single image is insufficient for accurately recognizing
fire. For instance, at the early stages of fire ignition, as seen in the video clips in Figure[3] distinguish-
ing fire can be challenging. Similarly, in low-light environments or with low-quality cameras, bright
light sources can appear indistinguishable from fire, as demonstrated in the second video. However,
fire exhibits unique dynamic motion patterns in videos, such as flowing or flickering, whereas other
objects like light sources tend to remain static. This makes the video dataset a critical complement to
the image dataset for capturing the temporal characteristics of fire, which are essential for a deeper
understanding of fire dynamics.

In addition to collecting diverse fire scenes, DetectiumFire also includes a curated set of non-fire
images specifically selected to address common sources of false positives in existing fire detection
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(a) A vehicle is fully engulfed in flames on a public (b) Flames are erupting from the upper portion of
road, emitting thick black smoke. The fire is high a residential building, smoke is spreading into the
risk, severe and uncontrolled. sky, indicating high fire risk.

(c) A wildfire is actively burning in a forested area,

with visible flames spreading across dry under- (d) A small flame is observed on a couch cushion
brush and tree trunks. It is a high-risk outdoor fire in a living room. The fire currently poses moderate
scenario. risk.

Figure 2: Representative samples from DetectiumFire showcasing diverse fire scenarios across both
indoor and outdoor settings.

models. Unlike conventional negative samples, which may include arbitrary non-fire scenes, we
deliberately incorporate visually ambiguous cases that often confuse models due to their fire-like
visual characteristics. As shown in Figured such examples include red-hued skies during sunset,
intense light sources in dark environments, fog or mist with warm color tones, and reflective surfaces
that mimic the glow of fire. By including these hard negatives, we aim to improve model robustness
and reduce false alarms in real-world deployments, particularly in safety-critical settings where false
positives can lead to costly outcomes.

C Additional Experiment Setup

C.1 Calculating Elo Ranking

The Elo rating system, originally developed for chess, provides a straightforward yet effective
framework for estimating relative skill levels in head-to-head competitions [61]]. The algorithm
assumes that the performance of each competitor can be modeled as a normally distributed random
variable. Then the expected outcome of a match is calculated as a logistic function of the difference
between the ratings of the two players. Specifically, define the Elo ratings for one competitor C; as
FE; and F for the other competitor C'y, then the probability of C'y winning against C5 is computed
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(a) Sunset sky (b) Light in the dark (c) Red mist in the forest (d) Red reflection

Figure 4: Examples of non-fire images that commonly trigger false positives in current fire detection
models.

as:

1
BB M

o, = ——————
1+ 10400

Cy

The formula produces a value between 0 and 1, representing the likelihood of C; defeating Co, which
is (I)cl .

To compute the optimal Elo ratings, one simple method is to update the scores based on the outcome
after each comparison. However, to better refine Elo ratings over a historical dataset, we employ an
optimization approach to best fit the ratings to observed outcomes. The goal of the optimizing process
involves minimizing the difference between the predicted and observed win rates in the dataset. We
define the loss as a square error between the predicted win rate w, derived from Elo ratings, and the
actual win rate, w, observed in the dataset:

L((:J) = Z ((Z}Cz - owCj)Q ()

(Ci,Cy)

where &g, is the predicted win rate of competitor C}, we, ,c; 1s the actual win rate of competitor C;
against competitor C; in the dataset.

In this work, we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. We first initialize
the ratings for all competitors at a default value of 1200. Then we iteratively refine the ratings by
minimizing the loss function. To give an insight into the uncertainty and robustness of the Elo ratings,
confidence intervals are estimated using statistical bootstrapping by resampling different subsets of
matchups and recalculating the Elo ratings for 1000 iterations.
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C.2 GPT Prompts for Evaluation

To evaluate the alignment of the three criteria (General Preferences, Visual Appeal, and Prompt
Alignment) with actual human preferences, we compared the original Stable Diffusion v1.5 model
against versions fine-tuned using Supervised Fine-Tuning (SFT) and Reinforcement Learning from
Human Feedback (RLHF). Given the impracticality of relying solely on human evaluators for large-
scale evaluations, we utilized GPT-4o [32] as an automated judge. For consistency and reproducibility,
we designed detailed GPT-40 prompts to evaluate the generative performance of the models. The full
text of these prompts is provided below:

User Prompt:
[System]

You are tasked with evaluating two images based on the following three criteria, with a specific focus
on the quality of fire generation. Ignore other elements in the image (e.g., humans or unrelated
background objects) and assess solely based on the quality, realism, and prompt alignment of the fire
depiction.

1. General Preference: How visually appealing and convincing the generated fire appears overall.
2. Visual Appeal: The artistic quality, realism, and aesthetic beauty of the generated fire.

3. Prompt Alignment: How accurately the generated fire matches the intent and details described in
the provided prompt.

Instructions:

* First, output the scores (between 0—10) for each image. Use the exact format:
[[scorell, scorel2, scorel3], [score2l, score22, score23]]

— scorell: First criteria score for Image 1

— scorel2: Second criteria score for Image 1

— scorel3: Third criteria score for Image 1

— score21: First criteria score for Image 2

— score22: Second criteria score for Image 2

— score23: Third criteria score for Image 2

* Then, provide a short explanation comparing the two images, focusing only on the fire
generation quality.

* Avoid any order biases, and ensure the order in which the images are presented does not
influence your judgment.

Example Output:
(s, 9, 71, [7, 8, 9]

The first image features a more vibrant and realistic fire with clear flames and smoke, making it
visually appealing and convincing overall. The second image, while still visually appealing, lacks
the same level of detail in the flames and smoke, and its alignment with the prompt is slightly less
accurate.

Important Note:

 Focus exclusively on the fire generation quality when evaluating.
* Give under-5 scores for pictures without fire.

* Ignore unrelated elements such as humans, background objects, or other non-fire elements.

[Prompt]
prompt
[Image 1]

image 1
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[Image 2]

image 2

[Answer]

D Additional Experiment Results

D.1 Video Understanding Results

This experiment demonstrates the applicability of DetectiumFire for anomaly detection, where fire
is commonly treated as an anomalous event in surveillance and industrial contexts. Given the lack
of established baselines for fire-related anomaly detection, especially using multi-modal data, we
provide foundational results using two standard video classification models: TimeSformer [68] and
VideoMamba [69]]. TimeSformer is a state-of-the-art framework based on space-time attention and has
shown strong performance on anomaly detection datasets like Kinetics-400 [70]], Kinetics-600 [[71]].
VideoMamba is a structured state space model (SSM)-based video backbone designed as an efficient
alternative to transformers for video understanding. While our current setup avoids complex temporal
reasoning, it serves to isolate dataset usability under basic configurations. Future work should explore
more sophisticated spatio-temporal models for deeper insights.

Specifically, we train three TimeSformer variants using divided space-time attention, each operating
on clips with 8, 16, or 96 frames, and with input resolutions of 224x224, 448x448, and 224x224
pixels, respectively. In addition, we fine-tune three variants of VideoMamba: Ti, S, and M with a
batch size of 4 and vary the number of frames (8, 16). All other hyperparameters follow the default
settings. The video data is split into 70% training, 20% validation, and 10% test sets. Model selection
is based on validation loss, and final results are reported on the test set.

Table [/|shows the classification accuracy of the three TimeSformer variants. Since the task involves a
single target class (fire), it is relatively straightforward, and all three models achieve consistently high
accuracy. The base model, which operates with minimal computational complexity by using only 8
frames and a spatial crop size of 224, achieves an accuracy of 96.6%. As we increase the temporal
resolution (number of frames) and the spatial crop size, we observe a consistent improvement in
performance. The TimeSformer-HR model, which doubles the temporal resolution to 16 frames and
increases the spatial crop size to 448, achieves a 0.8% improvement, resulting in an accuracy of
97.4%. The TimeSformer-L. model, which significantly increases the temporal resolution to 96 frames
while maintaining the baseline spatial crop size of 224, achieves the highest accuracy of 97.9%.

Table [§] shows the classification accuracy of several VideoMamba variants. Interestingly, while
VideoMamba demonstrates solid performance across different configurations, we observe that it
consistently underperforms TimeSformer on our fire dataset, which is not expected given its strong
performance on general-purpose video benchmarks. This suggests that VideoMamba may not
transfer as effectively to the fire understanding domain. Some potential reasons for this could be: 1)
VideoMamba’s state space design excels at modeling smooth and continuous temporal dynamics,
which are prevalent in action recognition datasets like Kinetics [[70]. However, fire-related events,
such as sudden flare-ups, flickering, or rapid spreading, often involve chaotic and non-stationary
motion patterns. These may be better captured by transformer-based models that attend flexibly
across time. 2) The Mamba architecture is known for its efficiency due to low-rank approximations
and memory compression. While this helps scale to long sequences, it may inadvertently discard
fine-grained temporal details crucial for fire scene interpretation, such as frame-level intensity shifts
or flickering textures.

In summary, these findings highlight the importance of tailoring temporal modeling architectures to
the unique characteristics of fire-related video data. Future work may explore hybrid models that
combine the efficiency of Mamba with the flexibility of temporal attention techniques to better bridge
the gap between general video datasets and fire-specific understanding.

D.2 Understanding YOLOV11 vs. Faster R-CNN Performance Disparity
Table[3|shows that YOLOv11 underperforming Faster R-CNN in both the real-only and real+synthetic

settings. We believe this is due to the unique nature of fire detection, where the target objects are often
non-rigid, partially occluded, and visually ambiguous. Faster R-CNN, as a two-stage detector with
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Table 7: Performance of different TimeSformer models with various hyperparameters on our video
dataset.

Method # of Frames Spatial Crop Acc.
TimeSformer 8 224 96.6
TimeSformer-HR 16 448 97.4
TimeSformer-L 96 224 97.9

Table 8: Performance of different VideoMamba models with various hyperparameters on our video
dataset.

Method Pretraining  Resolution # of Frames Acc.
VideoMamba-Ti  ImageNet-1k 224 8x3x4 81.35
VideoMamba-Ti  ImageNet-1k 224 16 x3x4 83.13
VideoMamba-S  ImageNet-1k 224 8x3x4 84.93
VideoMamba-S  ImageNet-1k 224 16 x3x4 85.27
VideoMamba-M  ImageNet-1k 224 8x3x4 85.16
VideoMamba-M  ImageNet-1k 224 16x3x4 86.04

explicit region proposals, tends to be more robust in such cases, particularly on medium-scale datasets
with high variation and subtle object boundaries. In contrast, YOLOv11, while a state-of-the-art
one-stage model, may struggle with diffuse fire regions that lack clearly defined edges or shapes.

Moreover, our dataset includes a broad range of fire scales and environments (from small indoor
flames to large outdoor fires), and this variability may favor the more structured, proposal-based
architecture of Faster R-CNN in certain metrics.

This observation also highlights that raw model capacity is not always the best indicator of perfor-
mance in safety-critical, domain-specific tasks.

D.3 FLAME_SD vs DetectiumFire Performance

Table 3|shows that the Flame_SD dataset [33] yields significantly worse results than all other datasets.
We believe the performance gap highlights important differences in dataset generation strategy, data
quality, and coverage.

FLAME_SD constructs fire masks using simple geometric shapes (e.g., rectangles, circles), without
leveraging any semantic understanding of the background image. As a result, fire is often generated
in unrealistic or contextually irrelevant locations, which limits its utility for training object detectors.
Moreover, fire lacks fixed structure, and constraining it to predefined mask shapes weakens the
expressiveness of the diffusion model, contributing further to poor generalization.

Additionally, FLAME_SD focuses primarily on outdoor and large-scale fire scenarios such as forest
fires, while lacking diversity in small fires, indoor scenes, industrial contexts, or subtle object-fire
interactions. In contrast, DetectiumFire includes a broader range of fire types and environments,
leading to more balanced and effective coverage of real-world fire understanding scenarios. This
discrepancy in coverage likely explains why models trained on FLAME_SD generalize poorly when
evaluated on DetectiumFire.

D.4 Elo Results

Table 0 presents the pairwise Elo scores with confidence intervals across three key evaluation criteria:
General Preference, Visual Appeal, and Prompt Alignment, for synthetic fire images generated by
models fine-tuned via Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human
Feedback (RLHF/DPO), as well as the original Stable Diffusion model.

Overall, the results show that both SFT and DPO consistently outperform the original model across
all criteria, confirming that fine-tuning with DetectiumFire improves generation quality. Between the
two fine-tuning methods, DPO exhibits a slight but consistent advantage over SFT, particularly in
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Table 9: Pairwise Elo scores and confidence intervals for evaluating synthetic fire image generation
across three criteria: General Preference, Visual Appeal, and Prompt Alignment.

Model Pair Criterion

Model A (Score, CI)

Model B (Score, CI)

General Preference
SFT vs DPO Visual Appeal

Prompt Alignment

1161.99 (1148.76, 1225.18)
1157.56 (1144.92, 1228.78)
1145.17 (1133.04, 1242.68)

1238.01 (1174.82, 1251.24)
1242.44 (1171.21, 1255.08)
1254.83 (1157.32, 1266.96)

General Preference
SFT vs Original ~ Visual Appeal

Prompt Alignment

1205.49 (1192.16, 1218.82)
1210.30 (1201.60, 1222.06)
1213.05 (1198.39, 1224.85)

1194.51 (1181.19, 1193.83)
1189.71 (1177.95, 1198.39)
1186.95 (1175.15, 1201.60)

General Preference
DPO vs Original  Visual Appeal

Prompt Alignment

1212.39 (1200.46, 1225.37)
1214.50 (1197.91, 1227.02)
1206.54 (1194.82, 1218.26)

1187.61 (1175.69, 1199.53)
1185.50 (1172.97, 1202.09)
1193.46 (1181.74, 1203.24)

Prompt Alignment and Visual Appeal. For instance, in the SFT vs DPO comparison, DPO achieves
higher Elo scores across all criteria, with a noticeable margin in Prompt Alignment (1254.83 vs.
1145.17).

Interestingly, while the differences between SFT and the original model are relatively modest, the
DPO vs Original comparison shows the most pronounced gains, suggesting that RLHF offers stronger
alignment with user preferences for fire scene generation. These trends demonstrate the effectiveness
of human feedback in improving both fidelity and prompt consistency in generative fire modeling.

D.S Image Comparison Examples rated by GPT-40

Below, we provide detailed examples of scoring and justification from GPT-4o0.
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Table 10: Comparison of Stable Diffusion 1.5 fine-tuned using SFT and RLHF. Ratings and justifica-

tion are based on GPT-40 evaluation.

Text Prompt: Trees are burning next to some brush

Image 1: Stable Diffusion 1.5 (SFT)

GPT Evaluation Scores:

Criterion Image 1 Score Image 2 Score
General Preference 7 8
Visual Appeal 7 8
Prompt Alignment 6 8

GPT Justification: The second image has a more visually appealing and convincing depiction of fire with
clear, vibrant flames that have a more realistic quality. Compared to the first image, the fire in the second
image matches the prompt more accurately, showing trees burning next to brush, whereas the first image
emphasizes the brush more and the fire appears less integrated with trees. Overall, the artistic quality and
prompt alignment are stronger in the second image.
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Table 11: Comparison of Stable Diffusion 1.5 fine-tuned using SFT and RLHF. Ratings and justifica-
tion are based on GPT-40 evaluation.

Text Prompt: Candles on a windowsill.

Image 1: Stable Diffusion 1.5 (SFT)

Image 2: Stable Diffusion 1.5 + RLHF

GPT Evaluation Scores:

Criterion Image 1 Score Image 2 Score
General Preference 3 6
Visual Appeal 3 7
Prompt Alignment 4 7

GPT Justification: The first image contains candles but lacks any visible flames, which are an essential
part of fire generation. Consequently, it scores lower on all criteria. The second image features candles
with visible flames, where the fire appears more realistic and aesthetically appealing. The flames in the
second image are well-rendered and align better with the prompt, which specifically mentions candles on a
windowsill.
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Table 12: Comparison of Stable Diffusion 1.5 fine-tuned using SFT and RLHF. Ratings and justifica-

tion are based on GPT-40 evaluation.

Text Prompt: A large fire burning in the middle of a dry field.

Image 1: Stable Diffusion 1.5 (SFT)

Image 2: Stable Diffusion 1.5 + RLHF

GPT Evaluation Scores:

Criterion Image 1 Score Image 2 Score
General Preference 7 9
Visual Appeal 7 8
Prompt Alignment 6 8

GPT Justification: The first image features a moderate fire with clearly visible orange flames and some
surrounding smoke. The flames appear fairly realistic, but the intensity and overall impact are somewhat
subdued.The second image shows a much more intense fire engulfing a tree, with vibrant orange flames and
more dramatic smoke effects. This image is more visually striking and aligns better with the prompt of a
large fire burning in a dry field. While both images depict fires in a dry field, the second one offers a more
compelling and realistic representation of a large fire.
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Table 13: Comparison of Stable Diffusion 1.5 fine-tuned using SFT and RLHF. Ratings and justifica-
tion are based on GPT-40 evaluation.

Text Prompt: The fire in the forest.

Image 1: Stable Diffusion 1.5 (SFT)

GPT Evaluation Scores:

Criterion Image 1 Score Image 2 Score
General Preference 7 8
Visual Appeal 7 8
Prompt Alignment 8 9

GPT Justification: The fire in the second image appears more vibrant and realistic compared to the first
one. The flames in the second image have a stronger visual appeal with well-defined shapes and colors
that enhance the artistic quality. Additionally, the fire in the second image aligns more accurately with the
prompt, depicting a forest fire with a realistic and convincing appearance. The first image, while still good,
has a slightly less detailed and less vibrant depiction of fire.
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D.6 Qualitative Analysis in VLM Reasoning

In this section, we present additional qualitative analyses that provide an in-depth, per-sample
breakdown of correctness across the key components of fire reasoning.

First, we analyzed object match and environment match by comparing the outputs of the original
model and the SFT fine-tuned model.

* Object Match: 52.63% of samples were correctly answered by both models, while 34.75%
were correctly answered only by the SFT model, and 10.10% only by the original model.
Only 2.53% were incorrect in both cases.

¢ Environment Match: 62.73% of cases were correct for both models, with 26.67% correct
only under SFT and 9.09% only under the original model. Only 1.52% of examples were
incorrect in both.

These results demonstrate that the SFT model not only improves aggregate accuracy but also resolves
additional cases that the original model fails to handle, supporting our claim that fine-tuning with
DetectiumFire yields tangible gains in structured fire-related reasoning.

Table 14: Normalized confusion matrices (%) for four severity prediction. Rows are ground truth and
columns are predictions.

Original Model SFT Model
GT |/Pred - NoRisk Low Moderate High GT | /Pred - NoRisk Low Moderate High
No Risk 31.6 6.1 32.7 29.6 No Risk 85.1 8.5 6.4 4.3
Low Risk 7.0 474 15.8 15.8 Low Risk 1.8 66.7 10.5 7.0
Moderate 2.0 10.2 61.2 28.6 Moderate 8.2 10.2 73.5 10.2
High Risk 6.3 8.3 8.3 81.3 High Risk 2.1 2.1 12.5 87.5

We further evaluated the models using a 4-class confusion matrix on fire severity prediction. Table [I4]
shows the normalized confusion matrices for both models. We observe that:

1. All severity levels show clear improvements in diagonal accuracy (i.e., correct predictions)
with the SFT model.

2. False alarms are dramatically reduced. For instance, the original model misclassified "No
Risk" cases as "High Risk" 30.6% of the time, an unacceptable outcome in safety-critical
applications. This is reduced to just 4.3% in the SFT model.

3. Improved severity alignment illustrates that the SFT model better understands fire context
and threat levels.

In addition, we provide detailed examples where the SFT model correctly identifies components of
the fire scene that the original model fails to recognize.

We also include examples where the SFT model fails, highlighting the limitations of the current
system and dataset. In summary, these results and examples illustrate that the SFT model fine-
tuned on DetectiumFire not only improves numerical accuracy but also captures fire-specific scene
understanding better than the original baseline. The reduced false alarms and more accurate scene
interpretations highlight the utility of our dataset for real-world fire reasoning and support future work
on tasks such as fire alarm triggering, threat assessment, and scene reporting. We also acknowledge
areas for improvement and will address such cases in the next version of the dataset and models.
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Table 15: Example where the SFT model correctly identifies components of the fire scene that the
original model fails to recognize.

Original Output
SFT Output

Justification

A man’s shirt is burning, and the fire is spreading quickly, posing a moderate
to severe risk to his safety and well-being.

A cigarette lighter is being ignited in an indoor setting, with no immediate
fire risk detected.

The SFT model is correct; it recognizes a simple lighter ignition, whereas
the original model incorrectly describes it as a severe fire incident.

Table 16: Example where the SFT model correctly identifies components of the fire scene that the
original model fails to recognize.

Original Output

SFT Output
Justification

A moderate fire is burning candles in a dark room, with flames licking at
the edges of the wax.

Candles are burning on a metal stand indoors, with a minor severity.

The SFT model accurately interprets the scene as a minor risk, whereas the
original model exaggerates it as a moderate fire requiring attention.
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Table 17: Example where the SFT model correctly identifies components of the fire scene that the
original model fails to recognize.

Original Output

SFT Output

Justification

A moderate-sized fire is burning on the ceiling of a ship’s deck, with a
significant portion of the wooden planks and electrical wiring above the
control room ablaze, posing a severe threat to the vessel’s structural integrity
and potentially causing a catastrophic explosion.

A fire is burning on a pipe or ductwork in an industrial setting, with moderate
severity.

The SFT model correctly identifies the object and environment; the original
model hallucinates nonexistent structure and exaggerates risk.

Table 18: Example where the SFT model correctly identifies components of the fire scene that the
original model fails to recognize.

||u|=r-ermmr| LecTung Il:mm‘ Suriran ‘
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Original Output

SFT Output

Justification

A moderate-sized fire is burning on a metal surface in a classroom, fueled
by a chemical reaction between a metal and an acid, posing a significant
risk to the students and teacher present in the room.

A moderate fire is burning on a metal plate in a laboratory setting, with no
immediate severity concerns.

The SFT model correctly identifies the scene as a controlled experiment,
while the original model misinterprets the setting and overstates the threat.
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Table 19: Example where the SFT model fails.

Original Output
SFT Output

Justification

A moderate fire is burning the armchair and a corner of the wall in the living
room.

A moderate-sized fire is burning on a television set inside a room, with
curtains partially covering the window.

The SFT model fails to identify the correct object (armchair) and incorrectly
predicts a TV fire.

Table 20: Example where the SFT model fails.

Original Output

SFT Output

Justification

A moderate-sized fire is burning a pile of wooden pallets in a black plastic
trash can, which is positioned against the side of a yellow house with
horizontal wooden siding, likely causing significant damage to the structure.
A moderate fire is burning on the exterior of a house, consuming wooden
debris in a nearby container.

The SFT model fails to detect the trash can as the burning object, providing
a more generic description.

40



	Introduction
	Related Work
	DetectiumFire Dataset
	Real-World Dataset
	Synthetic Dataset

	Experiments
	Experimental Details
	Experiment Results

	Conclusion
	Acknowledgments
	Discussions
	Potential Use Cases
	Limitations and Broader Impacts

	Additional Details of DetectiumFire
	DetectiumFire Real-World Data Sources, Liscening and Ethical Considerations
	Annotation Quality and Inter-Annotator Agreement
	GPT Prompts for Captioning
	Annotation Tool
	Fire Scene Taxonomy in DetectiumFire
	Additional Examples from DetectiumFire

	Additional Experiment Setup
	Calculating Elo Ranking
	GPT Prompts for Evaluation

	Additional Experiment Results
	Video Understanding Results
	Understanding YOLOv11 vs. Faster R-CNN Performance Disparity
	FLAME_SD vs DetectiumFire Performance
	Elo Results
	Image Comparison Examples rated by GPT-4o
	Qualitative Analysis in VLM Reasoning


