

000
 001
 002
 003
 004
 005
 006
 007
 008
 009
 010
 011
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031
 032
 033
 034
 035
 036
 037
 038
 039
 040
 041
 042
 043
 044
 045
 046
 047
 048
 049
 050
 051
 052
 053

LATENT POINT COLLAPSE ON A LOW DIMENSIONAL EMBEDDING IN DEEP NEURAL NETWORK CLASSIFIERS

Anonymous authors

Paper under double-blind review

ABSTRACT

The topological properties of latent representations play a critical role in determining the performance of deep neural network classifiers. In particular, the emergence of well-separated class embeddings in the latent space has been shown to improve both generalization and robustness. In this paper, we propose a method to induce the collapse of latent representations belonging to the same class into a single point, which enhances class separability in the latent space while making the network Lipschitz continuous. We demonstrate that this phenomenon, which we call *latent point collapse* (LPC), is achieved by adding a strong L_2 penalty on the penultimate-layer representations and is the result of a push-pull tension developed with the cross-entropy loss function. In addition, we show the practical utility of applying this compressing loss term to the latent representations of a low-dimensional linear penultimate-layer. LPC can be viewed as a stronger manifestation of *neural collapse* (NC): while NC entails that within-class representations converge around their class means, LPC causes these representations to collapse in absolute value to a single point. As a result, the network improvements typically associated with NC—namely better robustness and generalization—are even more pronounced when LPC develops.

1 INTRODUCTION

Deep neural networks (DNNs) excel in various tasks, but they often struggle with ensuring robust performance and reliable generalization. A key insight into addressing these challenges lies in understanding and controlling the geometry of the latent representations that DNNs learn. In particular, it has been observed that increasing the margin between classes, i.e., making classes more separable in the latent space, can yield significant gains in both robustness and generalization (1; 2; 3; 4). Indeed, the relationship between generalization and robustness is well-established in the literature (5; 6; 7; 8; 9).

DNNs naturally tend to improve the separation of different classes in the latent space during training, and this process occurs at a constant geometric rate (10). Such evolving separation manifests in the phenomenon of *neural collapse* (NC) (11; 12). While NC is prominently observed and analyzed in the penultimate-layer of DNN classifiers, its characteristics, propagation, and related phenomena have also been investigated in intermediate layers (13; 14; 15; 16; 17). This phenomenon typically occurs in overparameterized models during the terminal phase of training (TPT). Even after the point of zero training error, the network further refines the representations by increasing their relative distances in the latent space. In practice, this means that the class means in the penultimate-layer collapse to the vertices of an equiangular tight-frame simplex (ETFS). The occurrence of NC has been observed in large language models (18), in graph neural networks (19), with multivariate regression (20), and extensively investigated in unconstrained feature models (UFMs) (21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32; 33; 34; 35) and in the mean-field regime (36). Nonetheless, perfect convergence to an ETFS is not always observed in practical scenarios (37).

NC implies convergence to a neural geometry that enhances separability in the latent space, ultimately improving generalization and robustness. In fact, it has been shown that these metrics continue to improve during the TPT (11), precisely when the latent representations approach an ETFS.

054 Subsequent research has revealed that NC also brings other benefits. For instance, NC has been
 055 linked to improved knowledge distillation (38), few-shot class incremental learning (39) and transfer
 056 learning (40; 41; 42; 43). Building on this connection, (44; 45; 46) use NC-based metrics to enhance
 057 the transferability of models. Another direction relates NC with out-of-distribution (OOD) detection
 058 (47; 48; 49; 50) and generalization (51).

059 A separate line of research for improving robustness in DNNs focuses on developing Lipschitz
 060 continuous networks, as Lipschitz constraints help ensure bounded responses to input perturbations
 061 (52; 53; 54; 55). Specifically, in Lipschitz networks, the smallest perturbation that can cause
 062 misclassification is inversely proportional to the Lipschitz constant (52; 56).

064 1.1 CONTRIBUTIONS

066 We introduce *latent point collapse* (LPC), a phenomenon in which penultimate-layer representations
 067 of each class converge to distinct points near the origin under **strong** L_2 regularization. Unlike
 068 NC, which permits unbounded representation growth and only achieves relative convergence, LPC
 069 enforces strict geometric confinement with provable Lipschitz continuity guarantees—a property that
 070 standard NC cannot ensure. The key distinction lies in the collapse metrics. While NC theory formally
 071 defines collapse as the within-class covariance $\Sigma_W \rightarrow 0$, practical implementations only achieve
 072 the weaker condition $\text{Tr}(\Sigma_W \Sigma_B^\dagger) \rightarrow 0$, where Σ_B is the between-class covariance. This relative
 073 metric allows substantial within-class variance as long as between-class separation dominates. Our
 074 theoretical analysis proves that cross-entropy loss alone drives unbounded norm growth, preventing
 075 true collapse. In contrast, LPC achieves $\Sigma_W \rightarrow 0$ absolutely, with representations confined close
 076 to the origin. This confinement directly yields global Lipschitz continuity—a critical robustness
 077 property unattainable through standard NC. Our specific contributions are:

- 078 • **Discovery and theoretical characterization of latent point collapse:** We identify and rig-
 079 orously analyze the emergent phenomenon of LPC, where strong L_2 regularization induces
 080 strict collapse of class representations to equilibrium points near the origin and ensures
 081 global Lipschitz continuity (Appendix A). We further demonstrate that LPC represents a
 082 stronger manifestation of standard NC properties, with faster convergence to ETFS structure
 083 (Appendix E).
- 084 • **Empirical validation and performance improvements:** We experimentally confirm LPC
 085 in practice, observing collapse points near the origin and improved Lipschitz properties
 086 (Section 3.1). We demonstrate remarkable improvements in robustness along with statisti-
 087 cally significant gains in generalization (Section 3.2). Our approach uses a low-dimensional
 088 linear penultimate-layer that acts as a bottleneck, amplifying both LPC and performance.
- 089 • **Information bottleneck connection (Appendix B):** We establish that LPC naturally induces
 090 an information bottleneck in the penultimate-layer, providing an information-theoretic
 091 perspective on the observed generalization improvements.
- 092 • **Binary encoding (Appendix D):** We document an emergent phenomenon where penultimate
 093 latent representations converge to hypercube vertices.

095 1.2 RELATED WORKS

097 Our approach employs L_2 regularization on latent representations rather than network weights, a
 098 critical distinction from conventional regularization strategies. While weight-based penalties such as
 099 L_0 (57), L_1 (58), dropout (59), or weight decay are well-established, they do not induce the geometric
 100 collapse phenomenon we observe. By targeting penultimate-layer representations directly, we achieve
 101 feature compression without architectural modifications.

102 The application of L_2 penalties to latent representations is common in theoretical analyses of
 103 UFs (27; 34; 24; 21; 25; 33; 32; 31; 30; 29; 28), where both weight and feature regularization
 104 were employed to establish existence of global optimizers. However, these works used minimal
 105 regularization coefficients (typically $\gamma \ll 1$) that served purely as mathematical convenience without
 106 affecting network behavior. Such weak regularization neither induces observable LPC nor provides
 107 practical benefits. In stark contrast, we employ extreme regularization strengths ($\gamma = 10^6$ in
 our experiments) that fundamentally alter the optimization landscape. Our theoretical analysis

(Appendix A) reveals that this creates a qualitatively different regime where the loss landscape becomes globally strongly convex. The strong L_2 penalty establishes a confining potential that counteracts the unbounded growth inherent to cross-entropy minimization. This tension between opposing forces—cross-entropy pushing representations outward while L_2 regularization pulls them toward the origin—induces LPC. It is not trivial that this severe confinement near the origin enhances rather than degrades performance, while simultaneously guaranteeing global Lipschitz continuity. The novelty of our work lies not in using regularization itself, but in the discovery and analysis of this dynamic.

Adding loss terms to intermediate layers has also appeared in the context of deep supervision (60; 61), where intermediate outputs are trained to match target labels. However, our approach differs by seeking to compress the volume of latent representations rather than providing additional supervision signals.

Various methods have been devised to enlarge inter-class margins, such as contrastive learning (62; 63; 64; 65; 66; 67; 68) and supervised contrastive learning (SupCon) (69), which pull together positive samples while pushing apart negative ones. Other techniques alter the loss function to reduce intra-class variance (70) or impose angular constraints (71; 72), e.g., CosFace (73) and ArcFace (74). These last two methods, ArcFace and CosFace, can be compared to our method in their simplicity, as they each introduce a single penalty term to the loss function to increase margins.

Our approach also makes the network Lipschitz continuous. Prior works on Lipschitz neural networks often rely on architectural constraints such as spectral norm regularization (75; 53; 54), orthogonal weight matrices (76; 77; 78), or norm-bound weights (79; 80), which can reduce model expressiveness or be computationally expensive. By contrast, our method imposes no specialized architectural constraints.

2 METHOD

Given a labeled dataset $\{\mathbf{x}_i, \bar{y}_i\}_{i=1}^N$, where N denotes the number of training samples, we address the problem of multi-class classification using DNNs. We employ a DNN $\mathbf{f}(\mathbf{x})$ that learns a nonlinear mapping from input space to output space, approximating the underlying data distribution. DNNs consist of multiple layers arranged hierarchically, with each layer producing an intermediate latent representation. The network’s output can be expressed as a composition of layer-wise transformations: $\mathbf{f}(\mathbf{x}) = \mathbf{f}^{(M)} \circ \mathbf{f}^{(M-1)} \circ \dots \circ \mathbf{f}^{(1)}(\mathbf{x})$, where M denotes the depth of the network.

For an input vector \mathbf{x} , the forward pass through the network can be conceptually divided into two stages. First, the nonlinear components transform the input into a high-dimensional latent representation $\mathbf{h}(\mathbf{x})$, corresponding to the output of the final hidden layer. Subsequently, a linear classifier maps this representation to the output space: $\mathbf{f}(\mathbf{x}) = \mathbf{W}\mathbf{h}(\mathbf{x}) + \mathbf{b}$, where \mathbf{W} and \mathbf{b} denote the weight matrix and bias vector of the classifier, respectively. The predicted class label \bar{y} is obtained by applying the softmax function to the network’s output, yielding a probability distribution over classes that quantifies the likelihood of input \mathbf{x} belonging to each class. The network parameters are optimized by minimizing the cross-entropy loss: $\mathcal{L}_{\text{CE}}(\mathbf{f}(\mathbf{x}), \bar{y}) = -\log \frac{\exp(f_{\bar{y}}(\mathbf{x}))}{\sum_j \exp(f_j(\mathbf{x}))}$, which measures the divergence between predicted probabilities and ground-truth labels.

We propose augmenting the architecture with an additional linear transformation preceding the classifier: $\mathbf{z} = \mathbf{W}_{L2}\mathbf{h}(\mathbf{x}) + \mathbf{b}_{L2}$. This layer functions as the penultimate representation, with final classification performed via: $\mathbf{f}(\mathbf{x}) = \mathbf{W}\mathbf{z} + \mathbf{b}$. Beyond the standard cross-entropy loss, we introduce an L_2 regularization term applied to the penultimate-layer: $\mathcal{L}_2(\mathbf{z}) = \|\mathbf{z}\|^2$, where $\|\cdot\|$ denotes the Euclidean norm. The composite loss function becomes: $\mathcal{L} = \mathcal{L}_{\text{CE}} + \gamma\mathcal{L}_{L2}$, where $\gamma > 0$ is a regularization hyperparameter controlling the strength of the L_2 penalty. The phenomenon of LPC arises from the interplay between these competing objectives:

$$\mathcal{L} = -\log \frac{\exp((\mathbf{W}\mathbf{z} + \mathbf{b})_{\bar{y}})}{\sum_j \exp((\mathbf{W}\mathbf{z} + \mathbf{b})_j)} + \gamma\|\mathbf{z}\|^2. \quad (1)$$

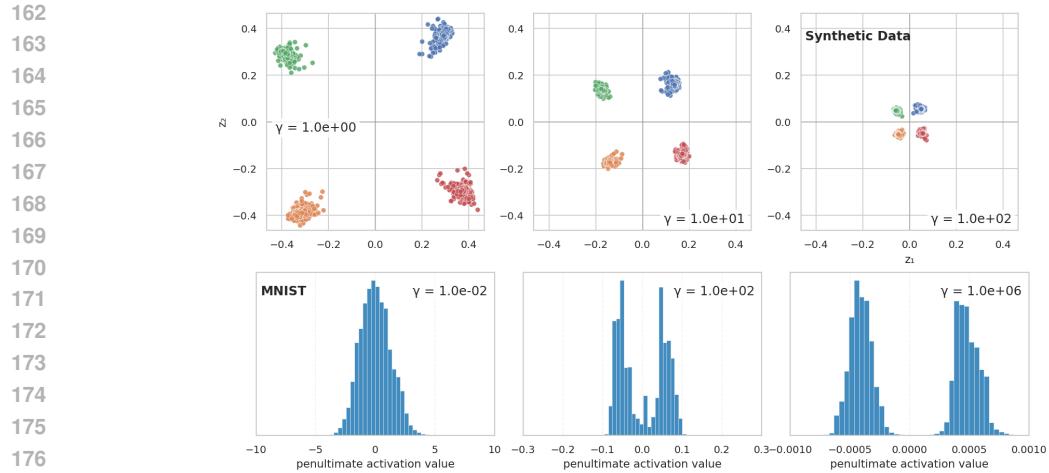


Figure 1: Latent point collapse progression on synthetic and MNIST datasets. *Top row*: 2D penultimate layer activations for a 4-class synthetic dataset at increasing γ regularization strengths. Each color represents a different class. The progression illustrates the competing forces at play: the cross-entropy loss drives class separation, while the $\gamma\|\mathbf{z}\|^2$ penalty compresses representations toward the origin. As γ increases, both the distance from the origin and the within-class spread decrease, yet class separability is preserved. *Bottom three rows*: Histograms of penultimate activations for MNIST classification across all penultimate nodes and datapoints. As γ increases, the activation distribution becomes increasingly concentrated around zero. At high γ values, the network responds to the extreme compression by converging toward binary encoding, with activations clustering at distinct points opposite to each other relative to the origin. Both experiments demonstrate how LPC regularization systematically reduces representation norms while maintaining discriminative power. Jupyter notebook to reproduce results is available in the linked repository.^{4,4}

2.1 THEORETICAL CHARACTERIZATION AND MECHANISM

The *latent point collapse* phenomenon, illustrated in Figure 1, occurs when strong L_2 regularization applied to penultimate layer representations causes representations to collapse into distinct, class-specific points while maintaining separation between classes. LPC emerges from the interplay between competing optimization forces. We provide intuition here; rigorous proofs and complete theoretical characterization appear in Appendix A.

The necessity of regularization. The unconstrained feature model (UFM) framework (24; 34; 27) predicts that global minimizers of cross-entropy loss exhibit perfect NC—all within-class features converge to single points forming an ETFS. However, practical deep networks rarely reach such optima (37).

Our analysis reveals the fundamental obstacle: pure cross-entropy optimization exhibits an intrinsic instability. Its gradient contains an outward radial component that causes representations to grow unboundedly, preventing convergence to finite equilibria. We formalize this as a necessity result: without regularization ($\gamma = 0$), the outward radial component drives $\|\mathbf{z}\| \rightarrow \infty$, precluding any finite equilibria (Theorem A.8). As norms increase, softmax probabilities saturate and gradients vanish preventing the formation of any structured geometry.

Strong L_2 regularization resolves this instability by introducing an inward restoring force $-2\gamma\mathbf{z}$ that counteracts the outward push. At equilibrium, these competing forces balance according to:

$$\mathbf{z}^* = \frac{1}{2\gamma} \left(\mathbf{w}_{\bar{y}} - \sum_{i=1}^K p_i(\mathbf{z}^*) \mathbf{w}_i \right) \quad (2)$$

This reveals that the equilibrium radius scales inversely with regularization strength: $\|\mathbf{z}^*\| \leq M_W/\gamma$, where M_W bounds classifier weight norms (Theorem A.4). Figure 2 (left) empirically validates this scaling.

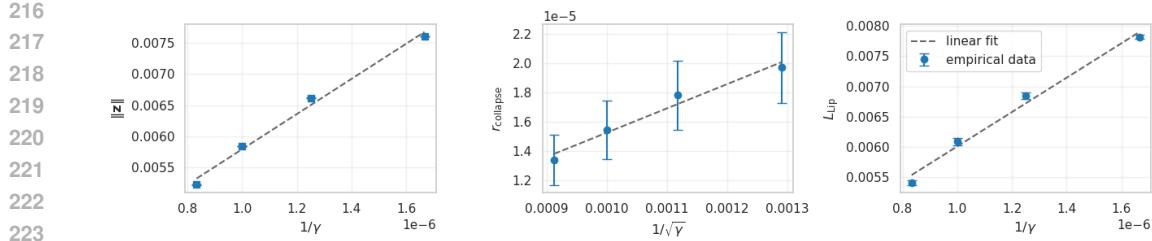


Figure 2: Scaling relationships between LPC regularization strength and penultimate layer geometry. CIFAR-10 trained as in Appendix C but with varying regularization strengths $\gamma_{max} \in \{6 \times 10^5, 8 \times 10^5, 10^6, 1.2 \times 10^6, 1.4 \times 10^6\}$ and fixed initial learning rate $\eta = 10^{-4}$. Blue points show empirical measurements with error bars indicating standard deviation across 10 samples. Dashed lines represent linear fits to the data. From left to right: Mean penultimate feature norm $E[||z||]$ as a function of $1/\gamma$. Mean within-class distance from class centroid $E[||z - \mu_{\bar{y}}||]$ as a function of $1/\sqrt{\gamma}$. Full radius containing all penultimate representations $\max_i ||z_i||$ as a function of $1/\gamma$. Linear fits demonstrate strong scaling relationships with $R^2 = 0.9901$, $R^2 = 0.9688$, and $R^2 = 0.9857$, respectively. The tight linear relationships confirm theoretical predictions that LPC regularization systematically controls the geometric properties of learned representations.

Convexification and collapse dynamics. For sufficiently large regularization $\gamma > KM_W^2/2$, the Hessian becomes globally positive definite:

$$\nabla_{\mathbf{z}}^2 \mathcal{L}(\mathbf{z}) = \nabla_{\mathbf{z}}^2 \mathcal{L}_{CE}(\mathbf{z}) + 2\gamma \mathbf{I} \succeq (2\gamma - KM_W^2) \mathbf{I} \succ 0 \quad (3)$$

This *convexification* ensures global strong convexity, guaranteeing convergence to a unique global optimum.

Beyond establishing global convergence, strong regularization also controls local fluctuations. Near equilibrium, the dominant quadratic potential (curvature $\approx 2\gamma \mathbf{I}$) tightly constrains stochastic fluctuations from gradient noise. Under standard assumptions of bounded classifier weights and fixed gradient noise variance σ^2 , our analysis establishes that steady-state variance decreases monotonically with γ . Specifically, the collapse radius—characterizing within-class spread—scales as $r_{\text{collapse}} = O(\sqrt{\sigma^2 d \eta / \gamma})$, where d is representation dimensionality and η is learning rate (Section A.3). Figure 2 (center) confirms this scaling.

Thus, γ serves a dual role: it ensures convergence to the global optimum through landscape convexification while simultaneously controlling the tightness of intra-class clustering through increased curvature.

Global Lipschitz continuity and robustness. The bounded confinement directly yields global Lipschitz continuity. Since all representations lie within radius $O(M_W/\gamma)$ of the origin, the maximum possible distance between any two representations is bounded independently of input distance. We prove that for any inputs $\mathbf{x}_1, \mathbf{x}_2$:

$$\mathbb{E}[\|\mathbf{f}(\mathbf{x}_1) - \mathbf{f}(\mathbf{x}_2)\|] \leq \frac{2\sqrt{KM_W^2}}{\gamma} + O\left(\sqrt{\frac{\sigma^2 d \eta}{\gamma}}\right) \quad (4)$$

regardless of $\|\mathbf{x}_1 - \mathbf{x}_2\|$ (Theorem A.11). This uniform Lipschitz bound limits the sensitivity of network outputs to input perturbations, that is empirically demonstrated in Figure 2 (right).

Beyond confinement and collapse, the regularization induces a third geometric property in the terminal phase of training. When the network achieves high classification confidence ($p_{\bar{y}} \rightarrow 1$), the radial nature of the L_2 regularization decouples the angular dynamics from the radial dynamics, as the regularization term vanishes when projected onto the tangent space of the unit sphere. Strong regularization accelerates this alignment by reducing the equilibrium radius $r^* = O(M_W/\gamma)$, causing representations to progressively align with their corresponding classifier weight vectors: $\lim_{t \rightarrow \infty} \mathbf{z}(t)/\|\mathbf{z}(t)\| = \mathbf{w}_{\bar{y}}/\|\mathbf{w}_{\bar{y}}\|$ (Theorem A.7). This accelerated alignment is demonstrated by faster convergence of the NC property, as shown in Appendix E. These five key properties—necessity of regularization, bounded equilibria, tight collapse, weight alignment, and global Lipschitz continuity—are formally unified in Theorem A.13 (Appendix A).

270 2.2 BINARY ENCODING
271272 The collapse points align with vertices of a hypercube inscribed within a hypersphere, as documented
273 in Appendix C. At each penultimate-layer node, latent representations approximately assume one of
274 two values, forming a binary encoding. One possible explanation is that extreme compression forces
275 the network to maximize relative distances between collapse points *in each dimension* to maintain
276 discriminability, naturally leading to symmetric arrangements around the origin characteristic of
277 hypercube vertices.

278

279 3 EXPERIMENTS
280281 We empirically demonstrate that our method promotes LPC in penultimate-layers and enhances
282 classifier performance. Through ablation studies, we evaluate architectures differing in penultimate-
283 layer dimensionality, linearity, L_2 regularization, and loss functions (see Appendix C for details).284 **Architectures:** LPC (our method: linear penultimate-layer with L_2 regularization), LPC-
285 NARROW/LPC-WIDE (low/high-dimensional variants), LPC-NOPEN (L_2 on backbone, no
286 penultimate-layer), LINPEN/NONLINPEN (linear/non-linear penultimate-layer without L_2), NOPEN
287 (baseline), NOPENWD (baseline with strong weight decay), SCL/ARCFACE (alternative losses), and
288 LPC-SCL (hybrid).289 Experiments on CIFAR-10, CIFAR-100 (81), and ImageNet-1K (82) using ResNet (83) and Wide
290 ResNet (84).292 3.1 LATENT POINT COLLAPSE: PROPERTIES AND LIPSCHITZ CONTINUITY
293294 To investigate the occurrence of LPC in the penultimate-layer, we examine the within-class covariance
295 Σ_W , defined as

296
$$\Sigma_W = \frac{1}{NP} \sum_{i=0}^{N-1} \sum_{p=0}^{P-1} (\mathbf{z}^{(i,p)} - \boldsymbol{\mu}^{(p)}) (\mathbf{z}^{(i,p)} - \boldsymbol{\mu}^{(p)})^\top, \quad (5)$$

297 where $\mathbf{z}^{(i,p)}$ denotes the i -th latent representation with label p , and $\boldsymbol{\mu}^{(p)}$ represents the mean of all
298 latent representations with label p . A vanishing Σ_W indicates that latent representations within
299 each class collapse toward their respective class mean $\boldsymbol{\mu}^{(p)}$. We additionally analyze the mean norm
300 $\frac{1}{P} \sum_{p=0}^{P-1} \|\boldsymbol{\mu}^{(p)}\|$, which quantifies the average distance of collapse points from the origin. Consistent
301 with our theoretical analysis in Appendix A, we expect these collapse points to be located near the
302 origin.

303 Table 1 presents the values of Σ_W and the mean norm at the final training epoch across various
304 architectures. Notably, Σ_W approaches zero exclusively for architectures implementing an L_2 penalty
305 on the penultimate-layer, confirming that same-class latent representations indeed collapse to single
306 points in these models. The exceptionally small mean norm values across all LPC architectures
307 corroborate our theoretical prediction that collapse points reside near the origin. Interestingly, we
308 observe that strong weight decay alone, as employed in the NoPenWD architecture, does not induce
309 collapse. The information bottleneck created by this point collapse phenomenon is further examined
310 in Appendix B.

311 Beyond the geometric properties of the latent space, we analyze the resulting classification char-
312 acteristics, particularly class separability and decision boundary stability. To quantify separability
313 in the latent space, we introduce a *class separation ratio* \mathcal{R} : $\mathcal{R}^{(i,p)} = \frac{\min_{q \neq p} \|\mathbf{z}^{(i,p)} - \boldsymbol{\mu}^{(q)}\|}{\|\mathbf{z}^{(i,p)} - \boldsymbol{\mu}^{(p)}\|}$. This
314 ratio measures the distance between a latent point and the nearest other-class centroid relative to its
315 distance from its own-class centroid. Higher values indicate superior geometric separation between
316 classes. As demonstrated in Table 1, architectures implementing the L_2 penalty on a penultimate
317 linear layer achieve class separation ratios exceeding those of baseline methods by approximately
318 two orders of magnitude, demonstrating markedly superior latent representation separation.

319 To evaluate classification boundary stability, we analyze the network’s sensitivity to input perturba-
320 tions through the function $g_y(\mathbf{x}) = f_y(\mathbf{x}) - \max_{j \neq y} f_j(\mathbf{x})$, where $f_y(\mathbf{x})$ denotes the logit of the
321 true class y . This function captures the classification margin in the output space, with $g_y(\mathbf{x}) > 0$

6

324
 325 Table 1: All values in the table represent the means and standard deviations obtained from different
 326 experiments. Σ_W : mean across all entries of the within-class covariance matrix; Norm Mean: mean
 327 of the L_2 norm of latent representations; \mathcal{R} : class separation ratio (distance margins, computed over
 328 a sample of 10000 entries in the training set); Avg. Grad Norm: Average L_2 Gradient Norm of the
 329 Logit Difference Function ($g_y(\mathbf{x})$) with respect to input \mathbf{x} .

DATASET: CIFAR-10					
MODEL	Σ_W	NORM MEAN	\mathcal{R}	AVG. GRAD NORM	
LPC	2.55E-14 \pm 1.38E-14	0.004 \pm 0.001	195.94 \pm 220.87	0.06 \pm 0.03	
LPC-WIDE	1.71E-14 \pm 5.88E-15	0.003 \pm 0.001	113.76 \pm 126.59	0.15 \pm 0.05	
LPC-NARROW	5.70E-14 \pm 1.05E-14	0.003 \pm 0.001	241.28 \pm 282.61	0.04 \pm 0.03	
LPC-SCL	9.89E-14 \pm 4.50E-14	0.004 \pm 0.001	98.36 \pm 93.63	0.13 \pm 0.04	
LPC-NoPEN	1.33E-11 \pm 6.21E-12	0.005 \pm 0.001	31.77 \pm 20.47	0.25 \pm 0.26	
LINPEN	1.10E-01 \pm 4.00E-02	47.70 \pm 7.89	2.90 \pm 0.28	99.16 \pm 10.61	
NONLINPEN	4.08E-01 \pm 1.42E-01	39.39 \pm 7.17	2.87 \pm 0.25	62.06 \pm 9.66	
SCL	8.02E-03 \pm 4.13E-03	25.42 \pm 2.37	7.77 \pm 2.27	44.09 \pm 1.81	
ARCFACE	9.05E-02 \pm 2.32E-02	22.81 \pm 1.33	5.63 \pm 0.26	78.91 \pm 33.68	
NOPEN	3.03E-02 \pm 1.08E-02	13.88 \pm 3.49	1.79 \pm 0.10	84.55 \pm 8.93	
NOPENWD	2.32E-03 \pm 2.50E-04	7.33 \pm 0.19	2.30 \pm 0.27	29.27 \pm 1.69	
DATASET: CIFAR-100					
MODEL	Σ_W	NORM MEAN	\mathcal{R}	AVG. GRAD NORM	
LPC	2.62E-12 \pm 9.22E-13	0.007 \pm 0.001	100.84 \pm 110.22	0.11 \pm 0.02	
LPC-WIDE	4.08E-12 \pm 4.13E-12	0.008 \pm 0.002	79.35 \pm 81.92	0.22 \pm 0.10	
LPC-NARROW	5.84E-12 \pm 3.37E-12	0.006 \pm 0.000	116.34 \pm 134.08	0.06 \pm 0.00	
LPC-SCL	3.94E-12 \pm 2.83E-12	0.008 \pm 0.001	54.93 \pm 58.23	0.22 \pm 0.01	
LPC-NoPEN	3.39E-06 \pm 5.21E-06	0.018 \pm 0.018	7.44 \pm 8.79	6.99 \pm 10.90	
LINPEN	5.75E-01 \pm 1.34E-01	74.28 \pm 8.41	1.46 \pm 0.08	86.82 \pm 4.42	
NONLINPEN	3.50E+00 \pm 2.89E-01	92.74 \pm 1.87	1.52 \pm 0.09	81.82 \pm 2.32	
SCL	2.87E-03 \pm 1.35E-03	34.52 \pm 5.34	5.23 \pm 1.91	66.25 \pm 9.16	
ARCFACE	4.40E-02 \pm 2.70E-03	43.27 \pm 1.16	4.42 \pm 0.31	109.57 \pm 11.50	
NOPEN	1.94E-02 \pm 1.44E-02	25.08 \pm 6.26	1.15 \pm 0.02	70.81 \pm 3.03	
NOPENWD	8.48E-04 \pm 1.71E-04	13.02 \pm 0.69	1.26 \pm 0.09	40.22 \pm 1.7	
DATASET: IMAGENET					
MODEL	Σ_W	NORM MEAN	\mathcal{R}	AVG. GRAD NORM	
LPC	4.00E-10 \pm 7.32E-12	0.013 \pm 0.000	13.92 \pm 0.04	1.67 \pm 0.01	
NOPEN	1.32E-02 \pm 4.33E-05	37.10 \pm 0.09	1.12 \pm 0.00	12.46 \pm 0.18	

363 indicating correct classification. We quantify network sensitivity by computing the average gradient
 364 norm $\max \|\nabla_{\mathbf{x}} g_y(\mathbf{x})\|$ over the entire dataset, which provides an empirical lower bound estimate of
 365 the Lipschitz constant for $g_y(\mathbf{x})$.

366 Table 1 reports this average gradient norm. Models employing the L_2 penalty on the penultimate-
 367 layer exhibit average gradient norms approximately two orders of magnitude lower than alternative
 368 configurations, indicating substantially reduced sensitivity to input perturbations and enhanced output
 369 margin stability. Notable exceptions include LPC-NoPEN configuration, which can exhibit elevated
 370 values, emphasizing how dimensionality reduction in the penultimate-layer contributes to network
 371 stability. This reduced sensitivity, coupled with enhanced class separation, demonstrates that our
 372 LPC method yield classifications that are both geometrically well-separated and exhibit stronger
 373 Lipschitz continuity, thereby providing improved theoretical guarantees on network behavior under
 374 perturbations.

375 It is important to note that our experiments on CIFAR-10 and CIFAR-100 were conducted largely in
 376 the TPT, where training accuracy has essentially converged. In contrast, ImageNet experiments did not
 377 reach full convergence of training set accuracy. Remarkably, the advantages of our method—including
 superior class separation and reduced gradient norms—are already manifest before full convergence,

378
 379 Table 2: All values in the table represent the means and standard deviations obtained from different
 380 experiments. *DeepFool*: Norm of the minimal perturbation to cause a prediction change, divided by
 381 the norm of the input (85), averaged over 1000 test set samples. *PGD columns*: Adversarial accuracy
 382 under PGD attacks (86) with $\epsilon \in \{4/255, 8/255, 12/255\}$ for CIFAR and $\epsilon \in \{2/255, 4/255\}$ for
 383 ImageNet, evaluated on 1000 test set samples. PGD uses 100 iterations (50 for ImageNet) with 5
 384 random restarts, step size $\alpha = \epsilon/4$, DLR loss, cosine schedule, and ℓ_∞ norm constraint. *Accuracy*:
 385 Classification accuracy on the testing set. For ImageNet, the generalization gap (Gen. Gap) is also
 386 included, representing the difference between training and testing accuracy.
 387

DATASET: CIFAR-10					
MODEL	DEEPFOOL	PGD $\epsilon=4/255$	PGD $\epsilon=8/255$	PGD $\epsilon=12/255$	ACCURACY
LPC	1.227 ± 0.442	0.146 ± 0.021	0.034 ± 0.011	0.013 ± 0.007	94.86 ± 0.08
LPC-WIDE	0.788 ± 0.439	0.180 ± 0.059	0.033 ± 0.025	0.010 ± 0.008	94.73 ± 0.04
LPC-NARROW	1.597 ± 0.442	0.153 ± 0.029	0.040 ± 0.018	0.013 ± 0.006	94.90 ± 0.13
LPC-SCL	0.521 ± 0.059	0.170 ± 0.025	0.034 ± 0.007	0.009 ± 0.004	94.91 ± 0.10
LPC-NOPEN	0.693 ± 0.278	0.195 ± 0.034	0.014 ± 0.006	0.001 ± 0.002	94.86 ± 0.09
LINPEN	0.013 ± 0.001	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	94.58 ± 0.08
NONLINPEN	0.015 ± 0.001	0.001 ± 0.001	0.000 ± 0.000	0.000 ± 0.000	94.50 ± 0.05
SCL	0.026 ± 0.001	0.012 ± 0.009	0.001 ± 0.001	0.000 ± 0.000	94.77 ± 0.11
ARCFACE	0.019 ± 0.001	0.031 ± 0.015	0.000 ± 0.001	0.000 ± 0.000	94.54 ± 0.08
NOPEN	0.013 ± 0.001	0.000 ± 0.001	0.000 ± 0.000	0.000 ± 0.000	94.57 ± 0.14
NOPENWD	0.016 ± 0.001	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	94.25 ± 0.04
DATASET: CIFAR-100					
MODEL	DEEPFOOL	PGD $\epsilon=4/255$	PGD $\epsilon=8/255$	PGD $\epsilon=12/255$	ACCURACY
LPC	0.399 ± 0.022	0.065 ± 0.019	0.013 ± 0.007	0.004 ± 0.002	77.64 ± 0.17
LPC-WIDE	0.369 ± 0.015	0.076 ± 0.019	0.015 ± 0.004	0.002 ± 0.002	77.75 ± 0.24
LPC-NARROW	0.470 ± 0.026	0.040 ± 0.005	0.004 ± 0.002	0.000 ± 0.000	77.29 ± 0.18
LPC-SCL	0.192 ± 0.024	0.049 ± 0.005	0.007 ± 0.001	0.003 ± 0.001	78.17 ± 0.23
LPC-NOPEN	0.151 ± 0.036	0.135 ± 0.049	0.034 ± 0.018	0.008 ± 0.005	77.27 ± 0.36
LINPEN	0.007 ± 0.000	0.001 ± 0.001	0.000 ± 0.000	0.000 ± 0.000	76.69 ± 0.17
NONLINPEN	0.007 ± 0.000	0.000 ± 0.001	0.000 ± 0.000	0.000 ± 0.000	76.38 ± 0.30
SCL	0.011 ± 0.000	0.004 ± 0.002	0.000 ± 0.000	0.000 ± 0.000	78.00 ± 0.15
ARCFACE	0.012 ± 0.000	0.105 ± 0.023	0.013 ± 0.004	0.001 ± 0.002	77.21 ± 0.14
NOPEN	0.007 ± 0.000	0.001 ± 0.001	0.000 ± 0.000	0.000 ± 0.000	76.83 ± 0.15
NOPENWD	0.007 ± 0.000	0.001 ± 0.001	0.000 ± 0.000	0.000 ± 0.000	76.97 ± 0.14
DATASET: IMAGENET					
MODEL	DEEPFOOL	PGD $\epsilon=2/255$	PGD $\epsilon=4/255$	ACCURACY	GEN. GAP
LPC	0.019 ± 0.001	0.045 ± 0.005	0.002 ± 0.001	74.48 ± 0.05	16.74 ± 0.14
NOPEN	0.002 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	72.33 ± 0.12	24.08 ± 0.12

421 suggesting that these benefits emerge early in the optimization process rather than solely as a
 422 consequence of extended training.

423 Our experiments further reveal that the collapse points align with vertices of a hypercube, as detailed
 424 in Appendix D. Additionally, in Appendix E, we demonstrate that LPC enhances metrics associated
 425 with NC. Given that our training on CIFAR-10 and CIFAR-100 predominantly occurred in the TPT
 426 regime, these improvements complement and extend beyond those typically associated with standard
 427 NC.

428 3.2 ROBUSTNESS AND GENERALIZATION

429 Table 2 presents the magnitude of minimal perturbations required to induce misclassification, quan-
 430 tified using the DeepFool algorithm (85). Our results reveal a striking enhancement in network

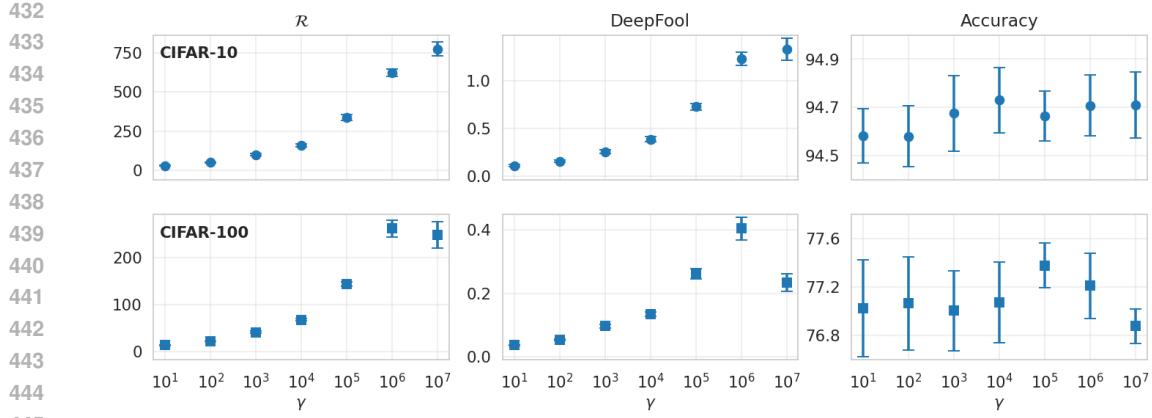


Figure 3: Effect of LPC regularization strength on classification performance and robustness. The figure shows accuracy, DeepFool robustness, and distance ratio \mathcal{R} as functions of the LPC regularization parameter γ for CIFAR-10 (top row) and CIFAR-100 (bottom row) datasets. Results are averaged across multiple independent runs with error bars indicating standard deviation. As γ increases from 10^1 to 10^6 , both geometric margins and robustness improve significantly while classification accuracy remains stable. CIFAR-10 maintains stable accuracy across the entire range ($\gamma \leq 10^7$), while CIFAR-100 shows peak accuracy at $\gamma = 10^5$ with degradation emerging only at the extreme value $\gamma = 10^7$.

robustness when L_2 regularization is applied to the penultimate-layer—achieving improvements exceeding two orders of magnitude, particularly pronounced when the penultimate-layer is linear. This robustness enhancement extends to adversarial attacks: LPC models maintain non-trivial adversarial accuracy under PGD attacks (86) (e.g., 14.6% at $\epsilon = 4/255$ on CIFAR-10, 6.5% at $\epsilon = 4/255$ on CIFAR-100, and 4.5% at $\epsilon = 2/255$ on ImageNet), while baseline models exhibit essentially zero robustness under comparable perturbation budgets. While alternative regularization techniques, including SCL and ArcFace, also demonstrate improved robustness relative to the baseline, their gains remain substantially more modest, with most achieving near-zero PGD robustness.

Beyond robustness improvements, LPC exhibits significant regularization effects that enhance generalization performance. Notably, LPC achieves generalization performance comparable to or exceeding state-of-the-art regularization methods such as SCL. The combination of LPC with SCL yields the highest generalization performance on both CIFAR-10 and CIFAR-100, demonstrating the potential for synergistic improvements when integrating LPC with existing techniques. The generalization improvements are particularly remarkable on ImageNet, where LPC reduces the generalization gap from 24.08% to 16.74%—a relative reduction of over 30%. These improvements are robust to the choice of regularization strength (Figure 3).

Our architectural analysis further reveals practical insights regarding the penultimate-layer design. Specifically, we observe that lower-dimensional penultimate-layers yield substantially superior robustness as measured by DeepFool, with the LPC-Narrow configuration achieving the highest scores across both CIFAR datasets. Interestingly, adversarial robustness under PGD attacks exhibits a different pattern: the LPC-NoPen variant demonstrates the highest adversarial accuracy. This suggests that the optimal architectural configuration may depend on the specific threat model under consideration.

4 DISCUSSION AND LIMITATIONS

4.1 DISCUSSION

The LPC phenomenon dramatically enhances the separability of latent representations, yielding remarkable improvements in robustness. These enhancements stem directly from superior class separability and a fundamentally stronger form of collapse than traditional NC. While NC ensures that within-class representations converge around their class means (achieving small within-class

486 variance relative to between-class variance), LPC enforces absolute collapse to single points. We
 487 demonstrate particular effectiveness when applying this regularization to low-dimensional linear
 488 penultimate-layers, where the dimensional bottleneck amplifies both the collapse effect and its
 489 benefits. A key distinction is that our approach inherently guarantees global Lipschitz continuity
 490 without architectural constraints—a property unattainable through standard NC.

491 Our ImageNet experiments reveal a notable aspect of LPC: its benefits manifest even before reaching
 492 the TPT. Unlike CIFAR experiments conducted primarily in the TPT regime, ImageNet training
 493 did not achieve full convergence, yet LPC reduced the generalization gap substantially—a relative
 494 improvement of over one-third. The early emergence of enhanced class separation and reduced gradi-
 495 ent norms indicates that the geometric benefits of LPC develop progressively with the optimization
 496 dynamics, providing practical advantages even in computationally constrained scenarios where full
 497 convergence is infeasible.

498 4.2 LIMITATIONS AND OUTLOOK

500 Our study focuses exclusively on balanced datasets, leaving unexplored the interaction between LPC
 501 and class imbalance. Recent investigations of NC under imbalanced conditions (30; 31; 32; 87)
 502 suggest potentially complex dynamics that warrant future investigation. Whether LPC’s absolute
 503 collapse provides advantages or poses challenges in imbalanced scenarios remains an open question.
 504

505 While we demonstrate LPC under cross-entropy loss with L_2 regularization, NC has been observed
 506 with various loss functions (12; 88). Exploring alternative loss formulations that might induce or
 507 enhance LPC could reveal more efficient training procedures or stronger guarantees.

508 Our analysis primarily examines geometric and robustness metrics established in the original NC
 509 literature (11). However, NC enhances numerous other properties including knowledge distillation
 510 (38), few-shot learning (39), transfer learning (40; 41), and out-of-distribution detection (47; 48).
 511 The stronger absolute collapse of LPC may amplify these benefits, presenting promising avenues for
 512 investigation.

513 The empirically observed binary encoding phenomenon (Appendix D), wherein collapse points
 514 align precisely with hypercube vertices inscribed within a hypersphere, is an intriguing finding.
 515 Under extreme L_2 regularization, the network spontaneously organizes class representations into a
 516 discrete binary scheme where each penultimate node assumes one of two values, effectively creating
 517 a $\{-1, +1\}^d$ encoding. Understanding this spontaneous quantization could bridge connections to
 518 binary neural networks and discrete representation learning, though the precise mechanisms driving
 519 this phenomenon remain an open theoretical question warranting further investigation.

520 4.3 CONCLUSION

521 We introduce *latent point collapse*, a phenomenon where strong L_2 regularization applied to
 522 penultimate-layer representations causes the features within each class to collapse to a single point
 523 near the origin. This simple modification—achieved by adding a regularized, low-dimensional
 524 linear penultimate-layer—dramatically improves model robustness while also yielding statistically
 525 significant gains in generalization.

526 The method’s simplicity and effectiveness make it immediately practical. By inducing a stronger form
 527 of *neural collapse* with provable Lipschitz guarantees, LPC provides principled bounds on adversarial
 528 robustness while maintaining or improving classification accuracy. The early emergence of benefits,
 529 demonstrated in our ImageNet experiments, indicates that LPC’s advantages are accessible even
 530 without complete training convergence, enhancing its practical applicability in resource-constrained
 531 settings.

532 4.4 REPRODUCIBILITY STATEMENT

533 Code to reproduce our results is available online in the linked repository.¹ All experimental details
 534 are provided in Appendix C.

535
 536 ¹<https://anonymous.4open.science/r/lpc-0CEB>

540 REFERENCES
541

542 [1] Elsayed, G. F., Krishnan, D., Mobahi, H., Regan, K. & Bengio, S. Large margin deep
543 networks for classification (2018). URL <https://arxiv.org/abs/1803.05598>.
544 1803.05598.

545 [2] Wei, C. & Ma, T. Improved sample complexities for deep networks and robust classification
546 via an all-layer margin (2021). URL <https://arxiv.org/abs/1910.04284>. 1910.
547 04284.

548 [3] Ding, G. W., Sharma, Y., Lui, K. Y. C. & Huang, R. Mma training: Direct input space
549 margin maximization through adversarial training (2020). URL <https://arxiv.org/abs/1812.02637>. 1812.02637.

550 [4] Sokolic, J., Giryes, R., Sapiro, G. & Rodrigues, M. R. D. Robust large margin deep neural
551 networks. *IEEE Transactions on Signal Processing* **65**, 4265–4280 (2017). URL <http://dx.doi.org/10.1109/TSP.2017.2708039>.

552 [5] Xu, H. & Mannor, S. Robustness and generalization (2010). URL <https://arxiv.org/abs/1005.2243>. 1005.2243.

553 [6] Szegedy, C. *et al.* Intriguing properties of neural networks (2014). 1312.6199.

554 [7] Achille, A. & Soatto, S. Emergence of invariance and disentanglement in deep representations
555 (2018). URL <https://arxiv.org/abs/1706.01350>. 1706.01350.

556 [8] Novak, R., Bahri, Y., Abolafia, D. A., Pennington, J. & Sohl-Dickstein, J. Sensitivity and
557 generalization in neural networks: an empirical study (2018). URL <https://arxiv.org/abs/1802.08760>. 1802.08760.

558 [9] Zhang, H. *et al.* Theoretically principled trade-off between robustness and accuracy (2019).
559 URL <https://arxiv.org/abs/1901.08573>. 1901.08573.

560 [10] He, H. & Su, W. J. A law of data separation in deep learning (2023). 2210.17020.

561 [11] Petyan, V., Han, X. Y. & Donoho, D. L. Prevalence of neural collapse during the terminal
562 phase of deep learning training. *PNAS* **117**, 24652–24663 (2020).

563 [12] Han, X. Y., Petyan, V. & Donoho, D. L. Neural collapse under mse loss: Proximity to and
564 dynamics on the central path (2022). 2106.02073.

565 [13] Súkeník, P., Mondelli, M. & Lampert, C. Deep neural collapse is provably optimal for the deep
566 unconstrained features model (2023). URL <https://arxiv.org/abs/2305.13165>.
567 2305.13165.

568 [14] Masarczyk, W. *et al.* The tunnel effect: Building data representations in deep neural networks
569 (2023). URL <https://arxiv.org/abs/2305.19753>. 2305.19753.

570 [15] Súkeník, P., Mondelli, M. & Lampert, C. Neural collapse versus low-rank bias: Is deep
571 neural collapse really optimal? (2024). URL <https://arxiv.org/abs/2405.14468>.
572 2405.14468.

573 [16] Parker, L., Onal, E., Stengel, A. & Intrater, J. Neural collapse in the intermediate hidden
574 layers of classification neural networks (2023). URL <https://arxiv.org/abs/2308.02760>.
575 2308.02760.

576 [17] Rangamani, A., Lindegaard, M., Galanti, T. & Poggio, T. A. Feature learning in deep
577 classifiers through intermediate neural collapse. In Krause, A. *et al.* (eds.) *Proceedings of
578 the 40th International Conference on Machine Learning*, vol. 202 of *Proceedings of Machine
579 Learning Research*, 28729–28745 (PMLR, 2023). URL <https://proceedings.mlr.press/v202/rangamani23a.html>.

580 [18] Wu, R. & Petyan, V. Linguistic collapse: Neural collapse in (large) language models (2024).
581 URL <https://arxiv.org/abs/2405.17767>. 2405.17767.

594 [19] Kothapalli, V., Tirer, T. & Bruna, J. A neural collapse perspective on feature evolution in
595 graph neural networks (2023). URL <https://arxiv.org/abs/2307.01951>. 2307.
596 01951.

597 [20] Andriopoulos, G., Dong, Z., Guo, L., Zhao, Z. & Ross, K. The prevalence of neural collapse in
598 neural multivariate regression (2024). URL <https://arxiv.org/abs/2409.04180>.
599 2409.04180.

600 [21] Yaras, C., Wang, P., Zhu, Z., Balzano, L. & Qu, Q. Neural collapse with normalized features:
601 A geometric analysis over the riemannian manifold (2023). URL <https://arxiv.org/abs/2209.09211>. 2209.09211.

602 [22] Mixon, D. G., Parshall, H. & Pi, J. Neural collapse with unconstrained features. *CoRR*
603 **abs/2011.11619** (2020). URL <https://arxiv.org/abs/2011.11619>. 2011.
604 11619.

605 [23] Ergen, T. & Pilanci, M. Convex duality of deep neural networks. *CoRR* **abs/2002.09773**
606 (2020). URL <https://arxiv.org/abs/2002.09773>. 2002.09773.

607 [24] Zhu, Z. *et al.* A geometric analysis of neural collapse with unconstrained features. In
608 Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P. & Vaughan, J. W. (eds.) *Advances
609 in Neural Information Processing Systems*, vol. 34, 29820–29834 (Curran Associates,
610 Inc., 2021). URL https://proceedings.neurips.cc/paper_files/paper/2021/file/f92586a25bb3145facd64ab20fd554ff-Paper.pdf.

611 [25] Graf, F., Hofer, C., Niethammer, M. & Kwitt, R. Dissecting supervised contrastive learning.
612 In Meila, M. & Zhang, T. (eds.) *Proceedings of the 38th International Conference on Machine
613 Learning*, vol. 139 of *Proceedings of Machine Learning Research*, 3821–3830 (PMLR, 2021).
614 URL <https://proceedings.mlr.press/v139/graf21a.html>.

615 [26] Ji, W., Lu, Y., Zhang, Y., Deng, Z. & Su, W. J. An unconstrained layer-peeled perspective on
616 neural collapse (2022). 2110.02796.

617 [27] Tirer, T. & Bruna, J. Extended unconstrained features model for exploring deep neural collapse
618 (2022). 2202.08087.

619 [28] Zhou, J. *et al.* On the optimization landscape of neural collapse under mse loss: Global
620 optimality with unconstrained features (2022). 2203.01238.

621 [29] Fisher, Q., Meng, H. & Popyan, V. Pushing boundaries: Mixup’s influence on neural collapse
622 (2024). URL <https://arxiv.org/abs/2402.06171>. 2402.06171.

623 [30] Thrampoulidis, C., Kini, G. R., Vakilian, V. & Behnia, T. Imbalance trouble: Revisiting neural-
624 collapse geometry (2022). URL <https://arxiv.org/abs/2208.05512>. 2208.
625 05512.

626 [31] Yang, Y. *et al.* Inducing neural collapse in imbalanced learning: Do we really need a learnable
627 classifier at the end of deep neural network? (2022). URL <https://arxiv.org/abs/2203.09081>. 2203.09081.

628 [32] Yan, H. *et al.* Neural collapse to multiple centers for imbalanced data. In *The Thirty-
629 eighth Annual Conference on Neural Information Processing Systems* (2024). URL <https://openreview.net/forum?id=RJEC9fZ9Ma>.

630 [33] Hong, W. & Ling, S. Neural collapse for unconstrained feature model under cross-entropy loss
631 with imbalanced data (2023). URL <https://arxiv.org/abs/2309.09725>. 2309.
632 09725.

633 [34] Fang, C., He, H., Long, Q. & Su, W. J. Exploring deep neural networks via layer-peeled model:
634 Minority collapse in imbalanced training. *Proceedings of the National Academy of Sciences*
635 **118** (2021). URL <http://dx.doi.org/10.1073/pnas.2103091118>.

648 [35] Liu, W., Yu, L., Weller, A. & Schölkopf, B. Generalizing and decoupling neural collapse via
649 hyperspherical uniformity gap (2023). URL <https://arxiv.org/abs/2303.06484>.
650 2303.06484.

651 [36] Wu, D. & Mondelli, M. Neural collapse beyond the unconstrained features model: Landscape,
652 dynamics, and generalization in the mean-field regime (2025). URL <https://arxiv.org/abs/2501.19104>.
653 2501.19104.

654 [37] Tirer, T., Huang, H. & Niles-Weed, J. Perturbation analysis of neural collapse (2023). 2210.
655 16658.

656 [38] Zhang, S., Song, Z. & He, K. Neural collapse inspired knowledge distillation (2024). URL
657 <https://arxiv.org/abs/2412.11788>. 2412.11788.

658 [39] Yang, Y. *et al.* Neural collapse inspired feature-classifier alignment for few-shot class incremen-
659 tal learning (2023). URL <https://arxiv.org/abs/2302.03004>. 2302.03004.

660 [40] Galanti, T., György, A. & Hutter, M. On the role of neural collapse in transfer learning.
661 *CoRR abs/2112.15121* (2021). URL <https://arxiv.org/abs/2112.15121>. 2112.
662 15121.

663 [41] Galanti, T., György, A. & Hutter, M. Improved generalization bounds for transfer learning via
664 neural collapse. In *First Workshop on Pre-training: Perspectives, Pitfalls, and Paths Forward*
665 at ICML 2022 (2022). URL https://openreview.net/forum?id=VrK7pKwOhT_.

666 [42] Li, X. *et al.* Understanding and improving transfer learning of deep models via neural collapse
667 (2024). URL <https://arxiv.org/abs/2212.12206>. 2212.12206.

668 [43] Munn, M., Dherin, B. & Gonzalvo, J. The impact of geometric complexity on neural collapse
669 in transfer learning (2024). URL <https://arxiv.org/abs/2405.15706>. 2405.
670 15706.

671 [44] Wang, Z., Luo, Y., Zheng, L., Huang, Z. & Baktashmotagh, M. How far pre-trained models
672 are from neural collapse on the target dataset informs their transferability. In *Proceedings of*
673 *the IEEE/CVF International Conference on Computer Vision (ICCV)*, 5549–5558 (2023).

674 [45] Yang, Y. *et al.* Neural collapse inspired feature-classifier alignment for few-shot class incre-
675 mental learning (2023). 2302.03004.

676 [46] Wang, Z., Luo, Y., Zheng, L., Huang, Z. & Baktashmotagh, M. How far pre-trained models
677 are from neural collapse on the target dataset informs their transferability. In *2023 IEEE/CVF*
678 *International Conference on Computer Vision (ICCV)*, 5526–5535 (2023).

679 [47] Haas, J., Yolland, W. & Rabus, B. Linking neural collapse and l2 normalization with improved
680 out-of-distribution detection in deep neural networks (2023). 2209.08378.

681 [48] Ammar, M. B., Belkhir, N., Popescu, S., Manzanera, A. & Franchi, G. Neco: Neural collapse
682 based out-of-distribution detection (2023). 2310.06823.

683 [49] Harun, M. Y., Gallardo, J. & Kanan, C. Controlling neural collapse enhances out-of-distribution
684 detection and transfer learning (2025). URL <https://arxiv.org/abs/2502.10691>.
685 2502.10691.

686 [50] Wu, Y., Yu, R., Cheng, X., He, Z. & Huang, X. Pursuing feature separation based on neural
687 collapse for out-of-distribution detection (2025). URL <https://arxiv.org/abs/2405.17816>.
688 2405.17816.

689 [51] Chen, Z. *et al.* Neural collapse inspired feature alignment for out-of-distribution generalization.
690 In *The Thirty-eighth Annual Conference on Neural Information Processing Systems* (2024).
691 URL <https://openreview.net/forum?id=wQpNG9JnPK>.

692 [52] Zhang, B., Jiang, D., He, D. & Wang, L. Rethinking lipschitz neural networks and certified
693 robustness: A boolean function perspective (2022). URL <https://arxiv.org/abs/2210.01787>.
694 2210.01787.

695

702 [53] Cisse, M., Bojanowski, P., Grave, E., Dauphin, Y. & Usunier, N. Parseval networks: Improv-
703 ing robustness to adversarial examples (2017). URL <https://arxiv.org/abs/1704.08847>.
704

705 [54] Tsuzuku, Y., Sato, I. & Sugiyama, M. Lipschitz-margin training: Scalable certification of
706 perturbation invariance for deep neural networks (2018). URL <https://arxiv.org/abs/1802.04034>. 1802.04034.

707

708 [55] Pauli, P., Koch, A., Berberich, J., Kohler, P. & Allgower, F. Training robust neural networks
709 using lipschitz bounds. *IEEE Control Systems Letters* **6**, 121–126 (2022). URL <http://dx.doi.org/10.1109/LCSYS.2021.3050444>.

710

711 [56] Li, Q. *et al.* Preventing gradient attenuation in lipschitz constrained convolutional networks
712 (2019). URL <https://arxiv.org/abs/1911.00937>. 1911.00937.

713

714 [57] Louizos, C., Welling, M. & Kingma, D. P. Learning sparse neural networks through L_0
715 regularization (2018). 1712.01312.

716

717 [58] Lemhadri, I., Ruan, F., Abraham, L. & Tibshirani, R. Lassonet: A neural network with feature
718 sparsity. *Journal of Machine Learning Research* **22**, 1–29 (2021).

719

720 [59] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: A sim-
721 ple way to prevent neural networks from overfitting. *Journal of Machine Learning Research* **15**,
722 1929–1958 (2014). URL <http://jmlr.org/papers/v15/srivastava14a.html>.

723

724 [60] Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z. & Tu, Z. Deeply-supervised nets (2014). 1409.
725 5185.

726

727 [61] Li, R. *et al.* A comprehensive review on deep supervision: Theories and applications (2022).
728 2207.02376.

729

730 [62] Wu, Z., Xiong, Y., Yu, S. & Lin, D. Unsupervised feature learning via non-parametric
731 instance-level discrimination (2018). URL <https://arxiv.org/abs/1805.01978>.
1805.01978.

732

733 [63] Hénaff, O. J. *et al.* Data-efficient image recognition with contrastive predictive coding (2020).
URL <https://arxiv.org/abs/1905.09272>. 1905.09272.

734

735 [64] van den Oord, A., Li, Y. & Vinyals, O. Representation learning with contrastive predictive
736 coding (2019). URL <https://arxiv.org/abs/1807.03748>. 1807.03748.

737

738 [65] Tian, Y., Krishnan, D. & Isola, P. Contrastive multiview coding (2020). URL <https://arxiv.org/abs/1906.05849>. 1906.05849.

739

740 [66] Hjelm, R. D. *et al.* Learning deep representations by mutual information estimation and
741 maximization (2019). URL <https://arxiv.org/abs/1808.06670>. 1808.06670.

742

743 [67] Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A simple framework for contrastive learning
744 of visual representations (2020). URL <https://arxiv.org/abs/2002.05709>.
2002.05709.

745

746 [68] He, K., Fan, H., Wu, Y., Xie, S. & Girshick, R. Momentum contrast for unsupervised
747 visual representation learning (2020). URL <https://arxiv.org/abs/1911.05722>.
1911.05722.

748

749 [69] Khosla, P. *et al.* Supervised contrastive learning (2021). URL <https://arxiv.org/abs/2004.11362>. 2004.11362.

750

751 [70] Wen, Y., Zhang, K., Li, Z. & Qiao, Y. A discriminative feature learning approach for deep face
752 recognition. In Leibe, B., Matas, J., Sebe, N. & Welling, M. (eds.) *Computer Vision – ECCV
753 2016*, 499–515 (Springer International Publishing, Cham, 2016).

754

755 [71] Liu, W., Wen, Y., Yu, Z. & Yang, M. Large-margin softmax loss for convolutional neural
756 networks (2017). URL <https://arxiv.org/abs/1612.02295>. 1612.02295.

756 [72] Liu, W. *et al.* Sphereface: Deep hypersphere embedding for face recognition (2018). URL
 757 <https://arxiv.org/abs/1704.08063>. 1704.08063.
 758

759 [73] Wang, H. *et al.* Cosface: Large margin cosine loss for deep face recognition (2018). URL
 760 <https://arxiv.org/abs/1801.09414>. 1801.09414.
 761

762 [74] Deng, J. *et al.* Arcface: Additive angular margin loss for deep face recognition. *IEEE*
 763 *Transactions on Pattern Analysis and Machine Intelligence* **44**, 5962–5979 (2022). URL
 764 <http://dx.doi.org/10.1109/TPAMI.2021.3087709>.
 765

766 [75] Miyato, T., ichi Maeda, S., Koyama, M. & Ishii, S. Virtual adversarial training: A regularization
 767 method for supervised and semi-supervised learning (2018). URL <https://arxiv.org/abs/1704.03976>.
 768

769 [76] Trockman, A. & Kolter, J. Z. Orthogonalizing convolutional layers with the cayley transform
 770 (2021). URL <https://arxiv.org/abs/2104.07167>. 2104.07167.
 771

772 [77] Singla, S. & Feizi, S. Skew orthogonal convolutions (2021). URL <https://arxiv.org/abs/2105.11417>. 2105.11417.
 773

774 [78] Singla, S., Singla, S. & Feizi, S. Improved deterministic l2 robustness on cifar-10 and cifar-100
 775 (2022). URL <https://arxiv.org/abs/2108.04062>. 2108.04062.
 776

777 [79] Anil, C., Lucas, J. & Grosse, R. Sorting out lipschitz function approximation (2019). URL
 778 <https://arxiv.org/abs/1811.05381>. 1811.05381.
 779

780 [80] Gouk, H., Frank, E., Pfahringer, B. & Cree, M. J. Regularisation of neural networks by
 781 enforcing lipschitz continuity (2020). URL <https://arxiv.org/abs/1804.04368>.
 782

783 [81] Krizhevsky, A., Hinton, G. *et al.* Learning multiple layers of features from tiny images (2009).
 784

785 [82] Deng, J. *et al.* Imagenet: A large-scale hierarchical image database. In *2009 IEEE Conference*
 786 *on Computer Vision and Pattern Recognition*, 248–255 (2009).
 787

788 [83] He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In
 789 *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*
 790 (2016).
 791

792 [84] Zagoruyko, S. & Komodakis, N. Wide residual networks (2017). URL <https://arxiv.org/abs/1605.07146>. 1605.07146.
 793

794 [85] Moosavi-Dezfooli, S.-M., Fawzi, A. & Frossard, P. Deepfool: a simple and accurate method
 795 to fool deep neural networks (2016). 1511.04599.
 796

797 [86] Madry, A., Makelov, A., Schmidt, L., Tsipras, D. & Vladu, A. Towards deep learning models
 798 resistant to adversarial attacks (2019). 1706.06083.
 799

800 [87] Nguyen, T., Jiang, R., Aeron, S., Ishwar, P. & Brown, D. R. On neural collapse in contrastive
 801 learning with imbalanced datasets. In *2024 IEEE 34th International Workshop on Machine*
 802 *Learning for Signal Processing (MLSP)*, 1–6 (2024).
 803

804 [88] Zhou, J. *et al.* Are all losses created equal: A neural collapse perspective (2022). URL
 805 <https://arxiv.org/abs/2210.02192>. 2210.02192.
 806

807 [89] Tishby, N., Pereira, F. C. & Bialek, W. The information bottleneck method (2000). URL
 808 <https://arxiv.org/abs/physics/0004057>. physics/0004057.
 809

810 [90] Tishby, N. & Zaslavsky, N. Deep learning and the information bottleneck principle. In *2015*
 811 *IEEE Information Theory Workshop (ITW)*, 1–5 (IEEE, 2015).
 812

813 [91] Hu, S., Lou, Z., Yan, X. & Ye, Y. A survey on information bottleneck. *IEEE Transactions on*
 814 *Pattern Analysis and Machine Intelligence* **46**, 5325–5344 (2024).
 815

810 [92] Kawaguchi, K., Deng, Z., Ji, X. & Huang, J. How does information bottleneck help deep
811 learning? (2023). URL <https://arxiv.org/abs/2305.18887>. 2305.18887.
812

813 [93] Shwartz-Ziv, R. & Tishby, N. Opening the black box of deep neural networks via information
814 (2017). URL <https://arxiv.org/abs/1703.00810>. 1703.00810.
815

816 [94] Alemi, A. A., Fischer, I., Dillon, J. V. & Murphy, K. Deep variational information bottleneck
817 (2019). URL <https://arxiv.org/abs/1612.00410>. 1612.00410.
818

819 [95] Kolchinsky, A., Tracey, B. D. & Wolpert, D. H. Nonlinear information bottleneck. *Entropy* **21**,
820 1181 (2019). URL <http://dx.doi.org/10.3390/e21121181>.
821

822 [96] Chalk, M., Marre, O. & Tkacik, G. Relevant sparse codes with variational information
823 bottleneck (2016). URL <https://arxiv.org/abs/1605.07332>. 1605.07332.
824

825 [97] Achille, A. & Soatto, S. Information dropout: Learning optimal representations through noisy
826 computation (2017). URL <https://arxiv.org/abs/1611.01353>. 1611.01353.
827

828 [98] Belghazi, M. I. *et al.* Mine: Mutual information neural estimation (2021). URL <https://arxiv.org/abs/1801.04062>. 1801.04062.
829

830 [99] Bell AJ, S. T. An information-maximization approach to blind separation and blind deconvolu-
831 tion. *Neural Comput.* (1995).
832

833 [100] Ramachandran, P., Zoph, B. & Le, Q. V. Searching for activation functions (2017). 1710.
834 05941.
835

836 [101] Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization (2017). 1412.6980.
837

838 [102] Loshchilov, I. & Hutter, F. Decoupled weight decay regularization (2019). 1711.05101.
839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 A THEORETICAL ANALYSIS OF LATENT POINT COLLAPSE
865

866 This appendix presents a rigorous theoretical analysis of how strong L_2 regularization induces LPC
867 in DNN classifiers, establishing both its necessity for achieving theoretical optima and its sufficiency
868 for ensuring global Lipschitz continuity. We employ the UFM framework to demonstrate that a
869 large regularization parameter γ fundamentally reshapes the optimization landscape and dynamics of
870 penultimate-layer representations.

871 Our analysis proceeds through a systematic characterization of the interplay between cross-entropy
872 loss and L_2 regularization. We first establish equilibrium conditions (Section A.2), proving that
873 regularization confines representations to a ball of radius $O(M_W/\gamma)$, where M_W bounds the classifier
874 weights. We then analyze the local Hessian structure (Section A.3) to show that for $\gamma > KM_W^2/2$,
875 the loss landscape becomes globally strongly convex. This convexification enables us to derive
876 tight bounds on the steady-state distribution of representations, establishing that same-class features
877 concentrate within radius $r_{\text{collapse}} = O(\sqrt{\sigma^2 d \eta / \gamma})$ of their class-specific equilibria, whose size
878 reflects a balance between the noise level σ , the dimensionality of the latent space d , the magnitude
879 of learning rate η , and the strength of the confining potential γ .

880 The geometric implications of this confinement are explored through our alignment analysis
881 (Section A.4), where we prove that in the TPT—characterized by high classification confi-
882 dence—representations not only collapse but also align with their corresponding classifier weight
883 vectors. This alignment emerges naturally from the decoupling of radial and angular dynamics under
884 strong regularization, without requiring explicit geometric constraints. Crucially, we establish the ne-
885 cessity of this mechanism by demonstrating (Section A.5) that without regularization, gradient-based
886 optimization of cross-entropy loss exhibits a pathological behavior: the steepest descent direction
887 contains an outward radial component, leading to unbounded norm growth and gradient saturation
888 that prevents convergence to any finite equilibrium.

889 These results culminate in our main theorem establishing that strong L_2 regularization applied specif-
890 ically to the penultimate-layer induces a stronger manifestation of NC characterized by simultaneous
891 confinement around the origin and class-specific point collapse. Most significantly, we prove that this
892 mechanism yields global Lipschitz continuity that is independent of input distance, a property that
893 emerges naturally from the bounded collapse around the origin.

894 A.1 SETUP AND PRELIMINARIES
895

896 We analyze penultimate-layer representations using the unconstrained feature model (UFM) frame-
897 work (24; 34; 27). In this framework, features after the penultimate-layer are treated as free optimiza-
898 tion variables $\mathbf{z} \in \mathbb{R}^d$ (disconnected from the input samples), allowing us to study their optimization
899 dynamics independently. The final linear classifier has weights $\mathbf{W} \in \mathbb{R}^{K \times d}$ and biases $\mathbf{b} \in \mathbb{R}^K$,
900 yielding logits $\ell = \mathbf{W}\mathbf{z} + \mathbf{b}$.

901 Previous work (24; 34) established that for balanced datasets with bounded representations and
902 classifier weights, global minimizers of cross-entropy loss exhibit NC. This phenomenon involves
903 three key properties: (1) all features within a class converge to a single point, (2) the K class means
904 form an ETFS, and (3) these means align with their corresponding classifier weights. However,
905 reaching such global optima in deep networks with millions of parameters is practically infeasible
906 (37).

907 Our analysis investigates how strong L_2 regularization with coefficient γ drives the system toward
908 this theoretical ideal. We analyze the combined loss:

$$\mathcal{L}(\mathbf{z}) = \mathcal{L}_{\text{CE}}(\mathbf{z}) + \gamma \|\mathbf{z}\|^2 \quad (6)$$

910 where $\mathcal{L}_{\text{CE}}(\mathbf{z}) = -\log p_{\bar{y}}(\mathbf{z})$ is the cross-entropy loss with softmax probabilities $p_i(\mathbf{z}) =$
911 $\frac{\exp(\ell_i)}{\sum_{j=1}^K \exp(\ell_j)}$, and $\gamma > 0$ is the regularization strength.

912 **Assumption A.1** (Bounded Classifier Weights). *The classifier weight vectors satisfy $\|\mathbf{w}_i\| \leq M_W$ for all classes $i \in [K]$, where $M_W < \infty$. This mild condition holds under standard training practices with weight decay, which keeps classifier weights bounded.*

913 We consider a general class of stochastic optimizers that update representations according to:

$$\mathbf{z}_{t+1} = \mathbf{z}_t - \eta_t \mathbf{P}_t (\nabla_{\mathbf{z}} \mathcal{L}(\mathbf{z}_t) + \mathbf{a}_t) \quad (7)$$

918 where η_t is the learning rate, \mathbf{P}_t is a preconditioning matrix (identity for SGD, diagonal adaptive for
919 Adam/AdamW), and \mathbf{a}_t is gradient noise from mini-batch sampling with $\mathbb{E}[\mathbf{a}_t | \mathbf{z}_t] = \mathbf{0}$.
920

921 **Assumption A.2** (Optimizer Properties). *The optimizer satisfies:*

922 1. **Bounded preconditioning:** $\lambda_{\min} \mathbf{I} \preceq \mathbf{P}_t \preceq \lambda_{\max} \mathbf{I}$ for some $0 < \lambda_{\min} \leq \lambda_{\max} < \infty$
923 2. **Bounded noise:** The noise covariance matrix is bounded: $\mathbb{E}[\mathbf{a}_t \mathbf{a}_t^T | \mathbf{z}_t] \preceq \sigma^2 \mathbf{I}$ for some
924 constant $\sigma^2 > 0$. This implies $\mathbb{E}[\|\mathbf{a}_t\|^2 | \mathbf{z}_t] \leq d\sigma^2$.
925 3. **Convergence:** The learning rate schedule ensures convergence to a neighborhood of local
926 minima
927

928 These assumptions are mild and satisfied by standard optimizers (SGD, Adam, AdamW) with
929 appropriate hyperparameters. We will leverage these properties throughout our analysis to establish
930 bounds on the behavior of representations under stochastic optimization.
931

932 A.2 EQUILIBRIUM ANALYSIS

934 We first characterize the equilibrium points that arise from the interplay between cross-entropy loss
935 and L_2 regularization.

936 **Definition A.3** (Stochastic Equilibrium). A point \mathbf{z}^* is a stochastic equilibrium if $\mathbb{E}[\mathbf{z}_{t+1} | \mathbf{z}_t = \mathbf{z}^*] =$
937 \mathbf{z}^* under the update rule equation 7.

938 For optimizers with positive definite preconditioning matrices (Assumption A.2), this condition
939 requires $\nabla_{\mathbf{z}} \mathcal{L}(\mathbf{z}^*) = \mathbf{0}$.
940

941 At a stochastic equilibrium \mathbf{z}^* , for a sample with true label \bar{y} , the gradient vanishes:

942
$$\nabla_{\mathbf{z}} \mathcal{L}(\mathbf{z}^*) = \sum_{i=1}^K p_i(\mathbf{z}^*) \mathbf{w}_i - \mathbf{w}_{\bar{y}} + 2\gamma \mathbf{z}^* = \mathbf{0} \quad (8)$$

943
944

945 Rearranging yields an explicit characterization:

946
$$\mathbf{z}^* = \frac{1}{2\gamma} \left(\mathbf{w}_{\bar{y}} - \sum_{i=1}^K p_i(\mathbf{z}^*) \mathbf{w}_i \right) \quad (9)$$

947
948

949 This equation reveals that the equilibrium position is scaled by a control parameter γ .
950

951 **Theorem A.4** (Bounded Equilibrium). Any stochastic equilibrium \mathbf{z}^* satisfies:

952
$$\|\mathbf{z}^*\| \leq \frac{M_W}{\gamma} \quad (10)$$

953

954 *Proof.* From Equation 9, taking norms:

955
$$2\gamma \|\mathbf{z}^*\| = \left\| \mathbf{w}_{\bar{y}} - \sum_{i=1}^K p_i(\mathbf{z}^*) \mathbf{w}_i \right\| \quad (11)$$

956
957

958
$$= \left\| (1 - p_{\bar{y}}(\mathbf{z}^*)) \mathbf{w}_{\bar{y}} - \sum_{i \neq \bar{y}} p_i(\mathbf{z}^*) \mathbf{w}_i \right\| \quad (12)$$

959
960

961
$$\leq (1 - p_{\bar{y}}(\mathbf{z}^*)) \|\mathbf{w}_{\bar{y}}\| + \sum_{i \neq \bar{y}} p_i(\mathbf{z}^*) \|\mathbf{w}_i\| \quad (13)$$

962
963

964
$$\leq M_W \left[(1 - p_{\bar{y}}(\mathbf{z}^*)) + \sum_{i \neq \bar{y}} p_i(\mathbf{z}^*) \right] \quad (14)$$

965
966

967
$$= 2M_W (1 - p_{\bar{y}}(\mathbf{z}^*)) \quad (15)$$

968

969 The general bound follows since $1 - p_{\bar{y}}(\mathbf{z}^*) \leq 1$. \square
970

971 This theorem establishes that L_2 regularization creates a confining potential that prevents representation
972 explosion, with the confinement radius inversely proportional to γ .

972 A.3 HESSIAN ANALYSIS AND STOCHASTIC DYNAMICS
973974 To understand how representations behave near equilibrium under stochastic optimization, we analyze
975 the local curvature of the loss landscape. The Hessian of the combined loss is:
976

977
$$\nabla_{\mathbf{z}}^2 \mathcal{L}(\mathbf{z}) = \nabla_{\mathbf{z}}^2 \mathcal{L}_{\text{CE}}(\mathbf{z}) + \nabla_{\mathbf{z}}^2 (\gamma \|\mathbf{z}\|^2) \quad (16)$$

978 The Hessian of the L_2 regularization term is:
979

980
$$\nabla_{\mathbf{z}}^2 (\gamma \|\mathbf{z}\|^2) = 2\gamma \mathbf{I} \quad (17)$$

981

982 The cross-entropy Hessian takes the form:
983

984
$$\nabla_{\mathbf{z}}^2 \mathcal{L}_{\text{CE}}(\mathbf{z}) = \mathbf{W}^T (\text{diag}(\mathbf{p}) - \mathbf{p}\mathbf{p}^T) \mathbf{W} \quad (18)$$

985

986 with $\mathbf{p} = [p_1(\mathbf{z}), \dots, p_K(\mathbf{z})]^T$ being the softmax probability vector.
987988 **Lemma A.5** (Bounded Cross-Entropy Hessian). *Under Assumption A.1, the spectral norm of the
989 cross-entropy Hessian satisfies:*

990
$$\|\nabla_{\mathbf{z}}^2 \mathcal{L}_{\text{CE}}(\mathbf{z})\| \leq KM_W^2 \quad (19)$$

991

992 *Proof.* The matrix $\mathbf{D} = \text{diag}(\mathbf{p}) - \mathbf{p}\mathbf{p}^T$ is the covariance matrix of a categorical distribution with
993 spectral norm $\|\mathbf{D}\|_2 \leq 1$. The spectral norm of the Hessian is:
994

995
$$\|\nabla_{\mathbf{z}}^2 \mathcal{L}_{\text{CE}}(\mathbf{z})\|_2 = \|\mathbf{W}^T \mathbf{D} \mathbf{W}\|_2 \leq \|\mathbf{W}^T\|_2 \|\mathbf{D}\|_2 \|\mathbf{W}\|_2 = \|\mathbf{W}\|_2^2 \quad (20)$$

996

997 The spectral norm of \mathbf{W} is bounded by its Frobenius norm:
998

999
$$\|\mathbf{W}\|_2^2 \leq \|\mathbf{W}\|_F^2 = \sum_{i=1}^K \|\mathbf{w}_i\|_2^2 \leq KM_W^2 \quad (21)$$

1000

1001 where the last inequality follows from Assumption A.1. \square
10021003 This lemma shows that the cross-entropy contribution to the Hessian is bounded, allowing the L_2
1004 regularization term to dominate for large γ .
10051006 A.3.1 EQUILIBRIUM NEIGHBORHOOD DYNAMICS
10071008 The bounded Hessian structure established in Lemma A.5 enables us to analyze how representations
1009 behave near equilibrium points under stochastic optimization. The regularization parameter γ funda-
1010 mentally reshapes the loss landscape by eliminating local minima that could trap the optimization
1011 process.
10121013 Consider the Hessian at an arbitrary point \mathbf{z} :
1014

1015
$$\nabla_{\mathbf{z}}^2 \mathcal{L}(\mathbf{z}) = \nabla_{\mathbf{z}}^2 \mathcal{L}_{\text{CE}}(\mathbf{z}) + 2\gamma \mathbf{I} \quad (22)$$

1016

1017 When γ is sufficiently large, specifically when $\gamma > \frac{KM_W^2}{2}$, guarantees that the Hessian is globally
1018 positive definite. This implies that the loss landscape becomes strongly convex. This elimination of
1019 local minima ensures that stochastic optimization converges to the desired equilibrium rather than
1020 getting trapped in suboptimal configurations.
10211022 Near an equilibrium point \mathbf{z}^* , the dynamics are governed by the local curvature. For large γ satisfying
1023 $\gamma \gg KM_W^2$, the Hessian becomes dominated by the regularization term:
1024

1025
$$\mathbf{H} = \nabla_{\mathbf{z}}^2 \mathcal{L}(\mathbf{z}^*) \approx 2\gamma \mathbf{I} \quad (23)$$

1026

1027 This creates a strong, isotropic quadratic potential around the equilibrium, analogous to a harmonic
1028 oscillator with spring constant $k = 2\gamma$. Under stochastic optimization, representations do not
1029 converge to exact points but rather to steady-state distributions around equilibria. The concentration
1030 of these distributions is determined by the balance between the confining potential controlled by γ
1031 and the stochastic excitation from gradient noise.
1032

1026 Consider the linearized dynamics around equilibrium:
 1027

$$1028 \quad \mathbf{d}_{t+1} = (\mathbf{I} - \eta \mathbf{P}_t \mathbf{H}) \mathbf{d}_t - \eta \mathbf{P}_t \mathbf{a}_t \quad (24)$$

1029 where $\mathbf{d}_t = \mathbf{z}_t - \mathbf{z}^*$ is the deviation from equilibrium, \mathbf{P}_t is the optimizer's preconditioning matrix,
 1030 and \mathbf{a}_t represents gradient noise.

1031 For the simplified case where $\mathbf{H} = 2\gamma \mathbf{I}$ and uniform preconditioning $\mathbf{P}_t = \bar{\lambda} \mathbf{I}$, the steady-state
 1032 variance of each component satisfies:

$$1033 \quad 1034 \quad \mathbb{E}[\delta_{i,\infty}^2] = \frac{\eta \bar{\lambda} \sigma^2}{4\gamma(1 - \eta\gamma\bar{\lambda})} \quad (25)$$

1036 This expression reveals that for any fixed learning rate η satisfying the stability condition $\eta < \frac{1}{\gamma\bar{\lambda}}$, the
 1037 steady-state variance decreases monotonically as γ increases. Taking the derivative with respect to γ
 1038 yields:

$$1039 \quad \frac{\partial}{\partial\gamma} \mathbb{E}[\delta_{i,\infty}^2] = -\frac{\eta \bar{\lambda} \sigma^2}{4\gamma^2(1 - \eta\gamma\bar{\lambda})^2} < 0 \quad (26)$$

1040 confirming that increasing γ always reduces the variance of representations around their equilibria.
 1041

1042 The total expected squared deviation across all d dimensions is:

$$1043 \quad 1044 \quad \mathbb{E}[\|\mathbf{d}_\infty\|^2] = \sum_{i=1}^d \mathbb{E}[\delta_{i,\infty}^2] = \frac{d\eta \bar{\lambda} \sigma^2}{4\gamma(1 - \eta\gamma\bar{\lambda})} \quad (27)$$

1045 For small learning rates satisfying $\eta\gamma\bar{\lambda} \ll 1$ (which is typically required for stability), we can
 1046 approximate:

$$1047 \quad 1048 \quad \mathbb{E}[\|\mathbf{d}_\infty\|^2] \approx \frac{d\eta \bar{\lambda} \sigma^2}{4\gamma} \quad (28)$$

1049 Therefore, the root mean square deviation, which characterizes the typical collapse radius, is:

$$1050 \quad 1051 \quad r_{\text{collapse}} = \sqrt{\mathbb{E}[\|\mathbf{d}_\infty\|^2]} \approx \frac{\sigma}{2} \sqrt{\frac{d\eta \bar{\lambda}}{\gamma}} = O\left(\sqrt{\frac{\sigma^2 d\eta}{\gamma}}\right) \quad (29)$$

1052 where the last equality follows since $\bar{\lambda}$ and σ are $O(1)$ constants independent of γ and η .
 1053

1054 This analysis reveals that a large regularization parameter γ serves a crucial dual purpose. First,
 1055 it convexifies the optimization landscape. For $\gamma > \frac{KM_W^2}{2}$, the regularization guarantees global
 1056 strong convexity. Second, it induces feature collapse. The strong quadratic potential not only creates
 1057 this single basin of attraction but also tightly confines representations within it, counteracting the
 1058 stochasticity from gradient noise. This results in a steady-state variance that decreases monotonically
 1059 with γ , leading to a tighter clustering of same-class representations.

1060 Consequently, under a stable learning rate condition ($\eta < \frac{1}{\gamma\bar{\lambda}}$), the optimizer is guaranteed to
 1061 converge to a neighborhood of the global optimum whose radius, $r_{\text{collapse}} = O(\sqrt{\sigma^2 d\eta/\gamma})$, is
 1062 explicitly controlled by the regularization strength. This provides a principled explanation for the
 1063 efficacy of strong L_2 regularization in achieving NC, as it ensures both convergence to the correct
 1064 geometric configuration and control over the degree of intra-class feature concentration.

1065 A.4 ALIGNMENT CONVERGENCE ANALYSIS IN THE TERMINAL PHASE

1066 In the TPT, when samples are well-classified with high confidence, we analyze how strong reg-
 1067 ularization induces alignment between representations and their corresponding classifier weights.
 1068 Throughout this subsection, we assume the network has reached the TPT where $p_{\bar{y}}(\mathbf{z}) \approx 1$ for all
 1069 samples in the training set.

1070 To analyze this process, we consider the gradient flow dynamics $\dot{\mathbf{z}} = -\nabla_{\mathbf{z}} \mathcal{L}(\mathbf{z})$, a valid approxi-
 1071 mation for small learning rates. We decompose the dynamics into radial and angular components.
 1072 Let $r(t) = \|\mathbf{z}(t)\|$ and $\mathbf{u}(t) = \mathbf{z}(t)/r(t)$ denote the representation's magnitude and direction,
 1073 respectively.

1080
1081 **Definition A.6** (Representation-Weight Alignment). *For a representation \mathbf{z} with direction $\mathbf{u} = \mathbf{z}/\|\mathbf{z}\|$ and true label \bar{y} , the alignment with the corresponding classifier weight is:*

1082
1083
$$a(t) = \mathbf{u}(t)^T \hat{\mathbf{w}}_{\bar{y}} = \frac{\mathbf{z}(t)^T \mathbf{w}_{\bar{y}}}{\|\mathbf{z}(t)\| \|\mathbf{w}_{\bar{y}}\|} \quad (30)$$

1084

1085 where $\hat{\mathbf{w}}_{\bar{y}} = \mathbf{w}_{\bar{y}}/\|\mathbf{w}_{\bar{y}}\|$ is the normalized classifier weight. Note that $a(t) \in [-1, 1]$ by the Cauchy-
1086 Schwarz inequality, with $a(t) = 1$ indicating perfect alignment.

1087 We previously discussed that the L_2 term $2\gamma\mathbf{z}$ creates a strong restoring force in the radial direction,
1088 causing $r(t)$ to converge to an equilibrium radius $r^* = O(M_W/\gamma)$.

1089 **Theorem A.7** (Alignment under L_2 Regularization). *In the terminal phase of training where $p_{\bar{y}}(\mathbf{z}) \approx 1$, under gradient flow dynamics with sufficiently large γ , the representation direction converges to the classifier weight direction:*

1090
1091
1092
1093
$$\lim_{t \rightarrow \infty} \frac{\mathbf{z}(t)}{\|\mathbf{z}(t)\|} = \frac{\mathbf{w}_{\bar{y}}}{\|\mathbf{w}_{\bar{y}}\|} \quad (31)$$

1094

1095 *Proof.* The angular velocity of the unit vector \mathbf{u} is given by projecting the velocity $\dot{\mathbf{z}}$ onto the tangent
1096 space of the unit sphere:

1097
1098
$$\dot{\mathbf{u}} = \frac{1}{r} (\mathbf{I} - \mathbf{u}\mathbf{u}^T) \dot{\mathbf{z}} = -\frac{1}{r} (\mathbf{I} - \mathbf{u}\mathbf{u}^T) \nabla_{\mathbf{z}} \mathcal{L}(\mathbf{z}) \quad (32)$$

1099

1100 The gradient is $\nabla_{\mathbf{z}} \mathcal{L}(\mathbf{z}) = (\sum_i p_i \mathbf{w}_i - \mathbf{w}_{\bar{y}}) + 2\gamma\mathbf{z}$. Since $(\mathbf{I} - \mathbf{u}\mathbf{u}^T)\mathbf{z} = \mathbf{0}$, the regularization term
1101 does not affect the angular dynamics:

1102
1103
$$\dot{\mathbf{u}} = \frac{1}{r} (\mathbf{I} - \mathbf{u}\mathbf{u}^T) (\mathbf{w}_{\bar{y}} - \sum_i p_i \mathbf{w}_i) \quad (33)$$

1104

1105 The rate of change of alignment $a(t) = \mathbf{u}^T \hat{\mathbf{w}}_{\bar{y}}$ can be derived explicitly. We have:

1106
1107
1108
$$\dot{a} = \dot{\mathbf{u}}^T \hat{\mathbf{w}}_{\bar{y}} = \frac{1}{r} \left((\mathbf{I} - \mathbf{u}\mathbf{u}^T) (\mathbf{w}_{\bar{y}} - \sum_i p_i \mathbf{w}_i) \right)^T \hat{\mathbf{w}}_{\bar{y}} \quad (34)$$

1109

1110 Since the projection matrix $(\mathbf{I} - \mathbf{u}\mathbf{u}^T)$ is symmetric, this simplifies to:

1111
1112
$$\dot{a} = \frac{1}{r} (\mathbf{w}_{\bar{y}} - \sum_i p_i \mathbf{w}_i)^T (\mathbf{I} - \mathbf{u}\mathbf{u}^T) \hat{\mathbf{w}}_{\bar{y}} = \frac{1}{r} (\mathbf{w}_{\bar{y}} - \sum_i p_i \mathbf{w}_i)^T (\hat{\mathbf{w}}_{\bar{y}} - \mathbf{u}(\mathbf{u}^T \hat{\mathbf{w}}_{\bar{y}})) \quad (35)$$

1113

1114 Recalling that $a = \mathbf{u}^T \hat{\mathbf{w}}_{\bar{y}}$, we get:

1115
1116
$$\dot{a} = \frac{1}{r} (\mathbf{w}_{\bar{y}} - \sum_i p_i \mathbf{w}_i)^T (\hat{\mathbf{w}}_{\bar{y}} - a\mathbf{u}) \quad (36)$$

1117

1118 To analyze the terminal phase, we note that as training progresses and classification accuracy improves,
1119 the softmax probabilities become increasingly peaked. Specifically, when the correct class logit
1120 satisfies $\ell_{\bar{y}} - \max_{i \neq \bar{y}} \ell_i \gg 1$, we have $p_{\bar{y}} = \frac{\exp(\ell_{\bar{y}})}{\exp(\ell_{\bar{y}}) + \sum_{i \neq \bar{y}} \exp(\ell_i)} \approx 1 - \sum_{i \neq \bar{y}} \exp(\ell_i - \ell_{\bar{y}}) \rightarrow 1$.
1121 Under this regime, the approximation $\sum_i p_i \mathbf{w}_i \approx p_{\bar{y}} \mathbf{w}_{\bar{y}}$ becomes increasingly accurate.

1122 In the TPT, classification confidence is high, so $p_{\bar{y}} \rightarrow 1$ and $p_{i \neq \bar{y}} \rightarrow 0$. We can thus approximate the
1123 softmax-weighted sum of classifiers as $\sum_i p_i \mathbf{w}_i \approx p_{\bar{y}} \mathbf{w}_{\bar{y}}$. This leads to:

1124
1125
1126
$$\mathbf{w}_{\bar{y}} - \sum_i p_i \mathbf{w}_i \approx \mathbf{w}_{\bar{y}} - p_{\bar{y}} \mathbf{w}_{\bar{y}} = (1 - p_{\bar{y}}) \mathbf{w}_{\bar{y}} \quad (37)$$

1127

1128 Substituting this back into the expression for \dot{a} yields:

1129
1130
1131
$$\dot{a} \approx \frac{1}{r} ((1 - p_{\bar{y}}) \mathbf{w}_{\bar{y}})^T (\hat{\mathbf{w}}_{\bar{y}} - a\mathbf{u}) \quad (38)$$

1132

1133
$$= \frac{1 - p_{\bar{y}}}{r} (\mathbf{w}_{\bar{y}}^T \hat{\mathbf{w}}_{\bar{y}} - a \mathbf{w}_{\bar{y}}^T \mathbf{u}) \quad (39)$$

1134 Using the definitions $\hat{\mathbf{w}}_{\bar{y}} = \mathbf{w}_{\bar{y}} / \|\mathbf{w}_{\bar{y}}\|$ and $a = \mathbf{u}^T \hat{\mathbf{w}}_{\bar{y}} = \mathbf{u}^T \mathbf{w}_{\bar{y}} / \|\mathbf{w}_{\bar{y}}\|$, we have $\mathbf{w}_{\bar{y}}^T \hat{\mathbf{w}}_{\bar{y}} = \|\mathbf{w}_{\bar{y}}\|$
 1135 and $\mathbf{w}_{\bar{y}}^T \mathbf{u} = a \|\mathbf{w}_{\bar{y}}\|$. Substituting these gives:
 1136

$$\dot{a} \approx \frac{1 - p_{\bar{y}}}{r} (\|\mathbf{w}_{\bar{y}}\| - a \cdot a \|\mathbf{w}_{\bar{y}}\|) \quad (40)$$

$$= \frac{(1 - p_{\bar{y}}) \|\mathbf{w}_{\bar{y}}\|}{r} (1 - a^2) \quad (41)$$

1141 Since $(1 - a^2) \geq 0$ for $|a| \leq 1$ and $(1 - p_{\bar{y}}) \geq 0$, the alignment monotonically increases until $a = 1$,
 1142 achieving perfect alignment with the classifier weight. \square
 1143

1144 This analysis demonstrates that L_2 regularization not only confines representations to a bounded
 1145 region but actively drives them toward geometric alignment with their corresponding classifier weights.
 1146 The regularization parameter γ controls the speed and quality of this alignment by determining the
 1147 equilibrium radius $r^* = O(M_W / \gamma)$, at which representations stabilize, which influences the effective
 1148 time constant of the angular dynamics. Importantly, this alignment emerges naturally from the
 1149 optimization dynamics without explicit geometric constraints, revealing how strong regularization
 1150 implicitly promotes convergence to the NC geometry.

1151 A.5 UNBOUNDED GROWTH UNDER PURE CROSS-ENTROPY MINIMIZATION

1152 Having established the beneficial effects of strong L_2 regularization, we now demonstrate its necessity
 1153 by analyzing the pathological behavior that emerges in its absence. This analysis serves two purposes:
 1154 (1) it explains why standard neural networks without explicit regularization fail to achieve the
 1155 theoretical NC predicted by UFM theory, and (2) it highlights that the confinement provided by
 1156 L_2 regularization is not merely helpful but essential for reaching meaningful equilibria. We now
 1157 demonstrate that without L_2 regularization, cross-entropy minimization alone leads to unbounded
 1158 growth of representation norms, preventing convergence to the theoretical equilibrium predicted by
 1159 UFM theory.

1160 **Theorem A.8** (Unbounded Norm Growth without Regularization). *In the TPT with $\gamma = 0$, cross-
 1161 entropy minimization drives representations to grow unboundedly: $\|\mathbf{z}(t)\| \rightarrow \infty$ as $t \rightarrow \infty$.*

1162 *Proof.* For pure cross-entropy loss with $\gamma = 0$, the gradient is:

$$\nabla_{\mathbf{z}} \mathcal{L}_{\text{CE}}(\mathbf{z}) = \sum_{i=1}^K p_i(\mathbf{z}) \mathbf{w}_i - \mathbf{w}_{\bar{y}} \quad (42)$$

1163 Consider the rate of change of the squared norm:

$$\frac{d}{dt} \|\mathbf{z}\|^2 = 2\mathbf{z}^T \dot{\mathbf{z}} = -2\mathbf{z}^T \nabla_{\mathbf{z}} \mathcal{L}_{\text{CE}}(\mathbf{z}) \quad (43)$$

$$= 2\mathbf{z}^T (\mathbf{w}_{\bar{y}} - \sum_{i=1}^K p_i(\mathbf{z}) \mathbf{w}_i) \quad (44)$$

$$= 2(\ell_{\bar{y}} - \sum_{i=1}^K p_i(\mathbf{z}) \ell_i) \quad (45)$$

1164 where $\ell_i = \mathbf{z}^T \mathbf{w}_i$ are the logits. The term $\ell_{\bar{y}} - \sum_i p_i \ell_i$ represents the difference between the
 1165 correct class logit and the expected logit over the softmax distribution. This quantity is equivalent to
 1166 $\sum_i p_i (\ell_{\bar{y}} - \ell_i)$ and is strictly positive as long as perfect classification ($p_{\bar{y}} = 1$) has not been achieved,
 1167 since $\ell_{\bar{y}}$ will be greater than other logits ℓ_i for which $p_i > 0$. Therefore, $\frac{d}{dt} \|\mathbf{z}\|^2 > 0$, indicating that
 1168 under gradient flow in the terminal phase, the steepest descent direction for CE loss has an outward
 1169 radial component, causing representation norms to grow continuously.

1170 Crucially, cross-entropy can be decreased by simply scaling up \mathbf{z} without requiring alignment. If \mathbf{z}
 1171 makes an angle θ with $\mathbf{w}_{\bar{y}}$ where $\cos \theta < 1$, scaling $\mathbf{z} \mapsto \alpha \mathbf{z}$ with $\alpha > 1$ yields:

$$\mathcal{L}_{\text{CE}}(\alpha \mathbf{z}) = -\log \frac{\exp(\alpha \ell_{\bar{y}})}{\sum_i \exp(\alpha \ell_i)} \rightarrow 0 \text{ as } \alpha \rightarrow \infty \quad (46)$$

provided $\ell_{\bar{y}} > \max_{i \neq \bar{y}} \ell_i$, which only requires $\cos \theta > \cos \theta_{\text{critical}}$ for some critical angle $\theta_{\text{critical}} < \pi/2$. \square

Corollary A.9 (Misalignment Compatible with Loss Decrease). *Even with slight misalignment between \mathbf{z} and $\mathbf{w}_{\bar{y}}$, cross-entropy loss can decrease through norm growth alone. Specifically, if:*

$$\mathbf{z}^T \mathbf{w}_{\bar{y}} > \max_{i \neq \bar{y}} \mathbf{z}^T \mathbf{w}_i \quad (47)$$

then increasing $\|\mathbf{z}\|$ while maintaining fixed direction decreases $\mathcal{L}_{\text{CE}}(\mathbf{z})$.

This unbounded growth has critical consequences:

Proposition A.10 (Gradient Saturation and Stalled Convergence). *As $\|\mathbf{z}\| \rightarrow \infty$ without regularization*

1. *The gradient norm vanishes: $\|\nabla_{\mathbf{z}} \mathcal{L}_{\text{CE}}(\mathbf{z})\| \rightarrow 0$*
2. *The loss plateaus: $\mathcal{L}_{\text{CE}}(\mathbf{z}) \rightarrow 0$ at rate $O(e^{-\|\mathbf{z}\|})$*
3. *Convergence to any finite equilibrium point becomes impossible*

Proof. As $\|\mathbf{z}\| \rightarrow \infty$ with $\ell_{\bar{y}} > \max_{i \neq \bar{y}} \ell_i$:

$$p_{\bar{y}}(\mathbf{z}) = \frac{\exp(\ell_{\bar{y}})}{\sum_i \exp(\ell_i)} \rightarrow 1 \quad (48)$$

The gradient becomes:

$$\|\nabla_{\mathbf{z}} \mathcal{L}_{\text{CE}}(\mathbf{z})\| = \left\| \sum_i p_i \mathbf{w}_i - \mathbf{w}_{\bar{y}} \right\| = (1 - p_{\bar{y}}) \|\mathbf{w}_{\bar{y}} - \bar{\mathbf{w}}\| \rightarrow 0 \quad (49)$$

With vanishing gradients, the dynamics essentially halt, preventing convergence to any finite equilibrium point. The representations are trapped in a regime of infinite growth with diminishing returns in loss reduction. \square

This analysis reveals that pure cross-entropy optimization, despite achieving low loss values, fails to reach the structured equilibria predicted by theory. The unbounded norm growth and gradient saturation prevent the formation of the NC geometry. Strong L_2 regularization with large γ is therefore essential to constrain representations to a bounded region where meaningful equilibria can be reached.

A.6 GLOBAL LIPSCHITZ CONTINUITY

The confinement effects of strong L_2 regularization lead to a crucial property: global Lipschitz continuity of the network.

Theorem A.11 (Lipschitz Bound). *For a neural network with L_2 -regularized penultimate representations trained with any optimizer satisfying Assumption A.2, after sufficient training with learning rate $\eta < \frac{1}{\gamma \lambda}$, the expected network output difference satisfies:*

$$\mathbb{E}[\|\mathbf{f}(\mathbf{x}_1) - \mathbf{f}(\mathbf{x}_2)\|] \leq L(\gamma) \quad (50)$$

where the global Lipschitz constant is:

$$L(\gamma) = 2\sqrt{K} M_W \left(\frac{M_W}{\gamma} + \sqrt{\frac{d\eta\bar{\lambda}\sigma^2}{4\gamma(1 - \eta\gamma\bar{\lambda})}} \right) \quad (51)$$

This bound is independent of the input distance $\|\mathbf{x}_1 - \mathbf{x}_2\|$.

1242 *Proof.* For any two inputs $\mathbf{x}_1, \mathbf{x}_2$, their penultimate-layer representations are $\mathbf{z}_1, \mathbf{z}_2$. The distance
 1243 between them is bounded by the triangle inequality: $\|\mathbf{z}_1 - \mathbf{z}_2\| \leq \|\mathbf{z}_1\| + \|\mathbf{z}_2\|$.

1244 From Theorem A.4, any equilibrium point \mathbf{z}^* satisfies $\|\mathbf{z}^*\| \leq M_W/\gamma$. From the Hessian analysis,
 1245 the steady-state deviation from equilibrium satisfies:

$$1247 \quad \mathbb{E}[\|\mathbf{d}_\infty\|^2] = \frac{d\eta\bar{\lambda}\sigma^2}{4\gamma(1-\eta\gamma\bar{\lambda})} \quad (52)$$

1250 For the expected norm, we use the fact that for any random vector, $\mathbb{E}[\|\mathbf{v}\|] \leq \sqrt{\mathbb{E}[\|\mathbf{v}\|^2]}$ by Jensen's
 1251 inequality:

$$1253 \quad \mathbb{E}[\|\mathbf{d}_\infty\|] \leq \sqrt{\mathbb{E}[\|\mathbf{d}_\infty\|^2]} = \sqrt{\frac{d\eta\bar{\lambda}\sigma^2}{4\gamma(1-\eta\gamma\bar{\lambda})}} \quad (53)$$

1255 Therefore, the expected norm of any representation satisfies:

$$1257 \quad \mathbb{E}[\|\mathbf{z}\|] \leq \|\mathbf{z}^*\| + \mathbb{E}[\|\mathbf{d}\|] \leq \frac{M_W}{\gamma} + \sqrt{\frac{d\eta\bar{\lambda}\sigma^2}{4\gamma(1-\eta\gamma\bar{\lambda})}} \quad (54)$$

1260 Since this bound holds in expectation for any representation, we can bound the expected distance
 1261 between any two representations:

$$1263 \quad \mathbb{E}[\|\mathbf{z}_1 - \mathbf{z}_2\|] \leq \mathbb{E}[\|\mathbf{z}_1\|] + \mathbb{E}[\|\mathbf{z}_2\|] \leq 2 \left(\frac{M_W}{\gamma} + \sqrt{\frac{d\eta\bar{\lambda}\sigma^2}{4\gamma(1-\eta\gamma\bar{\lambda})}} \right) \quad (55)$$

1266 The network output difference is $\mathbf{f}(\mathbf{x}_1) - \mathbf{f}(\mathbf{x}_2) = \mathbf{W}(\mathbf{z}_1 - \mathbf{z}_2)$. Using the spectral norm bound
 1267 $\|\mathbf{W}\|_2 \leq \sqrt{K}M_W$ from Lemma A.5:

$$1269 \quad \|\mathbf{f}(\mathbf{x}_1) - \mathbf{f}(\mathbf{x}_2)\| \leq \|\mathbf{W}\|_2 \|\mathbf{z}_1 - \mathbf{z}_2\| \leq \sqrt{K}M_W \|\mathbf{z}_1 - \mathbf{z}_2\| \quad (56)$$

1271 Therefore, taking expectations over the steady-state distribution:

$$1273 \quad \mathbb{E}[\|\mathbf{f}(\mathbf{x}_1) - \mathbf{f}(\mathbf{x}_2)\|] \leq \sqrt{K}M_W \cdot \mathbb{E}[\|\mathbf{z}_1 - \mathbf{z}_2\|] \leq L(\gamma) \quad (57)$$

1275 which establishes the expected Lipschitz bound. \square

1276 The structure of $L(\gamma)$ reveals that both terms decrease as γ increases:

$$1278 \quad L(\gamma) = 2\sqrt{K}M_W \underbrace{\left(\frac{M_W}{\gamma} \right)}_{\text{equilibrium term}} + 2\sqrt{K}M_W \underbrace{\left(\sqrt{\frac{d\eta\bar{\lambda}\sigma^2}{4\gamma(1-\eta\gamma\bar{\lambda})}} \right)}_{\text{stochastic fluctuation term}} \quad (58)$$

1283 The first term decreases as $O(1/\gamma)$ while the second decreases as $O(1/\sqrt{\gamma})$ for small learning rates
 1284 where $\eta\gamma\bar{\lambda} \ll 1$. Therefore, increasing the regularization strength γ monotonically improves the
 1285 network's Lipschitz constant, with the dominant improvement coming from the $O(1/\gamma)$ reduction in
 1286 the equilibrium bound.

1287 **Remark A.12** (High-Probability Bound). *While we establish the Lipschitz bound in expectation, a
 1288 high-probability bound can be obtained using concentration inequalities. For instance, by Markov's
 1289 inequality, for any $\delta > 0$:*

$$1290 \quad \Pr[\|\mathbf{f}(\mathbf{x}_1) - \mathbf{f}(\mathbf{x}_2)\| > L(\gamma)/\delta] \leq \delta \quad (59)$$

1292 A.7 MAIN RESULT

1294 **Theorem A.13** (Latent Point Collapse under Strong L_2 Regularization). *For a neural network
 1295 with bounded classifier weights $\|\mathbf{w}_i\| \leq M_W$ and L_2 -regularized penultimate representations with
 1296 parameter γ , trained with an optimizer satisfying Assumption A.2 and learning rate $\eta < \frac{1}{\gamma\lambda}$:*

1296 1. **Confinement:** All equilibrium representations satisfy $\|\mathbf{z}^*\| \leq \frac{M_W}{\gamma}$
 1297
 1298 2. **Collapse:** Under stochastic optimization, intra-class representations concentrate within
 1299 radius:

1300
$$r_{\text{collapse}} = \sqrt{\mathbb{E}[\|\mathbf{d}_\infty\|^2]} = \frac{\sigma}{2} \sqrt{\frac{d\eta\bar{\lambda}}{\gamma(1-\eta\gamma\bar{\lambda})}} = O\left(\sqrt{\frac{\sigma^2 d\eta}{\gamma}}\right) \quad (60)$$

 1301
 1302

1303 where the asymptotic form holds for small learning rates $\eta\gamma\bar{\lambda} \ll 1$.

1304 3. **Alignment:** In the terminal phase of training where $p_{\bar{y}} \rightarrow 1$, representations align with their
 1305 corresponding classifier weights: $\lim_{t \rightarrow \infty} \frac{\mathbf{z}(t)}{\|\mathbf{z}(t)\|} = \frac{\mathbf{w}_{\bar{y}}}{\|\mathbf{w}_{\bar{y}}\|}$
 1306

1307 4. **Global Lipschitz Continuity:** For any inputs $\mathbf{x}_1, \mathbf{x}_2$, in expectation:

1309
$$\mathbb{E}[\|\mathbf{f}(\mathbf{x}_1) - \mathbf{f}(\mathbf{x}_2)\|] \leq \frac{2\sqrt{K}M_W^2}{\gamma} + O\left(\sqrt{\frac{\sigma^2 d\eta}{\gamma}}\right) \quad (61)$$

 1310
 1311

1312 This bound is **independent of input distance** $\|\mathbf{x}_1 - \mathbf{x}_2\|$.

1314 5. **Necessity of Regularization:** Without L_2 regularization ($\gamma = 0$), cross-entropy minimization
 1315 alone causes unbounded norm growth ($\|\mathbf{z}\| \rightarrow \infty$), gradient saturation, and failure to reach
 1316 theoretical equilibria.

A.8 SUMMARY

1319 Strong L_2 regularization with parameter γ is both necessary and sufficient to achieve LPC while
 1320 ensuring global Lipschitz continuity. Under the assumption of a sufficiently small learning rate
 1321 $\eta < \frac{1}{\gamma\bar{\lambda}}$ for convergence, the regularization parameter provides a unified mechanism that:

1323 1. **Prevents representation explosion:** Creates an inward force proportional to $2\gamma\mathbf{z}$ that coun-
 1324 teracts the outward bias of gradient descent in the terminal phase. Without this regularization,
 1325 gradient-based optimization of cross-entropy loss leads to unbounded norm growth, as the
 1326 steepest descent direction has an outward radial component whenever $p_{\bar{y}} < 1$ (Theorem
 1327 A.8).

1328 2. **Induces intra-class collapse:** For $\gamma > \frac{KM_W^2}{2}$, establishes a strongly convex loss landscape.
 1329 Under stochastic optimization, representations concentrate around class-specific equilibria
 1330 with collapse radius $r_{\text{collapse}} = O(\sqrt{\sigma^2 d\eta/\gamma})$, where the primary control is through γ . The
 1331 steady-state variance $\mathbb{E}[\|\mathbf{d}_\infty\|^2] = \frac{d\eta\bar{\lambda}\sigma^2}{4\gamma(1-\eta\gamma\bar{\lambda})}$ decreases monotonically as γ increases.

1333 3. **Drives weight alignment:** In the terminal phase where $p_{\bar{y}} \rightarrow 1$, the angular dynamics
 1334 decouple from the radial dynamics, causing representations to align progressively with their
 1335 corresponding classifier weights. The alignment rate $(1-a^2)(1-p_{\bar{y}})\|\mathbf{w}_{\bar{y}}\|/r$ depends on
 1336 the current alignment a and the equilibrium radius $r = O(M_W/\gamma)$.

1337 4. **Ensures global Lipschitz continuity:** By confining representations to a bounded region,
 1338 yields an expected global Lipschitz constant:

1340
$$L(\gamma) = 2\sqrt{K}M_W \left(\frac{M_W}{\gamma} + O\left(\sqrt{\frac{\sigma^2 d\eta}{\gamma}}\right) \right) \quad (62)$$

 1341
 1342

1343 Both terms decrease with increasing γ , with the dominant $O(1/\gamma)$ term providing the
 1344 primary improvement. This bound is independent of input distance $\|\mathbf{x}_1 - \mathbf{x}_2\|$, establishing
 1345 uniform stability across the input space.

1346 5. **Enables convergence to global optima:** For $\gamma > \frac{KM_W^2}{2}$, creates a single-basin landscape
 1347 with unique global minimum. Combined with appropriate learning rate $\eta < \frac{1}{\gamma\bar{\lambda}}$, guarantees
 1348 convergence to a neighborhood of the global optimum, with neighborhood radius controlled
 1349 by the regularization strength.

Without large γ , cross-entropy optimization alone produces unbounded representation growth without achieving the structured geometry predicted by UFM theory. In the terminal phase, gradient descent follows a path with an outward radial component, leading to gradient saturation as $\|\nabla_z \mathcal{L}_{\text{CE}}\| \rightarrow 0$ and preventing convergence to finite equilibria. Strong L_2 regularization resolves this pathology by providing a countervailing inward force, transforming an ill-posed optimization problem into a well-conditioned one with provable convergence guarantees and explicit control over both geometric structure and robustness properties.

B INFORMATION BOTTLENECK IN DETERMINISTIC DNN CLASSIFIERS

The connection between margin-based approaches and robust generalization can also be understood through the framework of the information bottleneck (IB) principle (89; 90). The IB principle suggests that DNNs seek compact yet sufficiently informative latent representations by minimizing the mutual information between inputs and latent representations, while preserving information relevant for prediction. Empirically, it has been shown that IB improves network performance (91), and theoretical work provides rigorous arguments for IB’s role in controlling generalization errors (92). In practice, DNN training reveals two distinct phases: an empirical risk minimization phase, where the network primarily fits the data, followed by a compression phase, where the network constructs more compact embeddings layer by layer (93). This compression aligns with margin maximization and NC, suggesting that the pursuit of efficient representations manifests in both information-theoretic and geometric properties.

The emergence of LPC creates an IB in the latent space, connecting this phenomenon to IB optimization in DNNs (90; 94; 95; 96; 97; 98). Unlike many IB methods, which rely on variational approximations or noise injection, LPC implements a deterministic form of compression through a strong L_2 penalty on the features themselves, effectively shrinking their distribution and lowering their entropy.

The proposed loss function induces the collapse of all same-class latent representations into a single point, which can also be posed as a method to create an IB in the penultimate-layer. The optimization of the IB Lagrangian aims to maximize the following objective:

$$\mathcal{L}_{IB} = I(\mathbf{z}; \mathbf{y}) - \beta I(\mathbf{z}; \mathbf{x}), \quad (63)$$

where $I(\mathbf{z}; \mathbf{y})$ denotes the mutual information between the latent representation \mathbf{z} and the labels \mathbf{y} and $I(\mathbf{z}; \mathbf{x})$ represents the mutual information between \mathbf{z} and the input data \mathbf{x} . The parameter β controls the trade-off between compression and predictive accuracy. In App. B, we demonstrate that minimizing this quantity in deterministic DNN classification is equivalent to minimizing:

$$\mathcal{L}_{IB} = \mathcal{L}_{\text{CE}}(\mathbf{f}(\mathbf{x}), \bar{\mathbf{y}}) + \beta H(\mathbf{z}), \quad (64)$$

where $H(\mathbf{z})$ is the entropy associated with the latent distribution \mathbf{z} and $\mathcal{L}_{\text{CE}}(\mathbf{f}(\mathbf{x}), \bar{\mathbf{y}})$ is the cross-entropy loss function. During training, the cross-entropy loss is directly minimized, while the entropy $H(\mathbf{z})$ is indirectly minimized by the collapse of all same-class latent representations into a single point. To understand how LPC effectively minimizes the entropy of the probability distributions generating latent representations \mathbf{z} , we approximate the differential entropy with a discrete Shannon entropy and take the limit for an infinitesimally small quantization: $H_{\Delta} = -\sum_i p_i \log p_i$. As a result of the collapse of all same-class latent representations into a single point, all elements of a specific class are confined to a unique bin, even with very small bin size. For K classes with equal elements per class, the entropy reduces to: $H_{\Delta} = -\log \frac{1}{K}$. This represents the minimum possible entropy value that still permits discrimination among classes. If the latent representations do not collapse into a single point, the distribution will spread across multiple bins, resulting in higher entropy.

The IB objective can be formulated as an optimization problem (89), aiming to maximize the following function:

$$\mathcal{L}_{IB} = I(\mathbf{z}; \mathbf{y}) - \beta I(\mathbf{z}; \mathbf{x}),$$

where $I(\mathbf{z}; \mathbf{y})$ denotes the mutual information between the latent representation \mathbf{z} and the labels \mathbf{y} , while $I(\mathbf{z}; \mathbf{x})$ represents the mutual information between \mathbf{z} and the input data \mathbf{x} . The parameter β controls the trade-off between compression and predictive accuracy. Our goal is to maximize the

Table 3: All values in the table represent the means and standard deviations obtained from different experiments. The table shows the estimated entropy (H) on the testing set using the Kozachenko-Leonenko method ($k=20$), divided by the penultimate-layer dimension.

	CIFAR-10	CIFAR-100	IMAGENET
MODEL	ENTROPY	ENTROPY	ENTROPY
LPC	-3.96 ± 0.31	-2.106 ± 0.119	1.323 ± 0.004
LPC-WIDE	-3.4 ± 0.34	-1.914 ± 0.15	-
LPC-NARROW	-4.13 ± 0.34	-2.319 ± 0.04	-
LPC-SCL	-3.27 ± 0.11	-1.675 ± 0.089	-
LPC-NOPEN	-1.77 ± 0.33	5.559 ± 0.054	-
LINPEN	0.58 ± 0.26	1.257 ± 0.022	-
NONLINPEN	0.46 ± 0.02	1.208 ± 0.006	-
SCL	0.24 ± 0.4	5.123 ± 0.097	-
ARCFACE	-0.06 ± 0.13	5.055 ± 0.02	-
NOPEN	0.88 ± 0.05	5.566 ± 0.029	5.916 ± 0.002
NOPENWD	0.59 ± 0.02	5.529 ± 0.017	-

mutual information between the latent representations and the labels, $I(\mathbf{z}; y)$. This mutual information can be expressed in terms of entropy:

$$I(\mathbf{z}; y) = H(y) - H(y|\mathbf{z}),$$

where $H(y)$ is the entropy of the labels and $H(y|\mathbf{z})$ is the conditional entropy of the labels given the latent representations. Since $H(y)$ is constant with respect to the model parameters (as it depends solely on the distribution of the labels), maximizing $I(\mathbf{z}; y)$ is equivalent to minimizing the conditional entropy $H(y|\mathbf{z})$:

$$\max I(\mathbf{z}; y) \Leftrightarrow \min H(y|\mathbf{z}).$$

The conditional entropy $H(y|z)$ can be estimated empirically using the dataset. Assuming that the data points $(x^{(n)}, y^{(n)})$ are sampled from the joint distribution $p(x, y)$ and that $z^{(n)} = f(x^{(n)})$, we approximate $H(y|z)$ as:

$$H(y|\mathbf{z}) \approx -\frac{1}{N} \sum_{n=1}^N \sum_{k=1}^K p(y_k|\mathbf{z}^{(n)}) \log p(y_k|\mathbf{z}^{(n)}),$$

where K is the number of classes and $p(y_k|\mathbf{z}^{(n)})$ is the probability of label y_k given latent representation $\mathbf{z}^{(n)}$. In practice, since we have the true labels $y^{(n)}$, this simplifies to:

$$H(y|\mathbf{z}) \approx -\frac{1}{N} \sum_{n=1}^N \log p(y^{(n)}|\mathbf{z}^{(n)}).$$

This expression corresponds to the cross-entropy loss commonly used in training classifiers. In a DNN classifier, the probability $p(y|\mathbf{z})$ is modeled using the softmax function applied to the output logits:

$$p(y_k | \mathbf{z}) = \frac{\exp((\mathbf{Wz} + \mathbf{b})_k)}{\sum_{i=1}^K \exp((\mathbf{Wz} + \mathbf{b})_i)},$$

where \mathbf{W} and \mathbf{b} are the weights and biases of the final layer, and $(\mathbf{W}\mathbf{z} + \mathbf{b})_k$ denotes the logit corresponding to class y_k . By minimizing $H(y|\mathbf{z})$, we encourage the model to produce latent representations that are informative about the labels, aligning with the objective of accurate classification.

1458
 1459 Table 4: Summary of the features implemented in all architectures used in our ablation study. *Lin. Pen*
 1460 refers to the inclusion or exclusion of a linear penultimate-layer. *Nodes Add. Layer* feature indicates
 1461 the presence of an additional layer between the backbone and the classification layer. If this layer
 1462 is present, its dimensionality is categorized as one of three possible values: wide, intermediate, or
 1463 narrow. The exact dimensionality for these categories is a hyperparameter that varies across different
 1464 datasets. *Loss* indicates the type of loss function utilized during training.

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476	1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476	1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476	1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476	1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
MODEL	LIN. PEN.	NODES ADD.	LAYER	LOSS
LPC	✓		INTERMEDIATE	$CE + L_2$
LPC-WIDE	✓		WIDE	$CE + L_2$
LPC-NARROW	✓		NARROW	$CE + L_2$
LPC-SCL	✓		INTERMEDIATE	$CE + L_2 + SCL$
LPC-NOPEN	✗		✗	$CE + L_2$
LINPEN	✓		INTERMEDIATE	CE
NONLINPEN	✗		INTERMEDIATE	CE
SCL	✗		✗	$CE + SCL$
ARCFACE	✗		✗	<i>ArcFace</i>
NOPENWD	✗		✗	CE
NOPEN	✗		✗	CE

1477
 1478 The second term in the IB objective, $I(\mathbf{z}; \mathbf{x})$, quantifies the mutual information between the latent
 1479 representations and the inputs. To achieve compression, we aim to minimize this term. Expressing
 1480 $I(\mathbf{z}; \mathbf{x})$ in terms of entropy:

$$1482 \quad I(\mathbf{z}; \mathbf{x}) = H(\mathbf{z}) - H(\mathbf{z}|\mathbf{x}).$$

1483
 1484 In the case of deterministic mappings where $\mathbf{z} = f(\mathbf{x})$, the differential conditional entropy $H(\mathbf{z}|\mathbf{x})$ is
 1485 ill-defined, therefore we focus solely on minimizing $H(\mathbf{z})$ as explained in the InfoMax seminal paper
 1486 (99).

$$1488 \quad \min I(\mathbf{z}; \mathbf{x}) \Leftrightarrow \min H(\mathbf{z}).$$

1489
 1490 To empirically validate our theoretical analysis, we conducted extensive experiments as detailed in
 1491 Section 3. Table 3 presents the estimated entropy values using the Kozachenko-Leonenko method
 1492 for various models. The results clearly demonstrate that LPC-based models exhibit significantly
 1493 lower entropy values compared to their non-penalized counterparts. This significant reduction in
 1494 entropy occurs because LPC confines all same-class latent representations to a single point, effectively
 1495 minimizing $H(\mathbf{z})$ in the IB objective. As we demonstrated, when all elements of a specific class
 1496 collapse to a unique location, even with infinitesimally small quantization, the entropy reduces to
 1497 the minimum possible value that still permits discrimination among classes: $H_\Delta = -\log \frac{1}{K}$ for K
 1498 classes. This experimental evidence confirms that LPC serves as an effective method to create an
 1499 information bottleneck in the penultimate-layer, achieving substantial compression while maintaining
 1500 discriminative capabilities necessary for classification.

1501 C TRAINING AND ARCHITECTURE DETAILS.

1502
 1503 Our ablation study systematically evaluates each component of the proposed method. All architectures
 1504 employ a shared backbone network that produces the latent representation $\mathbf{h}(\mathbf{x})$, while differing in
 1505 their approach to final classification.

1506
 1507 We denote the architecture with L_2 regularization applied to a linear penultimate-layer of intermediate
 1508 dimensionality as LPC, with its lower-dimensional and higher-dimensional variants designated as
 1509 LPC-NARROW and LPC-WIDE, respectively. These three variants examine the effect of penultimate-
 1510 layer dimensionality on LPC formation and network performance. To isolate the contribution of L_2
 1511 regularization, we include LINPEN and NONLINPEN controls—linear and non-linear penultimate-
 1512 layers matching LPC’s dimensionality but trained exclusively with cross-entropy loss.

1512
1513
1514
1515
1516

Table 5: Average training time per epoch (in minutes) for different models across datasets. All values represent means and standard deviations obtained from different experiments. Experiments were conducted using 1 NVIDIA A100 GPU for CIFAR-10 and CIFAR-100, and 2 NVIDIA A100 GPUs for ImageNet.

1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528

MODEL	CIFAR-10	CIFAR-100	IMAGENET
LPC	0.103 ± 0.000	0.325 ± 0.001	58.86 ± 0.44
LPC-WIDE	0.104 ± 0.000	0.327 ± 0.000	–
LPC-NARROW	0.103 ± 0.000	0.325 ± 0.000	–
LPC-SCL	0.106 ± 0.000	0.327 ± 0.001	–
LPC-NoPEN	0.103 ± 0.000	0.332 ± 0.001	–
<hr/>			
LINPEN	0.104 ± 0.000	0.328 ± 0.001	–
NONLINPEN	0.103 ± 0.000	0.326 ± 0.001	–
SCL	0.105 ± 0.000	0.335 ± 0.001	–
ARCFACE	0.107 ± 0.001	0.336 ± 0.001	–
NoPEN	0.104 ± 0.000	0.334 ± 0.001	33.81 ± 0.28
NoPENWD	0.103 ± 0.000	0.334 ± 0.000	–

1529
1530
1531

The LPC-NoPEN model tests whether the penultimate-layer structure is necessary by applying L_2 regularization directly to the backbone output $h(\mathbf{x})$ and, unlike other models, excludes an intermediate layer. The NoPEN model serves as our baseline, performing linear classification directly on $h(\mathbf{x})$ using only cross-entropy loss. To demonstrate that LPC benefits cannot be attributed solely to stronger weight decay regularization, we include NoPENWD, which employs the same architecture as NoPEN but with substantially increased weight decay.

1532
1533
1534
1535
1536
1537

We compare against SCL and ARCFACE baselines, which implement their respective loss functions on the NoPEN baseline architecture. The LPC-SCL architecture combines L_2 regularization on an intermediate penultimate linear layer with SupCon applied to the backbone’s latent representations, testing compatibility with other metric learning approaches. Note that in LPC-SCL, these losses operate on distinct network layers.

1543
1544
1545
1546
1547

All experiments were conducted on CIFAR-10, CIFAR-100 (81), and ImageNet-1K (82) datasets. To generate latent representations $h(\mathbf{x})$, we employed ResNet (83) backbones tailored to dataset complexity: ResNet-18 for CIFAR-10, ResNet-50 for CIFAR-100, and WideResNet-50 (84) for ImageNet. All architectures incorporated batch normalization and Swish activation functions (100) throughout.

1548
1549
1550
1551
1552

Architecture configurations varied by method: LPC, LPC-SCL, LINPEN, and NONLINPEN included a 64-dimensional fully connected penultimate-layer. LPC-WIDE expanded this to 128 dimensions, while LPC-NARROW reduced it to 32 dimensions for CIFAR datasets. For ImageNet, LPC employed 128 penultimate dimensions. The LPC-NoPEN, NoPEN, NoPENWD, SCL, and ARCFACE architectures omitted the penultimate-layer entirely (see Table 4).

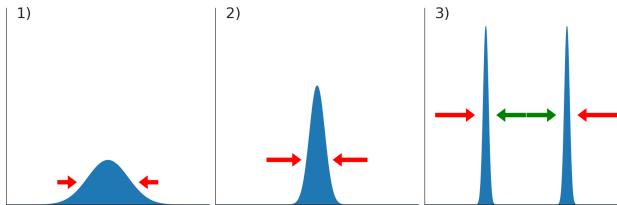
1553
1554
1555
1556
1557
1558
1559
1560
1561

We trained models using AdamW (101; 102) with default PyTorch parameters. All experiments used a batch size of 128 for CIFAR datasets and 64 for ImageNet. Weight decay was set to 5×10^{-4} for CIFAR datasets and 1×10^{-7} for ImageNet. In the architecture NoPENWD weight decay had a larger value set to 1×10^{-1} . Data augmentation comprised random horizontal flips and random crops (padding=4) for CIFAR datasets, while ImageNet used only random cropping to 224x224 pixels. We evaluated four learning rates from a geometric sequence ($10^{-4}, 2 \times 10^{-4}, 4 \times 10^{-4}, 8 \times 10^{-4}$) for CIFAR experiments and three rates ($5 \times 10^{-5}, 1 \times 10^{-4}, 1 \times 10^{-3}$) for ImageNet, selecting the best-performing configuration based on final test accuracy. For ARCFACE, we initialized the classifier bias b to zero following (74).

1562
1563
1564
1565

Training protocols differed by dataset: CIFAR models trained for 1,000 epochs with cosine annealing from epoch 200 (reducing learning rate to 1×10^{-8}), excluding the final classifier layer. ImageNet models trained for 200 epochs with annealing from epoch 70 (minimum 1×10^{-7}). Extended training ensured CIFAR experiments operated predominantly in the terminal phase of training (TPT), defined as achieving >99.9% training accuracy (11). ImageNet experiments did not reach TPT. We note that

1566
1567
1568
1569
1570
1571
1572
1573



1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585

Figure 4: Graphical illustration of the dynamics leading to the emergence of binary encoding. The three images give a qualitative representation of the outcome of a training where the scalar γ is progressively increased - from left to right - during training. Plots in the images represent histograms of the latent representations in a specific node of the linear penultimate-layer. In the first image, the relatively low value of γ constrains all values close to the origin, but the volume is still large enough for the network to differentiate between different classes in the volume. As the magnitude of γ is increased, all latent values are drawn closer to the origin, as depicted in the second image, and it becomes increasingly more difficult for the network to discriminate between elements of different classes. Consequently, the network is forced to find, through numerical optimization, a more stable solution by placing all elements belonging to the same class in the neighborhood of one of two points. These points are positioned opposite to each other with respect to the origin, as illustrated in the third image. The red (green) arrow represents the net effects of the binary encoding (cross-entropy) loss.

1586

1587

learning rate decay begins when the L_2 coefficient γ is already quite large (though still increasing), which we found provides additional training stability during the later stages of optimization.

1590

1591

For L_2 -regularized architectures, we initialized the coefficient $\gamma = 10^{-4}$ and increased it geometrically: $\gamma \leftarrow \gamma \cdot \gamma_{\text{step}}$ every 5 epochs (CIFAR) or 10 epochs (ImageNet). We set $\gamma_{\text{step}} = 2$ until $\gamma = 10^3$, then $\gamma_{\text{step}} = 1.25$ until reaching $\gamma_{\text{max}} = 10^6$, where it remained constant.

1593

1594

The supervised contrastive loss (SCL) (69) was defined as:

1595
1596
1597

$$\mathcal{L}^{\text{SCL}} = -\frac{1}{N} \sum_{i=1}^N \frac{1}{|P(i)|} \sum_{p \in P(i)} \log \frac{\exp(s_{i,p}/\tau)}{\sum_{j \neq i} \exp(s_{i,j}/\tau)}, \quad (65)$$

1598

where N denotes batch size, $P(i)$ represents positive samples for instance i , $s_{i,j}$ is the cosine similarity between samples i and j , and $\tau = 0.05$ is the temperature parameter. We jointly optimized \mathcal{L}^{SCL} with cross-entropy loss for classification.

1601

1602

For ArcFace (74), we applied an angular margin to scaled cosine similarities before computing cross-entropy:

1603
1604
1605

$$\mathcal{L}^{\text{ArcFace}} = \frac{1}{N} \sum_{i=1}^N \text{CE}(\text{Softmax}[s \cdot \cos(\theta_i + m)], y_i), \quad (66)$$

1606

where the angular margin m increased from 0.1 to 0.5 and scale factor s from 16 to 64 during training.

1607

1608

All experiments were repeated five times with different random seeds. Results report mean \pm standard deviation across trials.

1609

1610

Table 5 reports the computational cost of each architecture. Surprisingly, LPC exhibits comparable or slightly faster training times than baseline methods on CIFAR datasets, despite the additional penultimate-layer and L_2 regularization computations. However, on ImageNet, LPC requires substantially longer training time per epoch compared to NOOPEN, reflecting the increased computational overhead of the iteratively scaled L_2 penalty on larger-scale datasets with higher-dimensional features.

1615

1616

D BINARITY HYPOTHESIS

1617

1618

Our assumption is that each dimension on the penultimate latent representation can assume approximately only one of two values, as illustrated in Fig. 4. In order to verify this assumption, we fit a Gaussian mixture model (GMM) with 2 modes on each set of latent representations

1620

1621 Table 6: Score $\bar{\ell}$ and relative distance of the two distances $\bar{\mu}$ over all penultimate nodes in the training
 1622 set across all experiments at the last epoch. Average and min values are shown. The coefficient of
 1623 variation measures the standard deviation of the norm of latent representations normalized by the
 1624 mean.

1625

1626

DATASET: CIFAR-10					
MODEL	SCORE	MIN SCORE	PEAKS DIST	MIN PEAKS DIST	COEFF. OF VAR.
LPC	0.37 ± 0.26	-0.06 ± 0.34	24.85 ± 6.70	15.82 ± 5.34	0.007 ± 0.003
LPC-WIDE	0.05 ± 0.18	-0.57 ± 0.30	18.07 ± 3.62	9.25 ± 2.88	0.012 ± 0.003
LPC-NARROW	0.42 ± 0.32	-0.10 ± 0.42	26.10 ± 8.76	15.25 ± 6.14	0.008 ± 0.004
LINPEN	-1.36 ± 0.05	-1.42 ± 0.00	1.93 ± 0.41	0.40 ± 0.38	0.339 ± 0.030
DATASET: CIFAR-100					
MODEL	SCORE	MIN SCORE	PEAKS DIST	MIN PEAKS DIST	COEFF. OF VAR.
LPC	0.65 ± 0.16	0.47 ± 0.15	32.13 ± 5.84	26.07 ± 4.05	0.005 ± 0.000
LPC-WIDE	0.52 ± 0.23	0.07 ± 0.31	28.30 ± 6.63	20.16 ± 8.15	0.021 ± 0.019
LPC-NARROW	0.82 ± 0.02	0.63 ± 0.05	37.40 ± 0.79	30.89 ± 1.26	0.005 ± 0.000
LINPEN	-1.42 ± 0.00	-1.42 ± 0.00	1.26 ± 0.05	0.76 ± 0.20	0.258 ± 0.013
DATASET: IMAGENET					
MODEL	SCORE	MIN SCORE	PEAKS DIST	MIN PEAKS DIST	COEFF. OF VAR.
LPC	-0.47 ± 0.00	-0.54 ± 0.00	10.07 ± 0.04	9.43 ± 0.03	0.201 ± 0.000

1643

1644 $z_i \sim \mathcal{N}(\mu_i^{(1,2)}; \sigma_i^{(1,2)2})$. For each dimension i , we build a histogram with the values of all latent
 1645 representations of the training set. We then fit a bimodal GMM model on this histogram. Assuming
 1646 that P is the dimensionality of the latent representation and the dataset contains N datapoints, the
 1647 following quantities are collected: The average log-likelihood score

$$1649 \quad \bar{\ell} = \frac{1}{NP} \sum_{n=0}^{N-1} \sum_{i=0}^{P-1} \log \mathcal{N}(z_i^{(n)} \mid \mu_i^{(1,2)}; \sigma_i^{(1,2)2}); \quad (67)$$

1652

1653 the average standard deviation of the two posterior distributions

$$1654 \quad \bar{\sigma} = \frac{1}{P} \sum_{i=0}^P \left(\frac{\sigma_i^{(1)} + \sigma_i^{(2)}}{2} \right); \quad (68)$$

1657

1658 and the mean relative distance of the two peaks reweighted with the standard deviation

$$1659 \quad \bar{\mu} = \frac{1}{P} \sum_{i=0}^P \frac{\|\mu_i^{(2)} - \mu_i^{(1)}\|}{(\sigma_i^{(1)} + \sigma_i^{(2)})/2}. \quad (69)$$

1662

1663 We present these values in Table 6. The table shows the average and minimum values for the GMM
 1664 fitting score and the weighted relative distance between the peaks across all nodes. These three metrics
 1665 indicate that during training, all latent representations collapse into two distinct points, forming two
 1666 clearly separated clusters. This observation supports the binarity hypothesis, which states that each
 1667 latent representation can assume only one of two possible values. For all LPC models the binarity
 1668 hypothesis holds true for all dimensions, even in cases with the lowest recorded scores. The table also
 1669 includes the coefficient of variation for the absolute values of the latent representations evaluated for
 1670 all dimensions and samples. The low values of the coefficient of variation in the LPC architectures
 1671 indicate that in each node they can assume approximately only one of two possible values. This
 1672 observation supports our claim that the class means of the latent representations collapse onto the
 1673 vertices of a hypercube. The same analysis was performed for the LINPEN architecture, which also
 1674 features a linear layer before classification. However, in this architecture, the binarity hypothesis does
 1675 not hold.

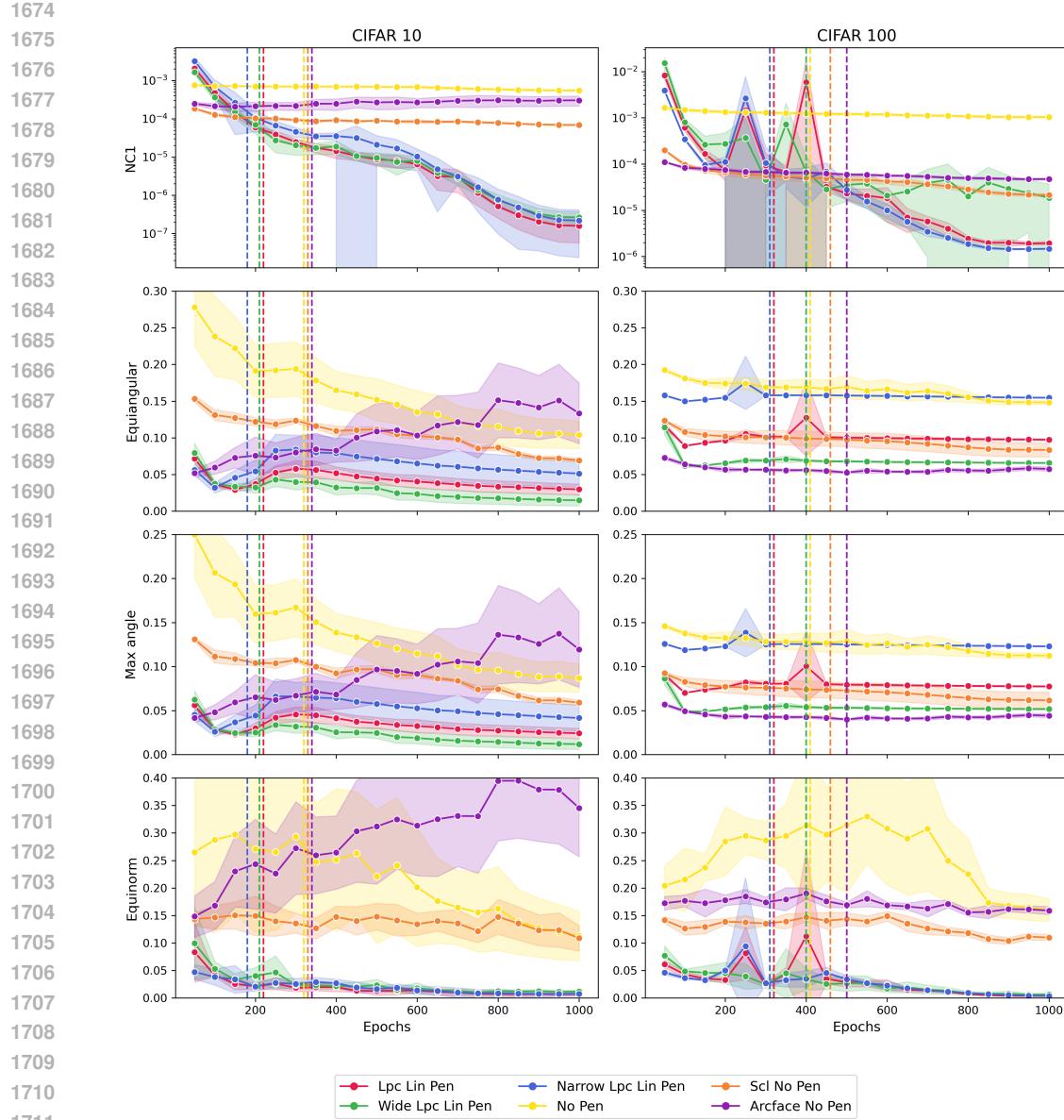


Figure 5: Metrics used to evaluate convergence towards Neural Collapse (NC). In the upper figure, we examine a renormalized version of the NC1 property. This normalization process is conducted based on the number of nodes in the penultimate-layer to ensure a fair comparison across models with varying dimensions of the penultimate-layer. The dashed lines are drawn at the average epoch when training reaches convergence, demonstrating that most of the training was performed in the TPT. Below, we present metrics demonstrating convergence to an ETFS, utilizing the same parameters as those outlined in (11).

E NEURAL COLLAPSE

In this appendix, we present all metrics related to NC as defined in (11). The entire NC phenomenon can be summarized into four distinct components: (1) the variability of samples within the same class diminishes as they converge to the class mean (NC1); (2) the class means in the penultimate-layer tend towards an ETFS (NC2); (3) the last layer classifier weights align with the ETFS in their dual

space (NC3); and (4) classification can effectively be reduced to selecting the closest class mean (NC4).

The first property of interest is NC1, which asserts that the variability of samples within the same class decreases in the terminal phase of training. This property is characterized by the equation $\text{Tr}(\Sigma_W \Sigma_B^\dagger / K)$, where Σ_W is defined as

$$\Sigma_W = \frac{1}{NP} \sum_{i=0}^{N-1} \sum_{p=0}^{P-1} (\mathbf{z}^{(i,p)} - \boldsymbol{\mu}^{(p)}) (\mathbf{z}^{(i,p)} - \boldsymbol{\mu}^{(p)})^\top \quad (70)$$

where $\mathbf{z}^{(i,p)}$ is the i -th latent representation with label p and, $\boldsymbol{\mu}^{(p)}$ is the mean of all representation with label p ; and Σ_B is defined as:

$$\Sigma_B = \frac{1}{P} \sum_{p=0}^{P-1} (\boldsymbol{\mu}^{(p)} - \boldsymbol{\mu}_G) (\boldsymbol{\mu}^{(p)} - \boldsymbol{\mu}_G)^\top \quad (71)$$

where $\boldsymbol{\mu}_G$ represents the global mean of all class means. The trace operation sums over all diagonal elements, the dimensionality of which is equal to that of the penultimate-layer, P . Given the use of different architectures with varying numbers of nodes in the penultimate-layers in our study, we examine a renormalized version of this quantity, $\text{Tr}(\Sigma_W \Sigma_B^\dagger / K / P)$.

The second property, NC2, characterizes the convergence of class means to a Simplex Equiangular Tight Frame (ETF). We evaluate this convergence using three key metrics shown in the lower panels of Fig. 5. The first metric is the equinorm property, which measures how uniform the norms of the centered class means become:

$$\text{Equinorm} = \frac{\text{Std}_p(\|\boldsymbol{\mu}^{(p)} - \boldsymbol{\mu}_G\|_2)}{\text{Avg}_p(\|\boldsymbol{\mu}^{(p)} - \boldsymbol{\mu}_G\|_2)} \quad (72)$$

where $\text{Std}_p(\cdot)$ is the standard deviation across classes, and $\text{Avg}_p(\cdot)$ is the average across classes. As training progresses, this value approaches zero, indicating that all class means have approximately equal norms.

The second metric is the equiangularity property, which measures how uniform the angles between different pairs of class means become:

$$\text{Equiangularity} = \text{Std}_{p,p' \neq p}(\cos_{\boldsymbol{\mu}}(p, p')) \quad (73)$$

where $\cos_{\boldsymbol{\mu}}(p, p') = \langle \boldsymbol{\mu}^{(p)} - \boldsymbol{\mu}_G, \boldsymbol{\mu}^{(p')} - \boldsymbol{\mu}_G \rangle / (\|\boldsymbol{\mu}^{(p)} - \boldsymbol{\mu}_G\|_2 \|\boldsymbol{\mu}^{(p')} - \boldsymbol{\mu}_G\|_2)$. As training progresses, this value approaches zero, indicating that all pairs of class means form equal angles.

The third metric is the maximal-angle equiangularity, which measures how close the angles between class means are to their theoretical optimal value in an ETFS:

$$\text{Maximal-Angle} = \text{Avg}_{p,p' \neq p} |\cos_{\boldsymbol{\mu}}(p, p') + 1/(P-1)| \quad (74)$$

In an ideal ETFS, all cosines should equal $-1/(P-1)$, which represents the maximum separation possible for globally centered, equiangular vectors. As training progresses, this value approaches zero, indicating optimal angular separation.

In Fig. 5, the top image presents the normalized NC1 value, showing that it is orders of magnitude lower in the LPC architectures compared to the baseline architecture. We also note that the other regularization techniques SCL and ArcFace provide better convergence to NC with respect to the baseline, but improvements remain lower with respect to LPC models.

1782 The other three images below demonstrate the convergence of class means toward an ETFS (NC2
1783 property). These images show that all values reach a plateau in the terminal phase, indicating
1784 convergence to their optimal values. It is evident that the LPC-NARROW architecture, which uses
1785 a smaller-dimensional embedding in the penultimate-layer, tends to exhibit higher values for the
1786 angular measures (maximum angle and equiangularity) compared to the baseline. This is because,
1787 geometrically, it is more challenging for the network to construct an ETFS using the vertices of a
1788 hypercube in a low-dimensional space.

1789 By observing the metrics in Fig. 5, we conclude that while regularization techniques accelerate
1790 convergence to NC, the best convergence is achieved with LPC. We also note that the dashed lines
1791 represent the average epoch at which the network reached convergence, showing that most of the
1792 training occurred after convergence, in the TPT. All metrics have reached plateaus, demonstrating
1793 that the phenomenon of NC is fully realized. Thus, the additional benefits of LPC documented in this
1794 paper are in addition to those typically associated with NC.

1795 F LLMs USAGE

1796 In the preparation of this manuscript, Large Language Models (LLMs) were utilized as an assistive
1797 tool to enhance the quality and presentation of our work. The primary applications of the LLMs were
1798 for text polishing and improving overall clarity and readability. Additionally, the LLM played a role
1799 in more technical aspects of manuscript preparation, specifically in the completion and formatting
1800 of tables. The authors reviewed, edited, and take full responsibility for all content, including any
1801 contributions from LLMs, to ensure the scientific integrity and accuracy of this paper.

1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835