
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LATENT POINT COLLAPSE
ON A LOW DIMENSIONAL EMBEDDING
IN DEEP NEURAL NETWORK CLASSIFIERS

Anonymous authors
Paper under double-blind review

ABSTRACT

The topological properties of latent representations play a critical role in determin-
ing the performance of deep neural network classifiers. In particular, the emergence
of well-separated class embeddings in the latent space has been shown to improve
both generalization and robustness. In this paper, we propose a method to induce
the collapse of latent representations belonging to the same class into a single point,
which enhances class separability in the latent space while making the network
Lipschitz continuous. We demonstrate that this phenomenon, which we call latent
point collapse (LPC), is achieved by adding a strong L2 penalty on the penultimate-
layer representations and is the result of a push-pull tension developed with the
cross-entropy loss function. In addition, we show the practical utility of applying
this compressing loss term to the latent representations of a low-dimensional lin-
ear penultimate-layer. LPC can be viewed as a stronger manifestation of neural
collapse (NC): while NC entails that within-class representations converge around
their class means, LPC causes these representations to collapse in absolute value
to a single point. As a result, the network improvements typically associated with
NC—namely better robustness and generalization—are even more pronounced
when LPC develops.

1 INTRODUCTION

Deep neural networks (DNNs) excel in various tasks, but they often struggle with ensuring robust
performance and reliable generalization. A key insight into addressing these challenges lies in
understanding and controlling the geometry of the latent representations that DNNs learn. In
particular, it has been observed that increasing the margin between classes, i.e., making classes
more separable in the latent space, can yield significant gains in both robustness and generalization
(1; 2; 3; 4). Indeed, the relationship between generalization and robustness is well-established in the
literature (5; 6; 7; 8; 9).

DNNs naturally tend to improve the separation of different classes in the latent space during training,
and this process occurs at a constant geometric rate (10). Such evolving separation manifests in the
phenomenon of neural collapse (NC) (11; 12). While NC is prominently observed and analyzed in
the penultimate-layer of DNN classifiers, its characteristics, propagation, and related phenomena have
also been investigated in intermediate layers (13; 14; 15; 16; 17). This phenomenon typically occurs
in overparameterized models during the terminal phase of training (TPT). Even after the point of zero
training error, the network further refines the representations by increasing their relative distances in
the latent space. In practice, this means that the class means in the penultimate-layer collapse to the
vertices of an equiangular tight-frame simplex (ETFS). The occurrence of NC has been observed in
large language models (18), in graph neural networks (19), with multivariate regression (20), and
extensively investigated in unconstrained feature models (UFMs) (21; 22; 23; 24; 25; 26; 27; 28; 29;
30; 31; 32; 33; 34; 35) and in the mean-field regime (36). Nonetheless, perfect convergence to an
ETFS is not always observed in practical scenarios (37).

NC implies convergence to a neural geometry that enhances separability in the latent space, ultimately
improving generalization and robustness. In fact, it has been shown that these metrics continue
to improve during the TPT (11), precisely when the latent representations approach an ETFS.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Subsequent research has revealed that NC also brings other benefits. For instance, NC has been
linked to improved knowledge distillation (38), few-shot class incremental learning (39) and transfer
learning (40; 41; 42; 43). Building on this connection, (44; 45; 46) use NC-based metrics to enhance
the transferability of models. Another direction relates NC with out-of-distribution (OOD) detection
(47; 48; 49; 50) and generalization (51).

A separate line of research for improving robustness in DNNs focuses on developing Lipschitz
continuous networks, as Lipschitz constraints help ensure bounded responses to input perturbations
(52; 53; 54; 55). Specifically, in Lipschitz networks, the smallest perturbation that can cause
misclassification is inversely proportional to the Lipschitz constant (52; 56).

1.1 CONTRIBUTIONS

We introduce latent point collapse (LPC), a phenomenon in which penultimate-layer representations
of each class converge to distinct points near the origin under strong L2 regularization. Unlike
NC, which permits unbounded representation growth and only achieves relative convergence, LPC
enforces strict geometric confinement with provable Lipschitz continuity guarantees—a property that
standard NC cannot ensure. The key distinction lies in the collapse metrics. While NC theory formally
defines collapse as the within-class covariance ΣW → 0, practical implementations only achieve
the weaker condition Tr(ΣWΣ†

B) → 0, where ΣB is the between-class covariance. This relative
metric allows substantial within-class variance as long as between-class separation dominates. Our
theoretical analysis proves that cross-entropy loss alone drives unbounded norm growth, preventing
true collapse. In contrast, LPC achieves ΣW → 0 absolutely, with representations confined close
to the origin. This confinement directly yields global Lipschitz continuity—a critical robustness
property unattainable through standard NC. Our specific contributions are:

• Discovery and theoretical characterization of latent point collapse: We identify and rig-
orously analyze the emergent phenomenon of LPC, where strong L2 regularization induces
strict collapse of class representations to equilibrium points near the origin and ensures
global Lipschitz continuity (Appendix A). We further demonstrate that LPC represents a
stronger manifestation of standard NC properties, with faster convergence to ETFS structure
(Appendix E).

• Empirical validation and performance improvements: We experimentally confirm LPC
in practice, observing collapse points near the origin and improved Lipschitz properties
(Section 3.1). We demonstrate remarkable improvements in robustness along with statisti-
cally significant gains in generalization (Section 3.2). Our approach uses a low-dimensional
linear penultimate-layer that acts as a bottleneck, amplifying both LPC and performance.

• Information bottleneck connection (Appendix B): We establish that LPC naturally induces
an information bottleneck in the penultimate-layer, providing an information-theoretic
perspective on the observed generalization improvements.

• Binary encoding (Appendix D): We document an emergent phenomenon where penultimate
latent representations converge to hypercube vertices.

1.2 RELATED WORKS

Our approach employs L2 regularization on latent representations rather than network weights, a
critical distinction from conventional regularization strategies. While weight-based penalties such as
L0 (57), L1 (58), dropout (59), or weight decay are well-established, they do not induce the geometric
collapse phenomenon we observe. By targeting penultimate-layer representations directly, we achieve
feature compression without architectural modifications.

The application of L2 penalties to latent representations is common in theoretical analyses of
UFMs (27; 34; 24; 21; 25; 33; 32; 31; 30; 29; 28), where both weight and feature regularization
were employed to establish existence of global optimizers. However, these works used minimal
regularization coefficients (typically γ ≪ 1) that served purely as mathematical convenience without
affecting network behavior. Such weak regularization neither induces observable LPC nor provides
practical benefits. In stark contrast, we employ extreme regularization strengths (γ = 106 in
our experiments) that fundamentally alter the optimization landscape. Our theoretical analysis
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(Appendix A) reveals that this creates a qualitatively different regime where the loss landscape
becomes globally strongly convex. The strong L2 penalty establishes a confining potential that
counteracts the unbounded growth inherent to cross-entropy minimization. This tension between
opposing forces—cross-entropy pushing representations outward while L2 regularization pulls them
toward the origin—induces LPC. It is not trivial that this severe confinement near the origin enhances
rather than degrades performance, while simultaneously guaranteeing global Lipschitz continuity.
The novelty of our work lies not in using regularization itself, but in the discovery and analysis of
this dynamic.

Adding loss terms to intermediate layers has also appeared in the context of deep supervision (60; 61),
where intermediate outputs are trained to match target labels. However, our approach differs by
seeking to compress the volume of latent representations rather than providing additional supervision
signals.

Various methods have been devised to enlarge inter-class margins, such as contrastive learning
(62; 63; 64; 65; 66; 67; 68) and supervised contrastive learning (SupCon) (69), which pull together
positive samples while pushing apart negative ones. Other techniques alter the loss function to reduce
intra-class variance (70) or impose angular constraints (71; 72), e.g., CosFace (73) and ArcFace (74).
These last two methods, ArcFace and CosFace, can be compared to our method in their simplicity, as
they each introduce a single penalty term to the loss function to increase margins.

Our approach also makes the network Lipschitz continuous. Prior works on Lipschitz neural networks
often rely on architectural constraints such as spectral norm regularization (75; 53; 54), orthogonal
weight matrices (76; 77; 78), or norm-bound weights (79; 80), which can reduce model expressiveness
or be computationally expensive. By contrast, our method imposes no specialized architectural
constraints.

2 METHOD

Given a labeled dataset {xi, ȳi}Ni=1, where N denotes the number of training samples, we address the
problem of multi-class classification using DNNs. We employ a DNN f(x) that learns a nonlinear
mapping from input space to output space, approximating the underlying data distribution. DNNs
consist of multiple layers arranged hierarchically, with each layer producing an intermediate latent
representation. The network’s output can be expressed as a composition of layer-wise transformations:
f(x) = f (M) ◦ f (M−1) ◦ · · · ◦ f (1)(x), where M denotes the depth of the network.

For an input vector x, the forward pass through the network can be conceptually divided into
two stages. First, the nonlinear components transform the input into a high-dimensional latent
representation h(x), corresponding to the output of the final hidden layer. Subsequently, a linear
classifier maps this representation to the output space: f(x) = Wh(x) + b, where W and b denote
the weight matrix and bias vector of the classifier, respectively. The predicted class label y is obtained
by applying the softmax function to the network’s output, yielding a probability distribution over
classes that quantifies the likelihood of input x belonging to each class. The network parameters
are optimized by minimizing the cross-entropy loss: LCE(f(x), ȳ) = − log

exp(fȳ(x))∑
j exp(fj(x))

, which
measures the divergence between predicted probabilities and ground-truth labels.

We propose augmenting the architecture with an additional linear transformation preceding the
classifier: z = WL2h(x) + bL2. This layer functions as the penultimate representation, with final
classification performed via: f(x) = Wz+ b. Beyond the standard cross-entropy loss, we introduce
an L2 regularization term applied to the penultimate-layer: L2(z) = ||z||2, where || · || denotes
the Euclidean norm. The composite loss function becomes: L = LCE + γLL2, where γ > 0 is a
regularization hyperparameter controlling the strength of the L2 penalty. The phenomenon of LPC
arises from the interplay between these competing objectives:

L = − log
exp((Wz + b)ȳ)∑
j exp((Wz + b)j)

+ γ||z||2. (1)
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Figure 1: Latent point collapse progression on synthetic and MNIST datasets. Top row: 2D penulti-
mate layer activations for a 4-class synthetic dataset at increasing γ regularization strengths. Each
color represents a different class. The progression illustrates the competing forces at play: the
cross-entropy loss drives class separation, while the γ∥z∥2 penalty compresses representations toward
the origin. As γ increases, both the distance from the origin and the within-class spread decrease,
yet class separability is preserved. Bottom three rows: Histograms of penultimate activations for
MNIST classification across all penultimate nodes and datapoints. As γ increases, the activation
distribution becomes increasingly concentrated around zero. At high γ values, the network responds
to the extreme compression by converging toward binary encoding, with activations clustering at
distinct points opposite to each other relative to the origin. Both experiments demonstrate how LPC
regularization systematically reduces representation norms while maintaining discriminative power.
Jupyter notebook to reproduce results is available in the linked repository.4.4

2.1 THEORETICAL CHARACTERIZATION AND MECHANISM

The latent point collapse phenomenon, illustrated in Figure 1, occurs when strong L2 regularization
applied to penultimate layer representations causes representations to collapse into distinct, class-
specific points while maintaining separation between classes. LPC emerges from the interplay
between competing optimization forces. We provide intuition here; rigorous proofs and complete
theoretical characterization appear in Appendix A.

The necessity of regularization. The unconstrained feature model (UFM) framework (24; 34; 27)
predicts that global minimizers of cross-entropy loss exhibit perfect NC—all within-class features
converge to single points forming an ETFS. However, practical deep networks rarely reach such
optima (37).

Our analysis reveals the fundamental obstacle: pure cross-entropy optimization exhibits an intrinsic
instability. Its gradient contains an outward radial component that causes representations to grow
unboundedly, preventing convergence to finite equilibria. We formalize this as a necessity result:
without regularization (γ = 0), the outward radial component drives ∥z∥ → ∞, precluding any finite
equilibria (Theorem A.8). As norms increase, softmax probabilities saturate and gradients vanish
preventing the formation of any structured geometry.

Strong L2 regularization resolves this instability by introducing an inward restoring force −2γz that
counteracts the outward push. At equilibrium, these competing forces balance according to:

z∗ =
1

2γ

(
wȳ −

K∑
i=1

pi(z
∗)wi

)
(2)

This reveals that the equilibrium radius scales inversely with regularization strength: ∥z∗∥ ≤MW /γ,
where MW bounds classifier weight norms (Theorem A.4). Figure 2 (left) empirically validates this
scaling.
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Figure 2: Scaling relationships between LPC regularization strength and penultimate layer geometry.
CIFAR-10 trained as in Appendix C but with varying regularization strengths γmax ∈ {6× 105, 8×
105, 106, 1.2× 106, 1.4× 106} and fixed initial learning rate η = 10−4. Blue points show empirical
measurements with error bars indicating standard deviation across 10 samples. Dashed lines represent
linear fits to the data. From left to right: Mean penultimate feature norm E[∥z∥] as a function of
1/γ. Mean within-class distance from class centroid E[∥z− µȳ∥] as a function of 1/

√
γ. Full radius

containing all penultimate representations maxi ∥zi∥ as a function of 1/γ. Linear fits demonstrate
strong scaling relationships with R2 = 0.9901, R2 = 0.9688, and R2 = 0.9857, respectively.
The tight linear relationships confirm theoretical predictions that LPC regularization systematically
controls the geometric properties of learned representations.

Convexification and collapse dynamics. For sufficiently large regularization γ > KM2
W /2, the

Hessian becomes globally positive definite:
∇2

zL(z) = ∇2
zLCE(z) + 2γI ⪰ (2γ −KM2

W )I ≻ 0 (3)
This convexification ensures global strong convexity, guaranteeing convergence to a unique global
optimum.

Beyond establishing global convergence, strong regularization also controls local fluctuations. Near
equilibrium, the dominant quadratic potential (curvature ≈ 2γI) tightly constrains stochastic fluc-
tuations from gradient noise. Under standard assumptions of bounded classifier weights and fixed
gradient noise variance σ2, our analysis establishes that steady-state variance decreases mono-
tonically with γ. Specifically, the collapse radius—characterizing within-class spread—scales as
rcollapse = O(

√
σ2dη/γ), where d is representation dimensionality and η is learning rate (Sec-

tion A.3). Figure 2 (center) confirms this scaling.

Thus, γ serves a dual role: it ensures convergence to the global optimum through landscape convex-
ification while simultaneously controlling the tightness of intra-class clustering through increased
curvature.

Global Lipschitz continuity and robustness. The bounded confinement directly yields global
Lipschitz continuity. Since all representations lie within radius O(MW /γ) of the origin, the maximum
possible distance between any two representations is bounded independently of input distance. We
prove that for any inputs x1,x2:

E[∥f(x1)− f(x2)∥] ≤
2
√
KM2

W

γ
+O

(√
σ2dη

γ

)
(4)

regardless of ∥x1 − x2∥ (Theorem A.11). This uniform Lipschitz bound limits the sensitivity of
network outputs to input perturbations, that is empirically demonstrated in Figure 2 (right).

Beyond confinement and collapse, the regularization induces a third geometric property in the
terminal phase of training. When the network achieves high classification confidence (pȳ → 1), the
radial nature of the L2 regularization decouples the angular dynamics from the radial dynamics, as
the regularization term vanishes when projected onto the tangent space of the unit sphere. Strong
regularization accelerates this alignment by reducing the equilibrium radius r∗ = O(MW /γ),
causing representations to progressively align with their corresponding classifier weight vectors:
limt→∞ z(t)/∥z(t)∥ = wȳ/∥wȳ∥ (Theorem A.7). This accelerated alignment is demonstrated
by faster convergence of the NC property, as shown in Appendix E. These five key properties—
necessity of regularization, bounded equilibria, tight collapse, weight alignment, and global Lipschitz
continuity—are formally unified in Theorem A.13 (Appendix A).
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2.2 BINARY ENCODING

The collapse points align with vertices of a hypercube inscribed within a hypersphere, as documented
in Appendix C. At each penultimate-layer node, latent representations approximately assume one of
two values, forming a binary encoding. One possible explanation is that extreme compression forces
the network to maximize relative distances between collapse points in each dimension to maintain
discriminability, naturally leading to symmetric arrangements around the origin characteristic of
hypercube vertices.

3 EXPERIMENTS

We empirically demonstrate that our method promotes LPC in penultimate-layers and enhances
classifier performance. Through ablation studies, we evaluate architectures differing in penultimate-
layer dimensionality, linearity, L2 regularization, and loss functions (see Appendix C for details).

Architectures: LPC (our method: linear penultimate-layer with L2 regularization), LPC-
NARROW/LPC-WIDE (low/high-dimensional variants), LPC-NOPEN (L2 on backbone, no
penultimate-layer), LINPEN/NONLINPEN (linear/non-linear penultimate-layer without L2), NOPEN
(baseline), NOPENWD (baseline with strong weight decay), SCL/ARCFACE (alternative losses), and
LPC-SCL (hybrid).

Experiments on CIFAR-10, CIFAR-100 (81), and ImageNet-1K (82) using ResNet (83) and Wide
ResNet (84).

3.1 LATENT POINT COLLAPSE: PROPERTIES AND LIPSCHITZ CONTINUITY

To investigate the occurrence of LPC in the penultimate-layer, we examine the within-class covariance
ΣW , defined as

ΣW =
1

NP

N−1∑
i=0

P−1∑
p=0

(
z(i,p) − µ(p)

)(
z(i,p) − µ(p)

)⊤
, (5)

where z(i,p) denotes the i-th latent representation with label p, and µ(p) represents the mean of all
latent representations with label p. A vanishing ΣW indicates that latent representations within
each class collapse toward their respective class mean µ(p). We additionally analyze the mean norm
1
P

∑P−1
p=0 ∥µ(p)∥, which quantifies the average distance of collapse points from the origin. Consistent

with our theoretical analysis in Appendix A, we expect these collapse points to be located near the
origin.

Table 1 presents the values of ΣW and the mean norm at the final training epoch across various
architectures. Notably, ΣW approaches zero exclusively for architectures implementing an L2 penalty
on the penultimate-layer, confirming that same-class latent representations indeed collapse to single
points in these models. The exceptionally small mean norm values across all LPC architectures
corroborate our theoretical prediction that collapse points reside near the origin. Interestingly, we
observe that strong weight decay alone, as employed in the NoPenWD architecture, does not induce
collapse. The information bottleneck created by this point collapse phenomenon is further examined
in Appendix B.

Beyond the geometric properties of the latent space, we analyze the resulting classification char-
acteristics, particularly class separability and decision boundary stability. To quantify separability

in the latent space, we introduce a class separation ratio R: R(i,p) =
minq ̸=p ∥z(i,p)−µ(q)∥

∥z(i,p)−µ(p)∥ . This
ratio measures the distance between a latent point and the nearest other-class centroid relative to its
distance from its own-class centroid. Higher values indicate superior geometric separation between
classes. As demonstrated in Table 1, architectures implementing the L2 penalty on a penultimate
linear layer achieve class separation ratios exceeding those of baseline methods by approximately
two orders of magnitude, demonstrating markedly superior latent representation separation.

To evaluate classification boundary stability, we analyze the network’s sensitivity to input perturba-
tions through the function gy(x) = fy(x) −maxj ̸=y fj(x), where fy(x) denotes the logit of the
true class y. This function captures the classification margin in the output space, with gy(x) > 0

6
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Table 1: All values in the table represent the means and standard deviations obtained from different
experiments. ΣW : mean across all entries of the within-class covariance matrix; Norm Mean: mean
of the L2 norm of latent representations;R: class separation ratio (distance margins, computed over
a sample of 10000 entries in the training set); Avg. Grad Norm: Average L2 Gradient Norm of the
Logit Difference Function (gy(x)) with respect to input x.

DATASET: CIFAR-10

MODEL ΣW NORM MEAN R AVG. GRAD NORM

LPC 2.55E-14 ± 1.38E-14 0.004± 0.001 195.94± 220.87 0.06± 0.03
LPC-WIDE 1.71E-14 ± 5.88E-15 0.003± 0.001 113.76± 126.59 0.15± 0.05
LPC-NARROW 5.70E-14 ± 1.05E-14 0.003± 0.001 241.28± 282.61 0.04± 0.03
LPC-SCL 9.89E-14 ± 4.50E-14 0.004± 0.001 98.36± 93.63 0.13± 0.04
LPC-NOPEN 1.33E-11 ± 6.21E-12 0.005± 0.001 31.77± 20.47 0.25± 0.26

LINPEN 1.10E-01 ± 4.00E-02 47.70± 7.89 2.90± 0.28 99.16± 10.61
NONLINPEN 4.08E-01 ± 1.42E-01 39.39± 7.17 2.87± 0.25 62.06± 9.66
SCL 8.02E-03 ± 4.13E-03 25.42± 2.37 7.77± 2.27 44.09± 1.81
ARCFACE 9.05E-02 ± 2.32E-02 22.81± 1.33 5.63± 0.26 78.91± 33.68
NOPEN 3.03E-02 ± 1.08E-02 13.88± 3.49 1.79± 0.10 84.55± 8.93
NOPENWD 2.32E-03 ± 2.50E-04 7.33± 0.19 2.30± 0.27 29.27± 1.69

DATASET: CIFAR-100

MODEL ΣW NORM MEAN R AVG. GRAD NORM

LPC 2.62E-12 ± 9.22E-13 0.007± 0.001 100.84± 110.22 0.11± 0.02
LPC-WIDE 4.08E-12 ± 4.13E-12 0.008± 0.002 79.35± 81.92 0.22± 0.10
LPC-NARROW 5.84E-12 ± 3.37E-12 0.006± 0.000 116.34± 134.08 0.06± 0.00
LPC-SCL 3.94E-12 ± 2.83E-12 0.008± 0.001 54.93± 58.23 0.22± 0.01
LPC-NOPEN 3.39E-06 ± 5.21E-06 0.018± 0.018 7.44± 8.79 6.99± 10.90

LINPEN 5.75E-01 ± 1.34E-01 74.28± 8.41 1.46± 0.08 86.82± 4.42
NONLINPEN 3.50E+00 ± 2.89E-01 92.74± 1.87 1.52± 0.09 81.82± 2.32
SCL 2.87E-03 ± 1.35E-03 34.52± 5.34 5.23± 1.91 66.25± 9.16
ARCFACE 4.40E-02 ± 2.70E-03 43.27± 1.16 4.42± 0.31 109.57± 11.50
NOPEN 1.94E-02 ± 1.44E-02 25.08± 6.26 1.15± 0.02 70.81± 3.03
NOPENWD 8.48E-04 ± 1.71E-04 13.02± 0.69 1.26± 0.09 40.22± 1.7

DATASET: IMAGENET

MODEL ΣW NORM MEAN R AVG. GRAD NORM

LPC 4.00E-10 ± 7.32E-12 0.013± 0.000 13.92± 0.04 1.67± 0.01

NOPEN 1.32E-02 ± 4.33E-05 37.10± 0.09 1.12± 0.00 12.46± 0.18

indicating correct classification. We quantify network sensitivity by computing the average gradient
norm max ∥∇xgy(x)∥ over the entire dataset, which provides an empirical lower bound estimate of
the Lipschitz constant for gy(x).

Table 1 reports this average gradient norm. Models employing the L2 penalty on the penultimate-
layer exhibit average gradient norms approximately two orders of magnitude lower than alternative
configurations, indicating substantially reduced sensitivity to input perturbations and enhanced output
margin stability. Notable exceptions include LPC-NOPEN configuration, which can exhibit elevated
values, emphasizing how dimensionality reduction in the penultimate-layer contributes to network
stability. This reduced sensitivity, coupled with enhanced class separation, demonstrates that our
LPC method yield classifications that are both geometrically well-separated and exhibit stronger
Lipschitz continuity, thereby providing improved theoretical guarantees on network behavior under
perturbations.

It is important to note that our experiments on CIFAR-10 and CIFAR-100 were conducted largely in
the TPT, where training accuracy has essentially converged. In contrast, ImageNet experiments did not
reach full convergence of training set accuracy. Remarkably, the advantages of our method—including
superior class separation and reduced gradient norms—are already manifest before full convergence,
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Table 2: All values in the table represent the means and standard deviations obtained from different
experiments. DeepFool: Norm of the minimal perturbation to cause a prediction change, divided by
the norm of the input (85), averaged over 1000 test set samples. PGD columns: Adversarial accuracy
under PGD attacks (86) with ϵ ∈ {4/255, 8/255, 12/255} for CIFAR and ϵ ∈ {2/255, 4/255} for
ImageNet, evaluated on 1000 test set samples. PGD uses 100 iterations (50 for ImageNet) with 5
random restarts, step size α = ϵ/4, DLR loss, cosine schedule, and ℓ∞ norm constraint. Accuracy:
Classification accuracy on the testing set. For ImageNet, the generalization gap (Gen. Gap) is also
included, representing the difference between training and testing accuracy.

DATASET: CIFAR-10

MODEL DEEPFOOL PGD ϵ=4/255 PGD ϵ=8/255 PGD ϵ=12/255 ACCURACY

LPC 1.227± 0.442 0.146± 0.021 0.034± 0.011 0.013± 0.007 94.86± 0.08
LPC-WIDE 0.788± 0.439 0.180± 0.059 0.033± 0.025 0.010± 0.008 94.73± 0.04
LPC-NARROW 1.597± 0.442 0.153± 0.029 0.040± 0.018 0.013± 0.006 94.90± 0.13
LPC-SCL 0.521± 0.059 0.170± 0.025 0.034± 0.007 0.009± 0.004 94.91± 0.10
LPC-NOPEN 0.693± 0.278 0.195± 0.034 0.014± 0.006 0.001± 0.002 94.86± 0.09

LINPEN 0.013± 0.001 0.000± 0.000 0.000± 0.000 0.000± 0.000 94.58± 0.08
NONLINPEN 0.015± 0.001 0.001± 0.001 0.000± 0.000 0.000± 0.000 94.50± 0.05
SCL 0.026± 0.001 0.012± 0.009 0.001± 0.001 0.000± 0.000 94.77± 0.11
ARCFACE 0.019± 0.001 0.031± 0.015 0.000± 0.001 0.000± 0.000 94.54± 0.08
NOPEN 0.013± 0.001 0.000± 0.001 0.000± 0.000 0.000± 0.000 94.57± 0.14
NOPENWD 0.016± 0.001 0.000± 0.000 0.000± 0.000 0.000± 0.000 94.25± 0.04

DATASET: CIFAR-100

MODEL DEEPFOOL PGD ϵ=4/255 PGD ϵ=8/255 PGD ϵ=12/255 ACCURACY

LPC 0.399± 0.022 0.065± 0.019 0.013± 0.007 0.004± 0.002 77.64± 0.17
LPC-WIDE 0.369± 0.015 0.076± 0.019 0.015± 0.004 0.002± 0.002 77.75± 0.24
LPC-NARROW 0.470± 0.026 0.040± 0.005 0.004± 0.002 0.000± 0.000 77.29± 0.18
LPC-SCL 0.192± 0.024 0.049± 0.005 0.007± 0.001 0.003± 0.001 78.17± 0.23
LPC-NOPEN 0.151± 0.036 0.135± 0.049 0.034± 0.018 0.008± 0.005 77.27± 0.36

LINPEN 0.007± 0.000 0.001± 0.001 0.000± 0.000 0.000± 0.000 76.69± 0.17
NONLINPEN 0.007± 0.000 0.000± 0.001 0.000± 0.000 0.000± 0.000 76.38± 0.30
SCL 0.011± 0.000 0.004± 0.002 0.000± 0.000 0.000± 0.000 78.00± 0.15
ARCFACE 0.012± 0.000 0.105± 0.023 0.013± 0.004 0.001± 0.002 77.21± 0.14
NOPEN 0.007± 0.000 0.001± 0.001 0.000± 0.000 0.000± 0.000 76.83± 0.15
NOPENWD 0.007± 0.000 0.001± 0.001 0.000± 0.000 0.000± 0.000 76.97± 0.14

DATASET: IMAGENET

MODEL DEEPFOOL PGD ϵ=2/255 PGD ϵ=4/255 ACCURACY GEN. GAP

LPC 0.019± 0.001 0.045± 0.005 0.002± 0.001 74.48± 0.05 16.74± 0.14

NOPEN 0.002± 0.000 0.000± 0.000 0.000± 0.000 72.33± 0.12 24.08± 0.12

suggesting that these benefits emerge early in the optimization process rather than solely as a
consequence of extended training.

Our experiments further reveal that the collapse points align with vertices of a hypercube, as detailed
in Appendix D. Additionally, in Appendix E, we demonstrate that LPC enhances metrics associated
with NC. Given that our training on CIFAR-10 and CIFAR-100 predominantly occurred in the TPT
regime, these improvements complement and extend beyond those typically associated with standard
NC.

3.2 ROBUSTNESS AND GENERALIZATION

Table 2 presents the magnitude of minimal perturbations required to induce misclassification, quan-
tified using the DeepFool algorithm (85). Our results reveal a striking enhancement in network

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: Effect of LPC regularization strength on classification performance and robustness. The
figure shows accuracy, DeepFool robustness, and distance ratio R as functions of the LPC regu-
larization parameter γ for CIFAR-10 (top row) and CIFAR-100 (bottom row) datasets. Results
are averaged across multiple independent runs with error bars indicating standard deviation. As
γ increases from 101 to 106, both geometric margins and robustness improve significantly while
classification accuracy remains stable. CIFAR-10 maintains stable accuracy across the entire range
(γ ≤ 107), while CIFAR-100 shows peak accuracy at γ = 105 with degradation emerging only at the
extreme value γ = 107.

robustness when L2 regularization is applied to the penultimate-layer—achieving improvements
exceeding two orders of magnitude, particularly pronounced when the penultimate-layer is linear.
This robustness enhancement extends to adversarial attacks: LPC models maintain non-trivial adver-
sarial accuracy under PGD attacks (86) (e.g., 14.6% at ϵ = 4/255 on CIFAR-10, 6.5% at ϵ = 4/255
on CIFAR-100, and 4.5% at ϵ = 2/255 on ImageNet), while baseline models exhibit essentially
zero robustness under comparable perturbation budgets. While alternative regularization techniques,
including SCL and ArcFace, also demonstrate improved robustness relative to the baseline, their
gains remain substantially more modest, with most achieving near-zero PGD robustness.

Beyond robustness improvements, LPC exhibits significant regularization effects that enhance general-
ization performance. Notably, LPC achieves generalization performance comparable to or exceeding
state-of-the-art regularization methods such as SCL. The combination of LPC with SCL yields the
highest generalization performance on both CIFAR-10 and CIFAR-100, demonstrating the potential
for synergistic improvements when integrating LPC with existing techniques. The generalization
improvements are particularly remarkable on ImageNet, where LPC reduces the generalization gap
from 24.08% to 16.74%—a relative reduction of over 30%. These improvements are robust to the
choice of regularization strength (Figure 3).

Our architectural analysis further reveals practical insights regarding the penultimate-layer design.
Specifically, we observe that lower-dimensional penultimate-layers yield substantially superior
robustness as measured by DeepFool, with the LPC-Narrow configuration achieving the highest
scores across both CIFAR datasets. Interestingly, adversarial robustness under PGD attacks exhibits
a different pattern: the LPC-NoPen variant demonstrates the highest adversarial accuracy. This
suggests that the optimal architectural configuration may depend on the specific threat model under
consideration.

4 DISCUSSION AND LIMITATIONS

4.1 DISCUSSION

The LPC phenomenon dramatically enhances the separability of latent representations, yielding
remarkable improvements in robustness. These enhancements stem directly from superior class
separability and a fundamentally stronger form of collapse than traditional NC. While NC ensures
that within-class representations converge around their class means (achieving small within-class
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variance relative to between-class variance), LPC enforces absolute collapse to single points. We
demonstrate particular effectiveness when applying this regularization to low-dimensional linear
penultimate-layers, where the dimensional bottleneck amplifies both the collapse effect and its
benefits. A key distinction is that our approach inherently guarantees global Lipschitz continuity
without architectural constraints—a property unattainable through standard NC.

Our ImageNet experiments reveal a notable aspect of LPC: its benefits manifest even before reaching
the TPT. Unlike CIFAR experiments conducted primarily in the TPT regime, ImageNet training
did not achieve full convergence, yet LPC reduced the generalization gap substantially—a relative
improvement of over one-third. The early emergence of enhanced class separation and reduced gradi-
ent norms indicates that the geometric benefits of LPC develop progressively with the optimization
dynamics, providing practical advantages even in computationally constrained scenarios where full
convergence is infeasible.

4.2 LIMITATIONS AND OUTLOOK

Our study focuses exclusively on balanced datasets, leaving unexplored the interaction between LPC
and class imbalance. Recent investigations of NC under imbalanced conditions (30; 31; 32; 87)
suggest potentially complex dynamics that warrant future investigation. Whether LPC’s absolute
collapse provides advantages or poses challenges in imbalanced scenarios remains an open question.

While we demonstrate LPC under cross-entropy loss with L2 regularization, NC has been observed
with various loss functions (12; 88). Exploring alternative loss formulations that might induce or
enhance LPC could reveal more efficient training procedures or stronger guarantees.

Our analysis primarily examines geometric and robustness metrics established in the original NC
literature (11). However, NC enhances numerous other properties including knowledge distillation
(38), few-shot learning (39), transfer learning (40; 41), and out-of-distribution detection (47; 48).
The stronger absolute collapse of LPC may amplify these benefits, presenting promising avenues for
investigation.

The empirically observed binary encoding phenomenon (Appendix D), wherein collapse points
align precisely with hypercube vertices inscribed within a hypersphere, is an intriguing finding.
Under extreme L2 regularization, the network spontaneously organizes class representations into a
discrete binary scheme where each penultimate node assumes one of two values, effectively creating
a {−1,+1}d encoding. Understanding this spontaneous quantization could bridge connections to
binary neural networks and discrete representation learning, though the precise mechanisms driving
this phenomenon remain an open theoretical question warranting further investigation.

4.3 CONCLUSION

We introduce latent point collapse, a phenomenon where strong L2 regularization applied to
penultimate-layer representations causes the features within each class to collapse to a single point
near the origin. This simple modification—achieved by adding a regularized, low-dimensional
linear penultimate-layer—dramatically improves model robustness while also yielding statistically
significant gains in generalization.

The method’s simplicity and effectiveness make it immediately practical. By inducing a stronger form
of neural collapse with provable Lipschitz guarantees, LPC provides principled bounds on adversarial
robustness while maintaining or improving classification accuracy. The early emergence of benefits,
demonstrated in our ImageNet experiments, indicates that LPC’s advantages are accessible even
without complete training convergence, enhancing its practical applicability in resource-constrained
settings.

4.4 REPRODUCIBILITY STATEMENT

Code to reproduce our results is available online in the linked repository.1 All experimental details
are provided in Appendix C.

1https://anonymous.4open.science/r/lpc-0CEB
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A THEORETICAL ANALYSIS OF LATENT POINT COLLAPSE

This appendix presents a rigorous theoretical analysis of how strong L2 regularization induces LPC
in DNN classifiers, establishing both its necessity for achieving theoretical optima and its sufficiency
for ensuring global Lipschitz continuity. We employ the UFM framework to demonstrate that a
large regularization parameter γ fundamentally reshapes the optimization landscape and dynamics of
penultimate-layer representations.

Our analysis proceeds through a systematic characterization of the interplay between cross-entropy
loss and L2 regularization. We first establish equilibrium conditions (Section A.2), proving that
regularization confines representations to a ball of radius O(MW /γ), where MW bounds the classifier
weights. We then analyze the local Hessian structure (Section A.3) to show that for γ > KM2

W /2,
the loss landscape becomes globally strongly convex. This convexification enables us to derive
tight bounds on the steady-state distribution of representations, establishing that same-class features
concentrate within radius rcollapse = O(

√
σ2dη/γ) of their class-specific equilibria, whose size

reflects a balance between the noise level σ, the dimensionality of the latent space d, the magnitude
of learning rate η, and the strength of the confining potential γ.

The geometric implications of this confinement are explored through our alignment analysis
(Section A.4), where we prove that in the TPT—characterized by high classification confi-
dence—representations not only collapse but also align with their corresponding classifier weight
vectors. This alignment emerges naturally from the decoupling of radial and angular dynamics under
strong regularization, without requiring explicit geometric constraints. Crucially, we establish the ne-
cessity of this mechanism by demonstrating (Section A.5) that without regularization, gradient-based
optimization of cross-entropy loss exhibits a pathological behavior: the steepest descent direction
contains an outward radial component, leading to unbounded norm growth and gradient saturation
that prevents convergence to any finite equilibrium.

These results culminate in our main theorem establishing that strong L2 regularization applied specif-
ically to the penultimate-layer induces a stronger manifestation of NC characterized by simultaneous
confinement around the origin and class-specific point collapse. Most significantly, we prove that this
mechanism yields global Lipschitz continuity that is independent of input distance, a property that
emerges naturally from the bounded collapse around the origin.

A.1 SETUP AND PRELIMINARIES

We analyze penultimate-layer representations using the unconstrained feature model (UFM) frame-
work (24; 34; 27). In this framework, features after the penultimate-layer are treated as free optimiza-
tion variables z ∈ Rd (disconnected from the input samples), allowing us to study their optimization
dynamics independently. The final linear classifier has weights W ∈ RK×d and biases b ∈ RK ,
yielding logits l = Wz + b.

Previous work (24; 34) established that for balanced datasets with bounded representations and
classifier weights, global minimizers of cross-entropy loss exhibit NC. This phenomenon involves
three key properties: (1) all features within a class converge to a single point, (2) the K class means
form an ETFS, and (3) these means align with their corresponding classifier weights. However,
reaching such global optima in deep networks with millions of parameters is practically infeasible
(37).

Our analysis investigates how strong L2 regularization with coefficient γ drives the system toward
this theoretical ideal. We analyze the combined loss:

L(z) = LCE(z) + γ∥z∥2 (6)
where LCE(z) = − log pȳ(z) is the cross-entropy loss with softmax probabilities pi(z) =

exp(ℓi)∑K
j=1 exp(ℓj)

, and γ > 0 is the regularization strength.

Assumption A.1 (Bounded Classifier Weights). The classifier weight vectors satisfy ∥wi∥ ≤MW

for all classes i ∈ [K], where MW <∞. This mild condition holds under standard training practices
with weight decay, which keeps classifier weights bounded.

We consider a general class of stochastic optimizers that update representations according to:
zt+1 = zt − ηtPt(∇zL(zt) + at) (7)
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where ηt is the learning rate, Pt is a preconditioning matrix (identity for SGD, diagonal adaptive for
Adam/AdamW), and at is gradient noise from mini-batch sampling with E[at|zt] = 0.
Assumption A.2 (Optimizer Properties). The optimizer satisfies:

1. Bounded preconditioning: λminI ⪯ Pt ⪯ λmaxI for some 0 < λmin ≤ λmax <∞

2. Bounded noise: The noise covariance matrix is bounded: E[ataTt |zt] ⪯ σ2I for some
constant σ2 > 0. This implies E[∥at∥2|zt] ≤ dσ2.

3. Convergence: The learning rate schedule ensures convergence to a neighborhood of local
minima

These assumptions are mild and satisfied by standard optimizers (SGD, Adam, AdamW) with
appropriate hyperparameters. We will leverage these properties throughout our analysis to establish
bounds on the behavior of representations under stochastic optimization.

A.2 EQUILIBRIUM ANALYSIS

We first characterize the equilibrium points that arise from the interplay between cross-entropy loss
and L2 regularization.
Definition A.3 (Stochastic Equilibrium). A point z∗ is a stochastic equilibrium if E[zt+1|zt = z∗] =
z∗ under the update rule equation 7.

For optimizers with positive definite preconditioning matrices (Assumption A.2), this condition
requires ∇zL(z∗) = 0.

At a stochastic equilibrium z∗, for a sample with true label ȳ, the gradient vanishes:

∇zL(z∗) =

K∑
i=1

pi(z
∗)wi −wȳ + 2γz∗ = 0 (8)

Rearranging yields an explicit characterization:

z∗ =
1

2γ

(
wȳ −

K∑
i=1

pi(z
∗)wi

)
(9)

This equation reveals that the equilibrium position is scaled by a control parameter γ.
Theorem A.4 (Bounded Equilibrium). Any stochastic equilibrium z∗ satisfies:

∥z∗∥ ≤ MW

γ
(10)

Proof. From Equation 9, taking norms:

2γ∥z∗∥ =

∥∥∥∥∥wȳ −
K∑
i=1

pi(z
∗)wi

∥∥∥∥∥ (11)

=

∥∥∥∥∥∥(1− pȳ(z
∗))wȳ −

∑
i̸=ȳ

pi(z
∗)wi

∥∥∥∥∥∥ (12)

≤ (1− pȳ(z
∗))∥wȳ∥+

∑
i̸=ȳ

pi(z
∗)∥wi∥ (13)

≤MW

(1− pȳ(z
∗)) +

∑
i̸=ȳ

pi(z
∗)

 (14)

= 2MW (1− pȳ(z
∗)) (15)

The general bound follows since 1− pȳ(z
∗) ≤ 1.

This theorem establishes that L2 regularization creates a confining potential that prevents representa-
tion explosion, with the confinement radius inversely proportional to γ.
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A.3 HESSIAN ANALYSIS AND STOCHASTIC DYNAMICS

To understand how representations behave near equilibrium under stochastic optimization, we analyze
the local curvature of the loss landscape. The Hessian of the combined loss is:

∇2
zL(z) = ∇2

zLCE(z) +∇2
z(γ∥z∥2) (16)

The Hessian of the L2 regularization term is:

∇2
z(γ∥z∥2) = 2γI (17)

The cross-entropy Hessian takes the form:

∇2
zLCE(z) = W T (diag(p)− ppT )W (18)

with p = [p1(z), . . . , pK(z)]T being the softmax probability vector.
Lemma A.5 (Bounded Cross-Entropy Hessian). Under Assumption A.1, the spectral norm of the
cross-entropy Hessian satisfies:

∥∇2
zLCE(z)∥ ≤ KM2

W (19)

Proof. The matrix D = diag(p)− ppT is the covariance matrix of a categorical distribution with
spectral norm ∥D∥2 ≤ 1. The spectral norm of the Hessian is:

∥∇2
zLCE(z)∥2 = ∥W TDW ∥2 ≤ ∥W T ∥2∥D∥2∥W ∥2 = ∥W ∥22 (20)

The spectral norm of W is bounded by its Frobenius norm:

∥W ∥22 ≤ ∥W ∥2F =

K∑
i=1

∥wi∥22 ≤ KM2
W (21)

where the last inequality follows from Assumption A.1.

This lemma shows that the cross-entropy contribution to the Hessian is bounded, allowing the L2

regularization term to dominate for large γ.

A.3.1 EQUILIBRIUM NEIGHBORHOOD DYNAMICS

The bounded Hessian structure established in Lemma A.5 enables us to analyze how representations
behave near equilibrium points under stochastic optimization. The regularization parameter γ funda-
mentally reshapes the loss landscape by eliminating local minima that could trap the optimization
process.

Consider the Hessian at an arbitrary point z:

∇2
zL(z) = ∇2

zLCE(z) + 2γI (22)

When γ is sufficiently large, specifically when γ >
KM2

W

2 , guarantees that the Hessian is globally
positive definite. This implies that the loss landscape becomes strongly convex. This elimination of
local minima ensures that stochastic optimization converges to the desired equilibrium rather than
getting trapped in suboptimal configurations.

Near an equilibrium point z∗, the dynamics are governed by the local curvature. For large γ satisfying
γ ≫ KM2

W , the Hessian becomes dominated by the regularization term:

H = ∇2
zL(z∗) ≈ 2γI (23)

This creates a strong, isotropic quadratic potential around the equilibrium, analogous to a harmonic
oscillator with spring constant k = 2γ. Under stochastic optimization, representations do not
converge to exact points but rather to steady-state distributions around equilibria. The concentration
of these distributions is determined by the balance between the confining potential controlled by γ
and the stochastic excitation from gradient noise.
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Consider the linearized dynamics around equilibrium:

dt+1 = (I − ηPtH)dt − ηPtat (24)

where dt = zt − z∗ is the deviation from equilibrium, Pt is the optimizer’s preconditioning matrix,
and at represents gradient noise.

For the simplified case where H = 2γI and uniform preconditioning Pt = λ̄I , the steady-state
variance of each component satisfies:

E[δ2i,∞] =
ηλ̄σ2

4γ(1− ηγλ̄)
(25)

This expression reveals that for any fixed learning rate η satisfying the stability condition η < 1
γλ̄

, the
steady-state variance decreases monotonically as γ increases. Taking the derivative with respect to γ
yields:

∂

∂γ
E[δ2i,∞] = − ηλ̄σ2

4γ2(1− ηγλ̄)2
< 0 (26)

confirming that increasing γ always reduces the variance of representations around their equilibria.

The total expected squared deviation across all d dimensions is:

E[∥d∞∥2] =
d∑

i=1

E[δ2i,∞] =
dηλ̄σ2

4γ(1− ηγλ̄)
(27)

For small learning rates satisfying ηγλ̄ ≪ 1 (which is typically required for stability), we can
approximate:

E[∥d∞∥2] ≈
dηλ̄σ2

4γ
(28)

Therefore, the root mean square deviation, which characterizes the typical collapse radius, is:

rcollapse =
√
E[∥d∞∥2] ≈

σ

2

√
dηλ̄

γ
= O

(√
σ2dη

γ

)
(29)

where the last equality follows since λ̄ and σ are O(1) constants independent of γ and η.

This analysis reveals that a large regularization parameter γ serves a crucial dual purpose. First,
it convexifies the optimization landscape. For γ >

KM2
W

2 , the regularization guarantees global
strong convexity. Second, it induces feature collapse. The strong quadratic potential not only creates
this single basin of attraction but also tightly confines representations within it, counteracting the
stochasticity from gradient noise. This results in a steady-state variance that decreases monotonically
with γ, leading to a tighter clustering of same-class representations.

Consequently, under a stable learning rate condition (η < 1
γλ̄

), the optimizer is guaranteed to

converge to a neighborhood of the global optimum whose radius, rcollapse = O(
√

σ2dη/γ), is
explicitly controlled by the regularization strength. This provides a principled explanation for the
efficacy of strong L2 regularization in achieving NC, as it ensures both convergence to the correct
geometric configuration and control over the degree of intra-class feature concentration.

A.4 ALIGNMENT CONVERGENCE ANALYSIS IN THE TERMINAL PHASE

In the TPT, when samples are well-classified with high confidence, we analyze how strong reg-
ularization induces alignment between representations and their corresponding classifier weights.
Throughout this subsection, we assume the network has reached the TPT where pȳ(z) ≈ 1 for all
samples in the training set.

To analyze this process, we consider the gradient flow dynamics ż = −∇zL(z), a valid approxi-
mation for small learning rates. We decompose the dynamics into radial and angular components.
Let r(t) = ∥z(t)∥ and u(t) = z(t)/r(t) denote the representation’s magnitude and direction,
respectively.
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Definition A.6 (Representation-Weight Alignment). For a representation z with direction u =
z/∥z∥ and true label ȳ, the alignment with the corresponding classifier weight is:

a(t) = u(t)T ŵȳ =
z(t)Twȳ

∥z(t)∥∥wȳ∥
(30)

where ŵȳ = wȳ/∥wȳ∥ is the normalized classifier weight. Note that a(t) ∈ [−1, 1] by the Cauchy-
Schwarz inequality, with a(t) = 1 indicating perfect alignment.

We previously discussed that the L2 term 2γz creates a strong restoring force in the radial direction,
causing r(t) to converge to an equilibrium radius r∗ = O(MW /γ).
Theorem A.7 (Alignment under L2 Regularization). In the terminal phase of training where pȳ(z) ≈
1, under gradient flow dynamics with sufficiently large γ, the representation direction converges to
the classifier weight direction:

lim
t→∞

z(t)

∥z(t)∥
=

wȳ

∥wȳ∥
(31)

Proof. The angular velocity of the unit vector u is given by projecting the velocity ż onto the tangent
space of the unit sphere:

u̇ =
1

r
(I − uuT )ż = −1

r
(I − uuT )∇zL(z) (32)

The gradient is∇zL(z) = (
∑

i piwi−wȳ) + 2γz. Since (I −uuT )z = 0, the regularization term
does not affect the angular dynamics:

u̇ =
1

r
(I − uuT )(wȳ −

∑
i

piwi) (33)

The rate of change of alignment a(t) = uT ŵȳ can be derived explicitly. We have:

ȧ = u̇T ŵȳ =
1

r

(
(I − uuT )(wȳ −

∑
i

piwi)

)T

ŵȳ (34)

Since the projection matrix (I − uuT ) is symmetric, this simplifies to:

ȧ =
1

r
(wȳ −

∑
i

piwi)
T (I − uuT )ŵȳ =

1

r
(wȳ −

∑
i

piwi)
T (ŵȳ − u(uT ŵȳ)) (35)

Recalling that a = uT ŵȳ , we get:

ȧ =
1

r
(wȳ −

∑
i

piwi)
T (ŵȳ − au) (36)

To analyze the terminal phase, we note that as training progresses and classification accuracy improves,
the softmax probabilities become increasingly peaked. Specifically, when the correct class logit
satisfies ℓȳ −maxi̸=ȳ ℓi ≫ 1, we have pȳ =

exp(ℓȳ)
exp(ℓȳ)+

∑
i̸=ȳ exp(ℓi)

≈ 1 −
∑

i̸=ȳ exp(ℓi − ℓȳ) → 1.

Under this regime, the approximation
∑

i piwi ≈ pȳwȳ becomes increasingly accurate.

In the TPT, classification confidence is high, so pȳ → 1 and pi̸=ȳ → 0. We can thus approximate the
softmax-weighted sum of classifiers as

∑
i piwi ≈ pȳwȳ . This leads to:

wȳ −
∑
i

piwi ≈ wȳ − pȳwȳ = (1− pȳ)wȳ (37)

Substituting this back into the expression for ȧ yields:

ȧ ≈ 1

r
((1− pȳ)wȳ)

T
(ŵȳ − au) (38)

=
1− pȳ

r

(
wT

ȳ ŵȳ − awT
ȳ u
)

(39)
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Using the definitions ŵȳ = wȳ/∥wȳ∥ and a = uT ŵȳ = uTwȳ/∥wȳ∥, we have wT
ȳ ŵȳ = ∥wȳ∥

and wT
ȳ u = a∥wȳ∥. Substituting these gives:

ȧ ≈ 1− pȳ
r

(∥wȳ∥ − a · a∥wȳ∥) (40)

=
(1− pȳ)∥wȳ∥

r
(1− a2) (41)

Since (1− a2) ≥ 0 for |a| ≤ 1 and (1− pȳ) ≥ 0, the alignment monotonically increases until a = 1,
achieving perfect alignment with the classifier weight.

This analysis demonstrates that L2 regularization not only confines representations to a bounded
region but actively drives them toward geometric alignment with their corresponding classifier weights.
The regularization parameter γ controls the speed and quality of this alignment by determining the
equilibrium radius r∗ = O(MW /γ), at which representations stabilize, which influences the effective
time constant of the angular dynamics. Importantly, this alignment emerges naturally from the
optimization dynamics without explicit geometric constraints, revealing how strong regularization
implicitly promotes convergence to the NC geometry.

A.5 UNBOUNDED GROWTH UNDER PURE CROSS-ENTROPY MINIMIZATION

Having established the beneficial effects of strong L2 regularization, we now demonstrate its necessity
by analyzing the pathological behavior that emerges in its absence. This analysis serves two purposes:
(1) it explains why standard neural networks without explicit regularization fail to achieve the
theoretical NC predicted by UFM theory, and (2) it highlights that the confinement provided by
L2 regularization is not merely helpful but essential for reaching meaningful equilibria. We now
demonstrate that without L2 regularization, cross-entropy minimization alone leads to unbounded
growth of representation norms, preventing convergence to the theoretical equilibrium predicted by
UFM theory.
Theorem A.8 (Unbounded Norm Growth without Regularization). In the TPT with γ = 0, cross-
entropy minimization drives representations to grow unboundedly: ∥z(t)∥ → ∞ as t→∞.

Proof. For pure cross-entropy loss with γ = 0, the gradient is:

∇zLCE(z) =

K∑
i=1

pi(z)wi −wȳ (42)

Consider the rate of change of the squared norm:
d

dt
∥z∥2 = 2zT ż = −2zT∇zLCE(z) (43)

= 2zT (wȳ −
K∑
i=1

pi(z)wi) (44)

= 2(ℓȳ −
K∑
i=1

pi(z)ℓi) (45)

where ℓi = zTwi are the logits. The term ℓȳ −
∑

i piℓi represents the difference between the
correct class logit and the expected logit over the softmax distribution. This quantity is equivalent to∑

i pi(ℓȳ − ℓi) and is strictly positive as long as perfect classification (pȳ = 1) has not been achieved,
since ℓȳ will be greater than other logits ℓi for which pi > 0. Therefore, d

dt∥z∥
2 > 0, indicating that

under gradient flow in the terminal phase, the steepest descent direction for CE loss has an outward
radial component, causing representation norms to grow continuously.

Crucially, cross-entropy can be decreased by simply scaling up z without requiring alignment. If z
makes an angle θ with wȳ where cos θ < 1, scaling z 7→ αz with α > 1 yields:

LCE(αz) = − log
exp(αℓȳ)∑
i exp(αℓi)

→ 0 as α→∞ (46)
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provided ℓȳ > maxi̸=ȳ ℓi, which only requires cos θ > cos θcritical for some critical angle θcritical <
π/2.

Corollary A.9 (Misalignment Compatible with Loss Decrease). Even with slight misalignment
between z and wȳ , cross-entropy loss can decrease through norm growth alone. Specifically, if:

zTwȳ > max
i̸=ȳ

zTwi (47)

then increasing ∥z∥ while maintaining fixed direction decreases LCE(z).

This unbounded growth has critical consequences:

Proposition A.10 (Gradient Saturation and Stalled Convergence). As ∥z∥ → ∞ without regulariza-
tion

1. The gradient norm vanishes: ∥∇zLCE(z)∥ → 0

2. The loss plateaus: LCE(z)→ 0 at rate O(e−∥z∥)

3. Convergence to any finite equilibrium point becomes impossible

Proof. As ∥z∥ → ∞ with ℓȳ > maxi̸=ȳ ℓi:

pȳ(z) =
exp(ℓȳ)∑
i exp(ℓi)

→ 1 (48)

The gradient becomes:

∥∇zLCE(z)∥ =

∥∥∥∥∥∑
i

piwi −wȳ

∥∥∥∥∥ = (1− pȳ)∥wȳ − w̄∥ → 0 (49)

With vanishing gradients, the dynamics essentially halt, preventing convergence to any finite equilib-
rium point. The representations are trapped in a regime of infinite growth with diminishing returns in
loss reduction.

This analysis reveals that pure cross-entropy optimization, despite achieving low loss values, fails
to reach the structured equilibria predicted by theory. The unbounded norm growth and gradient
saturation prevent the formation of the NC geometry. Strong L2 regularization with large γ is
therefore essential to constrain representations to a bounded region where meaningful equilibria can
be reached.

A.6 GLOBAL LIPSCHITZ CONTINUITY

The confinement effects of strong L2 regularization lead to a crucial property: global Lipschitz
continuity of the network.

Theorem A.11 (Lipschitz Bound). For a neural network with L2-regularized penultimate represen-
tations trained with any optimizer satisfying Assumption A.2, after sufficient training with learning
rate η < 1

γλ̄
, the expected network output difference satisfies:

E[∥f(x1)− f(x2)∥] ≤ L(γ) (50)

where the global Lipschitz constant is:

L(γ) = 2
√
KMW

(
MW

γ
+

√
dηλ̄σ2

4γ(1− ηγλ̄)

)
(51)

This bound is independent of the input distance ∥x1 − x2∥.
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Proof. For any two inputs x1,x2, their penultimate-layer representations are z1, z2. The distance
between them is bounded by the triangle inequality: ∥z1 − z2∥ ≤ ∥z1∥+ ∥z2∥.
From Theorem A.4, any equilibrium point z∗ satisfies ∥z∗∥ ≤MW /γ. From the Hessian analysis,
the steady-state deviation from equilibrium satisfies:

E[∥d∞∥2] =
dηλ̄σ2

4γ(1− ηγλ̄)
(52)

For the expected norm, we use the fact that for any random vector, E[∥v∥] ≤
√
E[∥v∥2] by Jensen’s

inequality:

E[∥d∞∥] ≤
√

E[∥d∞∥2] =

√
dηλ̄σ2

4γ(1− ηγλ̄)
(53)

Therefore, the expected norm of any representation satisfies:

E[∥z∥] ≤ ∥z∗∥+ E[∥d∥] ≤ MW

γ
+

√
dηλ̄σ2

4γ(1− ηγλ̄)
(54)

Since this bound holds in expectation for any representation, we can bound the expected distance
between any two representations:

E[∥z1 − z2∥] ≤ E[∥z1∥] + E[∥z2∥] ≤ 2

(
MW

γ
+

√
dηλ̄σ2

4γ(1− ηγλ̄)

)
(55)

The network output difference is f(x1)− f(x2) = W (z1 − z2). Using the spectral norm bound
∥W ∥2 ≤

√
KMW from Lemma A.5:

∥f(x1)− f(x2)∥ ≤ ∥W ∥2∥z1 − z2∥ ≤
√
KMW ∥z1 − z2∥ (56)

Therefore, taking expectations over the steady-state distribution:

E[∥f(x1)− f(x2)∥] ≤
√
KMW · E[∥z1 − z2∥] ≤ L(γ) (57)

which establishes the expected Lipschitz bound.

The structure of L(γ) reveals that both terms decrease as γ increases:

L(γ) = 2
√
KMW

(
MW

γ

)
︸ ︷︷ ︸

equilibrium term

+2
√
KMW

(√
dηλ̄σ2

4γ(1− ηγλ̄)

)
︸ ︷︷ ︸
stochastic fluctuation term

(58)

The first term decreases as O(1/γ) while the second decreases as O(1/
√
γ) for small learning rates

where ηγλ̄ ≪ 1. Therefore, increasing the regularization strength γ monotonically improves the
network’s Lipschitz constant, with the dominant improvement coming from the O(1/γ) reduction in
the equilibrium bound.
Remark A.12 (High-Probability Bound). While we establish the Lipschitz bound in expectation, a
high-probability bound can be obtained using concentration inequalities. For instance, by Markov’s
inequality, for any δ > 0:

Pr[∥f(x1)− f(x2)∥ > L(γ)/δ] ≤ δ (59)

A.7 MAIN RESULT

Theorem A.13 (Latent Point Collapse under Strong L2 Regularization). For a neural network
with bounded classifier weights ∥wi∥ ≤MW and L2-regularized penultimate representations with
parameter γ, trained with an optimizer satisfying Assumption A.2 and learning rate η < 1

γλ̄
:
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1. Confinement: All equilibrium representations satisfy ∥z∗∥ ≤ MW

γ

2. Collapse: Under stochastic optimization, intra-class representations concentrate within
radius:

rcollapse =
√
E[∥d∞∥2] =

σ

2

√
dηλ̄

γ(1− ηγλ̄)
= O

(√
σ2dη

γ

)
(60)

where the asymptotic form holds for small learning rates ηγλ̄≪ 1.

3. Alignment: In the terminal phase of training where pȳ → 1, representations align with their
corresponding classifier weights: limt→∞

z(t)
∥z(t)∥ =

wȳ

∥wȳ∥

4. Global Lipschitz Continuity: For any inputs x1,x2, in expectation:

E[∥f(x1)− f(x2)∥] ≤
2
√
KM2

W

γ
+O

(√
σ2dη

γ

)
(61)

This bound is independent of input distance ∥x1 − x2∥.

5. Necessity of Regularization: Without L2 regularization (γ = 0), cross-entropy minimization
alone causes unbounded norm growth (∥z∥ → ∞), gradient saturation, and failure to reach
theoretical equilibria.

A.8 SUMMARY

Strong L2 regularization with parameter γ is both necessary and sufficient to achieve LPC while
ensuring global Lipschitz continuity. Under the assumption of a sufficiently small learning rate
η < 1

γλ̄
for convergence, the regularization parameter provides a unified mechanism that:

1. Prevents representation explosion: Creates an inward force proportional to 2γz that coun-
teracts the outward bias of gradient descent in the terminal phase. Without this regularization,
gradient-based optimization of cross-entropy loss leads to unbounded norm growth, as the
steepest descent direction has an outward radial component whenever pȳ < 1 (Theorem
A.8).

2. Induces intra-class collapse: For γ >
KM2

W

2 , establishes a strongly convex loss landscape.
Under stochastic optimization, representations concentrate around class-specific equilibria
with collapse radius rcollapse = O(

√
σ2dη/γ), where the primary control is through γ. The

steady-state variance E[∥d∞∥2] = dηλ̄σ2

4γ(1−ηγλ̄)
decreases monotonically as γ increases.

3. Drives weight alignment: In the terminal phase where pȳ → 1, the angular dynamics
decouple from the radial dynamics, causing representations to align progressively with their
corresponding classifier weights. The alignment rate (1− a2)(1− pȳ)∥wȳ∥/r depends on
the current alignment a and the equilibrium radius r = O(MW /γ).

4. Ensures global Lipschitz continuity: By confining representations to a bounded region,
yields an expected global Lipschitz constant:

L(γ) = 2
√
KMW

(
MW

γ
+O

(√
σ2dη

γ

))
(62)

Both terms decrease with increasing γ, with the dominant O(1/γ) term providing the
primary improvement. This bound is independent of input distance ∥x1 − x2∥, establishing
uniform stability across the input space.

5. Enables convergence to global optima: For γ >
KM2

W

2 , creates a single-basin landscape
with unique global minimum. Combined with appropriate learning rate η < 1

γλ̄
, guarantees

convergence to a neighborhood of the global optimum, with neighborhood radius controlled
by the regularization strength.
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Without large γ, cross-entropy optimization alone produces unbounded representation growth without
achieving the structured geometry predicted by UFM theory. In the terminal phase, gradient descent
follows a path with an outward radial component, leading to gradient saturation as ∥∇zLCE∥ → 0
and preventing convergence to finite equilibria. Strong L2 regularization resolves this pathology
by providing a countervailing inward force, transforming an ill-posed optimization problem into a
well-conditioned one with provable convergence guarantees and explicit control over both geometric
structure and robustness properties.

B INFORMATION BOTTLENECK IN DETERMINISTIC DNN CLASSIFIERS

The connection between margin-based approaches and robust generalization can also be understood
through the framework of the information bottleneck (IB) principle (89; 90). The IB principle
suggests that DNNs seek compact yet sufficiently informative latent representations by minimizing
the mutual information between inputs and latent representations, while preserving information
relevant for prediction. Empirically, it has been shown that IB improves network performance (91),
and theoretical work provides rigorous arguments for IB’s role in controlling generalization errors
(92). In practice, DNN training reveals two distinct phases: an empirical risk minimization phase,
where the network primarily fits the data, followed by a compression phase, where the network
constructs more compact embeddings layer by layer (93). This compression aligns with margin
maximization and NC, suggesting that the pursuit of efficient representations manifests in both
information-theoretic and geometric properties.

The emergence of LPC creates an IB in the latent space, connecting this phenomenon to IB opti-
mization in DNNs (90; 94; 95; 96; 97; 98). Unlike many IB methods, which rely on variational
approximations or noise injection, LPC implements a deterministic form of compression through a
strong L2 penalty on the features themselves, effectively shrinking their distribution and lowering
their entropy.

The proposed loss function induces the collapse of all same-class latent representations into a single
point, which can also be posed as a method to create an IB in the penultimate-layer. The optimization
of the IB Lagrangian aims to maximize the following objective:

LIB = I(z; y)− βI(z;x), (63)

where I(z; y) denotes the mutual information between the latent representation z and the labels y
and I(z;x) represents the mutual information between z and the input data x. The parameter β
controls the trade-off between compression and predictive accuracy. In App. B, we demonstrate that
minimizing this quantity in deterministic DNN classification is equivalent to minimizing:

LIB = LCE(f(x), ȳ) + βH(z), (64)

where H(z) is the entropy associated with the latent distribution z and LCE(f(x), ȳ) is the cross-
entropy loss function. During training, the cross-entropy loss is directly minimized, while the entropy
H(z) is indirectly minimized by the collapse of all same-class latent representations into a single
point. To understand how LPC effectively minimizes the entropy of the probability distributions
generating latent representations z, we approximate the differential entropy with a discrete Shannon
entropy and take the limit for an infinitesimally small quantization: H∆ = −

∑
i pi log pi. As a result

of the collapse of all same-class latent representations into a single point, all elements of a specific
class are confined to a unique bin, even with very small bin size. For K classes with equal elements
per class, the entropy reduces to: H∆ = − log 1

K . This represents the minimum possible entropy
value that still permits discrimination among classes. If the latent representations do not collapse into
a single point, the distribution will spread across multiple bins, resulting in higher entropy.

The IB objective can be formulated as an optimization problem (89), aiming to maximize the
following function:

LIB = I(z; y)− βI(z;x),

where I(z; y) denotes the mutual information between the latent representation z and the labels y,
while I(z;x) represents the mutual information between z and the input data x. The parameter β
controls the trade-off between compression and predictive accuracy. Our goal is to maximize the
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Table 3: All values in the table represent the means and standard deviations obtained from different
experiments. The table shows the estimated entropy (H) on the testing set using the Kozachenko-
Leonenko method (k=20), divided by the penultimate-layer dimension.

CIFAR-10 CIFAR-100 IMAGENET

MODEL ENTROPY ENTROPY ENTROPY

LPC −3.96 ± 0.31 −2.106± 0.119 1.323± 0.004
LPC-WIDE −3.4 ± 0.34 −1.914± 0.15 –
LPC-NARROW −4.13 ± 0.34 −2.319± 0.04 –
LPC-SCL −3.27 ± 0.11 −1.675± 0.089 –
LPC-NOPEN −1.77 ± 0.33 5.559± 0.054 –
LINPEN 0.58 ± 0.26 1.257± 0.022 –
NONLINPEN 0.46 ± 0.02 1.208± 0.006 –
SCL 0.24 ± 0.4 5.123± 0.097 –
ARCFACE −0.06 ± 0.13 5.055± 0.02 –
NOPEN 0.88 ± 0.05 5.566± 0.029 5.916± 0.002
NOPENWD 0.59 ± 0.02 5.529± 0.017 –

mutual information between the latent representations and the labels, I(z; y). This mutual information
can be expressed in terms of entropy:

I(z; y) = H(y)−H(y|z),

where H(y) is the entropy of the labels and H(y|z) is the conditional entropy of the labels given the
latent representations. Since H(y) is constant with respect to the model parameters (as it depends
solely on the distribution of the labels), maximizing I(z; y) is equivalent to minimizing the conditional
entropy H(y|z):

max I(z; y) ⇔ minH(y|z).

The conditional entropy H(y|z) can be estimated empirically using the dataset. Assuming that the
data points (x(n), y(n)) are sampled from the joint distribution p(x, y) and that z(n) = f(x(n)), we
approximate H(y|z) as:

H(y|z) ≈ − 1

N

N∑
n=1

K∑
k=1

p(yk|z(n)) log p(yk|z(n)),

where K is the number of classes and p(yk|z(n)) is the probability of label yk given latent representa-
tion z(n). In practice, since we have the true labels y(n), this simplifies to:

H(y|z) ≈ − 1

N

N∑
n=1

log p(y(n)|z(n)).

This expression corresponds to the cross-entropy loss commonly used in training classifiers. In a
DNN classifier, the probability p(y|z) is modeled using the softmax function applied to the output
logits:

p(yk|z) =
exp ((Wz+ b)k)∑K
i=1 exp ((Wz+ b)i)

,

where W and b are the weights and biases of the final layer, and (Wz + b)k denotes the logit
corresponding to class yk. By minimizing H(y|z), we encourage the model to produce latent repre-
sentations that are informative about the labels, aligning with the objective of accurate classification.
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Table 4: Summary of the features implemented in all architectures used in our ablation study. Lin. Pen
refers to the inclusion or exclusion of a linear penultimate-layer. Nodes Add. Layer feature indicates
the presence of an additional layer between the backbone and the classification layer. If this layer
is present, its dimensionality is categorized as one of three possible values: wide, intermediate, or
narrow. The exact dimensionality for these categories is a hyperparameter that varies across different
datasets. Loss indicates the type of loss function utilized during training.

MODEL LIN. PEN. NODES ADD. LAYER LOSS

LPC ✓ INTERMEDIATE CE + L2

LPC-WIDE ✓ WIDE CE + L2

LPC-NARROW ✓ NARROW CE + L2

LPC-SCL ✓ INTERMEDIATE CE + L2 + SCL
LPC-NOPEN ✗ ✗ CE + L2

LINPEN ✓ INTERMEDIATE CE
NONLINPEN ✗ INTERMEDIATE CE
SCL ✗ ✗ CE + SCL
ARCFACE ✗ ✗ ArcFace
NOPENWD ✗ ✗ CE
NOPEN ✗ ✗ CE

The second term in the IB objective, I(z;x), quantifies the mutual information between the latent
representations and the inputs. To achieve compression, we aim to minimize this term. Expressing
I(z;x) in terms of entropy:

I(z;x) = H(z)−H(z|x).

In the case of deterministic mappings where z = f(x), the differential conditional entropy H(z|x) is
ill-defined, therefore we focus solely on minimizing H(z) as explained in the InfoMax seminal paper
(99).

min I(z;x) ⇔ minH(z).

To empirically validate our theoretical analysis, we conducted extensive experiments as detailed in
Section 3. Table 3 presents the estimated entropy values using the Kozachenko-Leonenko method
for various models. The results clearly demonstrate that LPC-based models exhibit significantly
lower entropy values compared to their non-penalized counterparts. This significant reduction in
entropy occurs because LPC confines all same-class latent representations to a single point, effectively
minimizing H(z) in the IB objective. As we demonstrated, when all elements of a specific class
collapse to a unique location, even with infinitesimally small quantization, the entropy reduces to
the minimum possible value that still permits discrimination among classes: H∆ = − log 1

K for K
classes. This experimental evidence confirms that LPC serves as an effective method to create an
information bottleneck in the penultimate-layer, achieving substantial compression while maintaining
discriminative capabilities necessary for classification.

C TRAINING AND ARCHITECTURE DETAILS.

Our ablation study systematically evaluates each component of the proposed method. All architectures
employ a shared backbone network that produces the latent representation h(x), while differing in
their approach to final classification.

We denote the architecture with L2 regularization applied to a linear penultimate-layer of intermediate
dimensionality as LPC, with its lower-dimensional and higher-dimensional variants designated as
LPC-NARROW and LPC-WIDE, respectively. These three variants examine the effect of penultimate-
layer dimensionality on LPC formation and network performance. To isolate the contribution of L2

regularization, we include LINPEN and NONLINPEN controls—linear and non-linear penultimate-
layers matching LPC’s dimensionality but trained exclusively with cross-entropy loss.
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Table 5: Average training time per epoch (in minutes) for different models across datasets. All values
represent means and standard deviations obtained from different experiments. Experiments were
conducted using 1 NVIDIA A100 GPU for CIFAR-10 and CIFAR-100, and 2 NVIDIA A100 GPUs
for ImageNet.

MODEL CIFAR-10 CIFAR-100 IMAGENET

LPC 0.103± 0.000 0.325± 0.001 58.86± 0.44
LPC-WIDE 0.104± 0.000 0.327± 0.000 –
LPC-NARROW 0.103± 0.000 0.325± 0.000 –
LPC-SCL 0.106± 0.000 0.327± 0.001 –
LPC-NOPEN 0.103± 0.000 0.332± 0.001 –

LINPEN 0.104± 0.000 0.328± 0.001 –
NONLINPEN 0.103± 0.000 0.326± 0.001 –
SCL 0.105± 0.000 0.335± 0.001 –
ARCFACE 0.107± 0.001 0.336± 0.001 –
NOPEN 0.104± 0.000 0.334± 0.001 33.81± 0.28
NOPENWD 0.103± 0.000 0.334± 0.000 –

The LPC-NOPEN model tests whether the penultimate-layer structure is necessary by applying L2

regularization directly to the backbone output h(x) and, unlike other models, excludes an intermediate
layer. The NOPEN model serves as our baseline, performing linear classification directly on h(x)
using only cross-entropy loss. To demonstrate that LPC benefits cannot be attributed solely to stronger
weight decay regularization, we include NOPENWD, which employs the same architecture as NOPEN
but with substantially increased weight decay.

We compare against SCL and ARCFACE baselines, which implement their respective loss functions
on the NOPEN baseline architecture. The LPC-SCL architecture combines L2 regularization on an
intermediate penultimate linear layer with SupCon applied to the backbone’s latent representations,
testing compatibility with other metric learning approaches. Note that in LPC-SCL, these losses
operate on distinct network layers.

All experiments were conducted on CIFAR-10, CIFAR-100 (81), and ImageNet-1K (82) datasets.
To generate latent representations h(x), we employed ResNet (83) backbones tailored to dataset
complexity: ResNet-18 for CIFAR-10, ResNet-50 for CIFAR-100, and WideResNet-50 (84) for
ImageNet. All architectures incorporated batch normalization and Swish activation functions (100)
throughout.

Architecture configurations varied by method: LPC, LPC-SCL, LINPEN, and NONLINPEN included
a 64-dimensional fully connected penultimate-layer. LPC-WIDE expanded this to 128 dimensions,
while LPC-NARROW reduced it to 32 dimensions for CIFAR datasets. For ImageNet, LPC em-
ployed 128 penultimate dimensions. The LPC-NOPEN, NOPEN, NOPENWD, SCL, and ARCFACE
architectures omitted the penultimate-layer entirely (see Table 4).

We trained models using AdamW (101; 102) with default PyTorch parameters. All experiments used
a batch size of 128 for CIFAR datasets and 64 for ImageNet. Weight decay was set to 5× 10−4 for
CIFAR datasets and 1 × 10−7 for ImageNet. In the architecture NOPENWD weight decay had a
larger value set to 1× 10−1. Data augmentation comprised random horizontal flips and random crops
(padding=4) for CIFAR datasets, while ImageNet used only random cropping to 224×224 pixels.
We evaluated four learning rates from a geometric sequence (10−4, 2× 10−4, 4× 10−4, 8× 10−4)
for CIFAR experiments and three rates (5× 10−5, 1× 10−4, 1× 10−3) for ImageNet, selecting the
best-performing configuration based on final test accuracy. For ARCFACE, we initialized the classifier
bias b to zero following (74).

Training protocols differed by dataset: CIFAR models trained for 1,000 epochs with cosine annealing
from epoch 200 (reducing learning rate to 1× 10−8), excluding the final classifier layer. ImageNet
models trained for 200 epochs with annealing from epoch 70 (minimum 1×10−7). Extended training
ensured CIFAR experiments operated predominantly in the terminal phase of training (TPT), defined
as achieving >99.9% training accuracy (11). ImageNet experiments did not reach TPT. We note that
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Figure 4: Graphical illustration of the dynamics leading to the emergence of binary encoding. The
three images give a qualitative representation of the outcome of a training where the scalar γ is
progressively increased - from left to right - during training. Plots in the images represent histograms
of the latent representations in a specific node of the linear penultimate-layer. In the first image, the
relatively low value of γ constrains all values close to the origin, but the volume is still large enough
for the network to differentiate between different classes in the volume. As the magnitude of γ is
increased, all latent values are drawn closer to the origin, as depicted in the second image, and it
becomes increasingly more difficult for the network to discriminate between elements of different
classes. Consequently, the network is forced to find, through numerical optimization, a more stable
solution by placing all elements belonging to the same class in the neighborhood of one of two points.
These points are positioned opposite to each other with respect to the origin, as illustrated in the third
image. The red (green) arrow represents the net effects of the binary encoding (cross-entropy) loss.

learning rate decay begins when the L2 coefficient γ is already quite large (though still increasing),
which we found provides additional training stability during the later stages of optimization.

For L2-regularized architectures, we initialized the coefficient γ = 10−4 and increased it geometri-
cally: γ ← γ ·γstep every 5 epochs (CIFAR) or 10 epochs (ImageNet). We set γstep = 2 until γ = 103,
then γstep = 1.25 until reaching γmax = 106, where it remained constant.

The supervised contrastive loss (SCL) (69) was defined as:

LSCL = − 1

N

N∑
i=1

1

|P (i)|
∑

p∈P (i)

log
exp(si,p/τ)∑
j ̸=i exp(si,j/τ)

, (65)

where N denotes batch size, P (i) represents positive samples for instance i, si,j is the cosine
similarity between samples i and j, and τ = 0.05 is the temperature parameter. We jointly optimized
LSCL with cross-entropy loss for classification.

For ArcFace (74), we applied an angular margin to scaled cosine similarities before computing
cross-entropy:

LArcFace =
1

N

N∑
i=1

CE (Softmax[s · cos(θi +m)], yi) , (66)

where the angular margin m increased from 0.1 to 0.5 and scale factor s from 16 to 64 during training.

All experiments were repeated five times with different random seeds. Results report mean ± standard
deviation across trials.

Table 5 reports the computational cost of each architecture. Surprisingly, LPC exhibits comparable
or slightly faster training times than baseline methods on CIFAR datasets, despite the additional
penultimate-layer and L2 regularization computations. However, on ImageNet, LPC requires sub-
stantially longer training time per epoch compared to NOPEN, reflecting the increased computational
overhead of the iteratively scaled L2 penalty on larger-scale datasets with higher-dimensional features.

D BINARITY HYPOTHESIS

Our assumption is that each dimension on the penultimate latent representation can assume ap-
proximately only one of two values, as illustrated in Fig. 4. In order to verify this assumption,
we fit a Gaussian mixture model (GMM) with 2 modes on each set of latent representations
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Table 6: Score ℓ and relative distance of the two distances µ over all penultimate nodes in the training
set across all experiments at the last epoch. Average and min values are shown. The coefficient of
variation measures the standard deviation of the norm of latent representations normalized by the
mean.

DATASET: CIFAR-10

MODEL SCORE MIN SCORE PEAKS DIST MIN PEAKS DIST COEFF. OF VAR.

LPC 0.37± 0.26 −0.06± 0.34 24.85± 6.70 15.82± 5.34 0.007± 0.003
LPC-WIDE 0.05± 0.18 −0.57± 0.30 18.07± 3.62 9.25± 2.88 0.012± 0.003
LPC-NARROW 0.42± 0.32 −0.10± 0.42 26.10± 8.76 15.25± 6.14 0.008± 0.004
LINPEN −1.36± 0.05 −1.42± 0.00 1.93± 0.41 0.40± 0.38 0.339± 0.030

DATASET: CIFAR-100

MODEL SCORE MIN SCORE PEAKS DIST MIN PEAKS DIST COEFF. OF VAR.

LPC 0.65± 0.16 0.47± 0.15 32.13± 5.84 26.07± 4.05 0.005± 0.000
LPC-WIDE 0.52± 0.23 0.07± 0.31 28.30± 6.63 20.16± 8.15 0.021± 0.019
LPC-NARROW 0.82± 0.02 0.63± 0.05 37.40± 0.79 30.89± 1.26 0.005± 0.000
LINPEN −1.42± 0.00 −1.42± 0.00 1.26± 0.05 0.76± 0.20 0.258± 0.013

DATASET: IMAGENET

MODEL SCORE MIN SCORE PEAKS DIST MIN PEAKS DIST COEFF. OF VAR.

LPC −0.47± 0.00 −0.54± 0.00 10.07± 0.04 9.43± 0.03 0.201± 0.000

zi ∼ N
(
µ
(1,2)
i ;σ

(1,2)
i

2)
. For each dimension i, we build a histogram with the values of all latent

representations of the training set. We then fit a bimodal GMM model on this histogram. Assuming
that P is the dimensionality of the latent representation and the dataset contains N datapoints, the
following quantities are collected: The average log-likelihood score

ℓ =
1

NP

N−1∑
n=0

P−1∑
i=0

logN
(
z
(n)
i

∣∣∣µ(1,2)
i ;σ

(1,2)
i

2)
; (67)

the average standard deviation of the two posterior distributions

σ =
1

P

P∑
i=0

(
σ
(1)
i + σ

(2)
i

2

)
; (68)

and the mean relative distance of the two peaks reweighted with the standard deviation

µ =
1

P

P∑
i=0

∥∥∥µ(2)
i − µ

(1)
i

∥∥∥(
σ
(1)
i + σ

(2)
i

)
/2

. (69)

We present these values in Table 6. The table shows the average and minimum values for the GMM
fitting score and the weighted relative distance between the peaks across all nodes. These three metrics
indicate that during training, all latent representations collapse into two distinct points, forming two
clearly separated clusters. This observation supports the binarity hypothesis, which states that each
latent representation can assume only one of two possible values. For all LPC models the binarity
hypothesis holds true for all dimensions, even in cases with the lowest recorded scores. The table also
includes the coefficient of variation for the absolute values of the latent representations evaluated for
all dimensions and samples. The low values of the coefficient of variation in the LPC architectures
indicate that in each node they can assume approximately only one of two possible values. This
observation supports our claim that the class means of the latent representations collapse onto the
vertices of a hypercube. The same analysis was performed for the LINPEN architecture, which also
features a linear layer before classification. However, in this architecture, the binarity hypothesis does
not hold.
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Figure 5: Metrics used to evaluate convergence towards Neural Collapse (NC). In the upper figure,
we examine a renormalized version of the NC1 property. This normalization process is conducted
based on the number of nodes in the penultimate-layer to ensure a fair comparison across models
with varying dimensions of the penultimate-layer. The dashed lines are drawn at the average epoch
when training reaches convergence, demonstrating that most of the training was performed in the TPT.
Below, we present metrics demonstrating convergence to an ETFS, utilizing the same parameters as
those outlined in (11).

E NEURAL COLLAPSE

In this appendix, we present all metrics related to NC as defined in (11). The entire NC phenomenon
can be summarized into four distinct components: (1) the variability of samples within the same class
diminishes as they converge to the class mean (NC1); (2) the class means in the penultimate-layer
tend towards an ETFS (NC2); (3) the last layer classifier weights align with the ETFS in their dual
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space (NC3); and (4) classification can effectively be reduced to selecting the closest class mean
(NC4).

The first property of interest is NC1, which asserts that the variability of samples within the same
class decreases in the terminal phase of training. This property is characterized by the equation
Tr
(
ΣWΣ†

B/K
)

, where ΣW is defined as

ΣW =
1

NP

N−1∑
i=0

P−1∑
p=0

(
z(i,p) − µ(p)

)(
z(i,p) − µ(p)

)⊤
(70)

where z(i,p) is the i-th latent representation with label p and, µ(p) is the mean of all representation
with label p; and ΣB is defined as:

ΣB =
1

P

P−1∑
p=0

(
µ(p) − µG

)(
µ(p) − µG

)⊤
(71)

where µG represents the global mean of all class means. The trace operation sums over all diagonal
elements, the dimensionality of which is equal to that of the penultimate-layer, P . Given the use
of different architectures with varying numbers of nodes in the penultimate-layers in our study, we
examine a renormalized version of this quantity, Tr

(
ΣWΣ†

B/K/P
)

.

The second property, NC2, characterizes the convergence of class means to a Simplex Equiangular
Tight Frame (ETF). We evaluate this convergence using three key metrics shown in the lower panels
of Fig. 5. The first metric is the equinorm property, which measures how uniform the norms of the
centered class means become:

Equinorm =
Stdp(∥µ(p) − µG∥2)
Avgp(∥µ(p) − µG∥2)

(72)

where Stdp(·) is the standard deviation across classes, and Avgp(·) is the average across classes. As
training progresses, this value approaches zero, indicating that all class means have approximately
equal norms.

The second metric is the equiangularity property, which measures how uniform the angles between
different pairs of class means become:

Equiangularity = Stdp,p′ ̸=p(cosµ(p, p
′)) (73)

where cosµ(p, p
′) =

〈
µ(p) − µG,µ

(p′) − µG

〉
/(∥µ(p) − µG∥2∥µ(p′) − µG∥2). As training pro-

gresses, this value approaches zero, indicating that all pairs of class means form equal angles.

The third metric is the maximal-angle equiangularity, which measures how close the angles between
class means are to their theoretical optimal value in an ETFS:

Maximal-Angle = Avgp,p′ ̸=p| cosµ(p, p′) + 1/(P − 1)| (74)

In an ideal ETFS, all cosines should equal −1/(P − 1), which represents the maximum separation
possible for globally centered, equiangular vectors. As training progresses, this value approaches
zero, indicating optimal angular separation.

In Fig. 5, the top image presents the normalized NC1 value, showing that it is orders of magnitude
lower in the LPC architectures compared to the baseline architecture. We also note that the other
regularization techniques SCL and ArcFace provide better convergence to NC with respect to the
baseline, but improvements remain lower with respect to LPC models.
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The other three images below demonstrate the convergence of class means toward an ETFS (NC2
property). These images show that all values reach a plateau in the terminal phase, indicating
convergence to their optimal values. It is evident that the LPC-NARROW architecture, which uses
a smaller-dimensional embedding in the penultimate-layer, tends to exhibit higher values for the
angular measures (maximum angle and equiangularity) compared to the baseline. This is because,
geometrically, it is more challenging for the network to construct an ETFS using the vertices of a
hypercube in a low-dimensional space.

By observing the metrics in Fig. 5, we conclude that while regularization techniques accelerate
convergence to NC, the best convergence is achieved with LPC. We also note that the dashed lines
represent the average epoch at which the network reached convergence, showing that most of the
training occurred after convergence, in the TPT. All metrics have reached plateaus, demonstrating
that the phenomenon of NC is fully realized. Thus, the additional benefits of LPC documented in this
paper are in addition to those typically associated with NC.

F LLMS USAGE

In the preparation of this manuscript, Large Language Models (LLMs) were utilized as an assistive
tool to enhance the quality and presentation of our work. The primary applications of the LLMs were
for text polishing and improving overall clarity and readability. Additionally, the LLM played a role
in more technical aspects of manuscript preparation, specifically in the completion and formatting
of tables. The authors reviewed, edited, and take full responsibility for all content, including any
contributions from LLMs, to ensure the scientific integrity and accuracy of this paper.
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