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Abstract

In this paper, we introduce Online Multimodal Conversational Response Generation
(OMCRG), a novel task designed to produce synchronized verbal and non-verbal
listener feedback online, based on the speaker’s multimodal inputs. OMCRG
captures natural dyadic interactions and introduces new challenges in aligning
generated audio with listeners’ facial responses. To tackle these challenges, we
incorporate text as an intermediate modality to connect audio and facial responses.
We propose OmniResponse, a Multimodal Large Language Model (MLLM) that
autoregressively generates accurate multimodal listener responses. OmniResponse
leverages a pretrained LLM enhanced with two core components: Chrono-Text
Markup, which precisely timestamps generated text tokens, and TempoVoice, a
controllable online text-to-speech (TTS) module that outputs speech synchronized
with facial responses. To advance OMCRG research, we offer ResponseNet, a
dataset of 696 detailed dyadic interactions featuring synchronized split-screen
videos, multichannel audio, transcripts, and annotated facial behaviors. Compre-
hensive evaluations on ResponseNet demonstrate that OmniResponse outperforms
baseline models in terms of semantic speech content, audio-visual synchronization,
and generation quality. Our dataset, code, and models are publicly available at
https://omniresponse.github.io/.

1 Introduction

Generating realistic human conversational responses has substantial potential across numerous appli-
cations, spanning from human-computer interactions [39], immersive metaverse experiences [30], to
mental health interventions [31]. However, human communication is inherently multimodal and com-
plex. In face-to-face interactions, speakers convey their messages not only through spoken language
but also through non-verbal cues, such as lip movements and facial expressions. Correspondingly,
listeners provide multimodal responses consisting of verbal (e.g., audible affirmations or disapprovals)
and non-verbal responses (e.g., subtle head nods). While considerable efforts [10, 67] have been dedi-
cated to modeling text dialogue, particularly in language-based interfaces [35], modeling multimodal
conversational interactions has been much underexplored.

In this paper, we explore a new task: learning to simultaneously generate verbal and non-verbal
listener 2 responses in an online dyadic conversation setting, conditioned on the speaker’s verbal
and non-verbal inputs (see Figure 1). We refer to this task as Online Multimodal Conversational
Response Generation. Although various audio-to-video generation methods (e.g. talking head
generation [82, 84, 79]) have shown impressive performance, these methods focus on synthesizing
visual content aligned with input audio signals, which ignores explicitly modeling multimodal
conversational interactions. Recent studies [41, 47, 61] propose to generate facial reactions for a
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2Previous studies [8, 23] defined a speaker–listener framework for dyadic interactions, in which the listener

both attends to the speaker’s utterances and provides verbal and nonverbal feedback.
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Figure 1: Illustration of the new OMCRG task. (a) In offline tasks, the generation model generates
the listener’s full response only after receiving the entire input sequence from the speaker. (b) Differ-
ently, OMCRG task requires sequentially processing the speaker’s incoming input and generating
multi-modal responses for the listener on the fly.

listener; however, these methods overlook verbal responses, which are essential to engage in dialogue
fully.

The OMCRG task is complex and poses major challenges in three aspects. First, it is non-trivial
to directly achieve synchronization between the generated audio and facial reactions of the listener
for OMCRG task. As revealed in existing talking-head works [82, 66], achieving precise alignment
between facial motion and audio is already challenging, even when the entire audio signal is given.
In contrast, OMCRG is to generate both audio and facial reactions simultaneously and incrementally.
Such online and multimodal generation settings make face-audio synchronization much more difficult,
due to the high variability and semantic ambiguity of audio modality. Second, due to the online
setting, the model has to reason over partial speaker input and generate audio-visual responses on
the fly, which requires both powerful audio-visual understanding and generation abilities. While
powerful pre-trained models have been developed for language and vision, audio modeling remains
comparatively underdeveloped, making it more challenging to generate expressive and appropriate
audio and facial reactions. Third, the lack of high-quality datasets for dyadic multimodal interaction
significantly hinders the development of OMCRG.

We address the above challenges by proposing a unified framework, OmniResponse, which autore-
gressively generates high-quality multimodal listener responses. Rather than directly synchronizing
generated audio and facial reactions, our key insight is to introduce text as an intermediate modality
for the OMCRG task. Compared with audio, text offers clearer semantics and reduces uncertainty,
making it more tractable for learning multimodal reaction generation. However, text is a static
modality without inherent temporal information, posing challenges for synchronizing spoken words
with visual frames in an autoregressive generation setting. To overcome this, we introduce a Multi-
modal Large Language Model (MLLM) augmented with two innovative modules: Chrono-Text and
TempoVoice. The Chrono-Text module temporally anchors generated textual tokens by incorporating
additional tokens (markers) that explicitly encode time, ensuring alignment between words and visual
frames. TempoVoice is a controllable, online text-to-speech module designed to produce synchro-
nized audio from these temporally annotated textual embeddings, ensuring accurate synchronization
between audio and facial reactions.

In addition, we construct a high-quality dataset named ResponseNet, comprising 696 dyadic conver-
sation pairs. Each pair includes synchronized split-screen video streams of both speaker and listener,
multichannel audio recordings, verbatim text transcriptions, and detailed facial-behavior annota-
tions (i.e., facial expressions and head movements). Through extensive retrieval for scarce dyadic
video data, rigorous content filtering, meticulous camera-shift alignment, and manual annotation,
ResponseNet delivers a unique and valuable resource for benchmarking OMCRG.

Our contributions are summarized as follows: (1) we present OmniResponse, the first online model to
jointly process and generate synchronized streams of conversational human behavior, establishing a
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foundation for future work in human–agent interaction; (2) we introduce ResponseNet, an annotated
dyadic conversation dataset and benchmark, enabling standardized evaluation of OMCRG models.

2 Related Work

Facial Reaction Generation. Facial reaction generation (FRG) [63, 83, 60] is a particularly chal-
lenging new task as it requires to predict the non-deterministic human facial reactions under different
contexts. Early FRG approaches [27, 28] relied on Generative Adversarial Networks (GANs) [43, 21]
typically conditioned the generation process on the speaker visual-speech behaviors. Since FRG
is a non-deterministic process (i.e., different facial reactions can be triggered by the same speaker
behavior [63]), recent advances have shifted towards more sophisticated generative frameworks. For
example, Ng et al. [47] introduces a non-deterministic approach based on Variational Autoencoders
(VAEs) [32], which enabled sampling diverse human facial motions. This work was complemented
by a novel dataset containing paired recordings of active speakers and silent listeners, providing
essential training data for modeling natural reactions. Zhou et al. [83] developed a specialized
speaker-listener video dataset for head motion generation, which is somewhat limited by its relatively
short clip durations (median length of 9.0 sec) and modest dataset scale (1.58 hours total), and thus
constraining their model’s ability to learn long-term temporal dependencies. More recent works have
attempted to address these limitations through innovative architectural choices or larger-scale datasets
[61, 62]. Luo et al. [41, 15] and Zhu et al. [85] proposed transformer-based [70] VAE and diffusion
models [64, 24], respectively, training them on a hybrid collection of videos from three different
human-human dyadic interaction datasets [12, 57, 50].

Spoken Dialogue Models. Spoken dialogue models generate natural speech responses in real-time,
requiring systems to process both verbal content and paralinguistic elements of communication.
Early approaches including AudioPALM [58], Spectron [46], and SpeechGPT [77] adopted pipelines
combining automatic speech recognition (ASR), text generation, and text-to-speech (TTS) synthesis.
However, their requirement to complete the entire response before the speech generation makes them
unsuitable for live human-computer interactions. Recent developments [44, 18, 49] have shifted
towards end-to-end approaches that directly model speech-to-speech generation. Representative
examples include Moshi et al. [18] and dGSLM [49], which operate as full-duplex speech dialogue
systems capable of processing continuous speaker input while generating appropriate vocal responses.
While these advances are significant, they focus exclusively on speech and text modalities, overlooking
the crucial visual aspects of human communication. Even recent work by Park et al. [51] that includes
visual-speech data is limited to intermittent speaker-listener interactions.

Autoregressive Generative Model. Transformer-based autoregressive models [70] have revolution-
ized numerous domains in AI, demonstrating remarkable success in language modeling [10, 67],
multi-modal processing [40, 3, 34, 45], and generative tasks [56, 81, 74, 73, 72, 65]. Their success
can be attributed to their inherent scalability and ability to unify multi-modal training under a single
autoregressive objective, enabling seamless integration of different data modalities. The adaptation
of transformers to visual tasks was pioneered by approaches such as VQVAE [69] and VQGAN [19],
which introduced effective methods for quantizing visual information into discrete tokens. They
align visual generation with the successful paradigm of language modeling by employing decoder-
only transformers to predict sequences of image tokens. Subsequent research [13] has focused on
enhancing both the efficiency of tokenization processes [42, 37] and sampling procedures [76], while
simultaneously scaling up model architectures to handle increasingly complex tasks.

3 Methodology

Problem Definition. Let Fs
t and As

t be the speaker’s facial and audio cues at time t, respectively.
Given the speaker’s streaming facial sequence Fs

1:t and audio sequence As
1:t from time 1 to t, the

goal of OMCRG is to online generate facial reactions Fl
t and audio feedback Al

t at time step t.
Such multi-modal generation has been much less underexplored, different from recent works [83,
41, 18, 77] mainly focusing on single-modal response generation. To provide natural responses, it is
crucial to ensure that the generated facial reactions and audio are temporally synchronized and react
appropriately to the speaker. However, this is significantly challenging due to the inherent difficulty
of online audio-visual understanding and generation.
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Figure 2: Overview of the proposed OmniResponse. The model takes textual conversational history
and newly coming multimodal information (e.g., facial cues) from the speaker and listener as input,
and generates temporally synchronized facial and textual responses for the listener by leveraging a
pre-trained LLM enhanced with our proposed Chrono-Text Markup. The generated text embeddings
are converted into audio synchronized with the facial response by the proposed TempoVoice module.

Instead of generating audio and visuals directly, we treat text as an intermediate modality and
decompose OMCRG into two subproblems: (i) joint text–and–face response generation—producing
temporally aligned facial reactions Fl

t and textual responses Wl
t; and (ii) synchronous text-to-speech

synthesis—converting Wl
t into audio waveform segments Al

t that are aligned with the facial reactions.
However, because text lacks explicit temporal information, achieving tight alignment with facial and
audio streams is challenging for both subproblems. We address this issue with two novel modules.

Overview. We present OmniResponse, a novel framework for the OMCRG task (see Figure 2), where
OmniResponse is a new MLLM enhanced by two proposed key components: Chrono-Text Markup
and TempoVoice. In particular, our OmniResponse leverages the capability of a pretrained LLM to
understand and interpret the speaker’s multimodal inputs and autoregressively generate meaningful
responses in terms of textual and facial responses. To address the lack of temporal information
in text, the proposed Chrono-Text Markup embeds explicit temporal marks between text tokens,
endowing the input and output text with time-aware embeddings and ensuring precise alignment with
the generated facial reactions. Furthermore, the proposed TempoVoice generates audio responses
temporally synchronized with both the generated textual response and the listener’s facial movements.

3.1 OmniResponse

Model Architecture. As shown in Figure 2, OmniResponse processes multiple modalities from the
speaker and the listener, temporally aligns different modalities, and outputs synchronous multimodal
responses to the speaker. In particular, at each time step t, OmniResponse consumes: (1) Static
text inputs: a task-specific instruction prompt Winstruct and the conversation history prior to time τ
(τ < t), denoted Whistory,<τ ; and (2) Temporal inputs: the previously generated facial features of the
listener F̂l

τ :t−1, the facial features of the speaker Fs
τ :t−1 and the accumulated text sequences from

both participants (Ws
τ :t−1, Ŵl

τ :t−1) over the interval [τ, t− 1]. Using these inputs, OmniResponse
predicts the next facial features F̂l

t, the verbal response Ŵl
t, and the corresponding speech segment

Âl
µ in the current frame, ensuring precise temporal alignment in all modalities. Formally, we defined

this process as:

{F̂l
t, Â

l
µ,Ŵ

l
t} = M

(
Winstruct,Whistory,<τ ,F

s
τ :t−1, F̂

l
τ :t−1, W

s
τ :t−1,Ŵ

l
τ :t−1

)
.
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Vision Projection. We introduce the vision projection layer to enable the pretrained LLM (Phi-3.5
mini-instruct with 3.8B parameters [1]) to process visual facial features. The layer is implemented as
a multilayer perceptron (MLP) that maps the the listener’s and speaker’s past facial features F̂l

1:t−1
and Fs

1:t−1 into embedding features V1:t−1 aligned with the LLM token space. During autoregressive
generation, the MLLM employs causal self-attention [70] to model temporal dependencies between
the next token and previous one, and outputs the next listener vision embedding V̂l

t.

Vision Decoder. A learnable vision decoder, comprising transformer layers, converts V̂l
t back into

the original coefficient space to produce the predicted listener facial coefficients F̂l
t. Subsequently, a

pre-trained visual renderer maps these visual coefficients to 2D frames, using a given portrait image.
Please refer to the appendix for additional details.

Chrono-Text Markup. Visual frames inherently encode temporal information, whereas text tokens
are static and lack any temporal dimension. Additionally, visual frames and textual tokens typically
differ in length due to their fundamentally different modalities, making unified autoregressive
prediction challenging. To resolve this mismatch, we propose Chrono-Text Markup, a novel yet
straightforward approach that explicitly embeds temporal information into textual data, aligning
the textual sequence precisely with the visual frame sequence. Unlike prior approaches such as
TimeMarker [14], which inserts timestamps only between visual frames or the method by Ng et
al. [48], which integrates timestamp embeddings into textual tokens, our method employs only two
special markers, ensuring that the textual and visual sequences have identical lengths. Specifically, we
insert two special tokens into the transcript: [PAUSE] to denote silent intervals between utterances,
and [LASTING] to indicate that the previous textual word continues speaking to the current time.
Each text token is placed between pause and lasting tokens.

Multimodal Context Modeling. Our synchronous Multimodal LLM integrates both static and
dynamic inputs: Static inputs: the instruction prompt and the accumulated conversation history.
Dynamic inputs: frame-aligned visual embeddings and timestamped textual tokens for both speaker
and listener. All tokens are jointly processed by an omni-attention mechanism that enforces causal,
cross-modal interactions. Under this operation, each visual token attends to preceding visual tokens
and to text tokens marked by chrono-text markers at earlier timestamps; similarly, each dynamic
text token attends to past visual and textual tokens. However, this omni-attention prevents dynamic
tokens from looking at future tokens. This ensures the generation adheres to temporal dynamics and
cross-modal interactions. Meanwhile, static tokens remain globally accessible, ensuring that every
dynamic update remains guided by the overarching instructions.

TempoVoice. Generating natural speech that is precisely synchronized with text and facial frames
poses a significant challenge. To address this, we introduce a dedicated synthesis pipeline, TempoVoice.

Audio De-Tokenizer

Positional Encoding

Trans Decoder Layer

Linear Projection

Next Audio Response:

Generated Text
Hidden StatesVoiceprint

Positional Encoding

Query

Key & Value

Zero-Initialized 
Placeholders

Figure 3: Architecture of TempoVoice.
TempoVoice transforms textual hidden-
state embeddings into audio segments.

Our framework begins by combining the listener’s
voiceprint, extracted via the Spark-TTS global tok-
enizer [71] to capture speaker identity, with the hidden
states of the generated text (see Figure 3). We then
apply sinusoidal positional encodings to the merged em-
beddings. Since audio-token sequences typically differ
in length from visual frames and textual tokens, we
prepend a series of zero-initialized placeholder tokens,
each endowed with positional information. These place-
holders serve as queries in a cross-attention module
within a Transformer decoder, attending over the fused
text–voice representations. This mechanism enables
fully synchronous, autoregressive generation of audio
tokens in lockstep with visual frames and text tokens. Fi-
nally, a linear projection layer maps the decoder outputs
to logits over the discrete audio-codec vocabulary.

The decoder logits are then quantized into discrete audio
semantic tokens Âµ, as defined by the Spark-TTS audio
tokenizer [71]. Conditioned on these semantics and
the global speaker-identity embeddings, the tokenizer
reconstructs the continuous waveform segment.
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3.2 Training Objectives

To train OmniResponse, the training objective is a weighted combination of text generation loss Ltext,
vision reconstruction Lvision, and audio generation loss Laudio:

L = Ltext + λvisionLvision + λaudioLaudio, (1)

where λvision and λaudio are the scaling factors balancing text, vision, and audio loss terms.

Text Generation Loss. The text loss encourages accurate next-token prediction conditioned on both
speaker context and past listener states:

Ltext = −
∑
t

log pθ
(
W l

t

∣∣ Winstruct, Whistory,<τ , F
s
τ :t−1, F̂

l
τ :t−1, W

s
τ :t−1, Ŵ

l
τ :t−1

)
. (2)

Vision Reconstruction Loss. To align predicted and ground-truth facial dynamics, we apply an ℓ2
reconstruction loss on the listener’s feature embeddings:

Lvision =
∑
t

∥∥F̂l
t − Fl

t

∥∥2
2
. (3)

Audio Generation Loss. The audio loss operates over discrete semantic tokens Al
µ, indexed by

µ, which correspond to frame indices t = µk (k is the downsampling factor). We maximize the
likelihood of each token conditioned on previous audio semantics and the listener’s hidden states:

Laudio = −
∑
µ

log pθ
(
Al

µ

∣∣ Al
<µ, Ht−k+1:t

)
, (4)

where Ht−k+1:t denotes the model’s hidden representations for the corresponding listener text tokens
Ŵl

t−k+1:t. This formulation ensures coherent alignment across modalities throughout generation.

4 Dataset Construction

Existing publicly available dyadic video datasets do not satisfy the requirements of the OMCRG
task (See Figure 1). For example, mono-view talking-head datasets and offline dialogue corpora
(e.g., MultiDialog [51]) do not offer split-screen recordings that capture speaker and listener simul-
taneously. Others, such as IEMOCAP [11], feature predominantly side profile views recorded in
noisy environments and provide only mixed audio channels, thus preventing separate analysis of
each participant’s speech. Furthermore, datasets such as ViCo [82], ICD [47], and REACT2024 [61]
lack comprehensive textual annotations, suffer from low video resolution [82, 11, 61], or exhibit
inconsistent spoken languages [61]. To fill the dataset gap, we introduce ResponseNet that comprises
696 temporally synchronized dyadic video pairs, totaling over 14 hours of natural conversational
exchanges. Each pair provides high-resolution (1024× 1024) frontal-face streams for both speaker
and listener, along with separated audio channels to support fine-grained analysis of verbal and
nonverbal behavior. Table 1 shows ResponseNet is the only dataset that satisfies the key requirements:
(1) online video streaming, (2) separate audio channels, and (3) textual word-level annotations for
both participants.

The construction of ResponseNet follows a rigorous workflow that integrates automated tools with
extensive human-in-the-loop curation. (1) Initially, split-screen videos featuring simultaneous appear-
ances of speaker and listener are sourced from YouTube according to predefined topic and quality
criteria. These clips are then filtered to remove low-resolution, noisy, or frequent camera transitions.
(2) Human annotators perform a thorough review to correct camera-view mis-alignments and ensure
precise temporal synchronization between streams. (3) Next, mixed-channel audio tracks are auto-
matically separated into discrete speaker and listener channels using speaker separation tools such as
MossFormer2 [80] and subsequently verified and refined by experts. Finally, word-level transcripts
are generated via automatic speech recognition [55] and meticulously proofread to guarantee accuracy.
By combining automation with meticulous manual oversight across data sourcing, preprocessing,
alignment, audio separation, and annotation, this pipeline yields a high-quality, richly annotated
dyadic video corpus ideally suited for multimodal conversational response generation.

6



Table 1: Comparison of conversation datasets.   and   denote speaker and listener data re-
spectively. ResponseNet provides complete multimodal data (speaker+listener) with their separated
audios.

Dataset Video Audio Text Online Separated Audios # Dialogues Total Duration

MultiDialog [51]  +   +   +  ✗ ✓ 8,733 339.7h
ICD [47]  +   +  ✗ ✓ ✓ 182,132 72h
ViCo [83]  +    ✗ ✓ ✗ 483 1.6h
REACT2024 [62]  +   +  ✗ ✓ ✓ 5,919 71.8h
IEMOCAP [11]  +   +   +  ✓ ✗ 151 11.5h
ResponseNet  +   +   +  ✓ ✓ 696 14.2h

Figure 4: Statistics of ResponseNet. (a) Distribution of video clip durations. (b) Distribution of
dyadic conversation topics. (c) Word cloud of spoken words in dyadic conversations.

The statistics of ResponseNet are shown in Figure 4. The durations of speaker-listener video clips
range from 27.13 seconds (short conversations) to 863.13 seconds (long conversations) in Respon-
seNet. Figure 4.(a) shows that the average clip duration in ResponseNet is 73.39 seconds, significantly
longer than that of other dyadic datasets such as REACT2024 (30 seconds), and ViCo (9 seconds).
This extended duration ensures that each clip captures sufficient conversational exchanges. Fig-
ure 4.(b) illustrates that the conversations span a diverse range of topics, including professional
discussions (e.g., economic interviews, news commentaries), emotionally driven interactions (e.g.,
intimate conversations), educational settings (e.g., teaching interviews), and interdisciplinary expert
discussions. Figure 4.(c) presents a word cloud highlighting the most frequent words in the conversa-
tions. Such diversity shows that ResponseNet captures rich and varied human-human interactions
rather than being restricted to narrow or monotonic conversation patterns.

5 Experiments

Implementation Details. Our framework was implemented using PyTorch [52] and trained on four
NVIDIA Tesla A100 GPUs. The model optimization was performed using the AdamW optimizer [33]
with a learning rate of 2× 10−5, β1 = 0.9, β2 = 0.999, and a weight decay of 10−4, accompanied
by a cosine learning rate scheduler. Training was executed with a batch size of one for 2,000 epochs.
Additionally, we fine-tuned the LLM using the LoRA [26] technique with a LoRA rank of 64 and a
LoRA alpha value of 16. More implementation details are provided in the Appendix.

Evaluation Metrics. Quantitatively evaluating the quality of multimodal response generation
remains non-trivial. We thereby employ comprehensive metrics to evaluate generation results across
text, audio, and visual modalities. For text response, we use METEOR [9], BERTScoreF1 [78],
and ROUGE-L [38] to measure how appropriate and natural the generated responses are, based
on reference responses from the ResponseNet test set. We also adopt Distinct-2 [36] to evaluate
diversity through the ratio of unique bi-grams. For audio response, we adopt UTMOSv2 [6], a neural
MOS predictor that estimates the perceptual naturalness, and employ LSE-D [54, 16] (Lip–Speech
Error Distance) to evaluate synchronization between generated speech and lip movements. For
facial response, we compute Fréchet Distance (FD) [4] between real and generated facial-feature
distributions, and Fréchet Video Distance (FVD) [68] to assess the spatial–temporal visual quality of
generated video sequences.
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Table 2: Quantitative Results on ResponseNet test set.

Model Text Audio Video
METEOR ↑ BERTScoreF1 ↑ ROUGE-L ↑ Distinct-2 ↑ LSE-D ↓ UTMOSv2 ↑ FD ↓ FVD ↓

Ground-Truth – – – 0.835 8.96 1.56 – –

Offline Text Dialogue Generation System
GPT-4o [2] 0.167 0.805 0.079 0.928 – – – –
GPT-4 [2] 0.163 0.822 0.082 0.960 – – – –
GPT-o1 [2] 0.189 0.822 0.113 0.948 – – – –
Qwen-7B-Chat [7] 0.167 0.807 0.090 0.920 – – – –
Claude-Sonnet-4 [5] 0.183 0.807 0.101 0.966 – – – –
Gemini-2.5-Flash [17] 0.175 0.824 0.085 0.932 – – – –
DeepSeek-R1 [22] 0.173 0.815 0.078 0.981 – – – –

Online Auditory Dialogue Generation System
Moshi [18] 0.120 0.818 0.078 0.499 – 2.21 – –

Facial Reaction Generation System
ReactFace [41] – – – – – – 32.72 340.28
ViCo [83] – – – – – – 57.13 325.65

Online Multimodal Conversational Response Generation Baseline
LSTM [25] 0.042 0.716 0.000 0.000 9.72 1.21 6.51 320.92
Audio-visual LLM 0.030 0.662 0.020 0.155 10.03 1.32 580.86 681.55
OmniResponse (Ours) 0.141 0.806 0.081 0.882 9.56 1.41 15.46 314.94

5.1 Quantitative Results

To the best of our knowledge, few works have explored the OMCRG task before. We build two
baselines and compare them in Table 2: (1) LSTM-based method employing a recurrent neural
network [25] for temporal sequence modeling; (2) Audio-visual LLM taking speaker–listener audio
and visual inputs and leveraging pre-trained LLM to generate audio–visual frames autoregressively.
Table 2 further reports the generation performance of representative single-modality baselines,
including offline, text-only dialogue models (e.g., GPT variants [2], Qwen-7B-Chat [7], Claude-
Sonnet-4 [5] (version 2025-05-14), Gemini-2.5-Flash [17], and DeepSeek-R1 [22] (version 2025-
05-28)), online audio-only generation models (e.g., Moshi [18]), and facial reaction generation
approaches [41, 83]. Different from these methods focusing on generating a single modality, our
method enables online, synchronized generation across audio, visual, and textual modalities for
modeling human conversation.

Table 2 shows that our OmniResponse achieves the best performance in dialogue speech content
(METEOR, BERTScoreF1, ROUGE-L, Distinct-2), audio quality (UTMOSv2), audio–visual syn-
chronization (LSE-D), as well as temporal consistency and visual quality (FVD). Although the LSTM
baseline achieves a lower FD owing to its tendency to produce repetitive static visual output, it fails to
generate rich, synchronized multimodal responses. Audio-Visual LLM does not incorporate the text
modality, compared to our method. Consequently, Audio-Visual LLM achieves much lower speech
content quality (METEOR and BertScoreF1) and struggles with audio–visual synchronization (LSE-
D) than our method. Although Audio-Visual LLM leverages a powerful LLM, it is still challenging
to directly synchronize generated audio with facial reactions, especially in the absence of a strong
audio foundation model.

Our OmniResponse model significantly outperforms Audio-visual LLM across all evaluated metrics,
including non-verbal ones. These results demonstrate that introducing text as an intermediate modality
greatly enhances the naturalness and realism of non-verbal responses, as reflected by the FD and
FVD scores. Moreover, we introduce a novel framework that effectively adapts pre-trained LLMs for
audio–visual generation with the proposed Chrono-Text Markup and Tempo Voice.

5.2 Qualitative Results

Figure 5 presents a qualitative result. The synthesized listener remains silent while the speaker is
speaking, but then produces an immediate or delayed response at the end of each speaker turn. This
behavior demonstrates that OmniResponse effectively captures the temporal dynamics of online
dyadic conversation and generates responses at appropriate timestamps. For example, between
100.97 and 132.05 s, the listener interjects briefly between 120.13 and 121.57 s in response to
the speaker’s ongoing content, reflecting natural human conversational interaction. In contrast, a
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<PAUSE><PAUSE>…
….
<PAUSE><PAUSE>…
<PAUSE><PAUSE>…

We were both so you’re free

This part of the conversation and then I want to 
turn to your AI project, but just the idea of the 
masses. People are born into circumstances 
that they can't help. 
…. 
No w ta ki n g  th a t  c o n te xt,  wh a t i s  th e 
appropriate way to help the poor, the weak in 
the sense of being born somewhere without 
advantage, without being able to maybe 
create wealth, without access to some of the 
opportunities other people have access to? 
…. 
How do we help the weak, the poor, those that 
really could use just a step up on a ladder?

I’m so excited that’s going to be a real ly 
interesting question. I think it would just of the 
time and what you do with your life but that’s a 
good thing to be able about something like this.

Everyone has helped some way. There have 
been people who helped me. There have been 
people generous along the way.
….
We need to steal from someone or confiscate 
from someone to give and redistribute 
somewhere else.
But when you just give and something is, I 
don't know, handed to you too easily.
and you don't appreciate it, that's not really 
helpful either.

Well, obviously, the honest one.

I’m sure too. But what is their justification and 
were going to be talking about this topic.
So I’m actually curious if you know the people 
that were on your side, and I’m curious about 
why it was so difficult for you to 
…. 
Oh yeah, I was just going to say that you know 
we need them in the world they do a lot of good 
stuff and then there’s like this other thing.

0.00

91.50

96.43

100.37

97.31

98.51

100.97

132.05

<PAUSE><PAUSE>…
<PAUSE><PAUSE>…
<PAUSE><PAUSE>…
….
….
….
….
….
….
….
….
….
….
<PAUSE><PAUSE>…
<PAUSE><PAUSE>…
<PAUSE><PAUSE>…

120.13

121.57 

131.70 

142.57 

<PAUSE><PAUSE>…
….
<PAUSE><PAUSE>…

Timeline (second)

Speaker Listener

Generated Listener Multi-model Response 

Figure 5: Qualitative Results. Given the speaker’s audio and video streams and corresponding
utterances (left), OmniResponse autoregressively generates synchronized visual, audio, and textual
response streams (right). For clarity, [LASTING] tokens are removed from the generated dialogue.

conventional pipeline that integrates Automatic Speech Recognition (ASR), dialogue generation, TTS,
and talking-head components waits for a predefined silence threshold before producing an offline
multimodal response, thus diminishing conversational behaviors such as interruptions, backchannels,
questions, and immediate feedback. In contrast, OmniResponse maintains the continuous flow of
dyadic conversation by continuously modeling and generating synchronized time series streams of
textual, visual, and audio outputs.

5.3 Ablation Studies

Effectiveness of Chrono-Text Markup. We construct baselines removing the proposed Chrono-Text
Markup from our OmniResponse. In the baselines, each predicted word is assigned a timestamp
indicating when it emerges; if this timestamp falls within a temporal window around the current
time, the word is retained and appended to the spoken output; otherwise, it is discarded. As shown
in the last rows of Table 3, incorporating Chrono-Text Markup significantly improves audio-visual
synchronization, reducing the LSE-D score from 11.51 to 9.56. In addition, it enhances the semantic
alignment of speech with conversational context, increasing METEOR from 0.122 to 0.141 and
BERTScoreF1 from 0.766 to 0.806. Improvements in FD and UTMOSv2 further indicate that Chrono-
Text Markup boosts the quality of the generated audio and facial responses. These results demonstrate
the effectiveness of Chrono-Text Markup in generating high-quality multimodal responses.

Effectiveness of TempoVoice. To study the effect of our TempoVoice, we remove it from our
framework and instead directly feed the hidden states, which are trimmed or padded to match the
target audio length, into a multi-layer perceptron to predict audio token logits. As shown in Table 3,
removing TempoVoice degrades audio–visual synchronization and reduces the quality of generated
audio responses, where UTMOSv2 drops from 1.41 to 1.23, and LSE-D increases from 9.56 to 11.91.
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Table 3: Ablation study on the effects of the proposed Chrono-Text Markup and TempoVoice.

Chrono-Text
Markup

Tempo
Voice METEOR BERTScoreF1 LSE-D UTMOSv2 FD

✗ ✗ 0.090 0.755 13.64 1.21 596.27
✓ ✗ 0.128 0.778 11.91 1.23 19.58
✗ ✓ 0.122 0.766 11.51 1.39 23.42
✓ ✓ 0.141 0.806 9.56 1.41 15.46

Table 4: User study (A/B preference; higher is better). Each cell shows the percentage of participants
preferring Ours.

Criteria Ours vs. LSTM Ours vs. Audio–Visual LLM

Speech Content Appropriateness 75.5% 81.6%
Audio Speech Quality 77.6% 85.7%
Visual Quality 67.3% 93.4%
Audio–Visual Synchronization 91.8% 95.9%

These results highlight the importance of TempoVoice in temporally aligning audio with the other
modalities and enhancing the quality of the generated audio.

5.4 User Study

We conducted a user study with 49 participants (28 male, 21 female). Each subject viewed 16
randomly ordered clips and rated speech content appropriateness, audio speech quality, visual quality,
and audiovisual synchronization. All participants were proficient in English (53.1% reported advanced
proficiency or daily-communication ability). Educational attainment was high: 95.9% held at least an
undergraduate degree, 44.9% held a master’s degree, and 18.4% held a Ph.D. Ages were distributed
as follows: 14.3% under 25, 34.7% aged 26–35, 24.5% aged 36–45, and 26.5% aged 46–55. In direct
A/B preferences, “Ours” achieved a minimum preference of 67.3% (speech content appropriateness
vs. LSTM) and a maximum of 95.9% (audiovisual synchronization vs. Audio–Visual LLM).

6 Conclusion and Discussion

We have presented OmniResponse, an online multimodal generation model that produces verbal
and nonverbal listener responses to a speaker’s multimodal behaviors. OmniResponse integrates
techniques for processing multimodal inputs, synchronizing across modalities, and aligning responses
with the speaker’s content. To enable evaluation of this task, Online Multimodal Conversational
Response Generation in Dyadic Interactions, we introduce ResponseNet, a dataset containing parallel
recordings of speaker and listener streams. Our model and dataset lay the foundation for future
research in this emerging field. Experimental results demonstrate that OmniResponse significantly
increases speech semantic content, audio-visual synchronisation, audio and visual quality.

Limitations. While our approach performed well on the evaluated datasets, the remaining challenges
include the proposed approach (e.g., its results) may largely depend on the quality and diversity of
training data, replying on accurate speaker–listener segmentation and can be negatively affected in
noisy or overlapping conversations. Additionally, generating well-aligned multi-modal responses
remains difficult in fast-changing or emotionally rich interactions, while our paper lacks fairness
analysis. Future work will focus on improving these aspects.

Risks and Potential Misuse. This system is developed for multi-modal conversational AI, but
certain risks should be acknowledged. For instance, realistic synthetic contents could be misused [59]
for impersonation or misleading information. During real-time human-user interactions, users may
also develop misunderstandings or excessive reliance on the system without proper contents control.
To avoid these risks, we recommend clear labeling of the generated contents, appropriate usage
monitoring, and the inclusion of protective measures [20, 75] (e.g., Deepfake Detection [53, 29])
against potential misuse.
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depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our work focuses on applications of multimodel generative model.

Guidelines: The paper does not include theory assumptions or proofs

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed implementation information in the main paper, including
model architecture, training objectives, optimization settings, and evaluation protocols and
so on in our supplementary mateirals.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in the supplemental
material?

Answer: [No]

Justification: All code and data will be made available upon acceptance of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provided implementation details in our main manuscript and more rele-
vant611 information in our supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Broader impacts are discussed in our supplementary materials
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We discuss safeguards in the supplementary materials

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce a new dataset and codebase as part of this work. Due to ongoing
internal approval, the full release will be made publicly available upon paper acceptance.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We collected videos from platforms that explicitly grant permission for research
usage. The videos do not contain personally sensitive or private content, and are used in
accordance with each platform’s terms of service. No direct interaction or compensation
with individuals was involved.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This study does not involve any direct interaction with human subjects. All
data were collected from publicly available sources

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We used a large language model solely for minor linguistic improvements.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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