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Abstract

Federated Averaging/local SGD is the most com-
mon optimization method for federated learning
that has proven effective in many real-world ap-
plications, dominating simple baselines like mini-
batch SGD for convex and non-convex objectives.
However, theoretically showing the effectiveness
of local SGD remains challenging, posing a huge
gap between theory and practice. In this paper, we
provide new lower bounds for local SGD for con-
vex objectives, ruling out proposed heterogene-
ity assumptions that try to capture this “unrea-
sonable” effectiveness of local SGD. We further
show that accelerated mini-batch SGD is, in fact,
min-max optimal under some of these heterogene-
ity notions. Our results indicate that strong con-
vexity of a client’s objective might be necessary to
utilize several heterogeneity assumptions (Wang
et al., 2022). This also highlights the need for
new heterogeneity assumptions for federated op-
timization for the general convex setting, and we
discuss some alternative assumptions.

1. Introduction
We consider the following distributed optimization problem
on M machines,

min
x∈Rd

F (x) :=
1

M

∑
m∈[M ]

Fm(x)

 , (1)

where Fm := Ezm∼Dm [f(x; zm)], f(·; ·) is a convex and
differentiable function, and Dm is the data distribution on
machine m. We assume that for all m ∈ [M ]1, the objective
function Fm is smooth, and the averaged objective F has
bounded optima.

*Equal contribution 1Toyota Technological Institute, Chicago,
USA 2Department of Computer Science, Stanford University, USA.
Correspondence to: Kumar Kshitij Patel <kkpatel@ttic.edu>.

1We denote the set {i, i+ 1, . . . , n} by [i, n] and when i = 1
by [n].

Assumption 1.1 (Smoothness). For all m ∈ [M ], Fm :
Rd → R is convex and H-smooth, i.e., for any x, y ∈ Rd,
Fm(x) ≤ Fm(y) + ⟨∇Fm(y), x− y⟩+ H

2 ∥x− y∥22.

Assumption 1.2 (Bounded Optima). For all x⋆ ∈
argminx∈Rd F (x), ∥x⋆∥2 ≤ B.

We want to solve problem (1) in the intermittent communi-
cation (IC) setting (Woodworth et al., 2018; 2021) where
the machines work in parallel and are allowed to communi-
cate R times with K time steps in between communication
rounds. Thus optimization occurs over T = KR time steps.
We assume each machine can access stochastic gradients
for its objective during these time steps.

Assumption 1.3 (Unbiasedness and Bounded Variance).
All machines m ∈ [M ] sample zmt ∼ Dm at time t to
obtain ∇f(.; zmt ) s.t., (i) Ezm

t ∼Dm [∇f(.; zmt )] = ∇Fm(.),

and (ii) Ezm
t ∼Dm

[
∥∇f(.; zmt )−∇Fm(.)∥22

]
≤ σ2.

While several algorithms have been proposed for solv-
ing problem (1), the most popular algorithms in practice
(Kairouz et al., 2019; Wang et al., 2021) are (variants of)
local SGD/Federated Averaging (McMahan et al., 2016;
Lin et al., 2018) and large mini-batch SGD/Federated SGD
(Dekel et al., 2012; Woodworth et al., 2020a). With stochas-
tic gradient access, we can write the local SGD updates2 as
follows for all m ∈ [M ], t ∈ [0, T − 1] (initialize xm

0 = 0),

gmt = ∇f(xt; z
m
t ), zmt ∼ Dm,

xm
t+1 =

xm
t − ηgmt , if (t+ 1) ∤ K
1
M

∑
n∈[M ]

(xn
t − ηgnt ) , if (t+ 1) | K (2)

where we say a | b if b divides a, otherwise we say a ∤ b.
Similarly, we can write the large mini-batch updates as
follows (while noting that the iterate doesn’t change between
communication rounds) for all m ∈ [M ], t ∈ [0, T − 1]
(initialize xm

0 = 0),

gmt = ∇f(xt; z
m
t ), zmt ∼ Dm,

2Another popular variant of local SGD uses an inner-outer step-
size. In this paper we want to highlight the effect of local steps
alone, so we use the simpler variant of local SGD.
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Reference Convergence Rate

Woodworth et al. (2020b) HB2

KR + (Hσ2B4)1/3

K1/3R2/3 + σB√
MKR

+ (Hζ2B4)1/3

R2/3

Koloskova et al. (2020) HB2

R + (Hσ2B4)1/3

K1/3R2/3 + σB√
MKR

+
(Hζ2

⋆B
4)1/3

R2/3

Glasgow et al. (2022) HB2

KR +min
{

σB√
KR

, (Hσ2B4)1/3

K1/3R2/3

}
+ σB√

MKR
+min

{
ζ2
⋆

H ,
(Hζ2

⋆B
4)1/3

R2/3

}
Theorem 3.2 HB2

R + (Hσ2B4)1/3

K1/3R2/3 + σB√
MKR

+
(Hζ2

⋆B
4)1/3

R2/3 .

Table 1. Summary of existing convergence analyses under assumptions 2.1 and 2.3.

xm
t+1 =


xm
t , if (t+ 1) ∤ K

xm
t − η

M

∑
n∈[M ]

t′∈[t+1−K,t]

gnt′ , if (t+ 1) | K (3)

In the homogeneous setting, when Fm = F for m ∈ [M ],
and each machine has access to stochastic gradients of F ,
Woodworth et al. (2021) showed that local SGD doesn’t
dominate the best of large mini-batch and single machine
SGD. This is disappointing because, in practice, local SGD
often performs better than both these algorithms. This
presents a big gap between the theory and practice of feder-
ated optimization. There is hope that in the homogeneous
setting, the domination of local SGD might still be provable
under a higher-order smoothness assumption (Yuan & Ma,
2020; Woodworth et al., 2021; Bullins et al., 2021; Glasgow
et al., 2022), as local SGD is min-max optimal for quadratic
objectives (Woodworth et al., 2020a). However, maybe the
actual reason for this gap is that the homogeneous setting
is too simplistic, and in real applications, the machines’ ob-
jectives are “similar” but not the same (Wang et al., 2021).
We begin by first revisting some heterogeneity assumptions
in the next section.

Notation. We use ∼=, ⪯, and ⪰ to refer to equality and
inequality up to absolute numerical constants.

2. First-order Heterogeneity Assumptions
Several works (Khaled et al., 2020; Karimireddy et al., 2020;
Koloskova et al., 2020; Woodworth et al., 2020b; Yuan &
Ma, 2020; Glasgow et al., 2022; Wang et al., 2022) have
tried to capture the similarity between machine’s objectives
by using “heterogeneity” assumptions. The goal is to show
a clear theoretical advantage of using local SGD over mini-
batch SGD, demonstrating the usefulness of local updates as
a design primitive. Woodworth et al. (2020b) first showed
such an advantage of local SGD under the following first-
order assumption,
Assumption 2.1 (Bounded First-Order Heterogeneity Every-
where). A set of objectives {Fm}m∈[M ] satisfy ζ-first-order

heterogeneity everywhere if for all x ∈ Rd,

sup
m∈[M ]

∥∇Fm(x)−∇F (x)∥22 ≤ ζ2.

Unfortunately, this assumption can be too restrictive because
of the supremum over all x ∈ Rd. For instance, simple
quadratic functions don’t satisfy this assumption unless the
objectives of the machines have the same hessian.
Proposition 2.2. Let Fm(x) = 1

2x
TAmx + bTmx + cm

for all m ∈ [M ]. If {Fm}m∈[M ] satisfy assumption 2.1
for finite ζ then for all machines m, Am = A, for A =
1
M

∑
m∈[M ] Am.

This restrictiveness of assumption 2.1 is precisely why sev-
eral papers (Khaled et al., 2020; Koloskova et al., 2020) have
instead considered the following more relaxed assumption3,
which only needs to be satisfied at the optima for F .
Assumption 2.3 (Bounded First-Order Heterogeneity at
Optima). A set of objectives {Fm}m∈[M ] satisfy ζ⋆-
first-order heterogeneity at the optima if for all x⋆ ∈
argminx∈Rd F (x),

1

M

∑
m∈[M ]

∥∇Fm(x⋆)∥22 ≤ ζ2⋆ .

Unfortunately, no known analysis has shown that local SGD
improves over large mini-batch SGD under assumption (2.3)
(see table 1). And it is unclear, based on the best known
lower bound by Glasgow et al. (2022) (see table 1) if these
analyses are tight. Based on their lower bound when ζ⋆
and σ are small, and K is large, this is better than the
upper bound of large (accelerated) mini-batch SGD. In the
extreme case when σ = ζ⋆ = 0, even if K → ∞ but R
is small, accelerated large mini-batch SGD will not have a
zero function sub-optimality.

In contrast, if the lower bound by Glasgow et al. (2022) were
tight, local SGD would get zero function sub-optimality in

3We discuss another relaxation of this assumption used by
Karimireddy et al. (Karimireddy et al., 2020) in section 4
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such a regime. Thus, local SGD might be strictly better than
large mini-batch SGD in some regimes under assumption
(2.3). In the next section, we will show this is not the case
using a new hard instance. In particular, our hard instance is
such that there is a minimizer x⋆ of the averaged objective,
which is also a minimizer of all machines ensuring ζ⋆ = 0.

3. Lower Bound Results
We begin with a simple motivating example in two dimen-
sions and on two machines. Assume the objectives of the
machines for all x ∈ R2 are given by,

F1(x) := H (x(1)− x⋆(1))
2
,

F2(x) := H (x(2)− x⋆(2))
2
, (4)

where x⋆ ∈ R2 is the unique optima of F (x) =
H
2 ∥x− x⋆∥22. Note that this instance satisfies assumption

1.1 with smoothness constant 2H , and assumption 2.3 with
ζ⋆ = 0. On the other hand, this instance is not homoge-
neous, and it doesn’t satisfy (2.1) for any finite ζ. Assume
we run local SGD on both the machines initialized at (0, 0)
with step-size η < 1

H , then the iterate after R rounds of
communication is given by,

x̄R = x⋆

(
1−

(
1

2
+

(1− 2ηH)K

2

)R
)
. (5)

This means that even if K → ∞, x̄R doesn’t converge to x⋆

for small R4. In particular, this already highlights that the
old lower bound by Glasgow et al. (2022) can not be tight, at
least when K is large. Note that this construction is possible
because ζ⋆ = 0 doesn’t imply we are in the homogeneous
regime—all it says is that the machines should have some
shared optima. This is in contrast to the stronger assumption
(2.1), where ζ = 0 indeed implies that the functions across
the machines have to be the same except for constant terms.
We formalize this idea further and present following the
lower bound in the regime when ζ⋆ = 0 (proof in section
B).

Proposition 3.1. For any K ≥ 2, R,M,H,B, σ, there
exist {Fm}m∈[M ] satisfying assumptions 1.1, 1.2 and
1.3 such that 1

M

∑M
m=1 ∥∇Fm(x⋆)∥22 = 0 for x⋆ ∈

argminx∈Rd F (x), and the final iterate of local SGD ini-
tialized at zero with any step size satisfies:

E [F (x̂R)]− F (x⋆) ⪰ HB2

R
+

σB√
MKR

+min

{
σB√
KR

,
H

1
3σ

2
3B

4
3

K
1
3R

2
3

)
.

4Note the inner-outer step size variant of local SGD indeed
benefits from local steps for the motivating example (5). However,
our hard instance in proposition 3.1 works against the inner-outer
step-size variant as well

In particular, combining with the previous lower bound by
Glasgow et al. (2022), this gives us the following new lower
bound for local-SGD.
Theorem 3.2. For any K ≥ 2, R,M,H,B, σ, ζ⋆, under
assumptions 1.1, 1.2, 1.3 and 2.3 the final iterate of local
SGD initialized at zero with any step size satisfies:

E [F (x̂R)]− F (x⋆) ⪰ HB2

R
+

(Hσ2B4)1/3

K1/3R2/3
+

σB√
MKR

+
(Hζ2⋆B

4)1/3

R2/3
.

Combining this with the upper bound by Koloskova et al.
(2020), we characterize the optimal convergence rate for
local SGD under assumption 2.3. Thus, we can’t hope to
improve over large mini-batch SGD, which only has the
first two terms in its convergence guarantee. But can we say
which algorithm is min-max optimal in this setting? It turns
out that it is accelerated large mini-batch SGD (Ghadimi
& Lan, 2012). We show this by proving the following new
algorithm independent lower bound.
Theorem 3.3. For any K ≥ 2, R,M,H,B, σ, there exist
{Fm}m∈[M ] satisfying assumptions 1.1, 1.2, 1.3 and 2.3,
with 1

M

∑M
m=1 ∥∇Fm(x⋆)∥22 = 0, such that the final it-

erate x̂ of any zero-respecting initialized at zero with R
rounds of communication and KR gradient computations
per machine satisfies,

E [F (x̂)]− F (x⋆) ⪰ HB2

R2
+

σB√
MKR

. (6)

This lower bound fully characterizes the min-max complex-
ity of distributed optimization under assumption 2.3), show-
ing large mini-batch SGD is the min-max optimal algorithm.
This conclusion is surprising, but it closes a recent line of
work investigating the effectiveness of local-SGD under this
assumption (Khaled et al., 2020; Karimireddy et al., 2020;
Koloskova et al., 2020; Woodworth et al., 2020b; Glasgow
et al., 2022; Wang et al., 2022). Comparing this with the
min-max optimality of large mini-batch SGD in the homoge-
nenous setting (Woodworth et al., 2021; Woodworth, 2021),
we conjecture the following:
Conjecture 3.1. There is a class of low heterogeneity prob-
lems (which are not homogeneous), under some notion of
heterogeneity for which the best of single machine SGD and
large mini-batch SGD is min-max optimal.

We expect that this notion of heterogeneity will only look at
the behaviour of different objectives around the optima. This
also highlights that perhaps there is a need for assumptions
such as assumption 2.1, which might be necessary to show
a domination of local SGD over mini-batch SGD. In the
next section we look at two alternative assumptions, and
highlight how our lower bound implies why they can not be
sufficient for showing such a domination.
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4. Other Heterogeneity Assumptions
The hardness results in the previous section motivate con-
sidering other heterogeneity assumptions (and algorithms).
In this paper, we will talk about three other heterogeneity
assumptions considered in previous work. The first assump-
tion is a second-order version of assumption 2.1, which has
recently been successfully used in the non-convex setting
by Patel et al. (2022) to show the dominance of local update
algorithms.
Assumption 4.1 (Second-order Heterogeneity). A set
of doubly-differentiable objectives {Fm}m∈[M ] satisfy τ -
second-order heterogeneity if for all x ∈ Rd,

sup
m∈[M ]

∥∥∇2Fm(x)−∇2F (x)
∥∥
2
≤ τ.

Unfortunately, local SGD can not improve upon large mini-
batch SGD under assumption 4.1. To see this recall the
motivating example in (4) and note that we can easily mod-
ify it to satisfy assumption 4.1. In particular for all x ∈ R3

define,

F1(x) := τ (x(1)− x⋆(1))
2
+

H

2
(x(3)− x⋆(3))

2
,

F2(x) := τ (x(2)− x⋆(2))
2
+

H

2
(x(3)− x⋆(3))

2
, (7)

F (x) =
τ

2
(x(1)− x⋆(1))

2
+

τ

2
(x(1)− x⋆(1))

2

+
H

2
(x(3)− x⋆(3))

2
.

Note that this construction satisfies assumption 1.1 with
smoothness H , and assumption 4.1 with τ . The only dif-
ference compared to the example in (4) is an additional
dimension, where the machines share the objective. Based
on a similar calculation as for the example in (4), we can
show that the sub-optimality in the first two dimensions does
not improve with large K. As a result, we can’t show an
upper bound for local SGD that gets arbitrarily small with
K, thus precluding any domination over mini-batch SGD.

Next, we consider the first-order assumption introduced by
Wang et al. (2022). As discussed, assumption (2.1) is very
restrictive. Wang et al. (2022) claim that even assumption
(2.3) can be restrictive in some settings. They propose
an alternative assumption that instead tries to capture how
much the local iterates move when initialized at an optimum
of the averaged function F .
Assumption 4.2 (Movement at Optima). Given a step-size
η, local steps K, and x⋆ ∈ argminx∈Rd F (x) assume,

1

MηK

∥∥∥∥∥∥
∑

m∈[M ]

x⋆ − x̂m
K

∥∥∥∥∥∥
2

≤ ρ,

where x̂m
K is the iterate on machine m after making K local

steps (using exact gradients) initialized at x⋆.

Unlike all other assumptions, note that ρ in assumption 4.2
can be a function of η and K despite normalizing with ηK.
Wang et al. (2022) conjecture that assumption 4.2 is much
less restrictive than the other first-order assumptions ((2.1)
and (2.3)). And, when the client’s objectives are strongly
convex, they show a provable domination over large-mini-
batch SGD in a regime of low heterogeneity5. However, it
is unclear if the assumption is useful in the general convex
setting, where we often empirically see that local SGD
outperforms mini-batch SGD. We show next that it is not
useful in the convex setting. We first note the following
proposition, which shows assumption 4.2 can always be
satisfied if assumption 2.3 is true.
Proposition 4.3. If the functions of the machines
{Fm}m∈[M ] satisfy assumption 2.3 then we have,∥∥∥∥∥∥ 1

MηK

∑
m∈[M ]

x⋆ − x̂m
K

∥∥∥∥∥∥
2

≤ ζ⋆

(
(1 + ηH)

K−1 − 1
)
.

In particular, when ζ⋆ = 0 in assumption 2.3, we can take
ρ = 0 in assumption 4.2. Thus our hard instance in proposi-
tion 3.1 satisfies assumption 4.2 with ρ = 0. This precludes
any improvement in the analysis of local SGD. This dis-
proves the conjecture by (Wang et al., 2022) that controlling
the movement of the local iterates at the optima is sufficient
to explain the “unreasonable” effectiveness of local SGD as
even the simplest problem under their notion of heterogene-
ity doesn’t benefit from making local steps! We conjecture
the following for non-zero ρ.
Conjecture 4.1. Large mini-batch SGD is also min-max
optimal under assumptions 1.1, 1.2, and 4.1 for convex
objectives.

This seems true based on our proof of theorem 3.3. Overall,
our new lower bounds raise several more questions about the
working of local SGD and highlight that none of the existing
assumptions are satisfactory in explaining the workings of
local SGD in the convex setting. This presents a big gap
between the theory and practice of local SGD. It is also
an open question to understand if strong convexity of the
client objectives is necessary to avoid the ill-effects of data-
heterogeneity. Finally, we end this discussion by looking at
the relaxed first-order heterogeneity assumption first used
by Karimireddy et al. (2020).
Assumption 4.4 (Relaxed First-Order Heterogeneity Ev-
erywhere). A set of objectives {Fm}m∈[M ] satisfy (G,D)-
first-order heterogeneity everywhere if for all x ∈ Rd,

1

M

∑
m∈[M ]

∥∇Fm(x)∥22 ≤ G2 +D2 ∥∇F (x)∥22 .

5Note that if the client objectives are convex, but the average
objective is strongly convex, it is still not sufficient to show an
advantage of local updates (c.f., (5)).
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Note that this assumption “interpolates” between assump-
tions 2.3 and 2.1 for different values of (G,D). Further-
more, the restrictiveness of assumption 2.1 pointed out in
proposition 2.2 doesn’t extend to this assumption. This
suggests that this assumption6 might be key to proving
meaningful results about local SGD. None of the existing
analyses achieves this, including the one by Karimireddy
et al. (2020). We leave this direction and the conjectures in
this paper to future work.
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A. Missing Proofs from Section 2
A.1. Proof of Proposition 2.2

Proof. Note the following for any m ∈ [M ] using triangle inequality,

supx∈Rd ∥∇Fm(x)−∇F (x)∥2 = supx∈Rd ∥(Am −A)x+ bm − b∥2 ,
≥ supx∈Rd ∥(Am −A)x∥2 − ∥bm − b∥2 .

Denote the matrix Cm := Am − A = [cm,1, . . . , cm,d] using its column vectors. Then take x = δei where ei is the i-th
standard basis vector to note in the above inequality,

supx∈Rd ∥∇Fm(x)−∇F (x)∥2 ≥ δ ∥(Am −A)ei∥2 − ∥bm − b∥2 ,
≥ δ ∥cm,i∥2 − ∥bm∥2 − ∥b∥2 .

Assuming ∥bm∥2 , ∥b∥2 are finite, since we can take δ → ∞ we must have ∥cm,i∥2 = 0 for all i ∈ [d] if ζ < ∞. This
implies that cm,i = 0 for all i ∈ [d], or in other words Am = A. Since this is true for all m ∈ [M ], the machines must have
the same Hessians, and thus they can only differ upto linear terms.

B. Missing Proofs from Section 3
We will use almost the same instance in the proof of Theorem 3.3 and Proposition 3.1.

For Theorem 3.3, for even m, let

Fm(x) :=
H

2

(q2 + 1)(q − x1)
2 +

⌊(d−1)/2⌋∑
i=1

(qx2i − x2i+1)
2

 , (8)

and for odd m, let

Fm(x) =
H

2

⌊d/2⌋∑
i=1

(qx2i−1 − x2i)
2

 . (9)

Thus we have

F (x) = Em[Fm(x)] =
H

2

(
(q2 + 1)(q − x1)

2 +

d∑
i=1

(qxi − xi+1)
2

)
. (10)

For technical reasons, we make a slight modification for Propositions 3.1. For even m, we let

Fm(x) :=
H

2

(q − x1)
2 +

⌊(d−1)/2⌋∑
i=1

(qx2i − x2i+1)
2

+ q2x2
d, (11)

and for odd m, let

Fm(x) =
H

2

⌊d/2⌋∑
i=1

(qx2i−1 − x2i)
2

 . (12)

Thus we have

F (x) = Em[Fm(x)] =
H

2

(
(q2 + 1)(q − x1)

2 +

d∑
i=1

(qxi − xi+1)
2

)
. (13)

Observe that in both cases, the optimum of F is attained at x∗, where x∗
i = qi.
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B.1. Proof of Theorem 3.3

Theorem 3.3 improves on the previous best lower bounds by introducing the term HB2

R2 . Combining the following lemma
with standard arguments to achieve the σB√

MKR
suffices to prove Theorem 3.3.

Lemma B.1. For any K ≥ 2, R,M,H,B, σ, there exist f(x; ξ) and distributions {Dm}, each satisfying asssumptions 1.1,
1.2, 1.3, and together satisfying 1

M

∑M
m=1 ∥∇Fm(x⋆)∥22 = 0, such that for initialization x(0,0) = 0, the final iterate x̂ of

any zero-respecting with R rounds of communication and KR gradient computations per machine satisfies

E [F (x̂)]− F (x⋆) ⪰ HB2

R2
. (14)

Proof. Consider the division of functions onto machines as described above for some sufficiently large d.

Let q = 1 − 1
R , and let t = 1

2 logq

(
B2

R

)
. We begin at the iterate x0, where the coordinate (x0)i = qi for all i < t, and

(x0)i = 0 for i ≥ t. Observe that ∥x0 − x∗∥2 ≤
∑∞

i=t q
2i ≤ q2t

1−q2 ≤ Rq2t ≤ B2.

Observe that for any zero respecting algorithm, on odd machines, if for any i, we have xm
2i = xm

2i+1 = 0, then after any
number of local computations, we still have x2i+1 = 0. Similarly on even machines, if for any i, we have xm

2i−1 = xm
2i = 0,

then after any number of local computations, we still have x2i = 0.

Thus after R rounds of communication, on all machines, we have xm
i = 0, for all i > t+R. Thus for d sufficiently large,

we have ∥x̂− x∗∥2 ≥
∑d

i=t+R+1 q
2i ≥ q2t+2R+2−q2d

1−q2 = Ω
(
B2q2R+2

)
= Ω(B2) since q = 1− 1

R .

Now observe that the Hessian of F is a tridiagonal Toeplitz matrix with diagonal entries H(q2 + 1), and off-diagonal
entries −Hq. It is well-known (see eg. (GOLUB, 2005)) that the d eigenvalues of M̃ are (1 + q2)H + 2qH cos

(
iπ
d+1

)
for

i = 1, . . . , d. Thus since cos(x) ≥ −1, we know that F has strong-convexity parameter at least H(q2 + 1− 2q) = Ω
(

H
R2

)
,

so we have F (x̂)− F (x∗) ≥ Ω
(
B2
)
Ω
(

H
R2

)
, which gives the desired result.

B.2. Proof of Proposition 3.1

Proposition 3.1 improves on the previous best lower bounds by introducing the term HB2

R . Combining the following
lemma with the instances used in (Glasgow et al., 2022) to achieve the first two terms in the lower bound suffices to prove
Proposition 3.1.

Lemma B.2. For any K ≥ 2, R,M,H,B, σ, there exist f(x; ξ) and distributions {Dm}, satisfying assumptions 1.1, 1.2,
1.3 and together satisfying 1

M

∑M
m=1 ∥∇Fm(x⋆)∥22 = 0, such that for initialization x(0,0) = 0 the final iterate of local

SGD with any step size satisfies:

E
[
F (x(R,0))

]
− F (x⋆) ≥ Ω

(
HB2

R

)
. (15)

Proof of Lemma B.2. In this proof, we will use the notation xm,r,k to denote the kth iterate of local SGD in the rth round
on machine m.

Consider the division of functions onto machines as described above for some sufficiently large d. First, we claim that we
can reduce understanding local SGD on this instance to understanding GD on F (x).

Claim 1. Fix any x(r,0), such that we have x(r+1,0) = Emx(m,r,K) = 1
2

(
x(1,r,K) + x(2,r+1,0)

)
. Then for some step size

η̄ :=

(
1−(1−2η(q2+1))

k
)

2(q2+1) , we have

x(r+1,0) = x(r,0) − η̄∇F (x(r,0)). (16)

Proof. To abbreviate, will define x̃1,k := x(1,r,k) − x∗, and x̃2,k := x(2,r,k) − x∗.

Let M1 be the hessian of F1, such that for k ≥ 1, we have

x̃1,k = (I − ηM1) x̃
1,k−1. (17)
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Similarly, letting M2 be the hessian of F2, we have

x̃2,k = (I − ηM2) x̃
2,k−1. (18)

Now we claim that all the eigenvalues of M1 and M2 are either 0 or H(q2 + 1). Indeed, we have the following block

decomposition of M1 and M2, where A := H

(
q2 −q
−q 1

)
.

M1 =



H(q2 + 1)
A

A
A

A
A

· · ·


(19)

M2 =



A
A

A
A

A
· · ·

A
0


(20)

Since the eigenvalues of A are 0 and H(q2 + 1), all eigenvalues of M1 and M2 are 0 or H(q2 + 1).

It follows that

x̃1,K = (1− ηM1)
K
x̃1,0 =

I −

(
I −

(
1− η(q2 + 1)

)K)
q2 + 1

M1

 x̃1,0 = (I − η̄M1) x̃
1,0, (21)

and similarly
x̃2,K = (I − η̄M2) x̃

2,0. (22)

Thus
x(r+1,0) − x∗ =

1

2

(
x̃(1,K) + x̃(2,K)

)
=
(
I − η̄

2
(M1 +M2)

)(
x(r,0) − x∗

)
. (23)

Now since ∇F (x) = 1
2 (M1 +M2) (x− x∗), we have

x(r+1,0) = x(r,0) − η̄∇F (x(r,0)). (24)

which proves the claim.

We now need to show the following claim: for any step size, GD on F will converge slowly.
Claim 2. For any R ≤ d, there exists some choice of q and x0 with ∥x0 − x∗∥ ≤ B, such that for any step size η,
F (xR)− F (x∗) ≥ Ω

(
HB2

R

)
.

Proof. To prove this claim, we need a lower bound for the condition number of the Hessian of F . We can then apply
Lemma B.3 to yield the result directly.

We will compare the Hessian of F to the nearby matrix with a well-understood spectrum. Let M := M1 + M2 be the
Hessian of F , and let M̃ := M − Hq2e1e

T
1 + Hq2ede

T
d , where ei denotes the ith standard basis vector. Then M̃ is a

tridiagonal Toeplitz matrix with diagonal entries H(q2 + 1), and off-diagonal entries −Hq.
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It is well-known (see eg. (GOLUB, 2005) that the d eigenvalues of M̃ are (1 + q2)H + 2qH cos
(

iπ
d+1

)
for i = 1, . . . , d.

Thus in particular, letting q = 1− 1
R , we see that M̃ has at least 2 eigenvalues which are at most H

10R (consider i = d− 1, d).
Let vd and vd−1 be their associated eigenvectors.

We now consider the Rayleigh quotient of M = M̃ +Hq2e1e
T
1 −Hq2ede

T
d . Let w be any unit vector in the span of vd−1

and vd which is orthogonal to e1. Then

wTMw = wT
(
M̃ +Hq2e1e

T
1 −Hq2ede

T
d

)
w < wT M̃w ≤ H

10R
. (25)

If we can show that M is full rank, then since we already know M is PSD since it is a Hessian, if follows that all eigenvalues
of M are strictly positive. Thus this Rayleigh quotient calculation will suffice to show that M has some eigenvector v with
positive eigenvalue at most H

10R .

To show the full rank of M , consider for the sake of contradiction any vector y such that My = 0. Observe (working from
the bottom right corner of M ), that we must have yd = qyd−1, and inductively, yi+1 = qyi for all i ≥ 1. However, when we
get to the constraint given by the first row of M , we see that y2 = qy1 is not possible. Thus we have a contradiction. It
follows that M has a positive eigenvalue of at most H

10R .

To show that the condition number of M is at least Ω
(
1
R

)
, observe that the top eigenvalue is at least 1

d times the trace,
which is H(1 + q2). This yields the result.

Lemma B.3. Let F (x) be a convex quadratic function whose Hessian has top eigenvalue H and condition number κ ≥ 6
and unique minima x∗. Let x̂R be any linear combination of the iterates x0, . . . ,xR. Then for any B, there exists some x0

with ∥x0 − x∗∥2 ≤ B such that for any step size η, F (x̂R) − F (x∗) ≥ HB2 1
κe

−R/κ. In particular, if κ = Ω(R), then

F (x̂R)− F (x∗) ≥ Ω
(

HB2

R

)
.

Proof. Let M be the Hessian of F . Observe that we have F (x)− F (x∗) = 1
2 (x− x∗)TM(x− x∗).

Let v1 and v2 be the eigenvectors of M with the greatest and least eigenvalues. Consider the initialization x0 :=

B
(

v1+v2√
2

)
+ x∗, which satisfies ∥x0 − x∗∥2 = B.

Then solving for the GD iterates in closed form, we have

xR − x∗ =
B√
2
(1− ηH)

R
v1 +

B√
2

(
1− η

H

κ

)R

v2. (26)

Observe that if η ≥ 3
H , then the iterates explode and we have F (xR) ≥ F (x0) ≥ Ω

(
HB2

)
.

If η ≤ 3
H , then using the fact that κ ≥ 6, we have

F (xR)− F (x∗) ≥ 1

2

(
B√
2

(
1− 3

κ

)R

v2

)T

M

(
B√
2

(
1− 3

κ

)R

v2

)
(27)

=
B2

4

(
1− 3

κ

)2R

vT
2 Mv2 (28)

=
B2

4

(
1− 3

κ

)2R
H

κ
(29)

≥ HB2

4κ
e−12R/κ. (30)

The result follows.
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C. Missing Proofs from Section 4
C.1. Proof of Proposition 4.3

Proof. Define ϕ(k) :=
∥∥∥ 1
MηK

∑
m∈[M ] x

⋆ − x̂m
k

∥∥∥
2

where x̂m
k is the kth gradient descent iterate on machine m initialized

at x̂m
0 = x⋆. Then note the following,

ϕ(K) =

∥∥∥∥∥∥ 1

MηK

∑
m∈[M ]

x⋆ − x̂m
K

∥∥∥∥∥∥
2

,

=

∥∥∥∥∥∥ 1

MηK

∑
m∈[M ]

x⋆ − x̂m
K−1 + η∇Fm(x̂m

K−1)

∥∥∥∥∥∥
2

,

≤

∥∥∥∥∥∥ 1

MηK

∑
m∈[M ]

x⋆ − x̂m
K−1

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1

MK

∑
m∈[M ]

∇Fm(x̂m
K−1)

∥∥∥∥∥∥
2

,

= ϕ(K − 1) +

∥∥∥∥∥∥ 1

MK

∑
m∈[M ]

∇Fm(x̂m
K−1)−∇Fm(x⋆)

∥∥∥∥∥∥
2

,

≤ ϕ(K − 1) +
1

MK

∑
m∈[M ]

∥∥∇Fm(x̂m
K−1)−∇Fm(x⋆)

∥∥
2
,

≤ ϕ(K − 1) +
H

MK

∑
m∈[M ]

∥∥x̂m
K−1 − x⋆

∥∥
2
,

= ϕ(K − 1) +
H

K
δ(K − 1), (31)

where we define δ(k) := 1
M

∑
m∈[M ] ∥x̂m

k − x⋆∥2. Now we consider another recursion on δ(k) to introduce the ζ⋆
assumption:

δ(k) =
1

M

∑
m∈[M ]

∥x̂m
k − x⋆∥2 ,

≤ 1

M

∑
m∈[M ]

∥∥x̂m
k−1 − x⋆

∥∥
2
+

η

M

∑
m∈[M ]

∥∥∇Fm(x̂k−1
m )

∥∥
2
,

≤ 1

M

∑
m∈[M ]

∥∥x̂m
k−1 − x⋆

∥∥
2
+

η

M

∑
m∈[M ]

(∥∥∇Fm(x̂k−1
m )−∇Fm(x⋆)

∥∥
2
+ ∥∇Fm(x⋆)∥2

)
,

≤ (1 + ηH)

M

∑
m∈[M ]

∥∥x̂m
k−1 − x⋆

∥∥
2
+ ηζ⋆,

≤ (1 + ηH)δ(k − 1) + ηζ⋆,

≤ ζ⋆
H

(
(1 + ηH)

k − 1
)
. (δ(0) = 0) (32)

Plugging (32) back into 31 we get,

ϕ(K) ≤ ϕ(K − 1) +
ζ⋆
K

(
(1 + ηH)

K−1 − 1
)
,

= ζ⋆

(
(1 + ηH)

K−1 − 1
)
,

which proves the claim.


