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Abstract
Early exits enable the network’s forward pass
to terminate early by attaching trainable inter-
nal classifiers to the backbone network. Existing
early-exit methods typically adopt either a joint
training approach, where the backbone and exit
heads are trained simultaneously, or a disjoint ap-
proach, where the heads are trained separately.
However, the implications of this choice are of-
ten overlooked, with studies typically adopting
one approach without adequate justification. This
choice influences training dynamics and its im-
pact remains largely unexplored. In this paper,
we introduce a set of metrics to analyze early-exit
training dynamics and guide the choice of training
strategy. We demonstrate that conventionally used
joint and disjoint regimes yield suboptimal perfor-
mance. To address these limitations, we propose
a mixed training strategy: the backbone is trained
first, followed by the training of the entire multi-
exit network. Through comprehensive evaluations
of training strategies across various architectures,
datasets, and early-exit methods, we present the
strengths and weaknesses of the early exit training
strategies. In particular, we show consistent im-
provements in performance and efficiency using
the proposed mixed strategy.

1. Introduction
Deep neural networks have achieved remarkable results
across a variety of machine learning tasks. While the depth
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Figure 1. Performance-cost trade-off of the multi-exit ViT-T model
trained on the ImageNet-1k dataset by using different training
regimes. The choice of the training regime significantly impacts
the performance across all computational budgets.

of these networks significantly contributes to their enhanced
performance, the necessity of using large models for all
inputs, especially in resource-constrained environments like
mobile and edge computing devices, is questionable.

Early exit methods for deep neural networks have gained
importance due to their potential to significantly improve
computational efficiency. By exiting at earlier layers, these
methods can decrease the number of operations needed for
computation of the forward pass, leading to faster infer-
ence times. In doing so they allow the network to adapt
its computational cost to the difficulty of the input sample.
Simpler inputs can be processed with fewer layers, while
more complex inputs can utilize the full capacity of the
network.

Early exit methods are implemented through augmentation
of the original architecture with internal classifiers (ICs)
attached to selected intermediate layers (Kaya et al., 2019).
These ICs are designed to perform classification tasks based
on the representations available at their respective positions
in the network. A common approach for training early-
exit models involves training the entire multi-exit network,
including the added classifiers, from scratch (Huang et al.,
2018; Yang et al., 2020; Meronen et al., 2024) (”joint”
regime). Alternatively, some methods train the backbone
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network first, then freeze its weights and train the parameters
of the newly added ICs in the second, separate phase of
training (Teerapittayanon et al., 2016; Liao et al., 2021;
Zhou et al., 2020) (”disjoint” regime). To the best of our
knowledge, no study compares or explores the relationship
between these training regimes.

In this study, we perform an extensive assessment of early-
exit regimes and notice the choice of training strategy has
a significant impact on the final model’s performance. We
identify the relationship between computational budget and
the choice of the regime. Using the disjoint regime results
with a network that is significantly impaired when smaller
computational budget is assumed. While the joint regime
might initially seem as the appropriate way of training multi-
exit networks, we demonstrate that due to its training dy-
namics it biases the network and produces a model with
subpar performance on higher computational budgets.

In order to address the weaknesses of multi-exit networks,
we propose a novel “mixed” regime: train the backbone net-
work until convergence, then train the entire model jointly,
including the internal classifiers, until convergence. This ap-
proach ensures that the backbone architecture is adequately
trained before optimizing it alongside the internal classifiers
for improved performance.

To gain a deeper understanding of learning and optimization
in multi-exit architectures, we propose a set of metrics to
describe the training dynamics of early-exit models trained
under various regimes. Through gradient dominance metric
we reveal the set of ICs that have the largest impact on the
backbone during training and explain the performance gains
of popular technique of loss and gradient scaling depend
on the training strategy choices. Furthermore, mode con-
nectivity allows to analyze solution similarities of different
regimes. Moreover, numerical rank, and mutual information
metrics aid to explain the performance of regimes under
different computational budgets.

Finally, we provide a thorough empirical evaluation of early-
exit regimes across different network architectures, data
modalities, datasets and early-exit methods. Our results
show that proposed alternative strategy enables significant
improvements in performance in medium and high budgets
over the commonly used joint training.

2. Training Regimes
Early exit methods fundamentally alter the organization of
neural networks. It is widely believed that neural networks
develop a hierarchical representation of features, where ear-
lier layers learn basic shapes and patterns, while later layers
progressively capture more complex abstractions (Zeiler &
Fergus, 2014). In other words, the earlier layers are charac-
terized by higher frequency features while later layers learn

low frequency elements. This regularity is disrupted in the
case of early exit architectures as the backbone network is
given additional classifiers that are placed in earlier parts
of the network. These changes in architecture require a
different approach for training and more nuanced analysis
how the training should proceed.

In the early-exit setting, parameters can be divided into
backbone parameters and internal classifier (IC) parameters.
Each of these two groups can be trained separately or jointly.
In this paper, we frame the training process of any early-exit
method as consisting of three following phases:

Phase 1: Train the backbone network parameters θb by
minimizing the loss at the final output layer (could be the
last IC or an added final classifier).

θ∗b = argmin
θb

E(xi,yi)∼D

[
L(K)(θb, θ

(K)
IC )

]
(1)

During this phase, θIC are either not trained or not present
at all.

Phase 2: Train both the backbone network and the ICs
simultaneously.

θ∗ = argmin
θ

K∑
k=1

αkE(xi,yi)∼D

[
L(k)(θb, θ

(k)
IC )

]
(2)

Phase 3: Freeze θ∗b and train only the IC parameters θIC .

θ∗IC = argmin
θIC

K∑
k=1

αkE(xi,yi)∼D

[
L(k)(θ∗b , θ

(k)
IC )

]
(3)

Correspondingly, we generalize the early exit training
regimes into three types based on which of the phases are
used:

Disjoint training (Phases 1+3). The model parameters
undergo training during the first and third phases. That is,
the backbone architecture is trained first, and then the ICs
are trained separately while the backbone parameters are
frozen.

Joint training (Phase 2). The training consists only of the
second phase in which the entire model – including the ICs
– is trained. It is currently the most common way of training
early-exit models (Matsubara et al., 2022).

Mixed training (Phases 1+2). The training consists of
two phases. The backbone is trained in isolation first, and
then the entire network, including the ICs, is trained jointly.
The regime emphasizes the importance of backbone pre-
training as a better way to initialize the architecture for
further training. This is our proposed way to improve multi-
exit model training.
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3. A Framework for Analyzing Multi-Exit
Models

This section proposes a framework for analysing and com-
paring multiple early exit models. This framework com-
prises multiple evaluations, each focusing on a different
aspect of a model.

3.1. Gradient Dominance

The use of internal classifiers during training in early-exit
training regime fundamentally alters the training dynamics,
as these classifiers contribute to the overall loss. The gradi-
ent update now comes from multiple classifiers instead of
just the final one, as in a standard neural network.

To study this phenomenon we calculate which gradient is
more prominent during training. We define gradient dom-
inance (GD) as the cosine similarity between the gradient
from an individual internal classifier, gi, and the overall
gradient of the model gtotal:

GDi =< gi,gtotal >

where < ·, · > is the cosine similarity. Gradient Domi-
nance measures the consistency of the gradient directions
produced by the early-exit classifiers and evaluates how well
gradients from separate classifiers align with the overall gra-
dient across the entire model. If the cosine similarity is close
to 1, the auxiliary classifier’s gradient is highly aligned with
the total gradient, indicating that it potentially dominates
other ICs in its impact on the total gradient.

3.2. Mode Connectivity

Mode connectivity theory suggests that independently
trained models often exhibit similar characteristics. No-
tably, after training two independent models, it is possible to
find a continuous path in the parameter space where the loss
remains low, enabling the models to be connected without
encountering high-loss regions (Garipov et al., 2018).

Building on the observation that independently trained neu-
ral networks can be linearly connected in weight space after
accounting for permutation symmetries, as described in
(Ainsworth et al.), we extend this idea to early-exit architec-
tures trained under different regimes.

Instead of focusing solely on independently trained net-
works, we investigate early-exit architectures trained in
distinct regimes. To align models for mode connectivity,
we define an optimal permutation Π∗ by solving Π∗ =
argminΠ ∥ΘA − ΠΘB∥F where ∥ · ∥F is the Frobenius
norm, and ΘA and ΘB are the parameters of two early-
exit models trained under different strategies as described
in Sec. 2. Given the optimal permutation, the permuted
interpolation path is:

Θ(λ) = (1− λ)ΘA + λΠ∗ΘB (4)

The core idea is based on the fact that, if two models trained
with different strategy can be interpolated such that the
resulting model has low loss over the whole interpolation
path, then the regime solutions lie in the similar loss basin.

3.3. Numerical Rank

So far, the proposed tools analyse the gradients of the model
or their final predictions. Here, we propose to evaluate the
expressiveness of a model by analysing its intermediate
activations, using the numerical ranks of activation maps
(Masarczyk et al., 2024). Mathematically, for a given layer
i, the rank is evaluated as:

ri = Rank(Ai), Ai ∈ Rn×m (5)

where Ai is the activation matrix of dimensions n (number
of samples) and m (number of features).

The rank of the internal representations associated with dif-
ferent layers can provide insight into the “expressiveness”,
or capacity of the network. A higher rank (closer to the
maximum possible for a given layer’s matrix dimensions)
indicates that the layer can capture more complex patterns
or features in the data, as it implies a greater degree of lin-
ear independence among the feature detectors in that layer.
High-rank activations matrices in a network suggest that
the network is utilizing its capacity to learn diverse, high-
frequency features, whereas a low rank might indicate that
the network is not fully exploiting its potential.

3.4. Mutual Information

Adding intermediate early exits to a model could alter the
information flow within the model itself. To study how
much such exits affect this aspect, we use the concept of
mutual information. In the context of neural networks, the
mutual information between X and Z represents how much
information the input X provides about the internal repre-
sentation Z after passing through a neural network. For
random variables X and Z, the mutual information is de-
fined as: I(X;Z) =

∫
x∈X

∫
z∈Z p(x, z) log p(x,z)

p(x)p(z) dx dz

where p(x, z) is the joint probability distribution of X and
Z, and p(x) and p(z) are the marginal distributions of X
and Z, respectively. In practical terms, for neural networks,
we use Monte Carlo sampling to estimate I(X;Z) due to
the high dimensionality of feature spaces, and as such the re-
sults are not always monotonically decreasing (Shwartz-Ziv
& Tishby, 2017).

In their work, (Kawaguchi et al., 2023) utilize the concept
of mutual information between X and Z to study the infor-
mation bottleneck (IB) principle. It aims to find a balance
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(a) Joint regime (b) Mixed regime (c) Avg. difference between joint and mixed

Figure 2. Gradient dominance for different regimes. Each line indicates how well gradients from different ICs align with the total gradient
over the course of the training. The last IC dominates the most in the mixed regime, which explains its excellent performance on higher
computational budgets (ResNet-50, Tinyimagenet).

between the information carried by Z in predicting the tar-
get Y and its complexity in terms of its mutual information
with the input X . Specifically, minimizing I(X;Z) reduces
the complexity and overfitting by ensuring Z retains only
the essential information from X , and maximizing I(Y ;Z)
ensures that the representation Z is informative enough to
predict the target variable Y effectively. To visually show
how mutual information is affected by the training regime,
we calculate the mutual information for each layer averaged
over multiple inputs.

4. Empirical Evaluation of Training Regimes
4.1. Experimental Setup

In this section, we outline the setup for our empirical
experiments. We release the source code of our ex-
periments at: https://github.com/kamadforge/
early-exit-benchmark. A more detailed description
can be found in Appendix E.

Architectures and datasets. We conduct experiments
across various datasets spanning computer vision (CV)
and natural language processing (NLP). For CV, we uti-
lize CIFAR-100 (Krizhevsky, 2009), ImageNet-1k (Rus-
sakovsky et al., 2015), TinyImageNet (Le & Yang, 2015),
and Imagenette (Howard, 2019). For NLP, we evaluate on
20-Newsgroups (Lang, 1995) and STS-B (Wang et al., 2019)
datasets. As far as vision architectures are concerned, we
evaluate ResNet (He et al., 2016) and Vision Transformers
(ViT) (Dosovitskiy et al.). Additionally, we explore MS-
DNet (Huang et al., 2018), an architecture dedicated for
multi-exit models. For NLP tasks, we utilize BERT (Devlin
et al., 2019). Unless otherwise specified, the Shallow-Deep
Network (SDN) (Kaya et al., 2019) early exit model is im-
plemented on top of a chosen backbone.

Training set-up. We train our models, employing the
AdamW optimizer (Loshchilov & Hutter, 2019) alongside

the Cosine Annealing scheduler with warm restarts. To
ensure fair convergence across different regimes, we incor-
porate an early stopping mechanism. Training is terminated
only when, over n consecutive epochs, none of the exits
achieve an improved performance compared to their best
scores recorded thus far. These scores – accuracy for classi-
fication tasks and loss for regression tasks – are evaluated
on a dedicated early-stopping validation set. All results in
this section are averaged over three runs, each one having a
different initial seed.

Evaluation protocol. The core of our analysis is the frame-
work proposed to understand how adding early exits affects
the model’s internal state and hence the predicted values.
To this end, in Section 4.2, we use the proposed framework
to compare all the training regimes. Additionally, following
the core idea that a model having early exits must be used
to spare computational power, we evaluate all the resulting
models under the lens of FLOPs saved and the obtained
accuracy. These results are presented in Section 4.3.

4.2. Framework Evaluation

In this section, we evaluate the training regimes through the
framework proposed in Section 3.

Gradient Dominance. In Figure 2, we present the gra-
dient dominance results for the joint and mixed regimes,
highlighting their distinct training dynamics. In the joint
regime, optimization focuses on subnetworks in the mid-
dle of the architecture, where gradients from intermediate
classifiers exert the strongest influence. Conversely, in the
mixed regime, gradients are dominated by deeper classifiers,
causing the early layers to primarily support the learning
objectives of later classifiers, potentially at the expense of
earlier ones.

The dominance of the final intermediate classifier (IC) in
the mixed regime suggests its suitability for scenarios with
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Figure 3. Mode connectivity between models trained with different
training regimes . Colors represent the values of loss function, with
yellow representing high loss (≥ 2.0). Disjoint and mixed regimes
produce similar models, while the model trained in joint regime
lies in a different basin (ResNet-20, CIFAR-10).

higher computational budgets, which is supported by our
empirical results. This behavior mirrors the training of a
backbone, where the model is primarily guided by the loss
from the final classifier. Consequently, the mixed regime
tends to produce models that closely resemble standard neu-
ral networks, a fact we confirm in the next section through
mode connectivity analysis.

Mode Connectivity. After accounting for permutation sym-
metries, the loss remains low during linear interpolation
of the weights of models trained in the mixed and disjoint
regimes, as shown in the mode connectivity plot in Figure 3.
This indicates that the resulting weights lie in the same basin,
and the two regimes produce similar solutions. However,
the disjoint regime is more constrained because it trains only
the internal classifiers during the second phase. In contrast,
the mixed regime updates the backbone to accommodate
the added ICs, resulting in lower overall loss.

Joint training, on the other hand, leads to a model in a differ-
ent basin of the loss landscape. This suggests that training
the entire model at once, without ”pre-trained” backbones,
produces solutions that differ significantly in structure and
performance.

Numerical Rank. In our framework, we analyze the nu-
merical rank of the backbone model under different early-
exit regimes. A regular neural network typically exhibits
a higher rank in earlier layers and a lower rank in deeper
layers, as illustrated in Figure 4. Note that training only
the backbone corresponds to the model obtained in the dis-
joint regime, as this training strategy does not modify the
backbone.

We observe a distinct change in network expressiveness
once intermediate classifiers are attached and permitted to
influence the backbone. The numerical rank rises across

Figure 4. Numerical ranks as measured in the backbone network
of the multi-exit model which was trained with different regimes.
The rank increases when the ICs are allowed to affect the backbone
network.

the layers, becoming comparable to the numerical rank of a
multi-exit network trained entirely from scratch. This sug-
gests that well-functioning multi-exit models require layers
with greater expressiveness, which underpins the effective
operation of all subsequent internal classifiers. Such an in-
crease in expressiveness is impeded when employing the
disjoint training strategy.

Mutual Information. Early-exit architectures attach in-
termediate classifiers (ICs) to internal layers, altering the
distribution of information flow as seen in Figure 5. The
effect is two-fold and differs between earlier and later lay-
ers. Earlier layers: The mutual information between X
and Z is larger compared to a network trained without addi-
tional classifiers. Deeper layers: The mutual information
for early-exit architecture is lower in the final layers.

The above effect is seen in both regimes but is more pro-
nounced in the joint regime. The information flow in the
joint regime is more skewed and different from backbone-
only training. Backbone training in the mixed regime makes
the information flow fall between backbone-only and joint
training. This is due to the fact that the representation of
easy samples is not complex (that is, it is processed with
just a few layers before exiting through an early IC). As

Figure 5. Mutual information I(X;Z) between the input X and
the internal representation Z of the backbone at different depths
for the three multi-exit model training regimes.
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Table 1. Testset accuracy of multi-exit models trained with dif-
ferent regimes on the CV datasets. Each column represents the
maximum averaged computational budget assumed for the model,
indicated as a percentage of the computational cost of the back-
bone. The mixed regime achieves significant improvements over
the commonly used joint and disjoint regimes.

Setting Regime 25% 50% 75% 100%

ResNet-34
C-100

Disjoint 52.57 67.56 73.49 73.79
Joint 62.84 72.80 74.32 74.17

Mixed 62.24 73.81 75.92 75.88

MSDNet
C-100

Disjoint 56.74 63.96 68.59 70.36
Joint 65.93 72.02 74.73 75.86

Mixed 65.94 72.01 75.46 76.51

ViT-T
C-100

Disjoint 28.33 47.32 61.50 63.99
Joint 40.87 60.48 66.22 66.49

Mixed 41.65 64.07 70.09 70.25

ResNet-50
Tiny-IN

Disjoint 38.49 49.25 60.50 65.71
Joint 52.98 62.16 65.14 65.01

Mixed 52.89 63.28 67.20 67.24

ViT-T
IN-1k

Disjoint 10.22 35.15 61.23 71.61
Joint 36.39 61.89 68.08 68.39

Mixed 35.91 62.96 70.79 71.20

ViT-S
IN-1k

Disjoint 10.23 33.91 68.02 78.38
Joint 50.10 73.99 76.38 76.44

Mixed 49.50 75.17 78.28 78.33

the sample is easy, it is clearly and distinctly located within
the boundaries of a single class. To describe it in terms of
mutual information, the network does not need to reduce the
complexity of X to fit the internal representation Z, as X
has little irrelevant details. Consequently, the input X is not
compressed and the internal representation Z has similar
complexity to the representation of X , hence I(X;Z) is
higher.

Following this observation, we note that with higher
I(X;Z) in earlier layers, the joint strategy is more suit-
able for easy datasets where more samples exit at earlier
layers. Similarly, the mixed regime learns more uniform
representation of the I(X;Z) across the network (one may
observe an analogy to the numerical rank results in Sec-
tion 3.3) and may be preferred for more difficult datasets
that exit at later internal classifiers.

4.3. Performance-Cost Evaluation

Table 1 presents the performance of the training regimes
on various dataset and architectures. The disjoint regime
shows weaker performance under lower computational
budgets, as freezing the backbone limits the ability to learn
effective early-layer representations for classification. The
results for ImageNet-1k, which are also reported in Fig-

Table 2. Testset accuracy (classification) and MSE (regression) of
multi-exit BERT-B models trained using different regimes on the
NLP datasets. The results align with those observed for classifica-
tion tasks.

Dataset Regime 25% 50% 75% 100%

Newsgr.
(class.)

Disjoint 68.53 83.75 85.75 85.69
Joint 84.24 84.41 84.41 84.41

Mixed 84.99 85.25 85.25 85.25

STS-B
(regr.)

Disjoint 2.37 1.55 0.54 0.51
Joint 1.70 0.61 0.53 0.52

Mixed 2.43 0.59 0.53 0.51

ure 1, demonstrate a similar trend, but also highlighting
that the joint regime experiences a performance gap at
higher computational budgets. The mixed regime per-
forms consistently well across all scenarios. Due to space
constraints in the main paper we present the result averaged
over three runs, but in Appendix C we present these results
with standard deviations. In Appendix A we also examine
four alternative training regimes.

Generalization to Natural Language Processing & Re-
gression Tasks. To explore the generalizability of these
results, we first conduct similar experiments on natural lan-
guage processing data and on a regression task, with the
results presented in Table 2. These results are consistent
with those observed before, further highlighting the weak-
nesses of both the joint and disjoint regimes.

Generalization to Other Early-Exit Methods. To show
that our conclusions extend to other early-exit approaches,
we conduct three additional experiments for different early-
exit methods: GPF (Liao et al., 2021), PBEE (Zhou et al.,
2020), and one that uses entropy instead of max-softmax
probability as a proxy for confidence (Teerapittayanon et al.,
2016). The findings from these experiments are consistent
with our main results, again showing the effectiveness of
the mixed regime.

Generalization to the Pre-trained Setup. Nowadays,
most applications begin with a model pre-trained on a
large dataset, which is then fine-tuned for a specific tar-
get task. We emphasize that during the fine-tuning step,
any of the multi-exit training regimes can be applied. To
assess whether our findings extend to this scenario, we use
the weights of a pre-trained ViT-B model from the torchvi-
sion library and fine-tune it on CIFAR-100 using the three
training regimes. The results, presented in Table 4, demon-
strate patterns similar to those observed in the from-scratch
training setup. Specifically: (1) the disjoint regime contin-
ues to show significantly lower performance under lower
computational budgets, and (2) the joint regime still exhibits
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Table 3. CIFAR-100 testset accuracy of multi-exit models trained
with different regimes on the following early-exit methods: GPF
(Liao et al., 2021), PBEE (Zhou et al., 2020), and entropy-based
exit criterion (Teerapittayanon et al., 2016). The results are consis-
tent with the main experiments.

EE Method Regime 25% 50% 75% 100%

PBEE
Disjoint 19.28 44.11 57.85 63.91

Joint 28.66 56.49 64.31 66.52
Mixed 28.87 59.42 68.33 70.33

GPF
Disjoint 33.16 53.19 62.54 64.01

Joint 46.21 62.23 66.84 67.19
Mixed 47.21 64.51 68.92 69.10

Entropy
Disjoint 27.14 46.09 60.30 63.99

Joint 41.16 58.60 65.69 66.49
Mixed 41.54 62.20 69.63 70.25

Table 4. Test accuracy of a ViT-B model pre-trained on ImageNet-
1k and fine-tuned on CIFAR-100. The disjoint regime struggles
at low budgets, while the joint regime shows a slight but notable
performance gap at higher budgets. The mixed regime performs
consistently well, aligning with the patterns observed in the main
experiments.

Regime 35% 50% 75% 100%

Disjoint 28.50 55.64 87.49 89.95
Joint 73.18 85.41 87.82 87.85

Mixed 73.38 85.70 88.06 88.23

a performance gap at higher computational budgets.

4.4. Impact of Gradient and Loss Scaling

The gradient dominance results demonstrated how the mixed
regime prioritizes deeper intermediate classifiers. A similar
effect can also be achieved by adjusting the loss coefficients
for deeper ICs, as proposed in prior work (Kaya et al., 2019;
Han et al., 2022), or by scaling the gradients of each IC, as
proposed by Li et al. (Li et al., 2019). We revisit these tech-
niques within both the joint and mixed regimes to evaluate
their impact, with the results presented in Table 5.

We first evaluate the loss scaling method proposed by
Kaya et al.(Kaya et al., 2019) (SDN) by training multi-
exit ResNet-50 models on the TinyImageNet dataset. We
also test (Han et al., 2022) constant loss weighting scheme,
which adjusts the loss coefficients by either increasing (Inc.)
or decreasing (Dec.) them along the model’s depth. These
schemes allow the model to prioritize different computa-
tional budgets. However, the improvements observed in
the mixed regime are notably smaller compared to those
seen in the joint regime.

Finally, we evaluate the gradient equilibrium method (Li

Table 5. Accuracy improvement on the Tinyimagenet dataset when
using various IC loss and gradient scaling methods. While gradient
equilibrium enhances performance in the joint regime, it does not
benefit the mixed regime, highlighting the effectiveness of the
mixed regime for training multi-exit models.

Regime Scaling 25% 50% 75% 100%

Joint Inc. −1.7 +0.4 +0.98 +1.06
Mixed Inc. −1.08 −0.27 +0.22 +0.25

Joint Dec. +0.6 −0.29 −0.08 +0.0
Mixed Dec. +0.69 +0.32 −0.44 −0.46

Joint SDN −3.75 −0.33 +0.89 +0.94
Mixed SDN −3.39 −1.1 +0.07 +0.23

Joint GE +0.31 +0.4 +0.73 +0.71
Mixed GE −1.16 −0.11 +0.02 −0.02

et al., 2019). For the joint regime, gradient scaling improves
performance at higher computational budgets. However,
for the mixed regime, there is no additional benefit, further
confirming that they achieve a similar effect. The mixed
regime achieve superior results and it obviates the need
for application of gradient equilibrium.

4.5. Impact of IC Size

The size of an internal classifier (IC) in early exit archi-
tectures refers to the number of layers and neurons within
the internal classifier. Smaller ICs are computationally effi-
cient and enable faster early exits with minimal overhead.
Conversely, larger ICs offer greater capacity, potentially en-
hancing accuracy, but may offset the computational benefits
of multi-exit models.

A recent study by (Wójcik et al., 2023) investigated the
impact of IC size and found that larger heads significantly
improve performance. However, this analysis focused solely
on the disjoint training regime. In our study, we examine the
effect of varying IC sizes using a ViT-T model trained on the
TinyImagenet dataset. Each IC consists of either one or two
fully connected layers with hidden dimensions of 1024 or
2048, followed by a softmax layer. As summarized in Table
6, under the disjoint regime larger ICs indeed yield clear
gains: moving from a single-layer IC with 1024 units to a
two-layer IC with 2048 units can increase top-1 accuracy
by up to 7.6 percentage points, and this effect is especially
visible for lower budgets. However, in the mixed regime
this trend reverses, and the change can result in an actual
performance degradation. These results demonstrate that
optimal IC architecture depends critically on the chosen
training strategy, and that conclusions drawn under a disjoint
setup may not transfer when the backbone is also trained.
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Table 6. The effect of varying head size on the ViT-T model. Larger
heads translate to inferior performance for the mixed regime. In
contrast, the disjoint model clearly benefits from larger ICs when
small budgets are considered.

Regime IC arch. 25% 50% 75% 100%

Disjoint
1L 26.35 41.69 53.06 56.72

2L-1024 33.85 47.21 54.97 56.72
2L-2048 33.96 45.98 54.74 56.72

Joint
1L 42.47 53.24 56.02 56.03

2L-1024 45.59 55.11 57.73 57.66
2L-2048 43.60 53.89 56.94 57.00

Mixed
1L 44.03 57.91 60.42 60.28

2L-1024 44.92 57.11 59.32 59.22
2L-2048 44.61 56.94 60.18 60.15

4.6. Impact of IC Placement Scheme

The scheme of placing the internal classifiers in early exit
architectures refers to where these classifiers are inserted
at different layers within the model. This can range from
being placed at every layer to being placed at strategically
selected layers. To explore the impact of the placement
scheme on the final performance, we train a ResNet-50
model with different regimes for every placement scheme.
An IC can be placed at any block from index 0 to 14 for
this architecture; however, we do not place it at index 0, as
this would entirely bypass the backbone. In the Every-n
placement scheme, an IC is inserted at every n-th block. In
the Dense-Sparse configuration, ICs are placed at blocks:
[1, 2, 3, 4, 5, 6, 7, 11], while in the Sparse-Dense scheme,
they are placed at blocks: [1, 4, 8, 9, 10, 11, 12, 13, 14].

The placement scheme plays a significant role in shaping
network performance across different training regimes, as
shown in Table 7. While densely placed ICs generally en-
sure strong performance across a range of computational
budgets, the model can be tailored to prioritize a particular
budget by using the Dense-Sparse or Sparse-Dense schemes.
In most cases, models trained with the mixed regime outper-
form those trained under other regimes.

4.7. Training time

The ultimate aim of a majority of multi-exit models is
achieving the Pareto frontier in model performance and
computational cost of the model during inference (Scarda-
pane et al., 2020; Han et al., 2021). As such, to prevent
under-training, we apply an early-stopping criterion in every
experiment in this work. However, this raises an interest-
ing question: how long does it take for the training in each
regime to converge?

We explore the training time of the ResNet-50 model trained
on the TinyImagenet dataset (see Table 1). Disjoint training

Table 7. The effect of varying head placement schemes on the SDN
early-exit architecture with ResNet-50 as a backbone, trained on
the TinyImagenet dataset.

Scheme Regime 25% 50% 75% 100%

Every-1
Disjoint 38.92 49.25 60.10 65.76
Joint 52.20 62.49 65.52 65.59
Mixed 52.22 63.03 67.21 67.35

Every-2
Disjoint 37.34 48.03 60.34 65.65
Joint 51.81 62.60 65.55 65.38
Mixed 52.41 63.19 67.14 67.33

Every-3
Disjoint − 47.91 60.95 65.77
Joint − 63.33 67.22 67.21
Mixed − 62.52 66.72 66.71

Every-4
Disjoint − 41.32 57.78 65.78
Joint − 62.54 66.30 66.27
Mixed − 62.07 67.08 67.14

Every-5
Disjoint − 39.85 56.20 65.72
Joint − 61.10 65.61 65.79
Mixed − 61.95 67.33 67.40

Den.-Spa.
Disjoint 38.47 50.64 62.04 65.74
Joint 53.14 62.23 64.76 64.93
Mixed 53.48 63.17 66.24 66.27

Spa.-Den.
Disjoint 37.12 47.03 59.79 65.68
Joint 50.47 61.19 65.36 65.42
Mixed 51.19 62.27 67.26 67.47

was the fastest and took 523 (±156, averaged over multiple
seeds) epochs on average. Joint training converged after
1610 (±395), while mixed training required 1166 (±136)
epochs. These results indicate that while disjoint training
converges most rapidly, the mixed regime offers a substan-
tial speed-up over joint training by alleviating the interfer-
ence effect between intermediate classifiers.

5. Related Work
Early exiting is a notable application of the conditional com-
putation paradigm (Bengio et al., 2013). While conceptually
similar to earlier classifier cascades (Xu et al., 2014; Wang
et al., 2018), it differs in that all classifiers are integrated
within a single model, enabling end-to-end training. The
first multi-exit model was introduced by (Teerapittayanon
et al., 2016), and the field has expanded considerably since
its inception.

Joint training is the most widely used and well-established
strategy for early-exit models (Matsubara et al., 2022). This
approach has been successfully applied to dynamic infer-
ence under various constraints, such as energy or time limita-
tions (Wang et al., 2020), and extended to diverse early-exit
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applications, including low-resolution classification (Xing
et al., 2020), quality enhancement (Yang et al., 2020), and
Question-Answering systems (Soldaini & Moschitti, 2020).
While joint training has proven effective, several studies
have demonstrated significant improvements through modi-
fications of the training process. For instance, knowledge
distillation from the final classifier to earlier internal classi-
fiers has been shown to enhance their performance (Phuong
& Lampert, 2019; Li et al., 2019; Liu et al., 2020). Similarly,
ensembling multiple intermediate classifiers can improve
the prediction accuracy (Qendro et al., 2021; Sarti et al.,
2023). The Global Past-Future (GPF) method (Liao et al.,
2021) goes a step further and incorporates information from
both earlier predictions and surrogate later predictions to
improve inference. Additionally, recent works (Han et al.,
2022; Yu et al., 2023; Chataoui et al., 2023) identify a train-
test mismatch in conventional multi-exit approaches and
propose strategies that address this issue, further enhancing
the robustness of early-exit models.

SDN (Kaya et al., 2019) was one of the first to explore the
training of early-exit models through the pre-training of
the architecture’s backbone followed by separate training
of the classifiers. Multiple subsequent works have focused
on optimizing early-exit models based only on this setup
(Wójcik et al., 2023; Lahiany & Aperstein, 2022; Liu et al.,
2020), potentially limiting the general applicability of their
findings. For instance, (Wołczyk et al., 2021) employ an
ensembling technique that combines predictions from ear-
lier internal classifiers, weights of which are trained in a
separate, third training phase. (Lahiany & Aperstein, 2022)
propose PTEENet, which augments pre-trained networks
with confidence heads that dynamically adjust based on
available resources and unlabeled data.

(Kaya et al., 2019) were the first to explore both joint and
disjoint training approaches for early-exit models. These
approaches are also briefly reviewed in surveys such as
(Scardapane et al., 2020; Matsubara et al., 2022). Further-
more, techniques like weighting the losses at each exit head
(Zhou et al., 2020; Kaya et al., 2019; Han et al., 2022) or
scaling the individual gradients (Li et al., 2019) can be re-
garded as variations of the joint training paradigm. In the
context of LLMs, a concurrent work of Bae et al. (2024) in-
cludes an empirical comparison of joint and disjoint training
strategies, with similar conclusions about the weaknesses of
both approaches. To the best of our knowledge, our work
is the first to present a broad and systematic analysis of the
early-exit training strategies.

6. Conclusion
This study emphasizes the critical importance of training
regimes for early-exit models, an aspect that has been largely
neglected in prior research. Addressing this gap, we pro-

vide a detailed analysis and evaluation of various training
approaches for early-exit architectures in deep neural net-
works. Our findings reveal that the manner in which the
backbone and internal classifiers are trained has a significant
impact on the performance and efficiency of these models.
Furthermore, we show that when using the mixed training
regime, gradient scaling is unnecessary. Below we sum-
marize some practical takeaways for the selection of the
training regime.

Mixed. Mixed regime demonstrates substantial robustness
across various factors, including different data modalities
and early-exit approaches with varying exit criteria. There-
fore, the mixed regime is generally preferred, combining
the benefits of both disjoint and joint training. The mixed
regime ensures that the backbone network is well-optimized
before integrating internal classifiers, leading to improved
computational efficiency and accuracy. It is particularly
recommended for cases where the performance on medium
and high computational budgets is the main requirement.

Joint. The joint regime is simple to implement and can
perform well for small computational budgets. However, it
generally underperforms, especially for medium to higher
budgets, which are more relevant in practical applications.

Disjoint. This regime is generally inferior compared to
the others in most setups, but performs well for the highest
budgets. It may be preferred when the backbone is shared, or
the lack of resources prevents us from training the backbone
network.
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A. Alternative Regimes
In addition to the training regimes discussed in the main paper, early-exit surveys describe alternative training strategies
(Scardapane et al., 2020; Rahmath P et al., 2024). Moreover, (Xin et al., 2021) have proposed the ”Alternating” approach,
which also attempts to combine the advantages of joint and disjoint regimes. Additionally, we propose a refinement of the
mixed regime, termed the mixed-gradual training regime.

We describe these alternative regimes below:

• Branch-wise training. In this regime, ICs are trained sequentially, with only the part of the backbone corresponding to
the current IC being unfrozen.

• Separate training. Similar to branch-wise training, ICs are optimized sequentially. However, at each step, the
preceding ICs are jointly trained along with the current one. The entire model is unfrozen during the training process.

• Alternating training. Proposed in (Xin et al., 2021), this regime alternates between training the backbone independently
(Equation (1)) and jointly training the backbone with all ICs (Equation (2)) in each training step.

• Mixed-gradual training. Building on the strengths of the mixed regime, we propose a more gradual optimization
approach. Training proceeds in m phases, where m is the number of ICs. In the i-th phase, the last i ICs are jointly
optimized, and no weights are frozen at any stage. This ensures flexibility throughout the training process while
allowing the model to adapt more effectively to the optimization landscape. This approach is similar to gradual early
exit curriculum proposed by the concurrent work of Elhoushi et al. (2024), with the difference being that we utilize
early-stopping, while they enable the next IC at constant intervals of training steps.

In Appendix C, we present the results for these alternative training regimes. Both the branch-wise and separate training
approaches demonstrate subpar performance when evaluated under higher computational budgets. Although the alternating
training regime resembles the mixed regime in its motivation, its performance consistently falls short of both the mixed and
joint regimes. Interestingly, the mixed-gradual regime outperforms the mixed regime, providing strong evidence in favor of
our approach to enhancing early-exit optimization.

B. Loss Landscape
The concept of a loss landscape in the context of neural networks is crucial for understanding the training dynamics and
generalization properties of models. The loss landscape provides a visual and analytical representation of how the loss
function changes with respect to the model’s parameters. By visualizing the loss landscapes of different neural network
architectures, we can understand how design choices affect the shape of the loss function.

For a trained model with parameters θ∗, one can evaluate the loss function for the numbers x, y

f(x, y) = L(θ∗ + xδ + yη) (6)

such that δ, η are random directions sampled from a probability distribution, usually a Gaussian distribution, filter-normalized
(Li et al., 2018), obtaining a 3D plot. In contrast to a typical neural network architecture, in early-exit set-up, both the final
and internal classifiers are considered. We consider total training loss and separate losses for each IC.

When evaluating head losses, we use common random directions(δ, η) for each IC. The δ, η directions contain both backbone
and head parameters.

As shown in Figure 6 there is a significant difference in loss landscapes between the Disjoint regime and the Joint one. The
Joint and Mixed regimes are similar in this regard.

C. Full Results
Due to space constraints in the main paper we have presented only the averaged results. In this section, we present the main
results with the standard deviation reported for each experiment. Furthermore, we include the results for additional training
regimes, which are described in Appendix A.
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Figure 6. Training loss landscapes: comparison for Joint, Mixed, and Disjoint regimes (left to right), head 1. Landscapes for SDN
architecture with Resnet20 as backbone trained on the CIFAR-10 dataset.

Table 8. ResNet-34 CIFAR-100
Regime 25% 50% 75% 100% Unlimited

Disjoint 52.57 ±0.07 67.56 ±0.22 73.49 ±0.93 73.79 ±1.00 73.79 ±1.00
Joint 62.84 ±0.67 72.80 ±0.34 74.32 ±0.08 74.17 ±0.10 74.19 ±0.09

Mixed 62.24 ±0.78 73.81 ±0.51 75.92 ±0.44 75.88 ±0.40 75.88 ±0.40
Branch-wise 64.19 ±0.47 67.03 ±0.76 66.88 ±0.60 66.75 ±0.68 66.75 ±0.68

Separate 66.25 ±0.54 72.57 ±0.38 72.87 ±0.41 72.82 ±0.46 72.82 ±0.46
Alternating 60.35 ±1.15 71.99 ±0.45 74.57 ±0.17 74.37 ±0.02 74.36 ±0.09

Mixed-gradual 60.11 ±0.68 73.16 ±0.70 76.08 ±0.54 75.94 ±0.75 75.94 ±0.75

Table 9. MSDNet CIFAR-100
Regime 25% 50% 75% 100% Unlimited

Disjoint 56.74 ±0.41 63.96 ±0.74 68.59 ±0.72 70.36 ±0.84 70.54 ±0.93
Joint 65.93 ±0.20 72.02 ±0.27 74.73 ±0.18 75.86 ±0.26 75.93 ±0.21

Mixed 65.94 ±0.55 72.01 ±0.47 75.46 ±0.15 76.51 ±0.08 76.71 ±0.17
Branch-wise 58.24 ±0.45 59.73 ±0.41 60.16 ±0.47 59.97 ±0.38 59.73 ±0.29

Separate 64.90 ±0.56 67.84 ±0.17 69.02 ±0.25 69.21 ±0.23 69.15 ±0.23
Alternating 64.69 ±0.45 71.67 ±0.27 74.93 ±0.16 76.06 ±0.25 76.34 ±0.31

Mixed-gradual 64.73 ±0.66 72.10 ±0.47 75.66 ±0.51 77.21 ±0.61 77.49 ±0.64

Table 10. ViT-T CIFAR-100
Regime 25% 50% 75% 100% Unlimited

Disjoint 28.33 ±0.47 47.32 ±0.81 61.50 ±1.82 63.99 ±1.68 63.99 ±1.68
Joint 40.87 ±0.84 60.48 ±0.94 66.22 ±1.07 66.49 ±1.08 66.49 ±1.08

Mixed 41.65 ±0.19 64.07 ±0.38 70.09 ±0.64 70.25 ±0.56 70.25 ±0.56
Branch-wise 32.41 ±1.32 33.46 ±0.76 34.33 ±0.49 34.51 ±0.45 34.51 ±0.45

Separate 42.67 ±0.89 51.48 ±3.58 54.29 ±4.68 54.42 ±4.83 54.42 ±4.83
Alternating 37.85 ±0.40 59.11 ±0.20 67.81 ±0.69 68.39 ±0.78 68.39 ±0.78

Mixed-gradual 40.61 ±0.08 64.83 ±0.46 71.42 ±0.34 71.60 ±0.38 71.60 ±0.38
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Table 11. ResNet-50 Tinyimagenet

Regime 35% 50% 75% 100% Unlimited

Disjoint 38.49 ±0.46 49.25 ±1.33 60.50 ±1.27 65.71 ±0.90 65.80 ±0.90
Joint 52.98 ±0.77 62.16 ±0.61 65.14 ±0.57 65.01 ±0.75 65.00 ±0.75

Mixed 52.89 ±0.23 63.28 ±0.59 67.20 ±0.65 67.24 ±0.71 67.22 ±0.71

Table 12. ViT-T ImageNet-1k

Regime 25% 50% 75% 100% Unlimited

Disjoint 10.22 ±0.15 35.15 ±0.97 61.23 ±1.37 71.61 ±0.68 71.61 ±0.68
Joint 36.39 ±0.12 61.89 ±0.71 68.08 ±0.84 68.39 ±0.87 68.39 ±0.87

Mixed 35.91 ±0.19 62.96 ±0.12 70.79 ±0.36 71.20 ±0.34 71.20 ±0.34

Table 13. BERT-B 20-Newsgroups

Regime 25% 50% 75% 100% Unlimited

Disjoint 68.53 ±0.97 83.75 ±0.34 85.75 ±0.16 85.69 ±0.28 85.54 ±0.34
Joint 84.24 ±0.48 84.41 ±0.41 84.41 ±0.41 84.41 ±0.41 84.51 ±0.60

Mixed 84.99 ±0.84 85.25 ±0.64 85.25 ±0.64 85.25 ±0.64 85.46 ±0.44
Branch-wise 80.20 ±0.19 80.05 ±0.12 80.05 ±0.12 80.05 ±0.12 79.83 ±0.06

Separate 79.87 ±0.36 79.87 ±0.36 79.87 ±0.36 79.87 ±0.36 79.78 ±0.30
Alternating 83.51 ±0.33 83.92 ±0.06 83.92 ±0.06 83.92 ±0.06 84.18 ±0.34

Mixed-gradual 81.35 ±1.24 81.35 ±1.24 81.35 ±1.24 81.35 ±1.24 81.24 ±0.93

Table 14. BERT-B STS-B
Regime 25% 50% 75% 100% Unlimited

Disjoint 2.37 ±0.01 1.55 ±0.11 0.54 ±0.00 0.51 ±0.02 0.51 ±0.02
Joint 1.70 ±0.23 0.61 ±0.02 0.53 ±0.01 0.52 ±0.02 0.52 ±0.01

Mixed 2.43 ±0.03 0.59 ±0.01 0.53 ±0.01 0.51 ±0.00 0.51 ±0.00
Branch-wise 2.14 ±0.24 0.82 ±0.09 0.84 ±0.10 0.83 ±0.10 0.84 ±0.10

Separate 2.69 ±0.14 1.41 ±0.09 1.41 ±0.09 1.40 ±0.08 1.39 ±0.0
Alternating 1.76 ±0.33 0.60 ±0.00 0.51 ±0.01 0.50 ±0.01 0.50 ±0.01

Mixed-gradual 2.37 ±0.03 0.51 ±0.00 0.48 ±0.00 0.46 ±0.01 0.46 ±0.01

Table 15. ViT-T PBEE CIFAR-100
Regime 25% 50% 75% 100% Unlimited

Disjoint 19.28 ±0.32 44.11 ±1.73 57.85 ±1.61 63.91 ±1.68 63.99 ±1.68
Joint 28.66 ±0.50 56.49 ±1.48 64.31 ±0.87 66.52 ±1.08 66.49 ±1.08

Mixed 28.87 ±0.44 59.42 ±0.50 68.33 ±0.60 70.33 ±0.68 70.25 ±0.56
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Table 16. ViT-T GPF CIFAR-100
Regime 25% 50% 75% 100% Unlimited

Disjoint 33.16 ±0.64 53.19 ±0.66 62.54 ±1.59 64.01 ±1.67 63.99 ±1.68
Joint 46.21 ±0.30 62.23 ±0.81 66.84 ±0.68 67.19 ±0.78 67.19 ±0.80

Mixed 47.21 ±1.02 64.51 ±0.84 68.92 ±0.30 69.10 ±0.38 69.10 ±0.38

Table 17. ViT-T Entropy CIFAR-100

Regime 25% 50% 75% 100% Unlimited

Disjoint 27.14 ±0.36 46.09 ±0.59 60.30 ±1.41 63.99 ±1.68 63.99 ±1.68
Joint 41.16 ±0.82 58.60 ±0.89 65.69 ±1.23 66.49 ±1.08 66.49 ±1.08

Mixed 41.54 ±0.52 62.20 ±0.35 69.63 ±0.47 70.25 ±0.56 70.25 ±0.56

Table 18. ViT-B pretrained on ImageNet-1k to CIFAR-100

Regime 35% 50% 75% 100% Unlimited

Disjoint 28.50 ±2.02 55.64 ±3.71 87.49 ±0.40 89.95 ±0.18 89.95 ±0.18
Joint 73.18 ±1.36 85.41 ±0.23 87.82 ±0.22 87.85 ±0.29 87.84 ±0.29

Mixed 73.38 ±0.35 85.70 ±0.63 88.06 ±0.31 88.23 ±0.29 88.23 ±0.29

Table 19. ResNet-50 Tinyimagenet loss and gradient scaling experiment

Regime 25% 50% 75% 100% Unlimited

Joint 52.98 ±0.77 62.16 ±0.61 65.14 ±0.57 65.01 ±0.75 65.00 ±0.75
Joint GE 53.29 ±0.90 62.56 ±0.15 65.87 ±0.36 65.72 ±0.56 65.69 ±0.57
Joint Inc. 51.28 ±0.19 62.56 ±0.12 66.12 ±0.39 66.07 ±0.42 66.06 ±0.41
Joint Dec. 53.58 ±0.44 61.87 ±0.45 65.06 ±0.35 65.01 ±0.29 65.00 ±0.30
Joint SDN 49.23 ±0.64 61.83 ±0.32 66.03 ±0.18 65.95 ±0.25 65.93 ±0.24

Mixed 52.89 ±0.23 63.28 ±0.59 67.20 ±0.65 67.24 ±0.71 67.22 ±0.71
Mixed GE 51.73 ±0.12 63.17 ±0.33 67.22 ±0.39 67.22 ±0.10 67.21 ±0.12
Mixed Inc. 51.81 ±0.24 63.01 ±0.49 67.42 ±0.39 67.49 ±0.32 67.47 ±0.34
Mixed Dec. 53.58 ±0.69 63.60 ±0.25 66.76 ±0.50 66.78 ±0.47 66.75 ±0.47
Mixed SDN 49.50 ±0.74 62.18 ±0.76 67.27 ±0.68 67.47 ±0.55 67.47 ±0.56

Table 20. ViT-T Imagenette head size experiment

Regime, Head 25% 50% 75% 100% Unlimited

Disjoint 1L 75.61 ±0.10 78.72 ±1.24 78.32 ±1.62 78.29 ±1.63 78.28 ±1.65
Disjoint 2L-1024 77.41 ±0.39 79.04 ±1.26 78.36 ±1.63 78.29 ±1.63 78.28 ±1.65
Disjoint 2L-2048 77.10 ±0.40 79.02 ±1.26 78.39 ±1.69 78.30 ±1.65 78.28 ±1.65

Joint 1L 81.44 ±1.54 82.51 ±1.40 82.46 ±1.41 82.46 ±1.41 82.45 ±1.40
Joint 2L-1024 80.00 ±0.69 81.06 ±0.57 80.99 ±0.69 80.99 ±0.69 81.00 ±0.68
Joint 2L-2048 79.68 ±0.28 80.67 ±0.08 80.64 ±0.15 80.64 ±0.15 80.61 ±0.13

Mixed 1L 82.21 ±0.08 83.20 ±0.39 83.19 ±0.41 83.19 ±0.41 83.18 ±0.45
Mixed 2L-1024 80.25 ±0.59 81.28 ±0.44 81.13 ±0.40 81.13 ±0.40 81.11 ±0.37
Mixed 2L-2048 79.63 ±0.67 80.77 ±0.58 80.70 ±0.51 80.70 ±0.51 80.67 ±0.52
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D. Results as Performance-Cost plots
Following Kaya et al. (2019), we presented most of the results in this paper in the form of tables. In this section, we provide
the same results as model performance vs. computational costs plots.

Figure 7. Performance–cost trade-off of the multi-exit ResNet-34
on the CIFAR-100 dataset

Figure 8. Performance–cost trade-off of the MSDNet architecture
on the CIFAR-100 dataset

Figure 9. Performance–cost trade-off of the multi-exit ViT-T on
the CIFAR-100 dataset

Figure 10. Performance–cost trade-off of the ViT-T architecture
on the ImageNet-1k dataset

Figure 11. Performance–cost trade-off of the multi-exit BERT-B
on the 20Newsgroups dataset

Figure 12. Performance–cost trade-off of the BERT-B architec-
ture on the STS-B dataset
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Figure 13. Performance–cost trade-off of the multi-exit PBEE with
ViT-T as the backbone on the CIFAR-100 dataset

Figure 14. Performance–cost trade-off of the multi-exit GPF with
ViT-T as the backbone on the CIFAR-100 dataset

Figure 15. Performance–cost trade-off of the multi-exit ViT-T on
the CIFAR-100 dataset, using normalized entropy as the exit crite-
rion

Figure 16. Performance–cost trade-off of the multi-exit ViT-B on
the CIFAR-100 dataset, pre-trained on ImageNet-1k and fine-tuned
on CIFAR-100

Figure 17. Performance–cost trade-off of the multi-exit ViT-S on
the ImageNet-1k dataset

E. Training Details
Here we provide more information training setup, in addition to what is described in Section 4.1

E.1. ResNet-34, CIFAR-100

Model set-up. Exit heads are placed at positions {2, 4, . . . , 14}.
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Training set-up. We train each model with batch size of 128. We use a learning rate of 5e−4 and no weight decay. We set
the early stopping patience to 50 epochs. CutMix and Mixup are used as augmentations.

E.2. MSDNet, CIFAR-100

Model set-up. We use CIFAR variant of MSDNet with 7 blocks. Exit heads are placed at positions {0, 1, . . . , 17}.

Training set-up We train each model with batch size of 512. We use a learning rate of 1e−3 and no weight decay. We set
the early stopping patience to 50 epochs. CutMix and Mixup are used as augmentations.

E.3. ViT-T, CIFAR-100

Model set-up. ViT-T hyperparameters are as follows: a patch size of 4, an embedding size of 256, an MLP dimension of
256, 7 layers and 8 attention heads. Exit heads are placed at positions {0, 1, . . . , 6}. For GPF we set head embedding size to
512.

Training set-up We train each model with batch size of 256. We use a learning rate of 5e−4 and no weight decay. We set
the early stopping patience to 30 epochs. Following augmentations are used: random resizing, cropping, rotation, contrast
adjustment, random erasing, CutMix and Mixup.

E.4. ResNet-50, Tinyimagenet

Model set-up. Exit heads are placed at block positions {1..14}.

Training set-up. We train each model with batch size of 256. We use a learning rate of 1e−3 and no weight decay. We set
the early stopping patience to 50 epochs. CutMix and Mixup are used as augmentations.

E.5. ViT-T, ImageNet-1k

Model set-up. ViT-T hyperparameters are as follows: a patch size of 16, an embedding size of 192, an MLP dimension of
768, 12 layers, and 3 attention heads. Exit heads are placed at positions {1, 2, . . . , 10}.

Training set-up. We train each model using 4 A-100 GPUs with an effective batch size of 2048. We use a learning rate of
5e−4 and no weight decay. We set the early stopping patience to 25 epochs. Following augmentations are used: random
resizing, cropping, rotation, contrast adjustment, random erasing, CutMix (Yun et al., 2019) and Mixup (Zhang et al., 2018).

E.6. 20 Newsgroups, Bert-B

Model set-up We set maximum sequence length to 512. Exit heads are placed at positions {1, 3, . . . , 21}

Training set-up We train each model with batch size of 32. We use a learning rate of 5e−5 and a weight decay of 1e−2.
We set the early stopping patience to 3 epochs.

E.7. STS-B, Bert-B

Model set-up We set maximum sequence length to 128. Exit heads are placed at positions {1, 3, . . . , 21}

Training set-up We train each model with batch size of 16. We use a learning rate of 1e−5 and a weight decay of 1e−4.
We set the early stopping patience to 3 epochs.

E.8. ViT-B, CIFAR-100

Model set-up. ViT-B hyperparameters are as follows: a patch size of 16, an embedding size of 768, an MLP dimension of
3072, 12 layers and 12 attention heads. Exit heads are placed at positions {3, 5, . . . , 9}.
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Training set-up We use pretrained weights from torchvision (maintainers & contributors, 2016), trained on ImageNet-
1k. To fine-tune, we use a learning rate of 2e−5 and a weight decay of 3e−2. We set the early stopping patience to 30
epochs. We use Mixup as an augmentation.
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