
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OPTIMIZING ACTIVATIONS BEYOND ENTROPY MIN-
IMIZATION FOR TEST-TIME ADAPTATION OF GRAPH
NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Test-time adaptation (TTA) of classification models, which aims to optimize clas-
sifiers without labeled training samples, often employs entropy minimization as
a key objective. While this approach addresses the relationship between model
performance and prediction confidence or cluster structure, it can lead to model
collapse due to the lack of ground truth labels. This work optimizes activations
within batch normalization (BN) layers for TTA of graph neural networks (GNNs).
Our proposed method optimizes BN activations in a two-step process. First, we
determine weights and masks for the empirical batch mean and variance, consid-
ering training and test data statistics. Subsequently, we refine the scale and shift
parameters of the BN layers using a reformulated loss function incorporating an
energy-based model, aiming to enhance the model’s generalization capabilities.
Our approach leverages pseudo-labels derived from test samples to mitigate the
potential forgetting of training data. Empirical evaluation across seven challeng-
ing datasets demonstrates the superior performance of our approach compared to
state-of-the-art TTA methods.

1 INTRODUCTION

We study test-time adaptation (TTA) on graph neural networks (GNN) in this paper. TTA addresses
the issue of the model’s performance degrading when deployed in a scenario where the target (test)
data differs from the training data. This discrepancy restricting the model’s generalization lies in
the data distribution shift between the training and the test data. TTA handles the issue by adjusting
or fine-tuning the model with respect to the characteristics of the test data during inference before
making predictions.

Most TTA methods are designed under the context of image classification, where the data distribution
shift is usually a consequence of natural variation (Koh et al., 2021) or corruption (Hendrycks
and Dietterich, 2019). Under the assumption that the unknown distribution shift is caused by the
combination of known variates or corruptions across all domains (Gao et al., 2023), these TTA
methods do not work well on graph data where the distribution shift is complicated. Various
data distribution shifts exist (Quiñonero-Candela et al., 2022) when deploying GNN models in an
environment inconsistent with the one during training, such as full-distribution shift, covariate shift,
class-prior shift, class-conditional shift, or simply noise.

One SOTA method that could avoid shift-type identification is entropy minimization (EM) (Wang
et al., 2021; Press et al., 2024). EM-based methods adapt classifiers by iteratively updating the model’s
parameters to minimize the entropy of the model’s predictions, i.e., to maximize the likelihood of the
observed data belonging to the most likely classes. However, entropy minimization-based methods
have limitations. They often fight hard against the catastrophic forgetting of the ground truth in
training data. Due to the lack of ground truth labels, they can further introduce error signals, leading
to increased sensitivity to the learning rate and potential issues like model collapse.

The general guideline is to maintain a small divergence between the pre- and post-adaptation models,
thereby retaining the model’s inference capabilities acquired from the training data. Common
approaches to implementing the general guideline include: (1) fine-tuning only a subset of parameters,
such as those within batch normalization (BN) layers, (2) introducing regularization based on the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

distance between pre- and post-adaptation parameter values, (3) limiting training epochs or employing
small learning rates during adaptation.

In this paper, our approach for GNN is somewhat similar to optimizing activations in batch normal-
ization layers. A BN layer comprises four parameters: mean (µ), variance (σ2), scale (γ), and shift
(β). The statistics µ and σ2 are derived from activations within a batch and maintained by moving
averages for normalization purposes. The parameters γ and β are learned to optimally scale and shift
activations, thereby enhancing the model’s expressive power. Many TTA methods focus on adjusting
only the statistics µ and σ2, leaving the parameters γ and β unchanged (You et al., 2021; Mirza et al.,
2022). However, it is evident that adjusting µ and σ2 without modifying γ and β may not achieve
the optimal scale and shift for the updated statistics. We propose a two-step fine-tuning method to
address this limitation. In the first step, we fine-tune the mean (µ) and variance (σ2) parameters based
on the activation distribution to better align training and test data. Subsequently, we fine-tune the
scale (γ) and shift (β) parameters based on an augmented loss function incorporating an energy-based
model, potentially enhancing the generalization ability of the model.

Regularizing the distance between pre- and post-adaptation parameter values may seem counterintu-
itive (Niu et al., 2022). This approach involves a trade-off: while we aim to modify parameters for
adaptation, we also constrain the extent of these changes. This sacrifice of potential improvement is
intended to preserve the ground truth from the training data, ensuring it is not entirely forgotten during
adaptation. It is the same reason that most methods based on entropy minimization limit the number
of training epochs during adaptation (Mounsaveng et al., 2024; Wang et al., 2021; Mummadi et al.,
2021; Zhao et al., 2023) to avoid the risk of model collapse (Press et al., 2024): EM-based adaptation
is effective for a few steps but eventually deteriorates performance after prolonged adaptation. They
appear to save the computational cost, but determining the optimal number of adaptation steps is hard.
To deal with this, we propose utilizing the predictions on test data as pseudo-labels to introduce the
constraint rather than directly constraining the parameters themselves. Additionally, we employ a
filtering and pruning mechanism to remove potentially incorrect and harmful pseudo-labels.

The contributions of this paper are summarized as follows:

• We introduce a data-driven, two-step TTA framework for GNNs. This approach first adapts
BN layer statistics to the test data distribution. Then, it refines BN layer parameters using
a joint energy-based model, overcoming the limitations of existing entropy minimization-
based methods.

• We propose a data-driven method for determining optimal adaptation weights, leveraging
non-parametric density estimation, the Jensen-Shannon divergence, and a learnable mask
matrix to effectively balance contributions from training and test statistics. This mask matrix
M allows for selective adjustment of specific dimensions within the BN layer, leading to
more effective adaptation. (Section 3.1)

• We integrate an energy-based model (EBM) into our TTA framework to enhance model
generalization and calibration. High-quality soft pseudo-labels are ensured through entropy-
based selection and confidence-based filtering. The EBM approach contributes to more
reliable adapted predictions and further enhances model calibration. (Section 3.2)

Besides, compared with popular TTA methods, the results from extensive experiments demonstrate
the proposed framework’s effectiveness. It is worth noting that TTA methods that do not require
access to the training data are often referred to as Fully TTA methods. While our proposed method
maintains a small histogram matrix to store activation distributions in BN layers, this information
can be obtained solely by observing the last training epoch. Inherently, BN layers also store the
activations’ first and second moments (mean and variance) from the training dataset.

2 TEST-TIME ADAPTATION ON GRAPH NEURAL NETOWRKS

2.1 PROBLEM STATEMENT

Let G = {V,E,X} denote an attributed graph, where V represents the set of nodes, E represents
the set of edges, and X ∈ RN×d is the feature matrix. Here, N = |V | denotes the number of nodes,
and d represents the dimensionality of the features. Let A be the adjacency matrix of G. For any two
nodes u and v, if there exists an edge connecting them, then Au,v = 1. Otherwise, Au,v = 0.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

We evaluate test-time adaptation on the node classification task, where a distribution shift exists
between the training and test datasets. Let Y = {y1, y2, ..., yC} denote the set of class labels, where
yi represents one of the C possible labels. Dtr and Dts represent the training and test datasets,
respectively. Let θ denote the parameters of the GNN-based classification model fθ : G → Y , trained
on Dtr. TTA is typically performed in an online fashion. Given a graph Gi ∈ Dte, TTA fine-tunes
the model parameters θ before inferring the labels of nodes in Gi. The objective is to find improved
parameters θ∗ for the model f , such that the updated model fθ∗ can achieve enhanced generalization
ability and superior performance on Gi compared to the original model fθ.

Our approach for TTA on graph neural networks optimizes activations by fine-tuning the parameters
within the batch normalization layers in the GNN architecture. We do not assume a specific type of
data distribution shift, as our method operates on the activations within these layers rather than the
original data space. Notably, some existing research, such as Jin et al. (Jin et al., 2022b), explores
modifying the input graphs for TTA, which we will discuss further in the experimental evaluation
section.

2.2 PRELIMINARY: BATCH NORMALIZATION

Batch normalization (Ioffe and Szegedy, 2015) is a key advancement in deep neural networks, which
improves both model performance and training speed by regularizing the distribution of activations.
In the training stage, let {xi}bi=1 represent the input activations of a BN layer in a batch of size b.
The mean (µb) and variance (σ2

b) of the activations are calculated as follows: µb =
1
b

∑b
i=1xi, and

σ2
b = 1

b

∑b
i=1(xi − µb)

2. The BN operation is then performed as shown in Eq. 1, where γ and β
are learnable scale and shift parameters used to optimize the distribution of activations. ε is a small
constant added to the denominator to prevent division by zero.

x′
i =

xi − µb√
σ2
b + ε

· γ + β. (1)

During training, the parameters (µ̂, σ̂2) in BN layers are maintained using a moving average to capture
the overall statistical information of the training samples as follows: µ̂k = (1− ρ) · µ̂k−1 + ρ · µb,
and σ̂2

k = (1− ρ) · σ̂2
k−1 + ρ · σ2

b , where µ̂0 = 0, σ̂2
0 = 1. The momentum parameter ρ controls the

update rate of these values. At test time, These maintained values, which remain fixed at test time,
are then utilized to normalize the activations during inference, with the same equation as in Eq. 1.

BN layers are crucial in modern GNNs, contributing to improved model training stability. Many
state-of-the-art GNN architectures incorporate BN layers (Xu et al., 2019; Jin et al., 2022b; Wu et al.,
2022). In GNNs, BN is usually applied after each GNN layer, with the input to the BN layers being
the i-th GNN layer embeddings H(i). The normalized representations effectively stabilize the output
of each GNN layer and avoid overflow of popular aggregation functions in deep GNNs (Li et al.,
2019).

3 PROPOSED METHOD

Recall that BN layers comprise four parameters: mean (µ), variance (σ2), scale (γ), and shift (β). We
can divide these parameters into two groups:

• Statistic group: The mean (µ) and variance (σ2) are estimated from the data and capture the
statistical properties of the activations within a batch.

• Parameter group: The scale (γ) and shift (β) are learnable and optimized by the loss. They
allow the model to adjust the normalized activations to better suit the task at hand.

Our approach for TTA on GNNs optimizes activations within BN layers by fine-tuning the statistic
and parameter groups separately. The process comprises two successive steps: batch normalization
statistic adaptation (BNSA) and batch normalization parameter adaptation (BNPA). The overall
process of BNSA and BNPA is presented in Fig. 1(a) and Fig. 1(b), respectively.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) BNSA: optimizing µ and σ2 (Section 3.1) (b) BNPA: optimizing γ and β (Section 3.2)

Figure 1: Batch normalization parameter adaptation and batch normalization parameter adaptation

3.1 BATCH NORMALIZATION STATISTIC ADAPTATION

BN demonstrates strong empirical performance. However, a comprehensive theoretical understanding
of its underlying mechanisms is acknowledged. The original paper (Ioffe and Szegedy, 2015)
proposed that BN reduces internal covariate shift, where the distribution of activations changes across
layers during training. However, subsequent research, such as Santurkar et al. (Santurkar et al., 2018),
has argued that BN works due to its ability to smooth the optimization landscape significantly.

While the theoretical foundation of BN is still under no consensus, we focus on a practical observation:
the scale (γ) and shift (β) are optimized based on the mean (µ) and variance (σ2) during the training
stage. If the values of µ and σ2 change significantly on the test data, the batch normalization process
using these altered statistics, along with the unchanged γ and β parameters optimized based on the
original µ and σ2, may not perform effectively.

Several works (Li et al., 2017; You et al., 2021; Lim et al., 2023) have verified that a weighted average
of the source (training) and target (test) data statistics can improve model inference, as shown in
Eq. 2:

µ = (1− α) · µs + α · µt,

σ2 = (1− α) · σ2
s + α · σ2

t ,
(2)

where (µ, σ2) represents the fine-tuned statistic group of the BN layer, and other parameters in the
neural model remain unchanged. µs and σ2

s are estimated from the training data, µt and σ2
t are

estimated from the test data, and α is a weighting factor that controls the contribution of each set of
statistics.

Most methods (Li et al., 2017; Nado et al., 2020; Schneider et al., 2020; You et al., 2021) determine
the value of α empirically, either through experience or grid search. In this paper, we propose a
simple yet effective method to determine the value of α by directly calculating the distribution shift
between the training and the test data covariates. In Eq. 2, α serves as an indicator of the degree
to which the statistic group should favor the test data. If significant differences exist between the
covariate distributions, then α should be larger, indicating a stronger reliance on the statistics of
test data. Conversely, when differences are minimal, α should be smaller or even zero, favoring the
statistics of training data.

As mentioned at the end of Section 1, relying solely on the first and second moments, (µs, σ
2
s)

and (µt, σ
2
t), may not fully capture the distribution shift between training and test data unless the

distributions are assumed to be normal or Gaussian. Therefore, we employ non-parametric density
estimation to estimate the activation distribution P

(i,d)
m (Gm) in the i-th BN layer for training instances

Gm ∈ Dtr, d is the dimensionality of vectors. Similarly, we obtain the estimated distribution
P

(i,d)
n (Gn) for test instances Gn ∈ Dte. The Jensen-Shannon (JS) divergence, a suitable metric for

measuring the distance between two probability distributions, is then used to determine the value of
α, as shown in Eq. 3 and Eq. 4:

JS(P (i,d)
m ||P (i,d)

n) =
1

2
KL(P (i,d)

m ||P
(i,d)
m + P

(i,d)
n

2
) +

1

2
KL(P (i,d)

n ||P
(i,d)
m + P

(i,d)
n

2
), (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

α(i,d) =
1

|Dtr| · |Dte|

|Dte|∑
n=1

|Dtr|∑
m=1

JS(P (i,d)
m ||P (i,d)

n). (4)

Here, α(i,d) is the weight of dimension d in the i-th BN layer, which is the average JS divergence
across all pairs of training and test instances.

We can more accurately capture the activation distribution by maintaining an additional distribution
of activations alongside the mean (µ) and variance (σ2) in BN layers during training. This provides
valuable prior information for determining the weighting factor α during TTA. To minimize the
computational overhead of maintaining these distributions, we only store the information from the
last few training epochs. In all our experiments in Section 4, P (i,d)

m is computed only at the final
training epoch. Let A be the matrix storing α(i,d), then A ∈ RL×D, where D is the width of the BN
layer (i.e., the number of neurons) and L is the number of BN layers in the model architecture.

It is important to note that α is not optimized through a learning process. While the value of α can
indicate the relative weighting of training and test data statistics in the BN layer, there is no guarantee
that the value of α will necessarily lead to improved performance. To address this issue, we propose
two solutions.

First, we propose to learn a mask matrix M to adjust specific dimensions within the BN layer
selectively. The mask matrix M ∈ {0, 1}L×D, where M(i,d) = 1 indicates that the parameters
(µ̂(i,d), σ̂

2
(i,d)) in the i-th BN layer and d-th dimension should be adjusted, and vice versa. We

model the mask elements as Bernoulli random variables: M(i,d) ∼ Bernoulli(b(i,d)), where b(i,d)
are independent Bernoulli variables. To make the sampling process differentiable, we employ the
Gumbel-Max trick (Jin et al., 2022a), as shown in Eq. 5, where τ is a temperature parameter. As τ
approaches 0, the values in M approach binary values.

M = sigmoid((log δ − log (1− δ) +B)/τ), δ ∼ U(0, 1). (5)

We add the statistic adjustment process into the forward process of BN layers to optimize the Bernoulli
variable matrix B. In the training process, the modified BN layers are in Eq. 6, where (µb, σ

2
b) is the

statistics of the test samples in the b-th batch. It is worth noting that the statistics of BN layers are not
updated during the training process. We integrate the statistic adjustment process into the forward
pass of the BN layers, enabling us to optimize the Bernoulli variable matrix B. During test-time
adaptation (TTA), the modified BN layers operate as shown in Eq. 6:

µ = (1− (A⊙M)) · µs + (A⊙M) · µb,

σ2 = (1− (A⊙M)) · σ2
s + (A⊙M) · σ2

b .
(6)

Each variable in this equation is implicitly indexed by (i, d), representing the d-th dimension in the
i-th BN layer. The statistics (µb, σ

2
b) are computed from the current test batch. Importantly, during

TTA, the statistics of the BN layers themselves remain fixed.

We employ contrastive learning for training at test-time adaptation, using the InfoNCE (van den Oord
et al., 2019) loss as defined in Eq. 7. In this context, zi represents the embedding of the i-th node,
while ẑi denotes the node embedding after applying DropEdge augmentation (Rong et al., 2020),
serving as the positive sample. Negative samples are generated by shuffling the features of nodes
(Velickovic et al., 2019), and z̃i represents the corresponding embedding of a negative sample. The
cosine similarity between two embeddings is given by s(zi, ẑi) =

zT
i ẑi

||zi||||ẑi|| . Then the loss function is
as follows:

Lc =
1

N

N∑
i=1

− log (
exp(s(zi, ẑi)/τ)

exp(s(zi, ẑi)/τ) + exp(s(zi, z̃i)/τ)
). (7)

To preserve the knowledge acquired from the training data, we aim to prevent the updated model
from making drastically different predictions compared to the original model. We achieve this by
adding the Kullback-Leibler (KL) divergence between the prediction distributions of the two models
as a regularization term, as shown in Eq. 8.

LBNSA = Lc + λ ·KL(p||q), (8)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Here, Lc represents the contrastive loss, λ is a weighting factor, and p and q denote the prediction
distributions of the original and updated models, respectively. By optimizing this loss, we obtain the
refined Bernoulli variable matrix B∗. This allows us to derive the mask matrix M∗, where M∗

(i,d) = 1

if sigmoid(b∗(i,d)) > 0.5, and M∗
(i,d) = 0 otherwise.

Second, similar to moving average, we further decay the µ and σ2 for k steps as in Eq. 9:

µ̂k = µ̂k−1 · (1− (A⊙M∗)) + µb · (A⊙M∗),

σ̂2
k = σ̂2

k−1 · (1− (A⊙M∗)) + σ2
b · (A⊙M∗),

(9)

where µ̂0 = µs, σ̂2
0 = σ2

s , and k is a small number. Therefore, µ̂k and σ̂2
k are the final values of µ

and σ2.

3.2 BATCH NORMALIZATION PARAMETER ADAPTATION

Once the optimal mean (µ) and variance (σ2) are obtained through the BNSA step, we proceed to
optimize the parameter group: scale (γ) and shift (β). This step further enhances the model’s general-
ization ability and overall performance. However, TTA methods that rely on entropy minimization
for parameter optimization can be problematic due to the lack of ground truth labels in the test data.
These methods can introduce error signals, leading to increased sensitivity to the learning rate and
potential issues like model collapse (Choi et al., 2022; Press et al., 2024).

To alleviate the issue of ground truth forgetting, we propose utilizing the predictions of the pre-
trained model before TTA as pseudo-labels for optimizing the scale (γ) and shift (β) rather than
relying on entropy minimization. However, this approach does not address the challenge well, as the
pseudo-labels may be inaccurate and lack the guarantee of ground truth.

If the pseudo-labels are largely accurate, they can be confidently used for parameter optimization. To
leverage the model’s confidence across all classes, we propose utilizing soft labels, i.e., the entire
softmax output, rather than hard labels (the class with the highest probability). To ensure the selection
of high-quality soft pseudo-labels, we employ two strategies:

1. Entropy-based Selection: We select test instances with low entropy in their softmax outputs.
This focuses on instances where the model exhibits high confidence in its predictions.

2. Confidence-based Filtering: We retain only the high and low probabilities within the softmax
output, discarding intermediate values. This preserves the model’s discriminative ability for
classes in which it demonstrates confidence while filtering out less certain predictions.

However, an implicit assumption underlies these two strategies: the model should be well-calibrated.
A calibrated model refers to a model whose predicted probabilities align with the observed frequencies
of the classes. In other words, for a well-calibrated model, if a class is predicted with a probability
of 0.8, we would expect that class to be the true label approximately 80% of the time. Inspired
by the concept of energy-based models (EBMs) applied to classifiers (Grathwohl et al., 2020), we
incorporate an EBM into our TTA framework to optimize the BN layer’s parameter group (scale and
shift). This integration aims to enhance both the model’s generalization ability and its calibration.
The joint energy-based model (JEM) is defined in Eq. 10:

log pθ(x, y) = log pθ(x) + log pθ(y|x), (10)

where x represents the node representation and y denotes the corresponding label.

We follow the classic formulation of EBMs (LeCun et al., 2006): pθ(x) =
exp(−Eθ(x))

Z(θ) , where Eθ(x)

is the energy function and Z(θ) is the partition function. The energy function is defined as:

Eθ(x) = −LogSumExpy(fθ(x)[y]) = − log
∑
y

exp(fθ(x)[y]). (11)

During optimization, the derivative of log pθ(x) in Eq. 10 can be rewritten as:

∂ log pθ(x)

∂θ
= Epθ(x′)

[
∂Eθ(x

′)

∂θ

]
− ∂Eθ(x)

∂θ
. (12)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The expectation in Eq. 12 requires sampling. We utilize Stochastic Gradient Langevin Dynamics
(SGLD) (Welling and Teh, 2011) to approximate this sampling process, as shown in Eq. 13:

x̂0 ∼ p0(x), x̂i+1 = x̂i −
δ

2

∂Eθ(x̂i)

∂x̂i
+ ϵ, ϵ ∼ N (0, δ), (13)

where p0(x) is a uniform distribution, δ is the step size, and ϵ is Gaussian noise. To reduce the
computational cost, we approximate the right-hand side of Eq. 12 using Persistent Contrastive
Divergence (PCD) (Tieleman, 2008). The approximated generation loss Lgen is given by:

Lgen = log pθ(x) = LogSumExpy′(fθ(x)[y
′])− LogSumExpy′(fθ(x̂)[y

′]), (14)

where y′ denotes the pseudo-labels. Sampling is performed for T steps. The sample adopted is the one
whose energy is the closest to the real one in the sampling process, i.e., x̂ = argmin(Eθ(x)−Eθ(x̂i)).

The conditional probability log pθ(y|x) in Eq. 10 is modeled using cross-entropy. As previously
mentioned, we employ entropy-based selection and confidence-based filtering to include reliable test
instances and pseudo-labels. We use the model before adaptation to obtain the softmax predictions p,
which serve as our pseudo-labels. Let i be the node index, then the entropy of node i is calculated as
follows: Entropy(p(i)) = −

∑C
c=1 p

(i)
c log p

(i)
c , where c represents a class label. The score s(i) of

node i is then defined as:
s(i) = I(Entropy(p(i)) < τe), (15)

where I is the indicator function, and τe is a hyperparameter that acts as an entropy threshold.

Furthermore, we retain only the high and low probabilities within the softmax output, discarding
intermediate values to enhance the model’s discriminative ability. The weight w(i)

c assigned to node i
for class c is defined as:

w(i)
c = exp

(
p(i)c − τ1c + τ2c

2

)
· I(p(i)c ≥ τ1c |p(i)c ≤ τ2c). (16)

τ1c and τ2c are probability thresholds. The final classification loss Lclf is then given by:

Lclf = pθ(y|x) = − 1∑
s(i)

N∑
i=1

C∑
c=1

s(i) · w(i)
c · p(i)c · log q(i)c , (17)

where w
(i)
c is the weight assigned to node i for class c, and q represents the updated softmax output

after adaptation. The overall loss function for BNPA is

LBNPA = Lgen + Lclf . (18)

While our proposed BNPA method offers improved performance, it’s important to acknowledge the
potential increase in computational time compared to methods that rely on entropy minimization
for parameter optimization. The primary factor contributing to this increase is the SGLD sampling
process. However, this additional computational cost is often offset by significant performance gains
and stable adaptation, especially in scenarios where accuracy is foremost.

4 EXPERIMENTAL EVALUATION

We conducted experiments on seven datasets: Amazon-Photo (Shchur et al., 2018), Cora (Yang et al.,
2016), Twitch-E (Rozemberczki et al., 2021), FB-100 (Traud et al., 2012), OGB-Products (Hu et al.,
2020), Elliptic (Pareja et al., 2020), and OGB-Arxiv (Hu et al., 2020). These datasets encompass
various types of distribution shifts, both synthetic and natural. To ensure a fair comparison of the
effectiveness in handling the distribution shift and mitigating performance degradation, we evaluate
all methods under the same out-of-distribution (OOD) setting, which is also employed in GTRANS
(Jin et al., 2022b) and EERM (Wu et al., 2022). Detailed dataset and OOD descriptions are provided
in Appendix A.2.

Baselines. We compare our proposed method with seven state-of-the-art (SOTA) test-time adaptation
(TTA) methods, categorized as follows:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Mean test dataset accuracy (%) for node classification. All results are averaged over ten runs
with random seeds. Bold and underlined indicate the best and second-best results, respectively.

Backbone Method Amazon-Photo Cora Elliptic FB-100 OGB-Arxiv OGB-Products Twitch-E Rank

GCN

a-BN(You et al., 2021) 94.98±0.57 95.37±0.61 53.41±2.50 53.15±0.70 51.89±0.36 61.26±0.11 60.34±0.54 4.1
DUA(Mirza et al., 2022) 94.65±0.61 94.00±0.71 57.24±2.72 53.05±0.84 52.77±0.33 61.27±0.11 60.03±0.56 4.9
MEMO(Zhang et al., 2022) 91.56±0.66 89.67±0.76 58.66±3.02 53.17±1.09 52.12±0.33 58.52±0.86 60.27±0.50 5.9
TENT(Wang et al., 2021) 94.03±1.07 91.87±1.36 51.71±2.00 54.16±1.00 45.72±0.67 60.69±0.15 59.46±0.55 6.4
SAR(Niu et al., 2023) 94.59±0.63 93.46±0.75 50.75±2.10 53.22±0.86 52.44±0.33 61.28±0.11 60.09±0.56 4.7
DELTA(Zhao et al., 2023) 94.67±0.59 94.03±0.71 62.77±1.80 53.07±0.84 52.78±0.33 61.23±0.11 60.05±0.55 4.1
GTRANS(Jin et al., 2022b) 94.13±0.77 94.66±0.63 55.88±3.10 54.32±0.6054.32±0.6054.32±0.60 50.18±0.63 60.64±0.13 60.42±0.86 4.4
Ours 96.17±0.2396.17±0.2396.17±0.23 98.21±0.4298.21±0.4298.21±0.42 64.16±1.2864.16±1.2864.16±1.28 53.19±0.84 52.90±0.2852.90±0.2852.90±0.28 61.29±0.1361.29±0.1361.29±0.13 60.47±0.6160.47±0.6160.47±0.61 1.41.41.4

GraphSAGE

a-BN(You et al., 2021) 97.44±0.54 99.96±0.02 60.95±4.08 53.70±0.39 51.55±0.19 63.85±0.13 62.17±0.14 5.0
DUA(Mirza et al., 2022) 95.57±0.57 99.89±0.05 63.54±3.13 53.73±0.37 54.33±0.14 63.91±0.11 62.38±0.15 4.3
MEMO(Zhang et al., 2022) 96.31±0.79 99.94±0.04 58.05±5.12 53.16±0.55 53.91±0.22 63.86±0.11 62.39±0.12 4.7
TENT(Wang et al., 2021) 95.72±0.43 99.80±0.10 55.89±4.87 54.86±0.3454.86±0.3454.86±0.34 48.07±0.44 62.81±0.16 62.09±0.09 6.3
SAR(Niu et al., 2023) 95.11±0.57 99.75±0.12 57.91±4.24 53.85±0.37 54.01±0.17 63.90±0.12 62.36±0.16 5.4
DELTA(Zhao et al., 2023) 95.60±0.57 99.90±0.05 65.93±2.27 53.75±0.36 54.34±0.14 63.88±0.14 62.39±0.15 3.7
GTRANS(Jin et al., 2022b) 96.91±0.68 99.45±0.13 60.81±5.19 54.64±0.62 52.99±0.28 64.17±0.2264.17±0.2264.17±0.22 62.15±0.13 4.6
Ours 99.39±0.2699.39±0.2699.39±0.26 99.99±0.0199.99±0.0199.99±0.01 68.53±1.4668.53±1.4668.53±1.46 54.01±0.34 54.41±0.1754.41±0.1754.41±0.17 63.85±0.11 62.41±0.1462.41±0.1462.41±0.14 2.02.02.0

GAT

a-BN(You et al., 2021) 96.62±0.55 98.40±0.44 65.93±2.07 50.07±1.12 53.81±0.47 67.43±0.14 58.38±1.83 3.1
DUA(Mirza et al., 2022) 96.14±0.67 97.45±0.82 65.75±2.23 49.93±1.13 53.83±0.49 67.30±0.14 58.03±1.67 5.4
MEMO(Zhang et al., 2022) 95.54±1.06 97.83±0.45 58.55±5.40 49.76±0.71 53.96±0.47 66.90±0.34 57.84±1.94 6.4
TENT(Wang et al., 2021) 95.99±0.46 95.91±1.14 66.07±1.66 51.47±1.7051.47±1.7051.47±1.70 50.87±0.23 66.03±0.47 58.33±1.18 5.3
SAR(Niu et al., 2023) 95.99±0.72 95.72±1.37 64.47±2.41 50.06±1.28 54.09±0.48 67.42±0.16 58.11±1.67 5.3
DELTA(Zhao et al., 2023) 96.14±0.66 97.53±0.81 66.42±1.87 49.93±1.14 53.19±0.52 67.37±0.17 58.11±1.68 4.9
GTRANS(Jin et al., 2022b) 96.67±0.74 96.37±1.00 66.43±2.57 51.16±1.72 52.59±0.66 67.27±0.14 58.59±1.0758.59±1.0758.59±1.07 3.7
Ours 97.09±0.5297.09±0.5297.09±0.52 99.63±0.1099.63±0.1099.63±0.10 68.03±1.6068.03±1.6068.03±1.60 50.07±1.33 54.14±0.5454.14±0.5454.14±0.54 67.44±0.1467.44±0.1467.44±0.14 58.13±1.63 1.91.91.9

• BN statistic modification. a-BN (You et al., 2021) and DUA (Mirza et al., 2022) maintain
statistics from both training and test instances, utilizing a weighted summarization for batch
normalization.

• Model parameter optimization. TENT (Wang et al., 2021) fine-tunes parameters within
BN layers using entropy minimization. SAR (Niu et al., 2023) selectively fine-tunes
parameters on a subset of test samples using entropy minimization. DELTA (Zhao et al.,
2023) incorporates class-specific weights into the loss calculation during fine-tuning. MEMO
(Zhang et al., 2022) fine-tunes all model parameters by minimizing entropy across augmented
data.

• Input augmentation. GTRANS (Jin et al., 2022b) learns to augment input graphs to better
align with the model without fine-tuning model parameters.

Implementation details are provided in Appendix A.3. Experimental settings for baseline methods
were adopted from their respective publications. All reported results represent the average perfor-
mance over ten independent runs with different random seeds. We evaluate our method across three
commonly used GNN backbone models: GCN (Kipf and Welling, 2016), GraphSAGE (Hamilton
et al., 2017), and GAT (Velickovic et al., 2018).

4.1 RESULTS

Table 1 presents the classification performance. Our proposed algorithm consistently achieves strong
out-of-distribution generalization ability across diverse datasets, achieving the best or near-best
results on most datasets. In particular, our algorithm achieves the highest classification accuracy on
GCN across six datasets (Amazon-Photo, Cora, Elliptic, OGB-Arxiv, OGB-Products, and Twitch-E),
with significant improvements over the second-best algorithm on Amazon-Photo, Cora, and Elliptic
(1.19%, 2.84%, and 1.39%, respectively). On GraphSAGE, our method yields the best results on five
datasets (Amazon-Photo, Cora, Elliptic, OGB-Arxiv, and Twitch-E), with notable gains on Amazon-
Photo and Elliptic (1.95% and 2.60%). While not the top performer on OGB-Products, our algorithm
remains highly competitive. Using GAT, our algorithm achieves the best performance on five datasets
(Amazon-Photo, Cora, Elliptic, OGB-Arxiv, and OGB-Products), with solid improvements on Cora
and Elliptic (1.23% and 1.60%). Performance on the remaining datasets is either excellent or very
close to the best results.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Ablation Study. Bold and underlined denote the best and second-best results, respectively.
Backbone Method Amazon-Photo Cora Elliptic FB-100 OGB-Arxiv OGB-Products Twitch-E

GCN

BNSA 96.08 97.72 60.52 54.10 51.95 60.92 58.94
BNSA w/o A 95.64 94.54 52.75 54.00 51.34 60.63 58.74
BNSA w/o M 96.06 97.69 60.07 53.53 51.18 60.84 58.83
BNPA 95.51 91.81 49.21 54.13 52.50 61.11 58.69
BNPA w/o MinSamp 95.46 91.53 49.21 54.12 51.78 61.09 58.69
BNPA w/o CEselc 95.45 91.46 48.95 54.13 51.52 60.99 58.62
Overall 96.4596.4596.45 98.0998.0998.09 61.0961.0961.09 54.1454.1454.14 52.6852.6852.68 61.2661.2661.26 59.1659.1659.16

(a) Cora G5 BNPA (b) Cora G5 Overall

Figure 2: t-SNE with and without BNPA

1 5 10 15 20
K

96.0

96.1

96.2

96.3

96.4

96.5

Ac
cu

ra
cy
(%

)

with M without M

(a) Amazon-Photo

1 5 10 15 20
K

52.5

53.0

53.5

54.0

54.5

Ac
cu

ra
cy
(%

)

with M without M

(b) FB-100

Figure 3: Mask matrix M and hyperparameter k

4.2 ABLATION STUDIES

An ablation study was conducted on GCN (see Table 2) to analyze the impact of individual components
in our proposed TTA method. Different settings were tested, including using only BN statistic
adaptation (BNSA) or BN parameter adaptation (BNPA), variations of BNSA without the adjustment
weight A (BNSA w/o A) or mask matrix M (BNSA w/o M), variations of BNPA without the closest
sample selection (BNPA w/o MinSamp) or the entropy and confidence-based selection (BNPA w/o
CEselc).

Results highlight the importance of both BNSA and BNPA, as well as the effectiveness of our
proposed weighting and selection strategies. Using a fixed weight instead of our proposed distribution
shift-based approach negatively impacts performance, validating our weighting strategy. Removing
the mask matrix M , which selectively adjusts BN statistics, also decreases performance. Minor but
consistent performance decreases are observed when the closest sample in SGLD is not selected, or
the entropy and confidence-based selection strategy is removed. All highlight the importance of these
components. While the overall improvement of BNSA over BNSA w/o M might seem marginal in
some cases, the mask’s effectiveness extends beyond accuracy improvements. It also contributes to
enhanced model calibration, as Appendix A.4.4 demonstrates. This improved calibration leads to
more reliable confidence estimates, which are essential for various downstream tasks.

To further understand the impact of BNSA, we visualize the activations from the last BN layer when
using BNPA alone and in conjunction with BNSA (Fig. 2). The results indicate that solely utilizing
BNPA does not yield the same level of class separation as the combined approach. Incorporating
both BNSA and BNPA leads to more distinct and inherent representations for each class.

4.3 HYPERPARAMETER SENSITIVITY STUDIES

We highlight the effectiveness of the mask matrix M in our approach. Fig. 3 illustrates the stability
of M across learning rounds, demonstrating its limited impact on Amazon-Photo but significant
contribution to preventing model collapse in FB-100. Additional results are presented in the Appendix.

Fig. 3 demonstrates that our proposed method achieves strong performance even with a small value
of k, aligning with practical considerations of preserving information from the training data. Fig. 4
illustrates the difference between the mean and variance calculated in Eq. 9 and those maintained
from the training data. This difference highlights how our method effectively balances the influence
of statistics from both the training and test datasets during adaptation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Dimension

−0.10

−0.05

0.00

M
ea

n
di
ffe

re
nc

e

sub(K=1,batch) sub(K=10,batch)

(a) OGB-Products mean

0 5 10 15 20 25 30
Dimension

0.0

0.1

0.2

Va
ria

nc
e
di
ffe

re
nc

e sub(K=1,batch) sub(K=10,batch)

(b) OGB-Products var.

Figure 4: Mean’s and variance’s difference

10 20 30 40 50 60 70 80 90 100
Number of bins

91
92
93
94
95
96
97
98
99

Ac
cu
ra
cy
(%

)

K=1 BNSA K=5 BNSA K=10 BNSA baseline

(a) Cora

10 20 30 40 50 60 70 80 90 100
Number of bins

48
50
52
54
56
58
60
62

Ac
cu
ra
cy
(%

)

K=1 BNSA K=5 BNSA K=10 BNSA baseline

(b) Elliptic

Figure 5: # of bins in BNSA vs accuracy

We investigate the impact of histogram size in non-parametric density estimation in Fig. 5. Results
show that: (1) BNSA consistently improves performance when the number of bins is small; (2)
accuracy eventually stabilizes with increasing bins beyond 30.

5 CONCLUSION

This work presented a novel two-step approach for test-time adaptation (TTA) of graph neural
networks. Our method adapts batch normalization statistics to the test data and refines model
parameters using an energy-based model. This approach addresses the limitations of existing methods,
improving model generalization and calibration. Empirical evaluation across seven diverse datasets
demonstrates its superior performance compared to state-of-the-art TTA techniques.

REFERENCES

Dian Chen, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi. Contrastive test-time adaptation.
Proceedings - IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
2022(1):295–305, 2022a.

Guanzi Chen, Jiying Zhang, Xi Xiao, and Yang Li. Graphtta: Test time adaptation on graph neural
networks. arXiv preprint arXiv:2208.09126, 2022b.

Sungha Choi, Seunghan Yang, Seokeon Choi, and Sungrack Yun. Improving test-time adaptation via
shift-agnostic weight regularization and nearest source prototypes. In European Conference on
Computer Vision, pages 440–458. Springer, 2022.

Jin Gao, Jialing Zhang, Xihui Liu, Trevor Darrell, Evan Shelhamer, and Dequan Wang. Back to
the source: Diffusion-driven adaptation to test-time corruption. In 2023 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 11786–11796, 2023. doi: 10.1109/
CVPR52729.2023.01134.

Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David Duvenaud, Mohammad Norouzi,
and Kevin Swersky. Your classifier is secretly an energy based model and you should treat it like
one. In 8th International Conference on Learning Representations, 2020.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Dan Hendrycks and Thomas G. Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pages 448–456.
pmlr, 2015.

Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier adjustment module for model-agnostic
domain generalization. In Neural Information Processing Systems, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang, Jiliang Tang, and Bing Yin.
Condensing graphs via one-step gradient matching. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 720–730, 2022a.

Wei Jin, Tong Zhao, Jiayuan Ding, Yozen Liu, Jiliang Tang, and Neil Shah. Empowering graph
representation learning with test-time graph transformation. In International Conference on
Learning Representations, 2022b.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2016.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsub-
ramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne
David, Ian Stavness, Wei Guo, Berton Earnshaw, Imran Haque, Sara M Beery, Jure Leskovec,
Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang. Wilds: A bench-
mark of in-the-wild distribution shifts. In Marina Meila and Tong Zhang, editors, Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 5637–5664. PMLR, 18–24 Jul 2021.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and Fujie Huang. A tutorial on energy-based
learning. Predicting structured data, 1(0), 2006.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep
as cnns? In Proceedings of the IEEE/CVF international conference on computer vision, pages
9267–9276, 2019.

Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Revisiting batch normalization
for practical domain adaptation. In International Conference on Learning Representations, 2017.

Hyesu Lim, Byeonggeun Kim, Jaegul Choo, and Sungha Choi. Ttn: A domain-shift aware batch
normalization in test-time adaptation. In International Conference on Learning Representations,
2023.

M. Jehanzeb Mirza, Jakub Micorek, Horst Possegger, and Horst Bischof. The norm must go on:
Dynamic unsupervised domain adaptation by normalization. In Computer Vision and Pattern
Recognition, pages 14745–14755, 2022.

S. Mounsaveng, F. Chiaroni, M. Boudiaf, M. Pedersoli, and I. Ayed. Bag of tricks for fully test-
time adaptation. In 2024 IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), pages 1925–1934, Los Alamitos, CA, USA, jan 2024. IEEE Computer Society. doi:
10.1109/WACV57701.2024.00194.

Chaithanya Kumar Mummadi, Robin Hutmacher, Kilian Rambach, Evgeny Levinkov, Thomas Brox,
and Jan Hendrik Metzen. Test-time adaptation to distribution shift by confidence maximization
and input transformation. arXiv preprint arXiv:2106.14999, 2021.

Zachary Nado, Shreyas Padhy, D Sculley, Alexander D’Amour, Balaji Lakshminarayanan, and Jasper
Snoek. Evaluating prediction-time batch normalization for robustness under covariate shift. arXiv
preprint arXiv:2006.10963, 2020.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and Mingkui
Tan. Efficient test-time model adaptation without forgetting. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pages 16888–16905. PMLR, 17–23 Jul 2022.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and Mingkui
Tan. Towards stable test-time adaptation in dynamic wild world. In International Conference on
Learning Representations, 2023.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi,
Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional networks
for dynamic graphs. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pages 5363–5370, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ori Press, Ravid Shwartz-Ziv, Yann LeCun, and Matthias Bethge. The entropy enigma: Success and
failure of entropy minimization. In International Conference on Machine Learning. PMLR, 2024.

Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D Lawrence. Dataset
shift in machine learning. Mit Press, 2022.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph convo-
lutional networks on node classification. In International Conference on Learning Representations,
2020.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normal-
ization help optimization? In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias
Bethge. Improving robustness against common corruptions by covariate shift adaptation. Advances
in neural information processing systems, 33:11539–11551, 2020.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Yi Su, Yixin Ji, Juntao Li, Hai Ye, and Min Zhang. Test-time adaptation with perturbation consistency
learning. arXiv preprint arXiv:2304.12764, 2023.

Tijmen Tieleman. Training restricted boltzmann machines using approximations to the likelihood
gradient. In Proceedings of the 25th international conference on Machine learning, pages 1064–
1071, 2008.

Amanda L Traud, Peter J Mucha, and Mason A Porter. Social structure of facebook networks. Physica
A: Statistical Mechanics and its Applications, 391(16):4165–4180, 2012.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding, 2019.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon
Hjelm. Deep graph infomax. In International Conference on Learning Representations, 2019.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Fully test-time
adaptation by entropy minimization. In International Conference on Learning Representations,
2021.

Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation.
Proceedings - IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
2022(1):7191–7201, 2022.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pages 681–688.
Citeseer, 2011.

Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. Handling distribution shifts on graphs: An
invariance perspective. In International Conference on Learning Representations, 2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pages 40–48. PMLR, 2016.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Fuming You, Jingjing Li, and Zhou Zhao. Test-time batch statistics calibration for covariate shift.
arXiv preprint arXiv:2110.04065, 2021.

Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test time robustness via adaptation and
augmentation. In Conference on Neural Information Processing Systems, 2022.

Bowen Zhao, Chen Chen, and Shu-Tao Xia. Delta: Degradation-free fully test-time adaptation. In
International Conference on Learning Representations, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 RELATED WORK

Test-time adaptation aims to bridge the gap between a model’s training data and the test data of
potential data distribution shift, thereby mitigating performance degradation. Usually, in TTA, only
unlabeled test data and a pre-trained neural model are available. Existing approaches to fully TTA
can be clarified into two primary categories: batch normalization calibration and model optimization.

A.1.1 BATCH NORMALIZATION CALIBRATION

BN layers in neural networks typically use statistics of mean and variance calculated from the training
data to normalize activations during inference. However, this can be problematic when the test data
distribution differs significantly from the training data.

Several methods have been proposed to address this issue: AdaBN (Li et al., 2017) replaces source
statistics with estimates from the entire target domain, arguing that BN statistics can encode domain-
specific information. PredBN (Nado et al., 2020) utilizes current batch statistics for normalization,
and PredBN+ (Schneider et al., 2020) combines source and current batch statistics based on batch size.
α-BN (You et al., 2021) uses a manually defined hyperparameter to blend source and target statistics.
DUA (Mirza et al., 2022) updates BN statistics using a decaying momentum and exponential moving
average on the target dataset.

These methods often rely on heuristic weights for combining statistics, limiting their flexibility and
stability. In contrast, our proposed method dynamically adjusts BN statistics using weights based on
the magnitude of the distribution shift and a learned mask matrix, enhancing performance on target
data with distribution shift.

A.1.2 MODEL OPTIMIZATION

The other category of TTA techniques focuses on optimizing the pre-trained model directly on the
test dataset, using an articulated-designed, unsupervised objective. Methods to optimize the whole
model are as follows. MEMO (Zhang et al., 2022) minimizes the entropy of average predictions
across augmented views of test samples. CoTTA (Wang et al., 2022) minimizes entropy based on
pseudo-labels derived from weighted and augmentation averaging. AdaContrast (Chen et al., 2022a)
employs self-supervised contrastive learning with pseudo-labeling. GAPGC (Chen et al., 2022b)
adapts contrastive learning to graph neural networks.

Methods to optimize the partial parameters or layers are as follows: TENT (Wang et al., 2021)
minimizes entropy of predictions on test samples to optimize BN parameters. HLR (Mummadi et al.,
2021) uses an unsaturated proxy loss and discrepancy regularization to optimize BN parameters. T3A
(Iwasawa and Matsuo, 2021) adjusts the classifier using pseudo-prototype representations. PCL (Su
et al., 2023) optimizes inter-layer normalization parameters using perturbations in the feature space.

These methods may face challenges when the pre-trained model performs poorly on the target data,
as unsupervised objectives like entropy minimization or contrastive learning may be less effective
without access to ground truth labels. To address this, our proposed approach leverages an energy-
based joint model training approach, exploiting the benefits of generative models to select and enhance
the initial model’s predictions simultaneously. This leads to more reliable adapted predictions.

A.2 SETUP

To ensure a fair comparison of the effectiveness in handling the distribution shift and mitigating
performance degradation, we evaluate all methods following the same experimental settings in two
recent works, GTRANS (Jin et al., 2022b) and EERM (Wu et al., 2022). We conducted experiments
on seven datasets on three GNN backbone models.

datasets The datasets contain various distribution shift types, synthetic and natural. According to
different shift types, we categorize the seven datasets as follows:

• Synthetic shift. In Amazon-Photo (Shchur et al., 2018) and Cora (Yang et al., 2016), the
synthetic shift is involved by adding artificial node features. The added node features are

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

different in each graph, so when the dataset is divided into training, validation, and test
samples, they contain different synthetic shifts, which are used to evaluate the model’s
generalization ability. Distribution shifts are introduced into the training and testing data
to evaluate the model’s ability for out-of-distribution generalization. We use the provided
node features for each dataset to construct node labels and spurious environment-sensitive
features.

• Domain shift. In Twitch-E (Rozemberczki et al., 2021), FB-100 (Traud et al., 2012), and
OGB-Products (Hu et al., 2020), there are domain shifts. The nodes in different graphs are
from different domains. The implications of such domain shifts are profound, impacting
the generalizability and performance of models trained on these datasets. The training,
validation, and test samples are from different domains.

• Temporal shift. Dataset Elliptic (Pareja et al., 2020) and OGB-Arxiv (Hu et al., 2020) contain
temporal shifts; graph nodes originate from different periods. This temporal variation implies
that the data used for the training, validation, and testing phases are not homogenous with
respect to time. So, training, validation, and test samples are from different periods.

For Amazon-Photo, Cora, Elliptic, FB-100, and Twitch-E, we use the same partition ratio as the one
in GTRANS. Specifically, Amazon-Photo and Cora have 1/1/8 graphs for training/validation/test
sets. Twitch-E has 1/1/5 graphs, FB-100 has 3/2/3 graphs, and Elliptic has 5/5/33 graphs for
training/validation/test sets.

For OGB-Arxiv, more than one-fourth class in the training samples in GTRANS contains only a small
number of nodes, which we consider unfair because this is dropping information by purpose. So, we
use the suggested partition ratio in the OGB standard for OGB-Arxiv and OGB-Product, which is
3/1/1 for OGB-Arxiv and OGB-Products.

A.3 IMPLEMENTATION DETAILS

During model training on the training set, the number of layers was set to 5 for Elliptic and OGB-
Products and 2 for other datasets. The GAT model had four attention heads per layer, and the
representation dimension was set to 32 for all datasets. BN layers were included in all model
architectures. The learning rate was set to 0.001 for Amazon-Photo and Cora and 0.01 for other
datasets. The number of training epochs was set to 500 for OGB-Arxiv and 200 for other datasets.

Our proposed algorithm utilized histogram density estimation for non-parametric density estimation.
The number of bins was set to 100 for Amazon-Photo, Cora, and Elliptic. For Twitch-E, the number
of bins was 100 for GCN and 10 for GraphSAGE and GAT. For other datasets, ten bins were used.

During the learning of the mask matrix M for adjusting weights, the loss weight λ, learning rate, and
number of training epochs were set to [0.1, 0.01, 300] for Amazon-Photo and Cora, [1.5, 0.2, 300] for
OGB-Arxiv, [0.8, 0.1, 300] for GCN and GraphSAGE on FB-100, [0.8, 0.1, 10] for GAT on FB-100,
[0.1, 0.1, 300] for GCN on Twitch-E, [0.8, 0.1, 300] for GraphSAGE and GAT on Twitch-E, [0.1,
0.01, 300] for GCN and GraphSAGE on Elliptic, [0.1, 0.01, 100] for GAT on Elliptic, and [0.8, 0.1,
300] for OGB-Products.

In the BN statistics adaptation process, the number of adaptation rounds was set to 10 for Amazon-
Photo, Cora, and Elliptic. For Twitch-E, it was 10 for GCN and 1 for GraphSAGE and GAT. For
other datasets, one adaptation round was used.

During BN parameter optimization, the learning rate and the number of optimization rounds were set
to [0.0001, 10] for GCN and GAT on Amazon-Photo, [0.001, 80] for GraphSAGE on Amazon-Photo,
[0.0001, 10] for Cora, Twitch-E, Elliptic, and OGB-Products, [0.001, 10] for GCN on OGB-Arxiv,
[0.0001, 10] for GraphSAGE on OGB-Arxiv, [0.001, 20] for GAT on OGB-Arxiv, [0.001, 30] for GCN
on FB-100, and [0.0001, 10] for GraphSAGE and GAT on FB-100. In the SGLD sampling process,
step size δ is set to 2.0, and the number of steps T is 30. In the process of entropy-based selection
and confidence-based filtering, for flexibility and versatility, entropy threshold τe is determined based
on the value that lies at the scale boundary after sorting, We keep the nodes whose entropy is in the
top 60%, for confidence threshold τ1c , τ2c , We set it uniformly as [0.2, 0.8].

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.4 ADDITIONAL RESULTS

A.4.1 T-SNE WITH AND WITHOUT BNPA

(a) Cora G1 BNPA (b) Cora G1 Overall (c) Cora G5 BNPA (d) Cora G5 Overall

(e) Elliptic G7 BNPA (f) Elliptic G7 Overall (g) Elliptic G12 BNPA (h) Elliptic G12 Overall

Figure 6: t-SNE with and without BNPA

To further understand the impact of BNSA, we visualize the activations from the last BN layer when
using BNPA alone and in conjunction with BNSA (Fig. 6) on two data sets. The results indicate that
solely utilizing BNPA does not yield the same level of class separation as the combined approach.
Incorporating both BNSA and BNPA leads to more distinct and inherent representations for each
class.

A.4.2 MASK MATRIX M AND HYPERPARAMETER K

1 5 10 15 20
K

96.0

96.1

96.2

96.3

96.4

96.5

Ac
cu

ra
cy
(%

)

with M without M

(a) Amazon-Photo

1 5 10 15 20
K

95

96

97

98

99

Ac
cu
ra
cy
(%

)

with M without M

(b) Cora

1 5 10 15 20
K

52

54

56

58

60

62

Ac
cu
ra
cy
(%

)

with M without M

(c) Elliptic

1 5 10 15 20
K

52.5

53.0

53.5

54.0

54.5

Ac
cu

ra
cy
(%

)

with M without M

(d) FB-100

1 5 10 15 20
K

45

47

49

51

53

Ac
cu
ra
cy
(%

)

with M without M

(e) OGB-Arxiv

1 5 10 15 20
K

60.0

60.5

61.0

61.5

62.0

Ac
cu

ra
cy
(%

)

with M without M

(f) OGB-Products

1 5 10 15 20
K

58.0

58.5

59.0

59.5

60.0

Ac
cu

ra
cy
(%

)

with M without M

(g) Twitch-E

Figure 7: Mask matrix M and hyperparameter k

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

We highlight the effectiveness of the mask matrix M in our approach. Fig. 7 illustrates the stability
of M across learning rounds, demonstrating its limited impact on Amazon-Photo but significant
contribution to preventing model collapse.

A.4.3 MEAN’S AND VARIANCE’S DIFFERENCE

0 5 10 15 20 25 30
Dimension

−0.10

−0.05

0.00

0.05

M
ea

n
di
ffe

re
nc

e

sub(K=1,batch) sub(K=10,batch)

(a) FB-100 G0 mean

0 5 10 15 20 25 30
Dimension

−0.10

−0.05

0.00

0.05

0.10

M
ea

n
di
ffe

re
nc

e

sub(K=1,batch) sub(K=10,batch)

(b) OGB-Arxiv G0 mean

0 5 10 15 20 25 30
Dimension

−0.10

−0.05

0.00

M
ea

n
di
ffe

re
nc

e

sub(K=1,batch) sub(K=10,batch)

(c) OGB-Products G0
mean

0 5 10 15 20 25 30
Dimension

−0.1

0.0

0.1

0.2

M
ea

n
di
ffe

re
nc

e

sub(K=1,batch) sub(K=10,batch)

(d) Twitch-E G0 mean

0 5 10 15 20 25 30
Dimension

0.000

0.005

0.010

Va
ria

nc
e
di
ffe

re
nc

e sub(K=1,batch) sub(K=10,batch)

(e) FB-100 G0 var.

0 5 10 15 20 25 30
Dimension

0.00

0.05

0.10

Va
ria

nc
e
di
ffe

re
nc

e sub(K=1,batch) sub(K=10,batch)

(f) OGB-Arxiv G0 var.

0 5 10 15 20 25 30
Dimension

0.0

0.1

0.2

Va
ria

nc
e
di
ffe

re
nc

e sub(K=1,batch) sub(K=10,batch)

(g) OGB-Products G0 var.

0 5 10 15 20 25 30
Dimension

0.0

0.1

0.2

Va
ria

nc
e
di
ffe

re
nc

e sub(K=1,batch) sub(K=10,batch)

(h) Twitch-E G0 var.

Figure 8: Mean’s and variance’s difference

Fig. 7 demonstrates that our proposed method achieves strong performance even with a small value
of k, aligning with practical considerations of preserving information from the training data. Fig. 8
illustrates the difference between the mean and variance calculated in Eq. 9 and those maintained
from the training data. This difference highlights how our method effectively balances the influence
of statistics from both the training and test datasets during adaptation.

A.4.4 THE MODEL CALIBRATION BY BNSA

0.0 0.25 0.5 0.75 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

ECE=0.1282

(a) Amazon-Photo G1
baseline

0.0 0.25 0.5 0.75 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

ECE=0.0679

(b) Amazon-Photo G1
Ours

0.0 0.25 0.5 0.75 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

ECE=0.1053

(c) Amazon-Photo G3
baseline

0.0 0.25 0.5 0.75 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

ECE=0.0668

(d) Amazon-Photo G3
Ours

0.0 0.25 0.5 0.75 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

ECE=0.0431

(e) Elliptic G6 baseline

0.0 0.25 0.5 0.75 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

ECE=0.0306

(f) Elliptic G6 Ours

0.0 0.25 0.5 0.75 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

ECE=0.1307

(g) Elliptic G18 baseline

0.0 0.25 0.5 0.75 1.0
Confidence

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

ECE=0.0526

(h) Elliptic G18 Ours

Figure 9: The model calibration by BNSA

A well-calibrated classifier exhibits predictive confidence that aligns with its misclassification rate. As
discussed in Section 3.2, incorporating an energy-based model (EBM) can enhance model calibration,
leading to improved pseudo-label selection. To demonstrate this, we present calibration plots for all

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

datasets, comparing the baseline (no adaptation) and our proposed approach (BNSA + BNPA). The
baseline model shows poor calibration, while our method effectively calibrates the GNN model. This
improvement is evident in the Expected Calibration Error (ECE) values, which quantify the average
discrepancy between classifier confidence and accuracy.

A.5 ALGORITHM

The pseudo-code for Algorithms BNSA and BNPA is presented in this section.

Algorithm 1 BNSA
Input: A test graph Gn ∈ Dte, trained model fθ include L BN layers with BN statistic (µs, σ

2
s),

learn mask epochs T , temperature parameter τ .
Output: updated statistic (µ̂, σ̂2).

1: for i = 1, ..., L do
2: Represent the distribution P

(i)
n using non-parametric density estimation;

3: end for
4: Compute the weight a(i,d) using Eq. 3 and 4;
5: Prior weights A = [a(0), a(1), ..., a(L)];
6: for t = 0, ..., T − 1 do
7: M = sigmoid((log δ − log (1− δ) +B)/τ), δ ∼ U(0, 1);
8: Update B using loss as shown in Eq. 8 and BN statistic in Eq. 6;
9: end for

10: if sigmoid(B∗) > 0.5 then
11: M∗ = 1;
12: else
13: M∗ = 0;
14: end if
15: Adapt the statistic using Eq. 9;

return (µ̂, σ̂2).

Algorithm 2 BNPA
Input: A test graph Gn ∈ Dte, trained model fθ with BN parameter (β, γ), learn epochs K,
replay buffer Bf , reinitialization frequency pri.
Output: updated BN parameter (β∗, γ∗).
for k = 0, ...,K − 1 do

2: Model forward with Gn;
Compute Lclf using Eq. 17;

4: Sample x̂0 ∼ Bf with probability 1− pri, else x̂0 ∼ U(−1, 1);
Obtain the sample x̂ using Eq. 13;

6: Add x̂ to Bf ;
Compute Lgen using Eq. 14;

8: Total loss is Lclf + Lgen;
Backward and optimize (β, γ);

10: end for
return (β∗, γ∗).

18

	Introduction
	Test-Time Adaptation on Graph Neural Netowrks
	Problem Statement
	Preliminary: Batch Normalization

	Proposed Method
	Batch Normalization Statistic Adaptation
	Batch Normalization Parameter Adaptation

	Experimental Evaluation
	Results
	Ablation Studies
	Hyperparameter Sensitivity Studies

	Conclusion
	Appendix / supplemental material
	Related Work
	Batch Normalization Calibration
	Model Optimization

	Setup
	Implementation Details
	Additional Results
	t-SNE with and without BNPA
	Mask matrix M and hyperparameter k
	Mean's and variance's difference
	The model calibration by BNSA

	ALGORITHM

