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ABSTRACT

Test-time adaptation (TTA) of classification models, which aims to optimize clas-
sifiers without labeled training samples, often employs entropy minimization as
a key objective. While this approach addresses the relationship between model
performance and prediction confidence or cluster structure, it can lead to model
collapse due to the lack of ground truth labels. This work optimizes activations
within batch normalization (BN) layers for TTA of graph neural networks (GNNs).
Our proposed method optimizes BN activations in a two-step process. First, we
determine weights and masks for the empirical batch mean and variance, consid-
ering training and test data statistics. Subsequently, we refine the scale and shift
parameters of the BN layers using a reformulated loss function incorporating an
energy-based model, aiming to enhance the model’s generalization capabilities.
Our approach leverages pseudo-labels derived from test samples to mitigate the
potential forgetting of training data. Empirical evaluation across seven challeng-
ing datasets demonstrates the superior performance of our approach compared to
state-of-the-art TTA methods.

1 INTRODUCTION

We study test-time adaptation (TTA) on graph neural networks (GNN) in this paper. TTA addresses
the issue of the model’s performance degrading when deployed in a scenario where the target (test)
data differs from the training data. This discrepancy restricting the model’s generalization lies in
the data distribution shift between the training and the test data. TTA handles the issue by adjusting
or fine-tuning the model with respect to the characteristics of the test data during inference before
making predictions.

Most TTA methods are designed under the context of image classification, where the data distribution
shift is usually a consequence of natural variation (Koh et al.l 2021) or corruption (Hendrycks
and Dietterich, 2019). Under the assumption that the unknown distribution shift is caused by the
combination of known variates or corruptions across all domains (Gao et al., [2023)), these TTA
methods do not work well on graph data where the distribution shift is complicated. Various
data distribution shifts exist (Quifonero-Candela et al.| |2022) when deploying GNN models in an
environment inconsistent with the one during training, such as full-distribution shift, covariate shift,
class-prior shift, class-conditional shift, or simply noise.

One SOTA method that could avoid shift-type identification is entropy minimization (EM) (Wang
et al.l 2021} |Press et al.| 2024)). EM-based methods adapt classifiers by iteratively updating the model’s
parameters to minimize the entropy of the model’s predictions, i.e., to maximize the likelihood of the
observed data belonging to the most likely classes. However, entropy minimization-based methods
have limitations. They often fight hard against the catastrophic forgetting of the ground truth in
training data. Due to the lack of ground truth labels, they can further introduce error signals, leading
to increased sensitivity to the learning rate and potential issues like model collapse.

The general guideline is to maintain a small divergence between the pre- and post-adaptation models,
thereby retaining the model’s inference capabilities acquired from the training data. Common
approaches to implementing the general guideline include: (1) fine-tuning only a subset of parameters,
such as those within batch normalization (BN) layers, (2) introducing regularization based on the
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distance between pre- and post-adaptation parameter values, (3) limiting training epochs or employing
small learning rates during adaptation.

In this paper, our approach for GNN is somewhat similar to optimizing activations in batch normal-
ization layers. A BN layer comprises four parameters: mean (1), variance (o), scale (), and shift
(B). The statistics u and o are derived from activations within a batch and maintained by moving
averages for normalization purposes. The parameters - and /3 are learned to optimally scale and shift
activations, thereby enhancing the model’s expressive power. Many TTA methods focus on adjusting
only the statistics ;¢ and o2, leaving the parameters  and 3 unchanged (You et al.} 2021; [Mirza et al.|
2022). However, it is evident that adjusting ;2 and o without modifying v and 3 may not achieve
the optimal scale and shift for the updated statistics. We propose a two-step fine-tuning method to
address this limitation. In the first step, we fine-tune the mean (;¢) and variance (o'?) parameters based
on the activation distribution to better align training and test data. Subsequently, we fine-tune the
scale () and shift (/3) parameters based on an augmented loss function incorporating an energy-based
model, potentially enhancing the generalization ability of the model.

Regularizing the distance between pre- and post-adaptation parameter values may seem counterintu-
itive (Niu et al.} 2022)). This approach involves a trade-off: while we aim to modify parameters for
adaptation, we also constrain the extent of these changes. This sacrifice of potential improvement is
intended to preserve the ground truth from the training data, ensuring it is not entirely forgotten during
adaptation. It is the same reason that most methods based on entropy minimization limit the number
of training epochs during adaptation (Mounsaveng et al.,|2024; |Wang et al., | 2021; Mummadi et al.|
2021} Zhao et al.l|2023)) to avoid the risk of model collapse (Press et al.,[2024): EM-based adaptation
is effective for a few steps but eventually deteriorates performance after prolonged adaptation. They
appear to save the computational cost, but determining the optimal number of adaptation steps is hard.
To deal with this, we propose utilizing the predictions on test data as pseudo-labels to introduce the
constraint rather than directly constraining the parameters themselves. Additionally, we employ a
filtering and pruning mechanism to remove potentially incorrect and harmful pseudo-labels.

The contributions of this paper are summarized as follows:

* We introduce a data-driven, two-step TTA framework for GNNs. This approach first adapts
BN layer statistics to the test data distribution. Then, it refines BN layer parameters using
a joint energy-based model, overcoming the limitations of existing entropy minimization-
based methods.

* We propose a data-driven method for determining optimal adaptation weights, leveraging
non-parametric density estimation, the Jensen-Shannon divergence, and a learnable mask
matrix to effectively balance contributions from training and test statistics. This mask matrix
M allows for selective adjustment of specific dimensions within the BN layer, leading to
more effective adaptation. (Section [3.1))

* We integrate an energy-based model (EBM) into our TTA framework to enhance model
generalization and calibration. High-quality soft pseudo-labels are ensured through entropy-
based selection and confidence-based filtering. The EBM approach contributes to more
reliable adapted predictions and further enhances model calibration. (Section [3.2))

Besides, compared with popular TTA methods, the results from extensive experiments demonstrate
the proposed framework’s effectiveness. It is worth noting that TTA methods that do not require
access to the training data are often referred to as Fully TTA methods. While our proposed method
maintains a small histogram matrix to store activation distributions in BN layers, this information
can be obtained solely by observing the last training epoch. Inherently, BN layers also store the
activations’ first and second moments (mean and variance) from the training dataset.

2 TEST-TIME ADAPTATION ON GRAPH NEURAL NETOWRKS

2.1 PROBLEM STATEMENT

Let G = {V, E, X} denote an attributed graph, where V represents the set of nodes, F represents
the set of edges, and X € RN x4 ig the feature matrix. Here, N = |V| denotes the number of nodes,
and d represents the dimensionality of the features. Let A be the adjacency matrix of G. For any two
nodes u and v, if there exists an edge connecting them, then 4,, , = 1. Otherwise, A,, , = 0.
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We evaluate test-time adaptation on the node classification task, where a distribution shift exists
between the training and test datasets. Let Y = {y1, y2, ..., yo } denote the set of class labels, where
y; represents one of the C' possible labels. D, and D, represent the training and test datasets,
respectively. Let 6 denote the parameters of the GNN-based classification model fy : G — Y, trained
on Dy,.. TTA is typically performed in an online fashion. Given a graph G; € D;., TTA fine-tunes
the model parameters 6 before inferring the labels of nodes in G;. The objective is to find improved
parameters 6* for the model f, such that the updated model fy~ can achieve enhanced generalization
ability and superior performance on G; compared to the original model fy.

Our approach for TTA on graph neural networks optimizes activations by fine-tuning the parameters
within the batch normalization layers in the GNN architecture. We do not assume a specific type of
data distribution shift, as our method operates on the activations within these layers rather than the
original data space. Notably, some existing research, such as Jin et al. (Jin et al.| |2022b), explores
modifying the input graphs for TTA, which we will discuss further in the experimental evaluation
section.

2.2 PRELIMINARY: BATCH NORMALIZATION

Batch normalization (loffe and Szegedyl [2015) is a key advancement in deep neural networks, which
improves both model performance and training speed by regularizing the distribution of activations.
In the training stage, let {x;}?_; represent the input activations of a BN layer in a batch of size b.

The mean (i) and variance (af) of the activations are calculated as follows: p, = %E?:ﬂi’ and

o = %Zi’:l (x; — pp)?. The BN operation is then performed as shown in Eq. |1, where ~ and 33
are learnable scale and shift parameters used to optimize the distribution of activations. ¢ is a small
constant added to the denominator to prevent division by zero.

T; —
o= . ()

Voi+e

During training, the parameters (j1, 52) in BN layers are maintained using a moving average to capture
the overall statistical information of the training samples as follows: iy = (1 — p) - fix—1 + 0 - to,
and 67 = (1 —p)-62_, + p- o2, where iy = 0, 63 = 1. The momentum parameter p controls the
update rate of these values. At test time, These maintained values, which remain fixed at test time,
are then utilized to normalize the activations during inference, with the same equation as in Eq.

BN layers are crucial in modern GNNs, contributing to improved model training stability. Many
state-of-the-art GNN architectures incorporate BN layers (Xu et al., 2019} [Jin et al.|[2022b; |Wu et al.}
2022). In GNNs, BN is usually applied after each GNN layer, with the input to the BN layers being
the i-th GNN layer embeddings H(*). The normalized representations effectively stabilize the output
of each GNN layer and avoid overflow of popular aggregation functions in deep GNNs (Li et al.
2019).

3 PROPOSED METHOD

Recall that BN layers comprise four parameters: mean (1), variance (o2), scale (), and shift (3). We
can divide these parameters into two groups:

» Statistic group: The mean (1) and variance (02) are estimated from the data and capture the
statistical properties of the activations within a batch.

» Parameter group: The scale (y) and shift (5) are learnable and optimized by the loss. They
allow the model to adjust the normalized activations to better suit the task at hand.

Our approach for TTA on GNNs optimizes activations within BN layers by fine-tuning the statistic
and parameter groups separately. The process comprises two successive steps: batch normalization
statistic adaptation (BNSA) and batch normalization parameter adaptation (BNPA). The overall
process of BNSA and BNPA is presented in Fig. and Fig. respectively.



Under review as a conference paper at ICLR 2025

— Prediction Reliable prediction

Test sample Optimize —> forward Z |
G, OClass 1 G, B Gn > backward Gn = (X,A)— 2 oftmaxs) ii';i'e .
OClass 2 A (] frozen 5, -
— () fnet — - g
" GNN } GNN | { GNN newne (step- select and augment Cro,
L |B-Gumbel Max->M o - ) ' o ssgn%py
R (#mon)ﬂ : § G B 5] g 20y,
—t— 5 =(X,A)— 2 - ®_, A
BatchNom K5 Pry ) : BatehNorm | (5, 5?) ( i ) 18 [, _Ey(G)
}—» 3 = )
DE— P, (s, 0?) | s Share Parameter (step-3) Optimize BN parameter
( () [ -
Classifier Classifi Classifier | — S 4
assifier | G = ()p,,A);- 2 [ § & [ Lo —Ey(Gh)  —» toware
; o 8 > backward
Lo+ AKL(plla) LJa e ) tozen
(step-1) Obain prior A (step-2) Leam mask M (step-3) Update statistc using A x M (step-2) K steps SGLD sample (] finetune
(a) BNSA: optimizing y and o> (Section 3.1) (b) BNPA: optimizing + and 3 (Section[3.2)

Figure 1: Batch normalization parameter adaptation and batch normalization parameter adaptation

3.1 BATCH NORMALIZATION STATISTIC ADAPTATION

BN demonstrates strong empirical performance. However, a comprehensive theoretical understanding
of its underlying mechanisms is acknowledged. The original paper (loffe and Szegedyl [2015)
proposed that BN reduces internal covariate shift, where the distribution of activations changes across
layers during training. However, subsequent research, such as Santurkar et al. (Santurkar et al.| 2018)),
has argued that BN works due to its ability to smooth the optimization landscape significantly.

While the theoretical foundation of BN is still under no consensus, we focus on a practical observation:
the scale (y) and shift (3) are optimized based on the mean (1) and variance (¢2) during the training
stage. If the values of 1 and o2 change significantly on the test data, the batch normalization process
using these altered statistics, along with the unchanged -y and 8 parameters optimized based on the
original 1 and o2, may not perform effectively.

Several works (Li et al., |2017;[You et al.||2021; |Lim et al.|[2023) have verified that a weighted average
of the source (training) and target (test) data statistics can improve model inference, as shown in
Eq.[%

p=1-a) ps+a-pu, @

o’=(1-a)-0?+a-o?,
where (u, 02) represents the fine-tuned statistic group of the BN layer, and other parameters in the
neural model remain unchanged. ps and Uf are estimated from the training data, u; and Jf are
estimated from the test data, and « is a weighting factor that controls the contribution of each set of
statistics.

Most methods (Li et al., 2017 Nado et al.| [2020; Schneider et al.| [2020; |You et al.| 2021)) determine
the value of o empirically, either through experience or grid search. In this paper, we propose a
simple yet effective method to determine the value of « by directly calculating the distribution shift
between the training and the test data covariates. In Eq. 2] « serves as an indicator of the degree
to which the statistic group should favor the test data. If significant differences exist between the
covariate distributions, then o should be larger, indicating a stronger reliance on the statistics of
test data. Conversely, when differences are minimal, « should be smaller or even zero, favoring the
statistics of training data.

As mentioned at the end of Section 1} relying solely on the first and second moments, (ji5,02)
and (u,0?), may not fully capture the distribution shift between training and test data unless the
distributions are assumed to be normal or Gaussian. Therefore, we employ non-parametric density

estimation to estimate the activation distribution PS\"" (G, in the i-th BN layer for training instances
G € Dy, d is the dimensionality of vectors. Similarly, we obtain the estimated distribution

Pr(f’d) (Gy,) for test instances G, € Dy.. The Jensen-Shannon (JS) divergence, a suitable metric for
measuring the distance between two probability distributions, is then used to determine the value of
«, as shown in Eq. [3]and Eq.

Pr(r:',d) Py(li’d) 1 ) Pr(r:gd) Pr(lz',d)
) KL

: ) @)

) . 1 .
IS(PLD||PL) = SKL(PS|

4
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Here, a9 is the weight of dimension d in the i-th BN layer, which is the average JS divergence
across all pairs of training and test instances.

We can more accurately capture the activation distribution by maintaining an additional distribution
of activations alongside the mean (1) and variance (02) in BN layers during training. This provides
valuable prior information for determining the weighting factor o during TTA. To minimize the
computational overhead of maintaining these distributions, we only store the information from the

last few training epochs. In all our experiments in Section jo D s computed only at the final
training epoch. Let A be the matrix storing a(»%), then A € RL*P where D is the width of the BN
layer (i.e., the number of neurons) and L is the number of BN layers in the model architecture.

It is important to note that « is not optimized through a learning process. While the value of a can
indicate the relative weighting of training and test data statistics in the BN layer, there is no guarantee
that the value of o will necessarily lead to improved performance. To address this issue, we propose
two solutions.

First, we propose to learn a mask matrix M to adjust specific dimensions within the BN layer
selectively. The mask matrix M € {0,1}2*P, where M(; 4y = 1 indicates that the parameters
(fuiay Er(Qi d)) in the i-th BN layer and d-th dimension should be adjusted, and vice versa. We

model the mask elements as Bernoulli random variables: M; 4 ~ Bernoulli(b(i7d)), where b(; q)
are independent Bernoulli variables. To make the sampling process differentiable, we employ the
Gumbel-Max trick (Jin et al.} 2022a)), as shown in Eq. E} where T is a temperature parameter. As T
approaches 0, the values in M approach binary values.

M = sigmoid((log 6 —log (1 —0) + B)/7), 6 ~U(0,1). )

We add the statistic adjustment process into the forward process of BN layers to optimize the Bernoulli
variable matrix B. In the training process, the modified BN layers are in Eq. @ where (up, 02) is the
statistics of the test samples in the b-th batch. It is worth noting that the statistics of BN layers are not
updated during the training process. We integrate the statistic adjustment process into the forward
pass of the BN layers, enabling us to optimize the Bernoulli variable matrix B. During test-time
adaptation (TTA), the modified BN layers operate as shown in Eq. [6}

p=01-(A0M)) ps+ (A0 M),

(6)
2=1-(AoM))-c2+ (A M)- o}

Each variable in this equation is implicitly indexed by (4, d), representing the d-th dimension in the
i-th BN layer. The statistics (up, O'g) are computed from the current test batch. Importantly, during
TTA, the statistics of the BN layers themselves remain fixed.

We employ contrastive learning for training at test-time adaptation, using the InfoNCE (van den Oord
et al.,[2019)) loss as defined in Eq.[/| In this context, z; represents the embedding of the ¢-th node,
while Z; denotes the node embedding after applying DropEdge augmentation (Rong et al., [2020),
serving as the positive sample. Negative samples are generated by shuffling the features of nodes
(Velickovic et al., 2019), and Z; represents the corresponding embedding of a negative sample. The

T
cosine similarity between two embeddings is given by s(z;, 2;) = W

= g Then the loss function is

as follows:
1 al B exp(s(2i, %i)/7)
L= 7 2 7B e 2/ + eap(o(en 277

N

To preserve the knowledge acquired from the training data, we aim to prevent the updated model
from making drastically different predictions compared to the original model. We achieve this by
adding the Kullback-Leibler (KL) divergence between the prediction distributions of the two models
as a regularization term, as shown in Eq. [§]

Lgnsa = Le + M- KL(p||q), ()
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Here, L. represents the contrastive loss, A is a weighting factor, and p and ¢ denote the prediction
distributions of the original and updated models, respectively. By optimizing this loss, we obtain the
refined Bernoulli variable matrix B*. This allows us to derive the mask matrix M *, where M, (*z 4 = 1

if sigmoid(b{; ;) > 0.5, and M; ;) = 0 otherwise.
Second, similar to moving average, we further decay the 1 and o2 for k steps as in Eq. E}

fik = fk—1- (1= (AOM")) + pp - (AO M™),

k

R . . )
p=0k (1= (AO M) + oy (A0 M),
where fig = ps, 65 = 02, and k is a small number. Therefore, /iy, and 67 are the final values of p
and o2.

3.2 BATCH NORMALIZATION PARAMETER ADAPTATION

Once the optimal mean (1) and variance (c2) are obtained through the BNSA step, we proceed to
optimize the parameter group: scale () and shift (3). This step further enhances the model’s general-
ization ability and overall performance. However, TTA methods that rely on entropy minimization
for parameter optimization can be problematic due to the lack of ground truth labels in the test data.
These methods can introduce error signals, leading to increased sensitivity to the learning rate and
potential issues like model collapse (Choi et al., [2022; Press et al., 2024)).

To alleviate the issue of ground truth forgetting, we propose utilizing the predictions of the pre-
trained model before TTA as pseudo-labels for optimizing the scale () and shift (3) rather than
relying on entropy minimization. However, this approach does not address the challenge well, as the
pseudo-labels may be inaccurate and lack the guarantee of ground truth.

If the pseudo-labels are largely accurate, they can be confidently used for parameter optimization. To
leverage the model’s confidence across all classes, we propose utilizing soft labels, i.e., the entire
softmax output, rather than hard labels (the class with the highest probability). To ensure the selection
of high-quality soft pseudo-labels, we employ two strategies:

1. Entropy-based Selection: We select test instances with low entropy in their softmax outputs.
This focuses on instances where the model exhibits high confidence in its predictions.

2. Confidence-based Filtering: We retain only the high and low probabilities within the softmax
output, discarding intermediate values. This preserves the model’s discriminative ability for
classes in which it demonstrates confidence while filtering out less certain predictions.

However, an implicit assumption underlies these two strategies: the model should be well-calibrated.
A calibrated model refers to a model whose predicted probabilities align with the observed frequencies
of the classes. In other words, for a well-calibrated model, if a class is predicted with a probability
of 0.8, we would expect that class to be the true label approximately 80% of the time. Inspired
by the concept of energy-based models (EBMs) applied to classifiers (Grathwohl et al., 2020), we
incorporate an EBM into our TTA framework to optimize the BN layer’s parameter group (scale and
shift). This integration aims to enhance both the model’s generalization ability and its calibration.
The joint energy-based model (JEM) is defined in Eq. [T0}

log po(z,y) = log pe(x) + log pe(y|x), (10)

where x represents the node representation and y denotes the corresponding label.

We follow the classic formulation of EBMs (LeCun et al., [2006): pp(x) = o(Bo()) \where Ey(z)

Z(0)
is the energy function and Z(0) is the partition function. The energy function is defined as:
Ep(w) = —LogSumExp, (5 (v)[y]) = —log Y exp(fo(x)[y])- (1)
y

During optimization, the derivative of log pg () in Eq. [10|can be rewritten as:

Ologpy(x) OFEy(z") B OFEy(x)
00 7@ |75 90

(12)
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The expectation in Eq. [[2]requires sampling. We utilize Stochastic Gradient Langevin Dynamics
(SGLD) (Welling and Teh, [2011)) to approximate this sampling process, as shown in Eq. [T3}

. N . 0 OFy(Z;

IONPO(I)y Ii-‘rl :ziifﬁ+e7 6f\J-/\/-(Oa(;% (13)
where po(z) is a uniform distribution, ¢ is the step size, and e is Gaussian noise. To reduce the
computational cost, we approximate the right-hand side of Eq. [I2] using Persistent Contrastive

Divergence (PCD) (Tieleman, |2008). The approximated generation loss L.y, is given by:
Lgen = log pe(z) = LogSumExp,, (fo(2)[y']) — LogSumExp,, (fo(%)[y']), (14)

where 3’ denotes the pseudo-labels. Sampling is performed for 7" steps. The sample adopted is the one
whose energy is the closest to the real one in the sampling process, i.e., & = arg min(FEg(z)— Ep(Z;)).

The conditional probability log pg(y|x) in Eq. is modeled using cross-entropy. As previously
mentioned, we employ entropy-based selection and confidence-based filtering to include reliable test
instances and pseudo-labels. We use the model before adaptation to obtain the softmax predictions p,

which serve as our pseudo-labels. Let ¢ be the node index, then the entropy of node 7 is calculated as

follows: Entr OPZ/(P(i)) = - Zle pg) log pg), where c represents a class label. The score s of

node 7 is then defined as: ' '
s = ]I(Entropy(p(’)) < Te), (15)

where [ is the indicator function, and 7. is a hyperparameter that acts as an entropy threshold.

Furthermore, we retain only the high and low probabilities within the softmax output, discarding
intermediate values to enhance the model’s discriminative ability. The weight wgl) assigned to node ¢
for class c is defined as:

C

‘ 12 , ,
w = exp (p(’) - TC;TC) Ap? > 7l < 72). (16)

72 and 772 are probability thresholds. The final classification loss L; is then given by:

1 ) . ) )
Lag = poyle) = —5~ 5 22 5w pl? - loggl?, (17)

i=1 c=1
where wy) is the weight assigned to node 7 for class ¢, and ¢ represents the updated softmax output
after adaptation. The overall loss function for BNPA is

Lpnpa = Lgen + Lclf- (18)

While our proposed BNPA method offers improved performance, it’s important to acknowledge the
potential increase in computational time compared to methods that rely on entropy minimization
for parameter optimization. The primary factor contributing to this increase is the SGLD sampling
process. However, this additional computational cost is often offset by significant performance gains
and stable adaptation, especially in scenarios where accuracy is foremost.

4 EXPERIMENTAL EVALUATION

We conducted experiments on seven datasets: Amazon-Photo (Shchur et al.| [2018])), Cora (Yang et al.}
2016), Twitch-E (Rozemberczki et al., 2021}, FB-100 (Traud et al.,|2012)), OGB-Products (Hu et al.,
2020), Elliptic (Pareja et al.,[2020), and OGB-Arxiv (Hu et al., [2020). These datasets encompass
various types of distribution shifts, both synthetic and natural. To ensure a fair comparison of the
effectiveness in handling the distribution shift and mitigating performance degradation, we evaluate
all methods under the same out-of-distribution (OOD) setting, which is also employed in GTRANS
(Jin et al.} 2022b) and EERM (Wau et al., 2022). Detailed dataset and OOD descriptions are provided

in Appendix|A.2]

Baselines. We compare our proposed method with seven state-of-the-art (SOTA) test-time adaptation
(TTA) methods, categorized as follows:



Under review as a conference paper at ICLR 2025

Table 1: Mean test dataset accuracy (%) for node classification. All results are averaged over ten runs
with random seeds. Bold and underlined indicate the best and second-best results, respectively.

Backbone Method Amazon-Photo Cora Elliptic FB-100 OGB-Arxiv.  OGB-Products  Twitch-E | Rank
a-BN(You et al.;2021} 94.98+0.57 95.3740.61  53.41%2.50 53.15+0.70  51.89+0.36 61.26+0.11 60.34+0.54 4.1
DUA(Mirza et al.|2022] 94.65+0.61 94.00+0.71  57.24+2.72  53.05+0.84  52.77+0.33 61.27+0.11 60.03+0.56 49
MEMO(Zhang et al..[2022} 91.56+0.66 89.67+0.76  58.66+3.02  53.17+£1.09  52.12+0.33 58.52+0.86 60.27+0.50 | 5.9
GON TENT(Wang et al.,2021) 94.03+1.07 91.87+1.36  51.71x2.00 54.16+1.00  45.72+0.67 60.69+0.15 59.46+0.55 | 6.4
SAR(Niu et al..[2023} 94.59+0.63 93.46+0.75  50.75+2.10  53.22+0.86  52.44+0.33 61.28+0.11 60.09+0.56 | 4.7
DELTA(Zhao et al.}[2023) 94.67+0.59 94.03+0.71  62.77+1.80 53.07£0.84  52.78+0.33 61.23+0.11 60.05+0.55 | 4.1
GTRANS(Jin et al.|[2022b} 94.13+0.77 94.66+0.63  55.88+3.10 54.3240.60  50.18+0.63 60.64+0.13 60.42+0.86 | 4.4
Ours 96.17+0.23 98.21£0.42 64.16£1.28  53.19+0.84  52.90+0.28 61.29+0.13 60.47+0.61 14
a-BN(You et al.}[2021} 97.44+0.54 99.96+0.02  60.95+4.08  53.70£0.39  51.55%0.19 63.85+0.13 62.17+0.14 | 5.0
DUA(Mirza et al./[2022} 95.57+0.57 99.89+0.05  63.54+3.13  53.73£0.37  54.33+0.14 63.91+0.11 62.38+0.15 | 4.3
MEMO(Zhang et al.|[2022) 96.31+0.79 99.94+0.04  58.05+£5.12  53.16+0.55  53.91+0.22 63.86+0.11 62.3940.12 4.7
GraphSAGE TENT(Wang et al..[2021] 95.7240.43 99.80+0.10  55.89+4.87 54.86+0.34  48.07+0.44 62.81+0.16 62.09+0.09 6.3
SAR(Niu et al.; 2023} 95.11£0.57 99.75+0.12 5791424 53.85+0.37 54.01+0.17 63.90+0.12 62.36+0.16 54
DELTA(Zhao et al./[2023) 95.60+0.57 99.90+0.05  65.93£2.27  53.75+0.36  54.34+0.14 63.88+0.14 62.39+0.15 3.7
GTRANS(Jin et al.}[2022b} 96.91+0.68 99.45+0.13  60.81£5.19  54.64+0.62  52.99+0.28 64.17+0.22 62.15+0.13 4.6
Ours 99.39+0.26 99.99+0.01 68.53x1.46 54.01+0.34  54.4110.17 63.85+0.11 62.41+0.14 | 2.0
a-BN(You et al.|2021} 96.62+0.55 98.40+0.44  65.93+x2.07 50.07x1.12  53.81+0.47 67.43+0.14 58.38+1.83 3.1
DUA(Mirza et al./[2022} 96.140.67 97.4540.82  65.75£2.23  49.93%1.13  53.83+0.49 67.30+0.14 58.03+1.67 | 5.4
MEMO(Zhang et al..[2022} 95.54+1.06 97.83£0.45  58.55£5.40 49.76+0.71  53.96+0.47 66.90+0.34 5784194 | 6.4
GAT TENT(Wang et al.,2021) 95.99+0.46 9591+1.14  66.07+1.66 51.47+1.70  50.87+0.23 66.03+0.47 5833+1.18 | 5.3
SAR(Niu et al..[2023} 95.99+0.72 95.72+1.37 64.47+2.41 50.06+1.28  54.09+0.48 67.42+0.16 58.11+1.67 | 5.3
DELTA(Zhao et al.}[2023) 96.1420.66 97.53+0.81  66.42+1.87 49.93£1.14  53.19+0.52 67.37+0.17 58.11+1.68 | 4.9
GTRANS(Jin et al.}2022b} 96.67+0.74 96.37+1.00  66.43+2.57 51.16£1.72  52.59+0.66 67.27+0.14 58.59£1.07 | 3.7
Ours 97.09+0.52 99.63£0.10  68.03£1.60 50.07+1.33  54.14+0.54 67.44+0.14 58.13x1.63 | 1.9

¢ BN statistic modification. a-BN (You et al.} [2021) and DUA (Mirza et al., 2022) maintain
statistics from both training and test instances, utilizing a weighted summarization for batch
normalization.

* Model parameter optimization. TENT (Wang et al., |2021) fine-tunes parameters within
BN layers using entropy minimization. SAR (N et al. 2023) selectively fine-tunes
parameters on a subset of test samples using entropy minimization. DELTA (Zhao et al.,
2023)) incorporates class-specific weights into the loss calculation during fine-tuning. MEMO
(Zhang et al.,[2022) fine-tunes all model parameters by minimizing entropy across augmented
data.

* Input augmentation. GTRANS (Jin et al., [2022b)) learns to augment input graphs to better
align with the model without fine-tuning model parameters.

Implementation details are provided in Appendix Experimental settings for baseline methods
were adopted from their respective publications. All reported results represent the average perfor-
mance over ten independent runs with different random seeds. We evaluate our method across three
commonly used GNN backbone models: GCN (Kipf and Welling, 2016)), GraphSAGE (Hamilton
et al.,|2017), and GAT (Velickovic et al., [2018)).

4.1 RESULTS

Table [T] presents the classification performance. Our proposed algorithm consistently achieves strong
out-of-distribution generalization ability across diverse datasets, achieving the best or near-best
results on most datasets. In particular, our algorithm achieves the highest classification accuracy on
GCN across six datasets (Amazon-Photo, Cora, Elliptic, OGB-Arxiv, OGB-Products, and Twitch-E),
with significant improvements over the second-best algorithm on Amazon-Photo, Cora, and Elliptic
(1.19%, 2.84%, and 1.39%, respectively). On GraphSAGE, our method yields the best results on five
datasets (Amazon-Photo, Cora, Elliptic, OGB-Arxiv, and Twitch-E), with notable gains on Amazon-
Photo and Elliptic (1.95% and 2.60%). While not the top performer on OGB-Products, our algorithm
remains highly competitive. Using GAT, our algorithm achieves the best performance on five datasets
(Amazon-Photo, Cora, Elliptic, OGB-Arxiv, and OGB-Products), with solid improvements on Cora
and Elliptic (1.23% and 1.60%). Performance on the remaining datasets is either excellent or very
close to the best results.
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Table 2: Ablation Study. Bold and underlined denote the best and second-best results, respectively.

Backbone | Method Amazon-Photo Cora Elliptic FB-100 OGB-Arxiv OGB-Products Twitch-E
BNSA 96.08 97.72  60.52 54.10 51.95 60.92 58.94
BNSA w/o A 95.64 94.54 5275 54.00 51.34 60.63 58.74
BNSA w/o M 96.06 97.69  60.07 53.53 51.18 60.84 58.83

GCN BNPA 95.51 91.81  49.21 54.13 52.50 61.11 58.69
BNPA w/o MinSamp 95.46 91.53  49.21 54.12 51.78 61.09 58.69
BNPA w/o CEselc 95.45 9146 4895 54.13 51.52 60.99 58.62
Overall 96.45 98.09 61.09 54.14 52.68 61.26 59.16
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Figure 2: t-SNE with and without BNPA Figure 3: Mask matrix M and hyperparameter k

4.2 ABLATION STUDIES

An ablation study was conducted on GCN (see Table[2) to analyze the impact of individual components
in our proposed TTA method. Different settings were tested, including using only BN statistic
adaptation (BNSA) or BN parameter adaptation (BNPA), variations of BNSA without the adjustment
weight A (BNSA w/o A) or mask matrix M (BNSA w/o M), variations of BNPA without the closest
sample selection (BNPA w/o MinSamp) or the entropy and confidence-based selection (BNPA w/o
CEselc).

Results highlight the importance of both BNSA and BNPA, as well as the effectiveness of our
proposed weighting and selection strategies. Using a fixed weight instead of our proposed distribution
shift-based approach negatively impacts performance, validating our weighting strategy. Removing
the mask matrix M, which selectively adjusts BN statistics, also decreases performance. Minor but
consistent performance decreases are observed when the closest sample in SGLD is not selected, or
the entropy and confidence-based selection strategy is removed. All highlight the importance of these
components. While the overall improvement of BNSA over BNSA w/o M might seem marginal in
some cases, the mask’s effectiveness extends beyond accuracy improvements. It also contributes to
enhanced model calibration, as Appendix [A.4.4] demonstrates. This improved calibration leads to
more reliable confidence estimates, which are essential for various downstream tasks.

To further understand the impact of BNSA, we visualize the activations from the last BN layer when
using BNPA alone and in conjunction with BNSA (Fig. [2). The results indicate that solely utilizing
BNPA does not yield the same level of class separation as the combined approach. Incorporating
both BNSA and BNPA leads to more distinct and inherent representations for each class.

4.3 HYPERPARAMETER SENSITIVITY STUDIES

We highlight the effectiveness of the mask matrix M in our approach. Fig. [3]illustrates the stability
of M across learning rounds, demonstrating its limited impact on Amazon-Photo but significant
contribution to preventing model collapse in FB-100. Additional results are presented in the Appendix.

Fig. B]demonstrates that our proposed method achieves strong performance even with a small value
of k, aligning with practical considerations of preserving information from the training data. Fig. 4]
illustrates the difference between the mean and variance calculated in Eq. 0] and those maintained
from the training data. This difference highlights how our method effectively balances the influence
of statistics from both the training and test datasets during adaptation.
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Figure 4: Mean’s and variance’s difference Figure 5: # of bins in BNSA vs accuracy

We investigate the impact of histogram size in non-parametric density estimation in Fig.[5] Results
show that: (1) BNSA consistently improves performance when the number of bins is small; (2)
accuracy eventually stabilizes with increasing bins beyond 30.

5 CONCLUSION

This work presented a novel two-step approach for test-time adaptation (TTA) of graph neural
networks. Our method adapts batch normalization statistics to the test data and refines model
parameters using an energy-based model. This approach addresses the limitations of existing methods,
improving model generalization and calibration. Empirical evaluation across seven diverse datasets
demonstrates its superior performance compared to state-of-the-art TTA techniques.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 RELATED WORK

Test-time adaptation aims to bridge the gap between a model’s training data and the test data of
potential data distribution shift, thereby mitigating performance degradation. Usually, in TTA, only
unlabeled test data and a pre-trained neural model are available. Existing approaches to fully TTA
can be clarified into two primary categories: batch normalization calibration and model optimization.

A.1.1 BATCH NORMALIZATION CALIBRATION

BN layers in neural networks typically use statistics of mean and variance calculated from the training
data to normalize activations during inference. However, this can be problematic when the test data
distribution differs significantly from the training data.

Several methods have been proposed to address this issue: AdaBN (Li et al., 2017) replaces source
statistics with estimates from the entire target domain, arguing that BN statistics can encode domain-
specific information. PredBN (Nado et al.,2020) utilizes current batch statistics for normalization,
and PredBN+ (Schneider et al., 2020) combines source and current batch statistics based on batch size.
a-BN (You et al.||2021)) uses a manually defined hyperparameter to blend source and target statistics.
DUA (Mirza et al., |2022)) updates BN statistics using a decaying momentum and exponential moving
average on the target dataset.

These methods often rely on heuristic weights for combining statistics, limiting their flexibility and
stability. In contrast, our proposed method dynamically adjusts BN statistics using weights based on
the magnitude of the distribution shift and a learned mask matrix, enhancing performance on target
data with distribution shift.

A.1.2 MODEL OPTIMIZATION

The other category of TTA techniques focuses on optimizing the pre-trained model directly on the
test dataset, using an articulated-designed, unsupervised objective. Methods to optimize the whole
model are as follows. MEMO (Zhang et al., 2022)) minimizes the entropy of average predictions
across augmented views of test samples. CoTTA (Wang et al.,[2022)) minimizes entropy based on
pseudo-labels derived from weighted and augmentation averaging. AdaContrast (Chen et al.| 2022a)
employs self-supervised contrastive learning with pseudo-labeling. GAPGC (Chen et al., 2022b)
adapts contrastive learning to graph neural networks.

Methods to optimize the partial parameters or layers are as follows: TENT (Wang et al., [2021)
minimizes entropy of predictions on test samples to optimize BN parameters. HLR (Mummadi et al.,
2021)) uses an unsaturated proxy loss and discrepancy regularization to optimize BN parameters. T3A
(Iwasawa and Matsuol, 2021) adjusts the classifier using pseudo-prototype representations. PCL (Su
et al.| 2023) optimizes inter-layer normalization parameters using perturbations in the feature space.

These methods may face challenges when the pre-trained model performs poorly on the target data,
as unsupervised objectives like entropy minimization or contrastive learning may be less effective
without access to ground truth labels. To address this, our proposed approach leverages an energy-
based joint model training approach, exploiting the benefits of generative models to select and enhance
the initial model’s predictions simultaneously. This leads to more reliable adapted predictions.

A.2 SETUP

To ensure a fair comparison of the effectiveness in handling the distribution shift and mitigating
performance degradation, we evaluate all methods following the same experimental settings in two
recent works, GTRANS (Jin et al.,2022b) and EERM (Wu et al.| 2022). We conducted experiments
on seven datasets on three GNN backbone models.

datasets The datasets contain various distribution shift types, synthetic and natural. According to
different shift types, we categorize the seven datasets as follows:

 Synthetic shift. In Amazon-Photo (Shchur et al.l|2018) and Cora (Yang et al.| 2016), the
synthetic shift is involved by adding artificial node features. The added node features are
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different in each graph, so when the dataset is divided into training, validation, and test
samples, they contain different synthetic shifts, which are used to evaluate the model’s
generalization ability. Distribution shifts are introduced into the training and testing data
to evaluate the model’s ability for out-of-distribution generalization. We use the provided
node features for each dataset to construct node labels and spurious environment-sensitive
features.

¢ Domain shift. In Twitch-E (Rozemberczki et al., [2021), FB-100 (Traud et al., 2012), and
OGB-Products (Hu et al., 2020), there are domain shifts. The nodes in different graphs are
from different domains. The implications of such domain shifts are profound, impacting
the generalizability and performance of models trained on these datasets. The training,
validation, and test samples are from different domains.

» Temporal shift. Dataset Elliptic (Pareja et al.,2020) and OGB-Arxiv (Hu et al.,2020) contain
temporal shifts; graph nodes originate from different periods. This temporal variation implies
that the data used for the training, validation, and testing phases are not homogenous with
respect to time. So, training, validation, and test samples are from different periods.

For Amazon-Photo, Cora, Elliptic, FB-100, and Twitch-E, we use the same partition ratio as the one
in GTRANS. Specifically, Amazon-Photo and Cora have 1/1/8 graphs for training/validation/test
sets. Twitch-E has 1/1/5 graphs, FB-100 has 3/2/3 graphs, and Elliptic has 5/5/33 graphs for
training/validation/test sets.

For OGB-Arxiv, more than one-fourth class in the training samples in GTRANS contains only a small
number of nodes, which we consider unfair because this is dropping information by purpose. So, we
use the suggested partition ratio in the OGB standard for OGB-Arxiv and OGB-Product, which is
3/1/1 for OGB-Arxiv and OGB-Products.

A.3 IMPLEMENTATION DETAILS

During model training on the training set, the number of layers was set to 5 for Elliptic and OGB-
Products and 2 for other datasets. The GAT model had four attention heads per layer, and the
representation dimension was set to 32 for all datasets. BN layers were included in all model
architectures. The learning rate was set to 0.001 for Amazon-Photo and Cora and 0.01 for other
datasets. The number of training epochs was set to 500 for OGB-Arxiv and 200 for other datasets.

Our proposed algorithm utilized histogram density estimation for non-parametric density estimation.
The number of bins was set to 100 for Amazon-Photo, Cora, and Elliptic. For Twitch-E, the number
of bins was 100 for GCN and 10 for GraphSAGE and GAT. For other datasets, ten bins were used.

During the learning of the mask matrix M for adjusting weights, the loss weight A, learning rate, and
number of training epochs were set to [0.1, 0.01, 300] for Amazon-Photo and Cora, [1.5, 0.2, 300] for
OGB-Arxiv, [0.8, 0.1, 300] for GCN and GraphSAGE on FB-100, [0.8, 0.1, 10] for GAT on FB-100,
[0.1, 0.1, 300] for GCN on Twitch-E, [0.8, 0.1, 300] for GraphSAGE and GAT on Twitch-E, [0.1,
0.01, 300] for GCN and GraphSAGE on Elliptic, [0.1, 0.01, 100] for GAT on Elliptic, and [0.8, 0.1,
300] for OGB-Products.

In the BN statistics adaptation process, the number of adaptation rounds was set to 10 for Amazon-
Photo, Cora, and Elliptic. For Twitch-E, it was 10 for GCN and 1 for GraphSAGE and GAT. For
other datasets, one adaptation round was used.

During BN parameter optimization, the learning rate and the number of optimization rounds were set
to [0.0001, 10] for GCN and GAT on Amazon-Photo, [0.001, 80] for GraphSAGE on Amazon-Photo,
[0.0001, 10] for Cora, Twitch-E, Elliptic, and OGB-Products, [0.001, 10] for GCN on OGB-Arxiv,
[0.0001, 10] for GraphSAGE on OGB-Arxiv, [0.001, 20] for GAT on OGB-Arxiv, [0.001, 30] for GCN
on FB-100, and [0.0001, 10] for GraphSAGE and GAT on FB-100. In the SGLD sampling process,
step size ¢ is set to 2.0, and the number of steps 7" is 30. In the process of entropy-based selection
and confidence-based filtering, for flexibility and versatility, entropy threshold 7, is determined based
on the value that lies at the scale boundary after sorting, We keep the nodes whose entropy is in the
top 60%, for confidence threshold 7'3, 7'3, We set it uniformly as [0.2, 0.8].
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A.4 ADDITIONAL RESULTS

A.4.1 T-SNE WITH AND WITHOUT BNPA

(e) Elliptic G7 BNPA (f) Elliptic G7 Overall ~ (g) Elliptic G12 BNPA  (h) Elliptic G12 Overall

Figure 6: t-SNE with and without BNPA

To further understand the impact of BNSA, we visualize the activations from the last BN layer when
using BNPA alone and in conjunction with BNSA (Fig. [6) on two data sets. The results indicate that
solely utilizing BNPA does not yield the same level of class separation as the combined approach

Incorporating both BNSA and BNPA leads to more distinct and inherent representations for each
class.

A.4.2 MASK MATRIX M AND HYPERPARAMETER K

—6— with M—e— without M —— with M—s— without M —— with M—e— without M —b— with M—e— without M
96.5; 9

54.5

©
o
kS
©
o
o
<)

—— s
— — — _sag —
X X X X
596.3 ‘5. 558 ‘5
© ©97 © ©53.5
396.2| 2 356 3
< < < <
96.1] 96 54 53.0
%01 —=5 10 15 ST 5 10 15 20 527 510 15 20 52517 —=5 10 15 20
K K K K
(a) Amazon-Photo (b) Cora (c) Elliptic (d) FB-100
—6— with M—e— without M —6— with M—e— without M —6— with M—e— without M
53 62.0y 60.0,
G\\

~—6—& 4

o
-
o
e
n

.

\

N

ST 5 1520 60075

S
©
o
g
=}

SN

<~

Accuracy(%)

&
b
Accuracy(%)

)
o
n

Accuracy(%)
)
©o
o
[ |
|
|

0 15 20 58075
K

(e) OGB-Arxiv (f) OGB-Products

(g) Twitch-E

Figure 7: Mask matrix M and hyperparameter %
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We highlight the effectiveness of the mask matrix M in our approach. Fig.[7illustrates the stability
of M across learning rounds, demonstrating its limited impact on Amazon-Photo but significant
contribution to preventing model collapse.

A.4.3 MEAN’S AND VARIANCE’S DIFFERENCE
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Figure 8: Mean’s and variance’s difference

Fig.[7]demonstrates that our proposed method achieves strong performance even with a small value
of k, aligning with practical considerations of preserving information from the training data. Fig.[§]
illustrates the difference between the mean and variance calculated in Eq.[9]and those maintained
from the training data. This difference highlights how our method effectively balances the influence
of statistics from both the training and test datasets during adaptation.

A.4.4 THE MODEL CALIBRATION BY BNSA
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Figure 9: The model calibration by BNSA

A well-calibrated classifier exhibits predictive confidence that aligns with its misclassification rate. As
discussed in Section 3.2} incorporating an energy-based model (EBM) can enhance model calibration,
leading to improved pseudo-label selection. To demonstrate this, we present calibration plots for all
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datasets, comparing the baseline (no adaptation) and our proposed approach (BNSA + BNPA). The
baseline model shows poor calibration, while our method effectively calibrates the GNN model. This
improvement is evident in the Expected Calibration Error (ECE) values, which quantify the average
discrepancy between classifier confidence and accuracy.

A.5 ALGORITHM

The pseudo-code for Algorithms BNSA and BNPA is presented in this section.

Algorithm 1 BNSA

—_— e = =
A D ST

PRI RN

Input: A test graph G,, € Dy, trained model fp include L BN layers with BN statistic (1, Jf),
learn mask epochs 7', temperature parameter 7.
Output: updated statistic (j1,52).

for:=1,...,L do
Represent the distribution PTSZ) using non-parametric density estimation;
end for
Compute the weight a("? using Eq. and
Prior weights A = [a(9),a™), ..., a(P)];
fort =0,....,7T —1do
M = sigmoid((log d — log (1 —6) + B)/7),6 ~U(0,1);
Update B using loss as shown in Eq.[§|and BN statistic in Eq. [6}
end for
if sigmoid(B*) > 0.5 then
M*=1;
: else
M* =0;
: end if
: Adapt the statistic using Eq. [0

return (fi,6?).

Algorithm 2 BNPA

10:

Input: A test graph G,, € Dj., trained model fy with BN parameter (3, ), learn epochs K,
replay buffer By, reinitialization frequency p;.;.
Output: updated BN parameter (5*,~v*).
fork=0,...,K —1do
Model forward with G, ;
Compute L; ¢ using Eq.
Sample &, ~ By with probability 1 — p,;, else &9 ~ U(—1,1);
Obtain the sample & using Eq.[13}
Add 2 to By;
Compute L., using Eq.
Total loss is Lejf + Lgen;
Backward and optimize (3, );
end for
return (5%, v*).
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