
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DISTILLING SNN STUDENTS FROM ANN TEACHERS
VIA SPIKING NEURAL ARCHITECTURE SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Bridging the performance gap between Spiking Neural Networks (SNNs) and Ar-
tificial Neural Networks (ANNs) under low timesteps remains a critical challenge
in the SNN community. Recent work uses either ANN-supervised training or
automated architecture design to narrow the gap. However, the combination of
ANN-supervised training and SNN architecture search remains unexplored, leav-
ing room for further improvement of SNN performance. To address this, we pro-
pose DSAS, a training-free spiking neural architecture search method that lever-
ages pre-trained ANN teachers to discover efficient, high-performance SNNs with
few timesteps. Specifically, DSAS employs an evolutionary neural architecture
search guided by two novel metrics, i.e., Multi-layer Activation Similarity (MAS)
and Threshold-guided Gradient Similarity (TGS). MAS aligns ANN and SNN
feature maps, yet TGS ensures gradient alignment while tuning spiking activation
thresholds. Experiments demonstrate that DSAS achieves state-of-the-art accu-
racy with four timesteps, effectively narrowing the performance gap of ANN and
SNN. For example, DSAS discovers architectures that achieve 65.50% top-1 ac-
curacy on Tiny-ImageNet and 81.97% on CIFAR-100. 1

1 INTRODUCTION

Spiking Neural Network (SNN), in recent years, has shown its energy-efficient ability across var-
ious tasks, including image classification (Zheng et al., 2021), robot control (Li et al., 2022), and
object identification (Kim et al., 2020). This low-power characteristic of SNN primarily stems from
its computational paradigm, i.e., SNNs transmit information through event-driven binary spike sig-
nals (Roy et al., 2019). However, the binary spikes transmit less information than the counterpart
Artificial Neural Network (ANN) (Guo et al., 2024a), which uses floating-point in computation.
Thus, the performance of SNN models still has gaps compared to the ANN models (Hao et al.,
2023; Luo et al., 2024). To address this, a straightforward solution involves additional temporal in-
formation to approximate the floating-point of ANNs, i.e., increasing the timesteps T of SNNs. For
example, Rueckauer et al. (2017) use 550 timesteps to convert an ANN-based Inception-V3 model
to its SNN counterpart, whereas Lee et al. (2020) adopt 100 timesteps to directly train the SNNs
using spike-based backpropagation.

However, lengthy timesteps of SNNs results in slow inference speeds and increased power consump-
tion (Yao et al., 2023). As a result, researchers aim to develop high-performance SNNs with few
timesteps by designing novel learning algorithms and model architectures. First, learning algorithms
incorporate more external guidance to improve the training effectiveness of SNNs models. For ex-
ample, Xu et al. (2023) improve SNN performance by distilling knowledge from a pre-trained ANN
teacher and find that SNN students vary in how well they learn from the ANN teacher. Second, in
terms of model architectures, early efforts focused on manually designing high-performance SNNs,
such as the spiking residual architecture (Fang et al., 2021), and the spiking normalization architec-
ture (Zheng et al., 2021). More recently, spiking neural architecture search methods have emerged
to automatically discover novel and high-performing SNN models (Na et al., 2022; Kim et al., 2022;
Liu et al., 2024; Song et al., 2025). This leads to a natural question: Can the rich knowledge of
ANN teachers effectively guide the discovery of high-performance SNN students?

1Available code: https://anonymous.4open.science/r/DSAS-5764

1

https://anonymous.4open.science/r/DSAS-5764

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Hence, we propose a spiking neural architecture search method, termed DSAS, to automatically
discover high-performance SNN student models guided by pre-trained ANN teachers. Specifically,
to efficiently explore the search space of SNN students, we introduce a training-free spiking neural
architecture search framework based on evolutionary algorithms, inspired by Dong et al. (2023).
Furthermore, to effectively identify high-performing SNN candidates from the predefined search
space, we propose two evaluation metrics that guide the search process using only a single forward
and backward computation. Our contributions are summarized as follows:

• We propose a Multi-layer Activation Similarity (MAS) metric to effectively evaluate the
feature similarity between the ANN teacher and the SNN student, which can align interme-
diate feature representations and improve overall performance.

• We introduce a Threshold-guided Gradient Similarity (TGS) metric to capture the similarity
of the gradient direction and adaptively calibrate the firing thresholds of SNN neurons. This
design can enable SNN to better mimic the backpropagation dynamics of ANN teacher.

• We experimentally show that DSAS achieves state-of-the-art accuracy with only four
timesteps on four static and two neuromorphic datasets. For example, on Tiny-ImageNet,
we achieve a top-1 accuracy of 65.50% (>2.34% compared to other methods).

2 RELATED WORKS

2.1 SPIKING KNOWLEDGE DISTILLATION (SKD)

SKD is a knowledge distillation technique tailored for SNNs, which can leverage the knowledge of
the pre-trained ANN teachers to improve the performance of SNN students. In contrast to traditional
knowledge distillation, where both teacher and student models are ANNs, SKD faces a main chal-
lenge due to the fundamentally different activation patterns between ANNs and SNNs (Guo et al.,
2023; Xu et al., 2023). Specifically, the outputs of SNN neurons are the binary spikes, yet ANN
neurons produce continuous floating-point outputs (Deng et al., 2020). Thus, SNN students struggle
to effectively learn from ANN teachers.

Existing SKD methods focus on addressing this challenge, which can be divided into homogeneous
and heterogeneous SKD methods. The former one constrains the ANN teachers and SNN students
to have the same architecture. For example, Joint A-SNN (Guo et al., 2023) proposes a multi-branch
structure to effectively distill the knowledge from ANN models. SAKD (Qiu et al., 2024) incorpo-
rates temporal dynamics into the loss function to improve the distillation efficiency. BKDSNN (Xu
et al., 2024b) designs an adaptive layer between ANN teachers and SNN students to enhance distil-
lation performance. Sparse-KD (Xu et al., 2024a) optimizes the connection of SNN students during
the distillation process, resulting in higher efficiency. ESKD (Yang et al., 2025) uses the intermediate
feature of ANN models to improve the performance of the distilled SNNs.

In contrast, heterogeneous SKD methods offer greater flexibility by allowing different architectures
between ANN teachers and SNN students. For instance, KDSNN (Xu et al., 2023) allows SNN stu-
dents to have shallow layers with small model sizes. Also, KDSNN (Xu et al., 2023) highlights that
the different architecture of SNN students can significantly affect the final distillation performance.
This means that the architectures of the high-performance SNN student may be different from the
ANN teacher. Our preliminary experiments confirm this: although SNN-ResNet34 is theoretically
superior, it underperforms SNN-ResNet18 in practice when both are distilled from ANN-ResNet50
(see Appendix A). Therefore, this study aims to effectively, efficiently, and automatically design the
high-performance architectures of SNN students that align well with ANN teachers.

2.2 SPIKING NEURAL ARCHITECTURE SEARCH (SNAS)

SNAS aims to automatically design SNN architectures with minimal or no expertise. Existing SNAS
methods can be categorized into three categories based on their search strategies, i.e., random-based,
gradient-based, and evolutionary-based strategy. More specifically, SNASNet (Kim et al., 2022) rep-
resents a training-free SNAS approach that utilizes a random search strategy. Among gradient-based
methods, notable examples include SpikeDHS (Na et al., 2022), LitE-SNN (Liu et al., 2024), and
ESNNs (Yan et al., 2024). SpikeDHS is the first to integrate surrogate gradient search into SNAS.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

ANN Teacher

𝐵 × 𝐶 × 𝐻 ×𝑊

𝑇 × 𝐵 × 𝐶 × 𝐻 ×𝑊
Brain-inspired SNN Student

······

Evolutionary Search

SNN neurons𝐵: Batch 𝐶: Channel 𝐻: Height 𝑊: Weight 𝑇: Timestep

Multi-layer Activation Similarity (MAS)
Threshold-guided

Gradient Similarity (TGS)

Input

Figure 1: The overall framework of DSAS. The ANN teacher is a pre-trained model, and the high-
performance SNN students are automatically searched by the guidance of ANN teacher. The search
process only needs one forward propagation for MAS and one backward propagation for TGS.

ESNNs aim to enhance the search efficiency of gradient-based SNAS, while LitE-SNN further ex-
tends the gradient-based strategy to develop lightweight and efficient SNNs.

As a bio-inspired strategy, evolutionary search matches the brain-inspired nature of SNNs and has
been widely used in SNAS methods. For example, AutoSNN (Na et al., 2022) employs an evolu-
tionary search strategy to identify SNN architectures with optimal spike-aware fitness. Additionally,
MSE-NAS (Liu et al., 2024) focuses on designing a multi-scale evolutionary search space and a
brain-inspired performance predictor. Furthermore, EMO-SNAS (Song et al., 2025) proposes a
multi-objective evolutionary search strategy that can design high-performance and energy-efficient
SNN architectures. Although the performance of the SNNs designed by existing SNAS methods
has surpassed that of manually designed SNNs, a performance gap remains when compared to ANN
models. To address this, this study introduces high-performance pre-trained ANN models to guide
the search process, which can significantly improve the performance of SNN models.

3 METHODOLOGY

3.1 OVERALL FRAMEWORK

The overall framework of DSAS is illustrated in Figure 1. High-performance SNN students are
searched by the guidance of a pre-trained ANN teacher. The process comprises the following stages:
First, a batch of input images is processed by a pre-trained ANN teacher model, which extracts
both hierarchical activation patterns and the gradient pattern. Then, the same types of patterns are
obtained from each candidate model, i.e., the ANN student, using the same way. After that, to
effectively evaluate the similarity between teacher-student pairs, DSAS introduces two metrics, i.e.,
Multi-layer Activation Similarity (MAS) and Threshold-guided Gradient Similarity (TGS) metrics.
More specifically, MAS assesses the similarity between intermediate feature activations, yet TGS
measures the similarity between the gradient of the ANN and the SNN. The details of the two metrics
are discussed in the next two sections. Finally, the architecture of the SNN student is automatically
optimized via evolutionary search, and these two similarity metrics serve as the fitness function to
guide the search process. Note that we used the identical search space as Song et al. (2025), and the
same evolutionary search strategy following Sun et al. (2020) (more details in Appendix B).

3.2 MULTI-LAYER ACTIVATION SIMILARITY (MAS)

As shown in Figure 1, MAS is used to evaluate the activation patterns of the intermediate lay-
ers between the teacher-student pairs. Specifically, we calculate the activation similarity of the
first, medium, and last layers and the calculation process for each layer is the same as follows.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

For an ANN teacher and an SNN student with the activation pattens AT ∈ RB×C×H×W and
AS ∈ RT×B×C×H×W , where T is the number of timesteps, B is the batch size, and C, H , and W
represent the number of channels, height, and width, respectively.

First, AS is accumulated at temporal domain to get the fire rate. The process can be summarized as
ĀS =

∑T
t=1 A

(t)
S , where ĀS ∈ RB×C×H×W . Next, AT and ĀS is flatten at the channel, height, and

width dimension to generate A′
T ∈ RB×N and Ā′

S ∈ RB×N , respectively, where N = C ·H ·W .
After that, the sparsity ρ of the student activation is computed using Equation (1):

ρ =
1

BN

B∑
b=1

N∑
n=1

1
[
Ā′

S(b, n) ̸= 0
]
, (1)

where 1[·] denotes the indicator function. To match this sparsity in the teacher activation, we com-
pute a threshold τ following Equation (2):

1

BN

B∑
b=1

N∑
n=1

1 [A′
T (b, n) > τ] = ρ. (2)

We then sparsify the teacher activation patten AT by setting values less than or equal to τ to zero,
as illustrate in Equation (3):

Ā′
T =

{
A′

T (b, n), if A′
T (b, n) > τ,

0, otherwise.
(3)

We define the similarity matrices for the student and teacher as indicated in Equation (4):

MT =
(Ā′

T) · (Ā′
T)

⊤

∥(Ā′
T) · (Ā′

T)
⊤∥2

, MS =
(Ā′

S) · (Ā′
S)

⊤

∥(Ā′
S) · (Ā′

S)
⊤∥2

, (4)

where MT and MS are the similarity mateices of the ANN teacher and SNN student, respectively,
and ∥ · ∥2 denotes the Euclidean norm.

Finally, the similarity function FMAS is defined as the mean squared error between the two similarity
matrices, as shown in Equation (5):

FMAS =
1

B2
∥MTA

−MTS
∥22 . (5)

The reason that we propose the multi-layer activation similarity is to improve the accuracy of the
high-performance SNN student selection. More specifically, the firing rate of each layer decreases
progressively with increasing depth in SNNs, i.e., the deeper layers have sparser activations. In
contrast, the activation patterns in the ANN teacher are nearly non-sparse, with sparsity approaching
0%. Thus, if activation similarity is computed only at the last convolutional layer between student
and teacher models, shallow SNNs with only one or two layers are more likely to be selected, despite
their generally poor performance (see Section 4.5). This is because the similarity between floating-
point activations in ANNs and the binary activations of shallow SNNs is high. To address this, we
design the sparsity alignment between student-teacher pairs, as described above.

3.3 THRESHOLD-GUIDED GRADIENT SIMILARITY (TGS)

As illustrated in Figure 1, TGS is designed to measure the similarity between the gradients of the
ANN teacher and the SNN student. This is because gradients determine the convergence direc-
tion of the neural network models. Therefore, the more similar the gradients between the teacher
and student models, the more effectively the SNN student can learn from the ANN teacher. More
specifically, the computation of TGS involves two stages: (1) adjusting the firing threshold of SNN
neurons under the guidance of the ANN teacher, and (2) calculating the gradient similarity between
the SNN student and the ANN teacher.

For stage (1), the gradient of each ANN layer is obtained and represented as G = {g1,g2, . . . ,gN},
where each gi ∈ Rni denotes the gradient corresponding to the i-th layer. Subsequently, G is divided
into K parts, e.g., K = 3 in our DSAS method, as illustrated in Equation (6):

G =

K⋃
k=1

Gk, Gk =
{
g
(k)
i

}
. (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

For each Gk, all elements within the group are treated as a single high-dimensional vector, denoted
as v(k) =

(
g
(k)
1 , g

(k)
2 , . . . , g

(k)
m

)
∈ Rdk , where dk represents the total dimensionality of the group

k. Each v(k) is then normalized, as shown in Equation (7):

ṽ(k) =
v(k) −min(v(k))

max(v(k))−min(v(k)) + ε
, (7)

where ε > 0 is a small constant introduced to prevent division by zero.

After that, the mean µk and standard deviation σk of ṽ(k) are computed. Then, a signal-to-noise-like
metric for each group can be defined following Equation (8):

α̃k =

(
2− µk/(σk + ε)

maxj (µj/(σj + ε))

)
· α0, (8)

where the maximum maxj(·) is taken over all j = 1, 2, . . . ,K and α0 is a predefined scaling factor.
As a result, we obtain a set of scalar coefficients {α̃1, α̃2, . . . , α̃K}. These coefficients can encode
the statistical properties of the gradients of the ANN teacher across different parts of the network.
Finally, these coefficients are used as the α parameter of the surrogate function Sigmod(·).
The design motivation of the stage (1) is from the Signal-to-Noise Ratio (SNR) (Czanner et al.,
2015) of the information and behavior of the Sigmod function. First, SNR serves as a proxy to
measure the stability of gradient across different layers of the ANN teacher network. The higher the
SNR value, i.e., the smaller α̃k, indicates the more stable gradient information distribution. Second,
the sharpness of the surrogate gradient of the Sigmod function is significantly influenced by the α
parameter. A smaller α value results in a smoother and more stable surrogate gradient (more details
in Appendix C). Thus, we assign the computed α̃k values from the ANN teacher as the α parameter
of the SNN teacher, thereby aligning the gradient distributions between the teacher-student pair.

In stage (2), the gradient similarity between the ANN teacher and SNN student is computed. Specif-
ically, we use the gradients of the final layer from the teacher-student pair, denoted as GT ∈ RN×C1

and GS ∈ RN×C2 , respectively. Here, N represents the number of classes, while C1 and C2 de-
note the number of feature channels for the ANN teacher and the SNN student, respectively. Then,
the similarity between these gradients is calculated following the method proposed in (Dong et al.,
2023), as defined in Equations (9) and (10):

PT =
(GT) · (GT)

⊤

∥(GT) · (GT)⊤∥2
, PS =

(GS) · (GS)
⊤

∥(GS) · (GS)⊤∥2
, (9)

FTGS =
1

N · C ′ ∥PT − PS∥22 , (10)

where C ′ is the minimize value of C1 and C2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

The experiments are conducted on four static datasets, i.e., ImageNet, Tiny-ImagetNet (Le & Yang,
2015), CIFAR-10, and CIFAR-100 (Krizhevsky et al., 2009), and two neuromorphic datasets, i.e.,
CIFAR10-DVS (Li et al., 2017) and DVS128-Gesture (Amir et al., 2017), following the conventions
of the SNN community (Bu et al., 2022; Kim et al., 2022; Qiu et al., 2024; Song et al., 2024) (details
in Appendix D.1). Furthermore, the experimental settings of the proposed DSAS method include
search settings and training settings. Note that the experimental results of the peer competitors in
the table below are cited from the original paper.

Search Settings. In the search stage, we adopt the same search space as Song et al. (2025). Specif-
ically, the search space consists of a single type of convolutional layer, varying in the number of
channels and stride. In terms of the search strategy settings, we follow the method of Sun et al.
(2020), yet with a population size that is 10× larger. More details about the settings for different
dataset are provided in Appendix D.2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Training Settings. The training process aims to evaluate the performance of the searched architec-
ture. Specifically, the loss function of the knowledge distillation is the commonly used Logits func-
tion (Ba & Caruana, 2014), and the weights of the searched SNN students are randomly initialized
with Kaiming normalization. More details of the parameter settings are presented in Appendix D.3.

4.2 OVERALL RESULTS

4.2.1 STATIC IMAGE CLASSIFICATION

Table 1: Comparison with the state-of-the-art SNN methods on Tiny-ImageNet. ‘→’ denotes the
spiking knowledge distillation method with ‘ANN teacher→ SNN student’.

Methods Architecture Params (M) Timesteps Acc. (%)

SSF (Wang et al., 2023) ResNet-34 21.33 20 58.81
SCA (Li et al., 2024) VGG-16 138.34 4 49.33

AC2AS (Tang et al., 2023) VGG-13 133.0 3 54.91±0.20
CLIF (Huang et al., 2024) VGG-13 133.0 4 63.16

RCS (Wu et al., 2025) ResNet-18 11.22 3 56.69

Joint A-SNN (Guo et al., 2023) VGG-16→VGG-16 138.34 4 55.39
VGG-16→VGG-16 138.34 2 53.91

Sparse-KD (Xu et al., 2024a) ResNet-18→ResNet-18 11.22 4 56.92

SNASNet (Kim et al., 2022) Searched 74.62 5 54.60±0.48
AutoSNN (Na et al., 2022) Searched - 8 46.79
ESNNs (Yan et al., 2024) Searched 6.91 3 58.59

SpikeNAS-Bench (Sun et al., 2025) Searched 75.2 5 53.6
EMO-SNAS (Song et al., 2025) Searched 7.82 2 54.36

DSAS (Ours) PyramidNet200→Searched 27.19 4 65.50

Table 2: Comparison with the state-of-the-art SNN methods on ImageNet.

Methods Architecture Params (M) Timesteps Acc. (%)

Hybrid training (Rathi et al., 2020) ResNet-34 21.79 250 64.68
QCFS (Bu et al., 2022) ResNet-34 21.79 32 69.37

Diet-SNN (Rathi & Roy, 2021) VGG-16 138.34 5 69.00
TET (Deng et al., 2022) ResNet-34 21.79 4 68.00

STBP-tdBN (Zheng et al., 2021) ResNet-152 60.19 4 69.20

KDSNN (Xu et al., 2023) ResNet-50→ResNet-50 25.56 4 67.72
SAKD (Qiu et al., 2024) ResNet-34→ResNet-34 21.79 4 70.04

BKDSNN (Xu et al., 2024b) ResNet-50→ResNet-50 25.56 4 72.32
ESKD (Yang et al., 2025) ResNet-34→ResNet-34 21.79 4 70.64

SpikeDHS (Che et al., 2022) Searched 58 6 68.64
DSAS (Ours) PyramidNet101→Searched 15.60 4 68.29

Tiny-ImageNet & ImageNet. Most existing SNAS methods are verified on Tiny-ImageNet, thus,
we first provided the experimental results on this dataset. As shown in Table 1, DSAS significantly
outperforms all prior SNN methods, achieving 66.00% accuracy with four time steps and 27.19M
parameters. Compared to the spiking knowledge distillation methods, DSAS improves upon the
best distillation baseline, i.e., Spare-KD, by 8.58%, while maintaining a reasonable model param-
eter and a timestep. In the category of searched SNN architectures, all of them struggle to surpass
59% accuracy, even with large model sizes. In comparison, the accuracy of DSAS exceeds the best
search-based method, i.e., ESNNs, by nearly 7%. Moreover, we also evaluate DSAS on ImageNet.
As indicated in Table 2, DSAS achieves competitive accuracy with only 15.6 M parameters and four
timesteps, highlighting its high efficiency. The slightly lower accuracy arises from hardware limits
during search stage. More specifically, unlike existing SNAS methods that transfer the architec-
tures searched on CIFAR to ImageNet, DSAS searches directly on ImageNet in just 0.031 GPU-day.
However, the GPU memory of the RTX 3090 constrains the model scale for high-resolution im-
ages like ImageNet. Additionally, visualizations of the searched architecture and the evolutionary
trajectory are provided in Appendix E and Appendix F, respectively.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Compare with SOTA SNN methods on ‘CIFAR-10’ and ‘CIFAR-100’.

Methods Architecture Params Time CIFAR-10 CIFAR-100
(M) -steps Acc.(%) Acc.(%)

Hybrid training (Rathi et al., 2020) VGG-11 9.27 125 92.22 67.87
QCFS (Bu et al., 2022) ResNet-20 10.91 32 93.30 68.48

Diet-SNN (Rathi & Roy, 2021) ResNet-20 10.91 10/5 92.54 64.07
TET (Deng et al., 2022) ResNet-19 12.63 4 94.44 74.47

STBP-tdBN (Zheng et al., 2021) ResNet-19 12.63 4 92.92 70.86

Joint A-SNN (Guo et al., 2023) ResNet-18→ResNet-18 11.22 4 95.45 77.39
ResNet-34→ResNet-34 21.33 4 96.07 79.76

EnOF-SNN (Guo et al., 2024b) ResNet-19→ResNet-19 12.63 2 96.19±0.10 82.43±0.09
ResNet-20→ResNet-20 10.91 2 93.86±0.07 71.55±0.12

SAKD (Qiu et al., 2024) ResNet-19→ResNet-19 12.63 4 96.06 80.10
BKDSNN (Xu et al., 2024b) ResNet-19→ResNet-19 12.63 4 94.64 74.95
Sparse-KD (Xu et al., 2024a) ResNet-18→ResNet-18 11.22 4 - 73.01

ESKD (Yang et al., 2025) ResNet-18→ResNet-18 11.22 6 96.14±0.03 79.40±0.16
KDSNN (Xu et al., 2023) PyramidNet18→ResNet-18 11.22 4 93.41 -

SNASNet (Kim et al., 2022) Searched 19.52/20.62 5 93.73±0.32 73.04±0.36
AutoSNN (Na et al., 2022) Searched 20.92 8 93.15 69.16

MONAS (Saghand & Lai-Yuen, 2025) Searched - 3 93.76 73.63
SpikeDHS (Che et al., 2022) Searched 14 6 95.50±0.03 76.25±0.10
LitE-SNN (Liu et al., 2024) Searched 3.60/3.62 6 95.60±0.24 77.10±0.04
ESNNs (Yan et al., 2024) Searched 23.47/27.55 3 94.64 74.78

MSE-NAS (Pan et al., 2024) Searched 11.79 4 95.56 77.18
SpikeNAS-Bench (Sun et al., 2025) Searched 19.16/20.31 5 89.3 65.2

EMO-SNAS (Song et al., 2025) Searched 5.37/3.57 2 93.60 69.59

DSAS (Ours) PyramidNet200→Searched 12.83/15.78 4 96.55 81.97
96.50±0.04 81.73±0.17

Table 4: The performance of SNN student
guide by different ANN teachers.

Dataset ANN teacher
R-18 R-34 R-50 P-110

C-100 74.42 79.70 79.71 80.82

C-10 94.73 95.22 95.18 95.90

Table 5: Performance of ANN and SNN on various
datasets. †/‡ indicate results before/after distillation.

C-10 C-100 C10-DVS Gesture

ANN Teacher 97.06 82.86 82.10 97.92

SNN Student† 95.11 74.90 79.20 95.49
SNN Student‡ 96.50 81.97 81.00 96.53

ANN

Teacher

SNN

Student†

SNN

Student‡

Figure 2: The activation map of ANN and SNN.

CIFAR-10 & CIFAR-100. As indicated in
Table 3, DSAS performs better on CIFAR-
10 and CIFAR-100, reaching accuracies of
96.43% and 81.36%, respectively. Specifically,
on CIFAR-10, the method without knowledge
distillation has a performance gap compared
to DSAS and suffers from high latency. The
spiking knowledge distillation methods signif-
icantly improve accuracy by leveraging power-
ful ANN teacher models. However, fixed SNN
student models hinder accuracy. For CIFAR-
100, the performance improvement of DSAS is
significant, e.g., > 10% better than AutoSNN
and EMO-SNAS. Additionally, as shown in Ta-
ble 4, we investigate the performance of the
SNN student guided by different ANN teachers
and find that DSAS can still achieve great performance. Furthermore, the experimental results indi-
cate that the searched SNN student can gain more accuracy improvements on the complex CIFAR-
100 (see Table 5). We also visualize the activation of the ANN teacher and the SNN student before
or after distillation in Figure 2. The results indicate that the high-performance distilled SNN stu-
dent (denoted by ‘‡’) matches the activation map of ANN, yet the SNN student before distillation
(denoted by ‘†’) fails to focus on the object. Moreover, as presented in Appendix F, the evolution-
ary progress is more stable than Tiny-ImageNet. Finally, the searched architecture is illustrated in
Appendix E, which is simpler than Tiny-ImageNet.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 6: Compare with SOTA SNN methods on ‘CIFAR10-DVS’ and ‘DVS128-Gesture’.

Dataset Methods Architecture Params. (M) Timestep Acc. (%)

CIFAR10-

Rollout (Kugele et al., 2020) DenseNet 0.5 48 66.75

DVS

STBP-tdBN (Zheng et al., 2021) ResNet-19 12.63 40 67.80
SEW (Fang et al., 2021) 7B-Net 1.19 16 74.40
SAKD (Qiu et al., 2024) ResNet-19→ResNet-19 12.63 4 80.30

BKDSNN (Xu et al., 2024b) Wide-7B-Net→Wide-7B-Net 1.19 8 72.20
AutoSNN (Na et al., 2022) Searched - 20 72.50
ESNNs (Yan et al., 2024) Searched 3.53 10 78.40

DSAS (Ours) PyramidNet110→Searched 13.83 4 81.20

DVS128-

Rollout (Kugele et al., 2020) DenseNet 0.8 240 95.68

Gesture

STBP-tdBN (Zheng et al., 2021) ResNet-19 12.63 40 96.87
SEW (Fang et al., 2021) 7B-Net 0.13 16 97.92

AutoSNN (Na et al., 2022) Searched - 20 96.53
EMO-SNAS (Song et al., 2025) Searched 0.47 10 96.88

DSAS (Ours) PyramidNet110→Searched 0.79 4 96.53

4.2.2 NEUROMORPHIC IMAGE CLASSIFICATION

CIFAR10-DVS. Table 6 presents the comparison of existing SNN methods on DVS-CIFAR10.
Among these approaches, DSAS consistently outperforms others. Specifically, DSAS achieves a
accuracy of 81.00% with four timesteps. Recent methods based on neural architecture search, such
as ESNNs, utilize fewer parameters and run at 10 time steps, yet its accuracy still lags behind DSAS.

DVS128-Gesture. As shown in Table 6, DSAS achieves the comparable accuracy of 95.49% with
only 0.79M parameters and four timesteps, demonstrating superior efficiency compared to most
existing approaches. Although methods such as STBP-tdBN and SEW report slightly higher ac-
curacies, they require significantly more parameters or longer timesteps. Note that the searched
architecture and evolution trajectory of neuromorphic datasets are provided in Appendix E and F.

4.3 PARAMETER STUDY ON TIMESTEPS

This section analyzes DSAS performance across timesteps. As shown in Table 7, accuracy in-
creases with larger timesteps but the improvement slows gradually. Figure 3 further indicates that
SNN students with fewer timesteps absorb more knowledge from ANN teachers, achieving greater
improvement. This can provide the insight for designing one-step, high-performance SNNs.

Table 7: The image classification accuracy
under different timestep.

Dataset Timestep
T = 1 T = 2 T = 4 T = 6

C-100 78.33 80.48 81.97 82.06

C-10 94.76 95.93 96.55 96.56

C10-DVS 76.20 79.40 81.00 81.20

Gesture 81.59 94.10 95.83 96.88

7.9%

6.9%

Figure 3: The accuracy with and without KD under
different timestep.

4.4 EFFICACY STUDY

Search cost analysis. As shown in Table 8, DSAS achieves consistently ultra-low search costs
across all datasets, including the static large-scale ImageNet and Tiny-ImageNet and the complex
neuromorphic datasets. This can demonstrate the superior efficiency of DSAS compared to others.

Energy efficiency analysis. As illustrated in Table 9, SNN Student drastically reduces energy
compared to ANN Teacher. Distillation slightly increases energy use but significantly boosts SNN
performance, demonstrating improved performance with minimal energy impact.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 8: The search cost (GPU days) of different SNAS meth-
ods. ‘–’ means not searched on this dataset.

Method Image Tiny- CIFAR CIFAR10 DVS128
-Net ImageNet -DVS -Gesture

AutoSNN - 5.2 1.9 1.3 -
SpikeDHS - - 1.4 - -
LitE-SNN - - 5.1 - -

ESNNs - 0.207 0.07 0.15 -
SNASNet - 0.17 0.127 - -

EMO-SNAS - 57 25.5 - 2
DSAS (Ours) 0.031 0.044 0.088 0.052 0.0048

Table 9: Energy cost comparison
for a single forward on CIFAR-100
and CIFAR10-DVS. †/‡ indicate
results before/after distillation.

Model Energy (mJ)
C-100 C10-DVS

ANN Teacher 21.07 349.00

SNN Student† 0.52 0.61
SNN Student‡ 0.95 1.04

4.5 ABLATION STUDY

MAS. To evaluate the effectiveness of the proposed MAS metric, we analyze both the performance
and depth distribution of the searched architectures. As shown in Table 10, the architecture obtained
using the MAS metric outperforms that derived from the AS metric on the CIFAR dataset. The AS
metric is based solely on the activation of the last convolutional layer, which tends to favor shallow
architectures (see Figure 4). In contrast, the MAS metric can effectively address this issue, as shown
in Figure 5, the last generation maintains a relatively uniform depth distribution.

TGS. The effectiveness study of TGS contains two parts. The first assesses the performance of the
searched architecture. As shown in Table 10, TGS achieves higher accuracy than AS. The second
part examines the effect of the α value on the performance of the searched architecture. As indicated
in Table 11, MAS can improve the performance using the ANN-based α.

Table 10: The ablation studies of the pro-
posed MAS and TGS metrics.

Metric CIFAR-100 CIFAR10
Acc. (%) Acc. (%)

AS 76.62 94.26
MAS (Ours) 77.55 95.11

TGS (Ours) 80.75 96.13

TGS+MAS 81.63 96.55

Table 11: The image classification accuracy under
different α value of TGS metric.

Dataset α = 2 α = 3 ANN-guided α

C-100 80.01 81.40 81.97

C-10 95.56 96.19 96.55

C10-DVS 80.20 80.30 81.00

DVS128-G 88.89 96.18 96.53

4 6 8 10 12 14 16

Architrcture Depth
0

5

10

15

20

25

30

Nu
m

be
r

(a) First Population

3 4 5 6 7 8 9

Architrcture Depth
0

20

40

60

Nu
m

be
r

(b) Last Population

Figure 4: The distribution of the architecture
depths under the proposed AS metric.

4 6 8 10 12 14 16 18

Architrcture Depth
0

10

20

30

Nu
m

be
r

(a) First Population

4 6 8 10 12

Architrcture Depth
0

5

10

15

20

25

30

Nu
m

be
r

(b) Last Population

Figure 5: The distribution of the architecture
depths under the proposed MAS metric.

5 CONCLUSION

In this paper, we propose a training-free spiking neural architecture method guided by the pre-trained
ANN teacher. This method is termed DSAS, which can automatically discover the high-performance
SNN models with low timesteps. To achieve this, two novel metrics are designed to select the
great SNN students during the search process, i.e., Multi-layer Activation Similarity (MAS) and
Threshold-guided Gradient Similarity (TGS) metrics. The former one can effectively evaluate the
activation patterns between the ANN teacher and the SNN student. The latter one can measure the
similarity between teacher-student pairs. Both static and neuromorphic datasets verify the efficacy
of DSAS. For example, DSAS can achieve 65.50% on Tiny-ImageNet and 81.97% on CIFAR-100.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo,
Tapan Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, et al. A low
power, fully event-based gesture recognition system. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 7243–7252, 2017.

Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? Advances in neural information
processing systems, 27, 2014.

Tong Bu, Wei Fang, Jianhao Ding, PENGLIN DAI, Zhaofei Yu, and Tiejun Huang. Optimal ANN-
SNN conversion for high-accuracy and ultra-low-latency spiking neural networks. In Interna-
tional Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=7B3IJMM1k_M.

Kaiwei Che, Luziwei Leng, Kaixuan Zhang, Jianguo Zhang, Qinghu Meng, Jie Cheng, Qinghai
Guo, and Jianxing Liao. Differentiable hierarchical and surrogate gradient search for spiking
neural networks. Advances in Neural Information Processing Systems, 35:24975–24990, 2022.

Gabriela Czanner, Sridevi V Sarma, Demba Ba, Uri T Eden, Wei Wu, Emad Eskandar, Hubert H
Lim, Simona Temereanca, Wendy A Suzuki, and Emery N Brown. Measuring the signal-to-noise
ratio of a neuron. Proceedings of the National Academy of Sciences, 112(23):7141–7146, 2015.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Lei Deng, Yujie Wu, Xing Hu, Ling Liang, Yufei Ding, Guoqi Li, Guangshe Zhao, Peng Li, and
Yuan Xie. Rethinking the performance comparison between snns and anns. Neural networks,
121:294–307, 2020.

Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking
neural network via gradient re-weighting. In International Conference on Learning Representa-
tions, 2022. URL https://openreview.net/forum?id=_XNtisL32jv.

Peijie Dong, Lujun Li, and Zimian Wei. Diswot: Student architecture search for distillation without
training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 11898–11908, 2023.

Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
residual learning in spiking neural networks. In Advances in Neural Information Processing
Systems, 2021.

Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei Huang,
Huihui Zhou, Guoqi Li, and Yonghong Tian. Spikingjelly: An open-source machine learning
infrastructure platform for spike-based intelligence. Science Advances, 9(40):eadi1480, 2023.
doi: 10.1126/sciadv.adi1480. URL https://www.science.org/doi/abs/10.1126/
sciadv.adi1480.

Yufei Guo, Weihang Peng, Yuanpei Chen, Liwen Zhang, Xiaode Liu, Xuhui Huang, and Zhe Ma.
Joint a-snn: Joint training of artificial and spiking neural networks via self-distillation and weight
factorization. Pattern Recognition, 142:109639, 2023.

Yufei Guo, Yuanpei Chen, Xiaode Liu, Weihang Peng, Yuhan Zhang, Xuhui Huang, and Zhe Ma.
Ternary spike: Learning ternary spikes for spiking neural networks. In Proceedings of the AAAI
conference on artificial intelligence, 2024a.

Yufei Guo, Weihang Peng, Xiaode Liu, Yuanpei Chen, Yuhan Zhang, Xin Tong, Zhou Jie, and Zhe
Ma. EnOF-SNN: Training accurate spiking neural networks via enhancing the output feature.
Advances in Neural Information Processing Systems, 37:51708–51726, 2024b.

Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 5927–5935, 2017.

10

https://openreview.net/forum?id=7B3IJMM1k_M
https://openreview.net/forum?id=7B3IJMM1k_M
https://openreview.net/forum?id=_XNtisL32jv
https://www.science.org/doi/abs/10.1126/sciadv.adi1480
https://www.science.org/doi/abs/10.1126/sciadv.adi1480

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zecheng Hao, Jianhao Ding, Tong Bu, Tiejun Huang, and Zhaofei Yu. Bridging the gap be-
tween ANNs and SNNs by calibrating offset spikes. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
PFbzoWZyZRX.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Yulong Huang, Xiaopeng LIN, Hongwei Ren, Haotian FU, Yue Zhou, Zunchang LIU, biao pan,
and Bojun Cheng. CLIF: Complementary leaky integrate-and-fire neuron for spiking neural
networks. In Forty-first International Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=yY6N89IlHa.

Seijoon Kim, Seongsik Park, Byunggook Na, and Sungroh Yoon. Spiking-YOLO: spiking neural
network for energy-efficient object detection. In Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 11270–11277, 2020.

Youngeun Kim, Yuhang Li, Hyoungseob Park, Yeshwanth Venkatesha, and Priyadarshini Panda.
Neural architecture search for spiking neural networks. In European conference on computer
vision, pp. 36–56. Springer, 2022.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Online, 2009.

Alexander Kugele, Thomas Pfeil, Michael Pfeiffer, and Elisabetta Chicca. Efficient processing of
spatio-temporal data streams with spiking neural networks. Frontiers in neuroscience, 14:512192,
2020.

Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Chankyu Lee, Syed Shakib Sarwar, Priyadarshini Panda, Gopalakrishnan Srinivasan, and Kaushik
Roy. Enabling spike-based backpropagation for training deep neural network architectures. Fron-
tiers in neuroscience, 14:497482, 2020.

Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-stream
dataset for object classification. Frontiers in neuroscience, 11:309, 2017.

Jiaxin Li, Dengju Li, Runhao Jiang, Rong Xiao, Huajin Tang, and Kay Chen Tan. Vision-action
semantic associative learning based on spiking neural networks for cognitive robot. IEEE Com-
putational Intelligence Magazine, 17(4):27–38, 2022. doi: 10.1109/MCI.2022.3199623.

Yaxin Li, Qi Xu, Jiangrong Shen, Hongming Xu, Long Chen, and Gang Pan. Towards efficient
deep spiking neural networks construction with spiking activity based pruning. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/
forum?id=eMQyb1tvvc.

Qianhui Liu, Jiaqi Yan, Malu Zhang, Gang Pan, and Haizhou Li. Lite-snn: designing lightweight
and efficient spiking neural network through spatial-temporal compressive network search and
joint optimization. In Proceedings of the Thirty-Third International Joint Conference on Artificial
Intelligence, pp. 3097–3105, 2024.

Xinhao Luo, Man Yao, Yuhong Chou, Bo Xu, and Guoqi Li. Integer-valued training and spike-driven
inference spiking neural network for high-performance and energy-efficient object detection. In
European Conference on Computer Vision, pp. 253–272. Springer, 2024.

Byunggook Na, Jisoo Mok, Seongsik Park, Dongjin Lee, Hyeokjun Choe, and Sungroh Yoon. Au-
tosnn: Towards energy-efficient spiking neural networks. In International conference on machine
learning, pp. 16253–16269. PMLR, 2022.

Wenxuan Pan, Feifei Zhao, Guobin Shen, Bing Han, and Yi Zeng. Brain-inspired multi-scale evo-
lutionary neural architecture search for deep spiking neural networks. IEEE Transactions on
Evolutionary Computation, 2024.

11

https://openreview.net/forum?id=PFbzoWZyZRX
https://openreview.net/forum?id=PFbzoWZyZRX
https://openreview.net/forum?id=yY6N89IlHa
https://openreview.net/forum?id=yY6N89IlHa
https://openreview.net/forum?id=eMQyb1tvvc
https://openreview.net/forum?id=eMQyb1tvvc

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Haonan Qiu, Munan Ning, Zeyin Song, Wei Fang, Yanqi Chen, Tao Sun, Zhengyu Ma, Li Yuan, and
Yonghong Tian. Self-architectural knowledge distillation for spiking neural networks. Neural
Networks, 178:106475, 2024.

Nitin Rathi and Kaushik Roy. Diet-snn: A low-latency spiking neural network with direct input
encoding and leakage and threshold optimization. IEEE Transactions on Neural Networks and
Learning Systems, 2021.

Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy. Enabling deep
spiking neural networks with hybrid conversion and spike timing dependent backpropagation. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=B1xSperKvH.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
with neuromorphic computing. Nature, 575:607–617, 2019.

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Con-
version of continuous-valued deep networks to efficient event-driven networks for image classifi-
cation. Frontiers in neuroscience, 11:682, 2017.

Esmat Ghasemi Saghand and Susana K Lai-Yuen. Monas-esnn: Multi-objective neural architecture
search for efficient spiking neural networks. In 2025 IEEE/CVF Winter Conference on Applica-
tions of Computer Vision (WACV), pp. 2963–2972. IEEE, 2025.

Xiaotian Song, Andy Song, Rong Xiao, and Yanan Sun. One-step spiking transformer with a lin-
ear complexity. In Proceedings of the Thirty-Third International Joint Conference on Artificial
Intelligence, pp. 3142–3150, 2024.

Xiaotian Song, Zeqiong Lv, Jiaohao Fan, Xiong Deng, Jiancheng Lv, Jiyuan Liu, and Yanan Sun.
Evolutionary multi-objective spiking neural architecture search for image classification. IEEE
Transactions on Evolutionary Computation, 2025.

Genchen Sun, Zhengkun Liu, Lin Gan, Hang Su, Ting Li, Wenfeng Zhao, and Biao Sun. Spikenas-
bench: Benchmarking nas algorithms for spiking neural network architecture. IEEE Transactions
on Artificial Intelligence, 2025.

Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen, and Jiancheng Lv. Automatically designing
cnn architectures using the genetic algorithm for image classification. IEEE transactions on cy-
bernetics, 50(9):3840–3854, 2020.

Jianxiong Tang, Jian-Huang Lai, Xiaohua Xie, Lingxiao Yang, and Wei-Shi Zheng. Ac2as: Activa-
tion consistency coupled ann-snn framework for fast and memory-efficient snn training. Pattern
Recognition, 144:109826, 2023.

Jingtao Wang, Zengjie Song, Yuxi Wang, Jun Xiao, Yuran Yang, Shuqi Mei, and Zhaoxiang Zhang.
Ssf: Accelerating training of spiking neural networks with stabilized spiking flow. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 5982–5991, 2023.

Dengyu Wu, Gaojie Jin, Han Yu, Xinping Yi, and Xiaowei Huang. Optimizing event-driven spiking
neural network with regularization and cutoff. Frontiers in neuroscience, 19:1522788, 2025.

Qi Xu, Yaxin Li, Jiangrong Shen, Jian K Liu, Huajin Tang, and Gang Pan. Constructing deep spiking
neural networks from artificial neural networks with knowledge distillation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 7886–7895, 2023.

Qi Xu, Yaxin Li, Xuanye Fang, Jiangrong Shen, Qiang Zhang, and Gang Pan. Reversing structural
pattern learning with biologically inspired knowledge distillation for spiking neural networks. In
Proceedings of the 32nd ACM International Conference on Multimedia, pp. 3431–3439, 2024a.

12

https://openreview.net/forum?id=B1xSperKvH
https://openreview.net/forum?id=B1xSperKvH

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zekai Xu, Kang You, Qinghai Guo, Xiang Wang, and Zhezhi He. Bkdsnn: Enhancing the perfor-
mance of learning-based spiking neural networks training with blurred knowledge distillation. In
European Conference on Computer Vision, pp. 106–123. Springer, 2024b.

Jiaqi Yan, Qianhui Liu, Malu Zhang, Lang Feng, De Ma, Haizhou Li, and Gang Pan. Efficient
spiking neural network design via neural architecture search. Neural Networks, 173:106172,
2024.

Shu Yang, Chengting Yu, Lei Liu, Hanzhi Ma, Aili Wang, and Erping Li. Efficient ann-guided
distillation: Aligning rate-based features of spiking neural networks through hybrid block-wise
replacement. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp.
10025–10035, 2025.

Man Yao, Guangshe Zhao, Hengyu Zhang, Yifan Hu, Lei Deng, Yonghong Tian, Bo Xu, and Guoqi
Li. Attention spiking neural networks. IEEE transactions on pattern analysis and machine intel-
ligence, 45(8):9393–9410, 2023.

Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
larger spiking neural networks. In Proceedings of the AAAI conference on artificial intelligence,
2021.

A INFLUENCE OF SNN STUDENT WITH DIFFERENT ARCHITECTURE

This section aims to analyze the impact of different SNN student architectures on the distillation
performance. As shown in Table 12, despite its larger capacity, the SNN-ResNet34 distilled from
ANN-ResNet50 consistently lags behind SNN-ResNet18 across both CIFAR-10 and CIFAR-100.
For example, at T = 4, SNN-ResNet34 reaches 93.80% on CIFAR-10 and 73.47% on CIFAR-100,
whereas SNN-ResNet18 achieves 94.09% and 77.39%, respectively. This empirical evidence sup-
ports our observation that SNN-ResNet18 is more effective in practice, even though SNN-ResNet34
is theoretically more powerful. Moreover, when the ANN teacher changed, the performance of the
SNN student was also significantly influenced. For instance, ANN-ResNet34 yields a student (SNN-
ResNet18) with 94.55% on CIFAR-10 and 77.13% on CIFAR-100 at T = 4, which is on par with or
even slightly better than the counterpart distilled from ANN-ResNet50. This suggests that a larger
ANN teacher does not necessarily guarantee better distillation results for SNN students.

In summary, exploring SNN architectures different from the source ANN is useful because a theoret-
ically larger student, e.g., SNN-ResNet34, may underperform a smaller one, e.g., SNN-ResNet18,
indicating that optimal SNN architectures do not necessarily align with their ANN counterparts.

Table 12: The accuracy of SNN students with different architectures.

ANN teacher SNN Student CIFAR-10 Acc. (%) CIFAR-100 Acc. (%)
T = 1 T = 2 T = 4 T = 1 T = 2 T = 4

ResNet-50 ResNet-34 87.55 92.71 93.80 29.71 65.78 73.47
ResNet-18 90.45 94.30 94.09 72.69 75.52 77.39

ResNet-34 ResNet-18 93.29 94.30 94.55 73.17 75.19 77.13

B DETAILS OF SEARCH SPACE & SEARCH STRATEGY

This section presents the search space and search strategy used in this study. As for the search space,
we utilize the same search space as Song et al. (2025). The search space contains only one type of
basic block in the search space, as shown in Figure 6. All the searched architectures are built based
on the basic block with different input and output channels. Moreover, to achieve the downsample
operation, the convolution stride of the basic block is set to ‘s=2’, as presented in Figure 7. The
downsample block is a variant of the basic block, where it only sets the convolution stride of the
basic block to two and involves 1× 1 convolution at the skip connection. This design can decrease

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

BNInput
3x3

Conv LIF 3x3
Conv BN LIF

Spikes

Output

+

BNInput

3x3
Conv
s=2

LIF
3x3

Conv
s=2

BN LIF Output

+

1x1 Conv
s=2 BN

Figure 6: The normal block of the search space.

BNInput
3x3

Conv LIF 3x3
Conv BN LIF

Spikes

Output

+

BNInput

3x3
Conv
s=2

LIF
3x3

Conv
s=2

BN LIF Output

+

1x1 Conv
s=2 BN

Figure 7: The downsample block of the search space.

the feature dimensions and improve the feature extraction capability. The search space of DSAS is
simple and easy to understand, yet DSAS can effectively design high-performance SNN models.

As for the search strategy, the evolutionary search strategy designed by Sun et al. (2020) is used
in the proposed DSAS method. More specifically, the process of the search strategy contains the
following five steps:

1. Population Initialization: initialize the beginning generation and encode them to a sequence
of real numbers;

2. Fitness Evaluation: evaluate the fitness of each individual of the population;
3. Offspring Generation: generate offspring population with crossover and mutation opera-

tors;
4. Fitness Evaluation: evaluate the fitness of each individual in the offspring population;
5. Environmental Selection: select the great individuals and put them into the next generation

population.

Note that the ‘Environmental Selection’ step will return to Step 2 until the termination criteria are
satisfied. The fitness evaluation step utilizes the proposed MAS and TGA metric, which can avoid
training from scratch for each individual. This design can accelerate the search speed of the proposed
DSAS method. Also, the individual cache is used to further improve the search speed as Song et al.
(2025) and Sun et al. (2020). Additionally, the crossover operator is the one-bit crossover, which
is commonly used in the evolutionary computation community (Sun et al., 2020). Moreover, the
mutation operator has three types, i.e., adding layers, deleting layers, and randomly changing the
channel of the convolution layer.

C THE INFLUENCE OF THE α VALUE

In the direct training method of SNNs, the Sigmoid function is often used as a substitute for the
activation function to simulate the activation behavior of neurons because it can provide smooth and
differentiable outputs, which helps the learning process of the network. More specifically, as shown
in Figure 8, the black dots line indicates the Heaviside function. It can be defined in Equation (11):

H(x) =

{
1, x ≥ 0

0, x < 0
. (11)

Since H(x) is not differentiable at x = 0, traditional backpropagation cannot directly calculate the
gradient. In order to achieve gradient calculation, the alternative gradient method uses a continuous
smooth function to approximate H(x), making backpropagation feasible.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

In practice, the Sigmoid(·) function is widely used and has shown great performance on various
tasks (Song et al., 2025; Na et al., 2022; Liu et al., 2024). The Sigmoid(·) function can be defined
in Equation (12):

σα(x) =
1

1 + e−αx
, (12)

where α is the scale factor that affects the slope or steepness of the function. As indicated in Figure 8,
the curve of the Sigmoid function becomes steeper with the increased α value. This can highly
influence the derivation of the Sigmoid function.

Specifically, the derivation of the Sigmoid function can be represented as Equation (13):

σ′
α(x) = ασα(x) (1− σα(x)) . (13)

As shown in Figure 8, the bigger the α value, the peak of the derivative becomes higher and narrower.
Thus, we can modify the α value to control the shape of the derivation of the Sigmoid function.
Motivated by this, we design the TGS metric to adjust the α value of the SNN students. By making
the gradient distributions of the ANN teacher and the SNN student close, the SNN student is able to
learn more knowledge from the ANN teacher and achieve better performance.

6 4 2 0 2 4 6
x

0.0

0.5

1.0

1.5

2.0

2.5

y

Sigmoid =1
Sigmoid' =1
Sigmoid =5
Sigmoid' =5
Sigmoid =10
Sigmoid' =10
Heaviside

Figure 8: The Sigmoid function and its derivative with different α values.

D DETAILS OF EXPERIMENTAL SETTINGS

This is the supplementary for Section 4.1, which contains the details of the datasets, search settings,
and training settings. Note that the LIF neurons of the proposed DSAS method are implemented
using SpikingJelly (Fang et al., 2023). The SGD (Robbins & Monro, 1951) optimizer is used for
both static and neuromorphic datasets.

D.1 DETAILS OF DATASETS

Four static image datasets are used to evaluate the effectiveness of the proposed DSAS method.

• ImageNet (Deng et al., 2009): As a milestone dataset in the field of computer vision, Im-
ageNet contains 1.43 million high-resolution images covering 1,000 categories. These im-
ages are divided into 1.28 million training images, 50,000 validation images, and 100,000
test images. The images in this dataset are obtained from web crawling and are strictly
manually annotated and verified. Mainstream research usually downsamples images to
224×224 resolution to accommodate various deep learning models.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• Tiny-ImageNet (Le & Yang, 2015): It is a challenging benchmark for image classification
tasks. It comprises a total of 120,000 images, with 100,000 allocated for training and
10,000 for testing. These images are divided into 200 distinct categories, resulting in 500
training images and 50 testing images per category.

• CIFAR-10 (Krizhevsky et al., 2009): It is a widely used benchmark dataset for color image
classification, containing 60,000 images of 32×32 pixels, of which 50,000 are training sets
and 10,000 are test sets. The dataset was manually screened from a library of 80 million
micro-images, and includes categories such as airplanes, cars, birds, cats, deer, dogs, frogs,
horses, ships, and trucks, with 6,000 samples in each category.

• CIFAR-100 (Krizhevsky et al., 2009): CIFAR-100 maintains the same data scale (60,000
images) and resolution (32×32 pixels) as CIFAR-10, but expands the number of categories
to 100 fine categories and introduces a hierarchical classification structure (20 superclasses
combined with 100 subclasses). Since each category contains only 500 training samples,
this dataset places higher demands on the small sample learning ability of deep learning
models.

Two neuromorphic image datasets are chose to evaluate the performance of DSAS.

• DIFAR10-DVS (Li et al., 2017): It is a commonly used event stream neuromorphic dataset,
containing 10,000 images, of which 9,000 are training sets and 1,000 are test sets. Each
dynamic image in this dataset is obtained by converting their corresponding CIFAR-10
static images into event streams through DVS. Each dynamic image has 128×128 pixels
and contains 10 types of objects such as airplanes and cars. Each type generates event
sequences by 3 motion modes (translation, rotation, and scaling).

• DVS128-Gesture (Amir et al., 2017):This dataset uses DVS to capture the microsecond-
level dynamic changes of 11 gestures (waving, clapping, etc.). Each gesture contains scene
change information such as 3 types of light intensities and 4 shooting angles, and the gener-
ated image pixels are 128×128. Since this dataset contains background noise in real scenes
(such as sudden changes in ambient light and limb occlusion), it can evaluate the ability of
deep learning models to extract spatiotemporal invariant features.

D.2 DETAILS OF SEARCH SETTINGS

In this section, we first provide the common settings of the search process. As presented in Table 13,
the population size is set to 200, and the number of generations is 20. The genetic operation prob-
abilities are configured as 0.9 and 0.2, i.e., 0.9 for the crossover operator and 0.2 for the mutation
operator. The mutation probabilities are set to 0.7, 0.15, and 0.15 for adding layers, deleting layers,
and randomly changing channel operators. Note that except for the population size setting, other
settings are same as Sun et al. (2020). We utilize a larger populations to broadly exploit and explore
the search space.

Table 13: The common settings of the search process.

Population Size Generation Size Genetic Probability Mutation Probability

200 20 0.9, 0.2 0.7, 0.15, 0.15

Here we also provide the search settings of different datasets. As presented in Table 14, different
datasets have different search settings on the optional convolution channel, the number range of the
downsample basic block, and the number range of the normal basic block, which are denoted as
‘Channel Set’, ‘Downsample Range’, and ‘Convolution Range’, respectively. More specifically, the
‘Channel Set’ is the integer multiple or division of the last layer of channels in the ANN teacher.
This is because the gradient similarity needs to be calculated with the multiple or divided ANN
teacher channels. Moreover, ‘Downsample Range’ and ‘Convolution Range’ are set based on the
hardware restrictions. All these values can avoid ‘out of memory’ on the single NVIDIA 3090 card
with 24G GPU memory.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 14: The different search settings on various dataset.

Dataset Channel Set Downsample Range Normal Range

Tiny-ImageNet {143, 286, 572} {3, 3} {3, 12}
CIFAR-10 & CIFAR-100 {64, 128, 256, 512} {2, 3} {3, 15}

CIFAR10-DVS {143, 286, 572} {3, 3} {3, 6}
DVS128-Gesture {32, 64, 128} {3, 3} {3, 6}

D.3 DETAILS OF TRAINING SETTINGS

This section further details the training settings for each dataset. More specifically, for the Tiny-
ImageNet dataset, the batch size is 64, the learning rate is 1e-2, the weight decay is 1e-6, and
the model is trained using three NVIDIA 2080Ti GPUs. For both the CIFAR-10 and CIFAR-100
datasets, the batch size is 64, the learning rate is 1e-2, the weight decay is 1e-6, and the model is
trained on a single NVIDIA 3090 GPU. All models are trained using 300 epochs following Guo et al.
(2023). As for the neuromorphic dataset, the batch size is 32, the learning rate is 1e-2, the weight
decay is 1e-6 , and the training epoch is set to 200. Note that the top-1 accuracy of the pre-trained
ANN teachers, i.e., ResNet (He et al., 2016) and PyramidNet (Han et al., 2017), used in the training
process is shown in Table 15.

Table 15: The top-1 accuracy of the ANN teachers used in DSAS. ‘-’ indicate the ANN model is not
selected as teacher on the corresponding dataset.

Teacher
Dataset Tiny-ImageNet CIFAR-100 CIFAR-10 CIFAR10-DVS DVS128-Gesture

PyramidNet200 67.45 82.86 97.06 - -

PyramidNet110 - 80.74 96.17 82.10 97.92

ResNet-50 - 78.60 95.01 - -

ResNet-34 - 78.98 95.12 - -

ResNet-18 - 75.83 94.13 - -

E VISUALIZATION RESULTS OF THE SEARCHED ARCHITECTURES

In this section, we continue to present the searched architectures on various datasets. Specifically, for
the static datasets, the architectures designed by the proposed DSAS method exhibit design patterns
closely aligned with the complexity of the datasets and their input resolutions. As shown in Fig-
ure 9, for high-resolution ImageNet, the architecture employs a deep encoding structure comprising
12 main modules, i.e., 7 normal blocks and 5 downsampling blocks. It achieves hierarchical feature
extraction through frequent fluctuations in channel numbers, e.g., 106→424→106, and multi-stage
downsampling, while maintaining high channel capacity to process complex visual information.
Moreover, as presented in Figure 10, the searched architecture on Tiny-ImageNet has nine modules
featuring symmetrical channel changes, e.g., 286→572→286, and a moderate number of downsam-
pling operations. When facing the simple dataset CIFAR, the searched architecture contains less
basic block, as illustrated in Figure 11.

In addition, the searched architectures on the neuromorphic dataset, i.e., the CIFAR10-DVS and
DVS128-Gesture datasets, are shown in Figure 12 and Figure 13, respectively. The searched archi-
tecture of CIFAR10-DVS has one more normal block than the searched architecture of DVS128-
Gesture. It is reasonable that CIFAR10-DVS is more complex than DVS128-Gesture.

Note that all architectures adhere to a basic pattern of alternating between normal and downsampling
blocks, yet they achieve adaptive optimization on various datasets by dynamically adjusting module
depth, the magnitude of channel changes, and downsampling numbers.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

In
pu

tI
m

ag
e

(r
es

ol
ut

io
n

22
4×
22
4)

D
ow

ns
am

pl
e

B
lo

ck
3-
64

D
ow

ns
am

pl
e

B
lo

ck
10
6-
10
6

N
or

m
al

 B
lo

ck
64
-1
06

N
or

m
al

 B
lo

ck
10
6-
42
4

N
or

m
al

 B
lo

ck
41
2-
42
4

N
or

m
al

B
lo

ck
42
4-
10
6

C
la

ss
ifi

ca
tio

n
H

ea
d

O
ut

pu
t

N
or

m
al

B
lo

ck
10
6-
21
2

N
or

m
al

B
lo

ck
21
2-
10
6

D
ow

ns
am

pl
e

B
lo

ck
10
6-
42
4

N
or

m
al

B
lo

ck
42
4-
21
2

N
or

m
al

B
lo

ck
21
2-
10
6

N
or

m
al

B
lo

ck
10
6-
21
2

D
ow

ns
am

pl
e

B
lo

ck
21
2-
21
2

N
or

m
al

B
lo

ck
21
2-
42
4

D
ow

ns
am

pl
e

B
lo

ck
42
4-
10
6

Figure 9: The searched architecture on the ImageNet dataset.

In
pu

tI
m

ag
e

(r
es

ol
ut

io
n

64
×

64
)

N
or

m
al

B
lo

ck
3-
28
6

N
or

m
al

B
lo

ck
57
2-
28
6

D
ow

ns
am

pl
e

B
lo

ck
28
6-
57
2

N
or

m
al

 B
lo

ck
28
6-
14
3

D
ow

ns
am

pl
e

B
lo

ck
14
3-
57
2

N
or

m
al

B
lo

ck
57
2-
28
6

C
la

ss
ifi

ca
tio

n
H

ea
d

O
ut

pu
t

N
or

m
al

B
lo

ck
28
6-
28
6

D
ow

ns
am

pl
e

B
lo

ck
28
6-
14
3

N
or

m
al

B
lo

ck
14
3-
57
2

N
or

m
al

B
lo

ck
57
2-
57
2

N
or

m
al

B
lo

ck
57
2-
14
3

Figure 10: The searched architecture on the Tiny-ImageNet dataset.

In
p

u
t

Im
ag

e

(r
es

o
lu

ti
o
n

 3
2
×

3
2

)

N
o

rm
al

 B
lo

ck
3
-6

4

D
o

w
n

sa
m

p
le

B
lo

ck
5
1
2
-2

5
6

N
o

rm
al

 B
lo

ck
6
4
-5

1
2

N
o

rm
al

 B
lo

ck
2
5
6
-6

4

N
o

rm
al

 B
lo

ck
6
4
-5

1
2

D
o

w
n

sa
m

p
le

B
lo

ck
5
1
2
-5

1
2

C
la

ss
if

ic
at

io
n

H
ea

d

O
u

tp
u

t

Figure 11: The searched architecture on the Tiny-ImageNet dataset.

In
p

u
t

Im
ag

e

(r
es

o
lu

ti
o
n

 1
2

8
×

1
2
8
)

D
o

w
n

sa
m

p
le

B
lo

ck
2
-3

2

D
o

w
n

sa
m

p
le

B
lo

ck
1
4
3
-1

4
3

N
o

rm
al

B
lo

ck
3
2
-1

4
3

N
o

rm
al

B
lo

ck
1
4
3
-2

8
6

D
o

w
n

sa
m

p
le

B
lo

ck
2
8
6
-2

8
6

D
o

w
n

sa
m

p
le

B
lo

ck
2
8
6
-1

4
3

C
la

ss
if

ic
at

io
n

H
ea

d

O
u

tp
u

t

N
o

rm
al

B
lo

ck
1
4
3
-5

7
2

N
o

rm
al

B
lo

ck
5
7
2
-1

4
3

N
o

rm
al

B
lo

ck
1
4
3
-1

4
3

N
o

rm
al

B
lo

ck
1
4
3
-5

7
2

N
o

rm
al

B
lo

ck
5
7
2
-1

4
3

Figure 12: The searched architecture on the CIFAR10-DVS dataset.

In
p

u
t

Im
ag

e

(r
es

o
lu

ti
o
n

 1
2

8
×

1
2

8
)

D
o

w
n

sa
m

p
le

B
lo

ck
2
-3

2

D
o

w
n

sa
m

p
le

B
lo

ck
3
2
-6

4

N
o

rm
al

B
lo

ck
3
2
-3

2

D
o

w
n

sa
m

p
le

B
lo

ck
6
4
-3

2

N
o

rm
al

B
lo

ck
3
2
-6

4

N
o

rm
al

B
lo

ck
6
4
-1

2
8

C
la

ss
if

ic
at

io
n

H
ea

d

O
u

tp
u

t

N
o

rm
al

B
lo

ck
1
2
8
-6

4

D
o

w
n

sa
m

p
le

B
lo

ck
6
4
-3

2

N
o

rm
al

B
lo

ck
3
2
-1

2
8

N
o

rm
al

B
lo

ck
1
2
8
-3

2

Figure 13: The searched architecture on the DVS128-Gesture dataset.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

F EVOLUTIONARY TRAJECTORY UNDER DIFFERENT DATASETS

This section provides the evolutionary trajectory on various datasets to justify the proposed DSAS
method can successfully converge to the good fitness values, i.e., the MAS+TGS metric. Specif-
ically, Figure 14 indicates the evolutionary trajectory on ImageNet, where the best individual is
achieved at the last generation, and the evolutionary process becomes stable at the 10-th genera-
tion. Moreover, as shown in Figure 15, the best individual emerges by the 10-th generation and
subsequently stabilizes on the Tiny-ImageNet dataset. Additionally, on the CIFAR dataset, the evo-
lutionary progress is more stable than the ImageNet and Tiny-ImageNet datasets, as presented in
Figure 16. Finally, as for the neuromorphic dataset, both of them converge faster than the static
datasets, as shown in Figure 17 and Figure 18. This is because the scale of the static dataset is more
complex than neuromorphic ones. Thus, static datasets need more generations to converge.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Generation
0.350

0.325

0.300

0.275

0.250

0.225

0.200

0.175

0.150

M
AS

+T
GS

The best of DSAS
The median of DSAS

Figure 14: The evolutionary trajectory on the ImageNet dataset.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Generation

0.375

0.350

0.325

0.300

0.275

0.250

0.225

M
AS

+T
GS

The best of DSAS
The median of DSAS

Figure 15: The evolutionary trajectory on the
Tiny-ImageNet dataset.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Generation
0.033

0.032

0.031

0.030

0.029

0.028

0.027

0.026

M
AS

+T
GS

The best of DSAS
The median of DSAS

Figure 16: The evolutionary trajectory on the
CIFAR dataset.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Generation

0.925

0.900

0.875

0.850

0.825

0.800

0.775

M
AS

+T
GS

The best of DSAS
The median of DSAS

Figure 17: The evolutionary trajectory on the
CIFAR10-DVS dataset.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Generation

0.18

0.17

0.16

0.15

0.14

0.13

0.12

M
AS

+T
GS

The best of DSAS
The median of DSAS

Figure 18: The evolutionary trajectory on the
DVS128-Gesture dataset.

19

	Introduction
	Related Works
	Spiking Knowledge Distillation (SKD)
	Spiking Neural Architecture Search (SNAS)

	Methodology
	Overall Framework
	Multi-layer Activation Similarity (MAS)
	Threshold-guided Gradient Similarity (TGS)

	Experiments
	Experimental Settings
	Overall Results
	Static Image Classification
	Neuromorphic Image Classification

	Parameter Study on Timesteps
	Efficacy Study
	Ablation Study

	Conclusion
	Influence of SNN Student with Different Architecture
	Details of Search Space & Search Strategy
	The influence of the value
	Details of Experimental Settings
	Details of Datasets
	Details of Search Settings
	Details of Training Settings

	Visualization results of the Searched Architectures
	Evolutionary trajectory under Different datasets

