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ABSTRACT

Bridging the performance gap between Spiking Neural Networks (SNNs) and Ar-
tificial Neural Networks (ANNs) under low timesteps remains a critical challenge
in the SNN community. Recent work uses either ANN-supervised training or
automated architecture design to narrow the gap. However, the combination of
ANN-supervised training and SNN architecture search remains unexplored, leav-
ing room for further improvement of SNN performance. To address this, we pro-
pose DSAS, a training-free spiking neural architecture search method that lever-
ages pre-trained ANN teachers to discover efficient, high-performance SNNs with
few timesteps. Specifically, DSAS employs an evolutionary neural architecture
search guided by two novel metrics, i.e., Multi-layer Activation Similarity (MAS)
and Threshold-guided Gradient Similarity (TGS). MAS aligns ANN and SNN
feature maps, yet TGS ensures gradient alignment while tuning spiking activation
thresholds. Experiments demonstrate that DSAS achieves state-of-the-art accu-
racy with four timesteps, effectively narrowing the performance gap of ANN and
SNN. For example, DSAS discovers architectures that achieve 65.50% top-1 ac-
curacy on Tiny-ImageNet and 81.97% on CIFAR-100. 1

1 INTRODUCTION

Spiking Neural Network (SNN), in recent years, has shown its energy-efficient ability across var-
ious tasks, including image classification (Zheng et al., 2021), robot control (Li et al., 2022), and
object identification (Kim et al., 2020). This low-power characteristic of SNN primarily stems from
its computational paradigm, i.e., SNNs transmit information through event-driven binary spike sig-
nals (Roy et al., 2019). However, the binary spikes transmit less information than the counterpart
Artificial Neural Network (ANN) (Guo et al., 2024a), which uses floating-point in computation.
Thus, the performance of SNN models still has gaps compared to the ANN models (Hao et al.,
2023; Luo et al., 2024). To address this, a straightforward solution involves additional temporal in-
formation to approximate the floating-point of ANNs, i.e., increasing the timesteps T of SNNs. For
example, Rueckauer et al. (2017) use 550 timesteps to convert an ANN-based Inception-V3 model
to its SNN counterpart, whereas Lee et al. (2020) adopt 100 timesteps to directly train the SNNs
using spike-based backpropagation.

However, lengthy timesteps of SNNs results in slow inference speeds and increased power consump-
tion (Yao et al., 2023). As a result, researchers aim to develop high-performance SNNs with few
timesteps by designing novel learning algorithms and model architectures. First, learning algorithms
incorporate more external guidance to improve the training effectiveness of SNNs models. For ex-
ample, Xu et al. (2023) improve SNN performance by distilling knowledge from a pre-trained ANN
teacher and find that SNN students vary in how well they learn from the ANN teacher. Second, in
terms of model architectures, early efforts focused on manually designing high-performance SNNs,
such as the spiking residual architecture (Fang et al., 2021), and the spiking normalization architec-
ture (Zheng et al., 2021). More recently, spiking neural architecture search methods have emerged
to automatically discover novel and high-performing SNN models (Na et al., 2022; Kim et al., 2022;
Liu et al., 2024; Song et al., 2025). This leads to a natural question: Can the rich knowledge of
ANN teachers effectively guide the discovery of high-performance SNN students?

1Available code: https://anonymous.4open.science/r/DSAS-5764
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Hence, we propose a spiking neural architecture search method, termed DSAS, to automatically
discover high-performance SNN student models guided by pre-trained ANN teachers. Specifically,
to efficiently explore the search space of SNN students, we introduce a training-free spiking neural
architecture search framework based on evolutionary algorithms, inspired by Dong et al. (2023).
Furthermore, to effectively identify high-performing SNN candidates from the predefined search
space, we propose two evaluation metrics that guide the search process using only a single forward
and backward computation. Our contributions are summarized as follows:

• We propose a Multi-layer Activation Similarity (MAS) metric to effectively evaluate the
feature similarity between the ANN teacher and the SNN student, which can align interme-
diate feature representations and improve overall performance.

• We introduce a Threshold-guided Gradient Similarity (TGS) metric to capture the similarity
of the gradient direction and adaptively calibrate the firing thresholds of SNN neurons. This
design can enable SNN to better mimic the backpropagation dynamics of ANN teacher.

• We experimentally show that DSAS achieves state-of-the-art accuracy with only four
timesteps on four static and two neuromorphic datasets. For example, on Tiny-ImageNet,
we achieve a top-1 accuracy of 65.50% (>2.34% compared to other methods).

2 RELATED WORKS

2.1 SPIKING KNOWLEDGE DISTILLATION (SKD)

SKD is a knowledge distillation technique tailored for SNNs, which can leverage the knowledge of
the pre-trained ANN teachers to improve the performance of SNN students. In contrast to traditional
knowledge distillation, where both teacher and student models are ANNs, SKD faces a main chal-
lenge due to the fundamentally different activation patterns between ANNs and SNNs (Guo et al.,
2023; Xu et al., 2023). Specifically, the outputs of SNN neurons are the binary spikes, yet ANN
neurons produce continuous floating-point outputs (Deng et al., 2020). Thus, SNN students struggle
to effectively learn from ANN teachers.

Existing SKD methods focus on addressing this challenge, which can be divided into homogeneous
and heterogeneous SKD methods. The former one constrains the ANN teachers and SNN students
to have the same architecture. For example, Joint A-SNN (Guo et al., 2023) proposes a multi-branch
structure to effectively distill the knowledge from ANN models. SAKD (Qiu et al., 2024) incorpo-
rates temporal dynamics into the loss function to improve the distillation efficiency. BKDSNN (Xu
et al., 2024b) designs an adaptive layer between ANN teachers and SNN students to enhance distil-
lation performance. Sparse-KD (Xu et al., 2024a) optimizes the connection of SNN students during
the distillation process, resulting in higher efficiency. ESKD (Yang et al., 2025) uses the intermediate
feature of ANN models to improve the performance of the distilled SNNs.

In contrast, heterogeneous SKD methods offer greater flexibility by allowing different architectures
between ANN teachers and SNN students. For instance, KDSNN (Xu et al., 2023) allows SNN stu-
dents to have shallow layers with small model sizes. Also, KDSNN (Xu et al., 2023) highlights that
the different architecture of SNN students can significantly affect the final distillation performance.
This means that the architectures of the high-performance SNN student may be different from the
ANN teacher. Our preliminary experiments confirm this: although SNN-ResNet34 is theoretically
superior, it underperforms SNN-ResNet18 in practice when both are distilled from ANN-ResNet50
(see Appendix A). Therefore, this study aims to effectively, efficiently, and automatically design the
high-performance architectures of SNN students that align well with ANN teachers.

2.2 SPIKING NEURAL ARCHITECTURE SEARCH (SNAS)

SNAS aims to automatically design SNN architectures with minimal or no expertise. Existing SNAS
methods can be categorized into three categories based on their search strategies, i.e., random-based,
gradient-based, and evolutionary-based strategy. More specifically, SNASNet (Kim et al., 2022) rep-
resents a training-free SNAS approach that utilizes a random search strategy. Among gradient-based
methods, notable examples include SpikeDHS (Na et al., 2022), LitE-SNN (Liu et al., 2024), and
ESNNs (Yan et al., 2024). SpikeDHS is the first to integrate surrogate gradient search into SNAS.
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ANN Teacher

𝐵 × 𝐶 × 𝐻 ×𝑊

𝑇 × 𝐵 × 𝐶 × 𝐻 ×𝑊
Brain-inspired SNN Student

······

Evolutionary Search

SNN neurons𝐵: Batch 𝐶: Channel 𝐻: Height 𝑊: Weight 𝑇: Timestep

Multi-layer Activation Similarity (MAS)
Threshold-guided 

Gradient Similarity (TGS)

Input

Figure 1: The overall framework of DSAS. The ANN teacher is a pre-trained model, and the high-
performance SNN students are automatically searched by the guidance of ANN teacher. The search
process only needs one forward propagation for MAS and one backward propagation for TGS.

ESNNs aim to enhance the search efficiency of gradient-based SNAS, while LitE-SNN further ex-
tends the gradient-based strategy to develop lightweight and efficient SNNs.

As a bio-inspired strategy, evolutionary search matches the brain-inspired nature of SNNs and has
been widely used in SNAS methods. For example, AutoSNN (Na et al., 2022) employs an evolu-
tionary search strategy to identify SNN architectures with optimal spike-aware fitness. Additionally,
MSE-NAS (Liu et al., 2024) focuses on designing a multi-scale evolutionary search space and a
brain-inspired performance predictor. Furthermore, EMO-SNAS (Song et al., 2025) proposes a
multi-objective evolutionary search strategy that can design high-performance and energy-efficient
SNN architectures. Although the performance of the SNNs designed by existing SNAS methods
has surpassed that of manually designed SNNs, a performance gap remains when compared to ANN
models. To address this, this study introduces high-performance pre-trained ANN models to guide
the search process, which can significantly improve the performance of SNN models.

3 METHODOLOGY

3.1 OVERALL FRAMEWORK

The overall framework of DSAS is illustrated in Figure 1. High-performance SNN students are
searched by the guidance of a pre-trained ANN teacher. The process comprises the following stages:
First, a batch of input images is processed by a pre-trained ANN teacher model, which extracts
both hierarchical activation patterns and the gradient pattern. Then, the same types of patterns are
obtained from each candidate model, i.e., the ANN student, using the same way. After that, to
effectively evaluate the similarity between teacher-student pairs, DSAS introduces two metrics, i.e.,
Multi-layer Activation Similarity (MAS) and Threshold-guided Gradient Similarity (TGS) metrics.
More specifically, MAS assesses the similarity between intermediate feature activations, yet TGS
measures the similarity between the gradient of the ANN and the SNN. The details of the two metrics
are discussed in the next two sections. Finally, the architecture of the SNN student is automatically
optimized via evolutionary search, and these two similarity metrics serve as the fitness function to
guide the search process. Note that we used the identical search space as Song et al. (2025), and the
same evolutionary search strategy following Sun et al. (2020) (more details in Appendix B).

3.2 MULTI-LAYER ACTIVATION SIMILARITY (MAS)

As shown in Figure 1, MAS is used to evaluate the activation patterns of the intermediate lay-
ers between the teacher-student pairs. Specifically, we calculate the activation similarity of the
first, medium, and last layers and the calculation process for each layer is the same as follows.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

For an ANN teacher and an SNN student with the activation pattens AT ∈ RB×C×H×W and
AS ∈ RT×B×C×H×W , where T is the number of timesteps, B is the batch size, and C, H , and W
represent the number of channels, height, and width, respectively.

First, AS is accumulated at temporal domain to get the fire rate. The process can be summarized as
ĀS =

∑T
t=1 A

(t)
S , where ĀS ∈ RB×C×H×W . Next, AT and ĀS is flatten at the channel, height, and

width dimension to generate A′
T ∈ RB×N and Ā′

S ∈ RB×N , respectively, where N = C ·H ·W .
After that, the sparsity ρ of the student activation is computed using Equation (1):

ρ =
1

BN

B∑
b=1

N∑
n=1

1
[
Ā′

S(b, n) ̸= 0
]
, (1)

where 1[·] denotes the indicator function. To match this sparsity in the teacher activation, we com-
pute a threshold τ following Equation (2):

1

BN

B∑
b=1

N∑
n=1

1 [A′
T (b, n) > τ ] = ρ. (2)

We then sparsify the teacher activation patten AT by setting values less than or equal to τ to zero,
as illustrate in Equation (3):

Ā′
T =

{
A′

T (b, n), if A′
T (b, n) > τ,

0, otherwise.
(3)

We define the similarity matrices for the student and teacher as indicated in Equation (4):

MT =
(Ā′

T ) · (Ā′
T )

⊤

∥(Ā′
T ) · (Ā′

T )
⊤∥2

, MS =
(Ā′

S) · (Ā′
S)

⊤

∥(Ā′
S) · (Ā′

S)
⊤∥2

, (4)

where MT and MS are the similarity mateices of the ANN teacher and SNN student, respectively,
and ∥ · ∥2 denotes the Euclidean norm.

Finally, the similarity function FMAS is defined as the mean squared error between the two similarity
matrices, as shown in Equation (5):

FMAS =
1

B2
∥MTA

−MTS
∥22 . (5)

The reason that we propose the multi-layer activation similarity is to improve the accuracy of the
high-performance SNN student selection. More specifically, the firing rate of each layer decreases
progressively with increasing depth in SNNs, i.e., the deeper layers have sparser activations. In
contrast, the activation patterns in the ANN teacher are nearly non-sparse, with sparsity approaching
0%. Thus, if activation similarity is computed only at the last convolutional layer between student
and teacher models, shallow SNNs with only one or two layers are more likely to be selected, despite
their generally poor performance (see Section 4.5). This is because the similarity between floating-
point activations in ANNs and the binary activations of shallow SNNs is high. To address this, we
design the sparsity alignment between student-teacher pairs, as described above.

3.3 THRESHOLD-GUIDED GRADIENT SIMILARITY (TGS)

As illustrated in Figure 1, TGS is designed to measure the similarity between the gradients of the
ANN teacher and the SNN student. This is because gradients determine the convergence direc-
tion of the neural network models. Therefore, the more similar the gradients between the teacher
and student models, the more effectively the SNN student can learn from the ANN teacher. More
specifically, the computation of TGS involves two stages: (1) adjusting the firing threshold of SNN
neurons under the guidance of the ANN teacher, and (2) calculating the gradient similarity between
the SNN student and the ANN teacher.

For stage (1), the gradient of each ANN layer is obtained and represented as G = {g1,g2, . . . ,gN},
where each gi ∈ Rni denotes the gradient corresponding to the i-th layer. Subsequently, G is divided
into K parts, e.g., K = 3 in our DSAS method, as illustrated in Equation (6):

G =

K⋃
k=1

Gk, Gk =
{
g
(k)
i

}
. (6)

4
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For each Gk, all elements within the group are treated as a single high-dimensional vector, denoted
as v(k) =

(
g
(k)
1 , g

(k)
2 , . . . , g

(k)
m

)
∈ Rdk , where dk represents the total dimensionality of the group

k. Each v(k) is then normalized, as shown in Equation (7):

ṽ(k) =
v(k) −min(v(k))

max(v(k))−min(v(k)) + ε
, (7)

where ε > 0 is a small constant introduced to prevent division by zero.

After that, the mean µk and standard deviation σk of ṽ(k) are computed. Then, a signal-to-noise-like
metric for each group can be defined following Equation (8):

α̃k =

(
2− µk/(σk + ε)

maxj (µj/(σj + ε))

)
· α0, (8)

where the maximum maxj(·) is taken over all j = 1, 2, . . . ,K and α0 is a predefined scaling factor.
As a result, we obtain a set of scalar coefficients {α̃1, α̃2, . . . , α̃K}. These coefficients can encode
the statistical properties of the gradients of the ANN teacher across different parts of the network.
Finally, these coefficients are used as the α parameter of the surrogate function Sigmod(·).
The design motivation of the stage (1) is from the Signal-to-Noise Ratio (SNR) (Czanner et al.,
2015) of the information and behavior of the Sigmod function. First, SNR serves as a proxy to
measure the stability of gradient across different layers of the ANN teacher network. The higher the
SNR value, i.e., the smaller α̃k, indicates the more stable gradient information distribution. Second,
the sharpness of the surrogate gradient of the Sigmod function is significantly influenced by the α
parameter. A smaller α value results in a smoother and more stable surrogate gradient (more details
in Appendix C). Thus, we assign the computed α̃k values from the ANN teacher as the α parameter
of the SNN teacher, thereby aligning the gradient distributions between the teacher-student pair.

In stage (2), the gradient similarity between the ANN teacher and SNN student is computed. Specif-
ically, we use the gradients of the final layer from the teacher-student pair, denoted as GT ∈ RN×C1

and GS ∈ RN×C2 , respectively. Here, N represents the number of classes, while C1 and C2 de-
note the number of feature channels for the ANN teacher and the SNN student, respectively. Then,
the similarity between these gradients is calculated following the method proposed in (Dong et al.,
2023), as defined in Equations (9) and (10):

PT =
(GT ) · (GT )

⊤

∥(GT ) · (GT )⊤∥2
, PS =

(GS) · (GS)
⊤

∥(GS) · (GS)⊤∥2
, (9)

FTGS =
1

N · C ′ ∥PT − PS∥22 , (10)

where C ′ is the minimize value of C1 and C2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

The experiments are conducted on four static datasets, i.e., ImageNet, Tiny-ImagetNet (Le & Yang,
2015), CIFAR-10, and CIFAR-100 (Krizhevsky et al., 2009), and two neuromorphic datasets, i.e.,
CIFAR10-DVS (Li et al., 2017) and DVS128-Gesture (Amir et al., 2017), following the conventions
of the SNN community (Bu et al., 2022; Kim et al., 2022; Qiu et al., 2024; Song et al., 2024) (details
in Appendix D.1). Furthermore, the experimental settings of the proposed DSAS method include
search settings and training settings. Note that the experimental results of the peer competitors in
the table below are cited from the original paper.

Search Settings. In the search stage, we adopt the same search space as Song et al. (2025). Specif-
ically, the search space consists of a single type of convolutional layer, varying in the number of
channels and stride. In terms of the search strategy settings, we follow the method of Sun et al.
(2020), yet with a population size that is 10× larger. More details about the settings for different
dataset are provided in Appendix D.2.

5
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Training Settings. The training process aims to evaluate the performance of the searched architec-
ture. Specifically, the loss function of the knowledge distillation is the commonly used Logits func-
tion (Ba & Caruana, 2014), and the weights of the searched SNN students are randomly initialized
with Kaiming normalization. More details of the parameter settings are presented in Appendix D.3.

4.2 OVERALL RESULTS

4.2.1 STATIC IMAGE CLASSIFICATION

Table 1: Comparison with the state-of-the-art SNN methods on Tiny-ImageNet. ‘→’ denotes the
spiking knowledge distillation method with ‘ANN teacher→ SNN student’.

Methods Architecture Params (M) Timesteps Acc. (%)

SSF (Wang et al., 2023) ResNet-34 21.33 20 58.81
SCA (Li et al., 2024) VGG-16 138.34 4 49.33

AC2AS (Tang et al., 2023) VGG-13 133.0 3 54.91±0.20
CLIF (Huang et al., 2024) VGG-13 133.0 4 63.16

RCS (Wu et al., 2025) ResNet-18 11.22 3 56.69

Joint A-SNN (Guo et al., 2023) VGG-16→VGG-16 138.34 4 55.39
VGG-16→VGG-16 138.34 2 53.91

Sparse-KD (Xu et al., 2024a) ResNet-18→ResNet-18 11.22 4 56.92

SNASNet (Kim et al., 2022) Searched 74.62 5 54.60±0.48
AutoSNN (Na et al., 2022) Searched - 8 46.79
ESNNs (Yan et al., 2024) Searched 6.91 3 58.59

SpikeNAS-Bench (Sun et al., 2025) Searched 75.2 5 53.6
EMO-SNAS (Song et al., 2025) Searched 7.82 2 54.36

DSAS (Ours) PyramidNet200→Searched 27.19 4 65.50

Table 2: Comparison with the state-of-the-art SNN methods on ImageNet.

Methods Architecture Params (M) Timesteps Acc. (%)

Hybrid training (Rathi et al., 2020) ResNet-34 21.79 250 64.68
QCFS (Bu et al., 2022) ResNet-34 21.79 32 69.37

Diet-SNN (Rathi & Roy, 2021) VGG-16 138.34 5 69.00
TET (Deng et al., 2022) ResNet-34 21.79 4 68.00

STBP-tdBN (Zheng et al., 2021) ResNet-152 60.19 4 69.20

KDSNN (Xu et al., 2023) ResNet-50→ResNet-50 25.56 4 67.72
SAKD (Qiu et al., 2024) ResNet-34→ResNet-34 21.79 4 70.04

BKDSNN (Xu et al., 2024b) ResNet-50→ResNet-50 25.56 4 72.32
ESKD (Yang et al., 2025) ResNet-34→ResNet-34 21.79 4 70.64

SpikeDHS (Che et al., 2022) Searched 58 6 68.64
DSAS (Ours) PyramidNet101→Searched 15.60 4 68.29

Tiny-ImageNet & ImageNet. Most existing SNAS methods are verified on Tiny-ImageNet, thus,
we first provided the experimental results on this dataset. As shown in Table 1, DSAS significantly
outperforms all prior SNN methods, achieving 66.00% accuracy with four time steps and 27.19M
parameters. Compared to the spiking knowledge distillation methods, DSAS improves upon the
best distillation baseline, i.e., Spare-KD, by 8.58%, while maintaining a reasonable model param-
eter and a timestep. In the category of searched SNN architectures, all of them struggle to surpass
59% accuracy, even with large model sizes. In comparison, the accuracy of DSAS exceeds the best
search-based method, i.e., ESNNs, by nearly 7%. Moreover, we also evaluate DSAS on ImageNet.
As indicated in Table 2, DSAS achieves competitive accuracy with only 15.6 M parameters and four
timesteps, highlighting its high efficiency. The slightly lower accuracy arises from hardware limits
during search stage. More specifically, unlike existing SNAS methods that transfer the architec-
tures searched on CIFAR to ImageNet, DSAS searches directly on ImageNet in just 0.031 GPU-day.
However, the GPU memory of the RTX 3090 constrains the model scale for high-resolution im-
ages like ImageNet. Additionally, visualizations of the searched architecture and the evolutionary
trajectory are provided in Appendix E and Appendix F, respectively.
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Table 3: Compare with SOTA SNN methods on ‘CIFAR-10’ and ‘CIFAR-100’.

Methods Architecture Params Time CIFAR-10 CIFAR-100
(M) -steps Acc.(%) Acc.(%)

Hybrid training (Rathi et al., 2020) VGG-11 9.27 125 92.22 67.87
QCFS (Bu et al., 2022) ResNet-20 10.91 32 93.30 68.48

Diet-SNN (Rathi & Roy, 2021) ResNet-20 10.91 10/5 92.54 64.07
TET (Deng et al., 2022) ResNet-19 12.63 4 94.44 74.47

STBP-tdBN (Zheng et al., 2021) ResNet-19 12.63 4 92.92 70.86

Joint A-SNN (Guo et al., 2023) ResNet-18→ResNet-18 11.22 4 95.45 77.39
ResNet-34→ResNet-34 21.33 4 96.07 79.76

EnOF-SNN (Guo et al., 2024b) ResNet-19→ResNet-19 12.63 2 96.19±0.10 82.43±0.09
ResNet-20→ResNet-20 10.91 2 93.86±0.07 71.55±0.12

SAKD (Qiu et al., 2024) ResNet-19→ResNet-19 12.63 4 96.06 80.10
BKDSNN (Xu et al., 2024b) ResNet-19→ResNet-19 12.63 4 94.64 74.95
Sparse-KD (Xu et al., 2024a) ResNet-18→ResNet-18 11.22 4 - 73.01

ESKD (Yang et al., 2025) ResNet-18→ResNet-18 11.22 6 96.14±0.03 79.40±0.16
KDSNN (Xu et al., 2023) PyramidNet18→ResNet-18 11.22 4 93.41 -

SNASNet (Kim et al., 2022) Searched 19.52/20.62 5 93.73±0.32 73.04±0.36
AutoSNN (Na et al., 2022) Searched 20.92 8 93.15 69.16

MONAS (Saghand & Lai-Yuen, 2025) Searched - 3 93.76 73.63
SpikeDHS (Che et al., 2022) Searched 14 6 95.50±0.03 76.25±0.10
LitE-SNN (Liu et al., 2024) Searched 3.60/3.62 6 95.60±0.24 77.10±0.04
ESNNs (Yan et al., 2024) Searched 23.47/27.55 3 94.64 74.78

MSE-NAS (Pan et al., 2024) Searched 11.79 4 95.56 77.18
SpikeNAS-Bench (Sun et al., 2025) Searched 19.16/20.31 5 89.3 65.2

EMO-SNAS (Song et al., 2025) Searched 5.37/3.57 2 93.60 69.59

DSAS (Ours) PyramidNet200→Searched 12.83/15.78 4 96.55 81.97
96.50±0.04 81.73±0.17

Table 4: The performance of SNN student
guide by different ANN teachers.

Dataset ANN teacher
R-18 R-34 R-50 P-110

C-100 74.42 79.70 79.71 80.82

C-10 94.73 95.22 95.18 95.90

Table 5: Performance of ANN and SNN on various
datasets. †/‡ indicate results before/after distillation.

C-10 C-100 C10-DVS Gesture

ANN Teacher 97.06 82.86 82.10 97.92

SNN Student† 95.11 74.90 79.20 95.49
SNN Student‡ 96.50 81.97 81.00 96.53

ANN

Teacher

SNN

Student†

SNN

Student‡

Figure 2: The activation map of ANN and SNN.

CIFAR-10 & CIFAR-100. As indicated in
Table 3, DSAS performs better on CIFAR-
10 and CIFAR-100, reaching accuracies of
96.43% and 81.36%, respectively. Specifically,
on CIFAR-10, the method without knowledge
distillation has a performance gap compared
to DSAS and suffers from high latency. The
spiking knowledge distillation methods signif-
icantly improve accuracy by leveraging power-
ful ANN teacher models. However, fixed SNN
student models hinder accuracy. For CIFAR-
100, the performance improvement of DSAS is
significant, e.g., > 10% better than AutoSNN
and EMO-SNAS. Additionally, as shown in Ta-
ble 4, we investigate the performance of the
SNN student guided by different ANN teachers
and find that DSAS can still achieve great performance. Furthermore, the experimental results indi-
cate that the searched SNN student can gain more accuracy improvements on the complex CIFAR-
100 (see Table 5). We also visualize the activation of the ANN teacher and the SNN student before
or after distillation in Figure 2. The results indicate that the high-performance distilled SNN stu-
dent (denoted by ‘‡’) matches the activation map of ANN, yet the SNN student before distillation
(denoted by ‘†’) fails to focus on the object. Moreover, as presented in Appendix F, the evolution-
ary progress is more stable than Tiny-ImageNet. Finally, the searched architecture is illustrated in
Appendix E, which is simpler than Tiny-ImageNet.
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Table 6: Compare with SOTA SNN methods on ‘CIFAR10-DVS’ and ‘DVS128-Gesture’.

Dataset Methods Architecture Params. (M) Timestep Acc. (%)

CIFAR10-

Rollout (Kugele et al., 2020) DenseNet 0.5 48 66.75

DVS

STBP-tdBN (Zheng et al., 2021) ResNet-19 12.63 40 67.80
SEW (Fang et al., 2021) 7B-Net 1.19 16 74.40
SAKD (Qiu et al., 2024) ResNet-19→ResNet-19 12.63 4 80.30

BKDSNN (Xu et al., 2024b) Wide-7B-Net→Wide-7B-Net 1.19 8 72.20
AutoSNN (Na et al., 2022) Searched - 20 72.50
ESNNs (Yan et al., 2024) Searched 3.53 10 78.40

DSAS (Ours) PyramidNet110→Searched 13.83 4 81.20

DVS128-

Rollout (Kugele et al., 2020) DenseNet 0.8 240 95.68

Gesture

STBP-tdBN (Zheng et al., 2021) ResNet-19 12.63 40 96.87
SEW (Fang et al., 2021) 7B-Net 0.13 16 97.92

AutoSNN (Na et al., 2022) Searched - 20 96.53
EMO-SNAS (Song et al., 2025) Searched 0.47 10 96.88

DSAS (Ours) PyramidNet110→Searched 0.79 4 96.53

4.2.2 NEUROMORPHIC IMAGE CLASSIFICATION

CIFAR10-DVS. Table 6 presents the comparison of existing SNN methods on DVS-CIFAR10.
Among these approaches, DSAS consistently outperforms others. Specifically, DSAS achieves a
accuracy of 81.00% with four timesteps. Recent methods based on neural architecture search, such
as ESNNs, utilize fewer parameters and run at 10 time steps, yet its accuracy still lags behind DSAS.

DVS128-Gesture. As shown in Table 6, DSAS achieves the comparable accuracy of 95.49% with
only 0.79M parameters and four timesteps, demonstrating superior efficiency compared to most
existing approaches. Although methods such as STBP-tdBN and SEW report slightly higher ac-
curacies, they require significantly more parameters or longer timesteps. Note that the searched
architecture and evolution trajectory of neuromorphic datasets are provided in Appendix E and F.

4.3 PARAMETER STUDY ON TIMESTEPS

This section analyzes DSAS performance across timesteps. As shown in Table 7, accuracy in-
creases with larger timesteps but the improvement slows gradually. Figure 3 further indicates that
SNN students with fewer timesteps absorb more knowledge from ANN teachers, achieving greater
improvement. This can provide the insight for designing one-step, high-performance SNNs.

Table 7: The image classification accuracy
under different timestep.

Dataset Timestep
T = 1 T = 2 T = 4 T = 6

C-100 78.33 80.48 81.97 82.06

C-10 94.76 95.93 96.55 96.56

C10-DVS 76.20 79.40 81.00 81.20

Gesture 81.59 94.10 95.83 96.88

7.9%

6.9%

Figure 3: The accuracy with and without KD under
different timestep.

4.4 EFFICACY STUDY

Search cost analysis. As shown in Table 8, DSAS achieves consistently ultra-low search costs
across all datasets, including the static large-scale ImageNet and Tiny-ImageNet and the complex
neuromorphic datasets. This can demonstrate the superior efficiency of DSAS compared to others.

Energy efficiency analysis. As illustrated in Table 9, SNN Student drastically reduces energy
compared to ANN Teacher. Distillation slightly increases energy use but significantly boosts SNN
performance, demonstrating improved performance with minimal energy impact.
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Table 8: The search cost (GPU days) of different SNAS meth-
ods. ‘–’ means not searched on this dataset.

Method Image Tiny- CIFAR CIFAR10 DVS128
-Net ImageNet -DVS -Gesture

AutoSNN - 5.2 1.9 1.3 -
SpikeDHS - - 1.4 - -
LitE-SNN - - 5.1 - -

ESNNs - 0.207 0.07 0.15 -
SNASNet - 0.17 0.127 - -

EMO-SNAS - 57 25.5 - 2
DSAS (Ours) 0.031 0.044 0.088 0.052 0.0048

Table 9: Energy cost comparison
for a single forward on CIFAR-100
and CIFAR10-DVS. †/‡ indicate
results before/after distillation.

Model Energy (mJ)
C-100 C10-DVS

ANN Teacher 21.07 349.00

SNN Student† 0.52 0.61
SNN Student‡ 0.95 1.04

4.5 ABLATION STUDY

MAS. To evaluate the effectiveness of the proposed MAS metric, we analyze both the performance
and depth distribution of the searched architectures. As shown in Table 10, the architecture obtained
using the MAS metric outperforms that derived from the AS metric on the CIFAR dataset. The AS
metric is based solely on the activation of the last convolutional layer, which tends to favor shallow
architectures (see Figure 4). In contrast, the MAS metric can effectively address this issue, as shown
in Figure 5, the last generation maintains a relatively uniform depth distribution.

TGS. The effectiveness study of TGS contains two parts. The first assesses the performance of the
searched architecture. As shown in Table 10, TGS achieves higher accuracy than AS. The second
part examines the effect of the α value on the performance of the searched architecture. As indicated
in Table 11, MAS can improve the performance using the ANN-based α.

Table 10: The ablation studies of the pro-
posed MAS and TGS metrics.

Metric CIFAR-100 CIFAR10
Acc. (%) Acc. (%)

AS 76.62 94.26
MAS (Ours) 77.55 95.11

TGS (Ours) 80.75 96.13

TGS+MAS 81.63 96.55

Table 11: The image classification accuracy under
different α value of TGS metric.

Dataset α = 2 α = 3 ANN-guided α

C-100 80.01 81.40 81.97

C-10 95.56 96.19 96.55

C10-DVS 80.20 80.30 81.00

DVS128-G 88.89 96.18 96.53
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Figure 4: The distribution of the architecture
depths under the proposed AS metric.
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Figure 5: The distribution of the architecture
depths under the proposed MAS metric.

5 CONCLUSION

In this paper, we propose a training-free spiking neural architecture method guided by the pre-trained
ANN teacher. This method is termed DSAS, which can automatically discover the high-performance
SNN models with low timesteps. To achieve this, two novel metrics are designed to select the
great SNN students during the search process, i.e., Multi-layer Activation Similarity (MAS) and
Threshold-guided Gradient Similarity (TGS) metrics. The former one can effectively evaluate the
activation patterns between the ANN teacher and the SNN student. The latter one can measure the
similarity between teacher-student pairs. Both static and neuromorphic datasets verify the efficacy
of DSAS. For example, DSAS can achieve 65.50% on Tiny-ImageNet and 81.97% on CIFAR-100.
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A INFLUENCE OF SNN STUDENT WITH DIFFERENT ARCHITECTURE

This section aims to analyze the impact of different SNN student architectures on the distillation
performance. As shown in Table 12, despite its larger capacity, the SNN-ResNet34 distilled from
ANN-ResNet50 consistently lags behind SNN-ResNet18 across both CIFAR-10 and CIFAR-100.
For example, at T = 4, SNN-ResNet34 reaches 93.80% on CIFAR-10 and 73.47% on CIFAR-100,
whereas SNN-ResNet18 achieves 94.09% and 77.39%, respectively. This empirical evidence sup-
ports our observation that SNN-ResNet18 is more effective in practice, even though SNN-ResNet34
is theoretically more powerful. Moreover, when the ANN teacher changed, the performance of the
SNN student was also significantly influenced. For instance, ANN-ResNet34 yields a student (SNN-
ResNet18) with 94.55% on CIFAR-10 and 77.13% on CIFAR-100 at T = 4, which is on par with or
even slightly better than the counterpart distilled from ANN-ResNet50. This suggests that a larger
ANN teacher does not necessarily guarantee better distillation results for SNN students.

In summary, exploring SNN architectures different from the source ANN is useful because a theoret-
ically larger student, e.g., SNN-ResNet34, may underperform a smaller one, e.g., SNN-ResNet18,
indicating that optimal SNN architectures do not necessarily align with their ANN counterparts.

Table 12: The accuracy of SNN students with different architectures.

ANN teacher SNN Student CIFAR-10 Acc. (%) CIFAR-100 Acc. (%)
T = 1 T = 2 T = 4 T = 1 T = 2 T = 4

ResNet-50 ResNet-34 87.55 92.71 93.80 29.71 65.78 73.47
ResNet-18 90.45 94.30 94.09 72.69 75.52 77.39

ResNet-34 ResNet-18 93.29 94.30 94.55 73.17 75.19 77.13

B DETAILS OF SEARCH SPACE & SEARCH STRATEGY

This section presents the search space and search strategy used in this study. As for the search space,
we utilize the same search space as Song et al. (2025). The search space contains only one type of
basic block in the search space, as shown in Figure 6. All the searched architectures are built based
on the basic block with different input and output channels. Moreover, to achieve the downsample
operation, the convolution stride of the basic block is set to ‘s=2’, as presented in Figure 7. The
downsample block is a variant of the basic block, where it only sets the convolution stride of the
basic block to two and involves 1× 1 convolution at the skip connection. This design can decrease
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Figure 6: The normal block of the search space.
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Figure 7: The downsample block of the search space.

the feature dimensions and improve the feature extraction capability. The search space of DSAS is
simple and easy to understand, yet DSAS can effectively design high-performance SNN models.

As for the search strategy, the evolutionary search strategy designed by Sun et al. (2020) is used
in the proposed DSAS method. More specifically, the process of the search strategy contains the
following five steps:

1. Population Initialization: initialize the beginning generation and encode them to a sequence
of real numbers;

2. Fitness Evaluation: evaluate the fitness of each individual of the population;
3. Offspring Generation: generate offspring population with crossover and mutation opera-

tors;
4. Fitness Evaluation: evaluate the fitness of each individual in the offspring population;
5. Environmental Selection: select the great individuals and put them into the next generation

population.

Note that the ‘Environmental Selection’ step will return to Step 2 until the termination criteria are
satisfied. The fitness evaluation step utilizes the proposed MAS and TGA metric, which can avoid
training from scratch for each individual. This design can accelerate the search speed of the proposed
DSAS method. Also, the individual cache is used to further improve the search speed as Song et al.
(2025) and Sun et al. (2020). Additionally, the crossover operator is the one-bit crossover, which
is commonly used in the evolutionary computation community (Sun et al., 2020). Moreover, the
mutation operator has three types, i.e., adding layers, deleting layers, and randomly changing the
channel of the convolution layer.

C THE INFLUENCE OF THE α VALUE

In the direct training method of SNNs, the Sigmoid function is often used as a substitute for the
activation function to simulate the activation behavior of neurons because it can provide smooth and
differentiable outputs, which helps the learning process of the network. More specifically, as shown
in Figure 8, the black dots line indicates the Heaviside function. It can be defined in Equation (11):

H(x) =

{
1, x ≥ 0

0, x < 0
. (11)

Since H(x) is not differentiable at x = 0, traditional backpropagation cannot directly calculate the
gradient. In order to achieve gradient calculation, the alternative gradient method uses a continuous
smooth function to approximate H(x), making backpropagation feasible.
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In practice, the Sigmoid(·) function is widely used and has shown great performance on various
tasks (Song et al., 2025; Na et al., 2022; Liu et al., 2024). The Sigmoid(·) function can be defined
in Equation (12):

σα(x) =
1

1 + e−αx
, (12)

where α is the scale factor that affects the slope or steepness of the function. As indicated in Figure 8,
the curve of the Sigmoid function becomes steeper with the increased α value. This can highly
influence the derivation of the Sigmoid function.

Specifically, the derivation of the Sigmoid function can be represented as Equation (13):

σ′
α(x) = ασα(x) (1− σα(x)) . (13)

As shown in Figure 8, the bigger the α value, the peak of the derivative becomes higher and narrower.
Thus, we can modify the α value to control the shape of the derivation of the Sigmoid function.
Motivated by this, we design the TGS metric to adjust the α value of the SNN students. By making
the gradient distributions of the ANN teacher and the SNN student close, the SNN student is able to
learn more knowledge from the ANN teacher and achieve better performance.
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Figure 8: The Sigmoid function and its derivative with different α values.

D DETAILS OF EXPERIMENTAL SETTINGS

This is the supplementary for Section 4.1, which contains the details of the datasets, search settings,
and training settings. Note that the LIF neurons of the proposed DSAS method are implemented
using SpikingJelly (Fang et al., 2023). The SGD (Robbins & Monro, 1951) optimizer is used for
both static and neuromorphic datasets.

D.1 DETAILS OF DATASETS

Four static image datasets are used to evaluate the effectiveness of the proposed DSAS method.

• ImageNet (Deng et al., 2009): As a milestone dataset in the field of computer vision, Im-
ageNet contains 1.43 million high-resolution images covering 1,000 categories. These im-
ages are divided into 1.28 million training images, 50,000 validation images, and 100,000
test images. The images in this dataset are obtained from web crawling and are strictly
manually annotated and verified. Mainstream research usually downsamples images to
224×224 resolution to accommodate various deep learning models.
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• Tiny-ImageNet (Le & Yang, 2015): It is a challenging benchmark for image classification
tasks. It comprises a total of 120,000 images, with 100,000 allocated for training and
10,000 for testing. These images are divided into 200 distinct categories, resulting in 500
training images and 50 testing images per category.

• CIFAR-10 (Krizhevsky et al., 2009): It is a widely used benchmark dataset for color image
classification, containing 60,000 images of 32×32 pixels, of which 50,000 are training sets
and 10,000 are test sets. The dataset was manually screened from a library of 80 million
micro-images, and includes categories such as airplanes, cars, birds, cats, deer, dogs, frogs,
horses, ships, and trucks, with 6,000 samples in each category.

• CIFAR-100 (Krizhevsky et al., 2009): CIFAR-100 maintains the same data scale (60,000
images) and resolution (32×32 pixels) as CIFAR-10, but expands the number of categories
to 100 fine categories and introduces a hierarchical classification structure (20 superclasses
combined with 100 subclasses). Since each category contains only 500 training samples,
this dataset places higher demands on the small sample learning ability of deep learning
models.

Two neuromorphic image datasets are chose to evaluate the performance of DSAS.

• DIFAR10-DVS (Li et al., 2017): It is a commonly used event stream neuromorphic dataset,
containing 10,000 images, of which 9,000 are training sets and 1,000 are test sets. Each
dynamic image in this dataset is obtained by converting their corresponding CIFAR-10
static images into event streams through DVS. Each dynamic image has 128×128 pixels
and contains 10 types of objects such as airplanes and cars. Each type generates event
sequences by 3 motion modes (translation, rotation, and scaling).

• DVS128-Gesture (Amir et al., 2017):This dataset uses DVS to capture the microsecond-
level dynamic changes of 11 gestures (waving, clapping, etc.). Each gesture contains scene
change information such as 3 types of light intensities and 4 shooting angles, and the gener-
ated image pixels are 128×128. Since this dataset contains background noise in real scenes
(such as sudden changes in ambient light and limb occlusion), it can evaluate the ability of
deep learning models to extract spatiotemporal invariant features.

D.2 DETAILS OF SEARCH SETTINGS

In this section, we first provide the common settings of the search process. As presented in Table 13,
the population size is set to 200, and the number of generations is 20. The genetic operation prob-
abilities are configured as 0.9 and 0.2, i.e., 0.9 for the crossover operator and 0.2 for the mutation
operator. The mutation probabilities are set to 0.7, 0.15, and 0.15 for adding layers, deleting layers,
and randomly changing channel operators. Note that except for the population size setting, other
settings are same as Sun et al. (2020). We utilize a larger populations to broadly exploit and explore
the search space.

Table 13: The common settings of the search process.

Population Size Generation Size Genetic Probability Mutation Probability

200 20 0.9, 0.2 0.7, 0.15, 0.15

Here we also provide the search settings of different datasets. As presented in Table 14, different
datasets have different search settings on the optional convolution channel, the number range of the
downsample basic block, and the number range of the normal basic block, which are denoted as
‘Channel Set’, ‘Downsample Range’, and ‘Convolution Range’, respectively. More specifically, the
‘Channel Set’ is the integer multiple or division of the last layer of channels in the ANN teacher.
This is because the gradient similarity needs to be calculated with the multiple or divided ANN
teacher channels. Moreover, ‘Downsample Range’ and ‘Convolution Range’ are set based on the
hardware restrictions. All these values can avoid ‘out of memory’ on the single NVIDIA 3090 card
with 24G GPU memory.
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Table 14: The different search settings on various dataset.

Dataset Channel Set Downsample Range Normal Range

Tiny-ImageNet {143, 286, 572} {3, 3} {3, 12}
CIFAR-10 & CIFAR-100 {64, 128, 256, 512} {2, 3} {3, 15}

CIFAR10-DVS {143, 286, 572} {3, 3} {3, 6}
DVS128-Gesture {32, 64, 128} {3, 3} {3, 6}

D.3 DETAILS OF TRAINING SETTINGS

This section further details the training settings for each dataset. More specifically, for the Tiny-
ImageNet dataset, the batch size is 64, the learning rate is 1e-2, the weight decay is 1e-6, and
the model is trained using three NVIDIA 2080Ti GPUs. For both the CIFAR-10 and CIFAR-100
datasets, the batch size is 64, the learning rate is 1e-2, the weight decay is 1e-6, and the model is
trained on a single NVIDIA 3090 GPU. All models are trained using 300 epochs following Guo et al.
(2023). As for the neuromorphic dataset, the batch size is 32, the learning rate is 1e-2, the weight
decay is 1e-6 , and the training epoch is set to 200. Note that the top-1 accuracy of the pre-trained
ANN teachers, i.e., ResNet (He et al., 2016) and PyramidNet (Han et al., 2017), used in the training
process is shown in Table 15.

Table 15: The top-1 accuracy of the ANN teachers used in DSAS. ‘-’ indicate the ANN model is not
selected as teacher on the corresponding dataset.

Teacher
Dataset Tiny-ImageNet CIFAR-100 CIFAR-10 CIFAR10-DVS DVS128-Gesture

PyramidNet200 67.45 82.86 97.06 - -

PyramidNet110 - 80.74 96.17 82.10 97.92

ResNet-50 - 78.60 95.01 - -

ResNet-34 - 78.98 95.12 - -

ResNet-18 - 75.83 94.13 - -

E VISUALIZATION RESULTS OF THE SEARCHED ARCHITECTURES

In this section, we continue to present the searched architectures on various datasets. Specifically, for
the static datasets, the architectures designed by the proposed DSAS method exhibit design patterns
closely aligned with the complexity of the datasets and their input resolutions. As shown in Fig-
ure 9, for high-resolution ImageNet, the architecture employs a deep encoding structure comprising
12 main modules, i.e., 7 normal blocks and 5 downsampling blocks. It achieves hierarchical feature
extraction through frequent fluctuations in channel numbers, e.g., 106→424→106, and multi-stage
downsampling, while maintaining high channel capacity to process complex visual information.
Moreover, as presented in Figure 10, the searched architecture on Tiny-ImageNet has nine modules
featuring symmetrical channel changes, e.g., 286→572→286, and a moderate number of downsam-
pling operations. When facing the simple dataset CIFAR, the searched architecture contains less
basic block, as illustrated in Figure 11.

In addition, the searched architectures on the neuromorphic dataset, i.e., the CIFAR10-DVS and
DVS128-Gesture datasets, are shown in Figure 12 and Figure 13, respectively. The searched archi-
tecture of CIFAR10-DVS has one more normal block than the searched architecture of DVS128-
Gesture. It is reasonable that CIFAR10-DVS is more complex than DVS128-Gesture.

Note that all architectures adhere to a basic pattern of alternating between normal and downsampling
blocks, yet they achieve adaptive optimization on various datasets by dynamically adjusting module
depth, the magnitude of channel changes, and downsampling numbers.
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Figure 9: The searched architecture on the ImageNet dataset.
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Figure 10: The searched architecture on the Tiny-ImageNet dataset.
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Figure 11: The searched architecture on the Tiny-ImageNet dataset.
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Figure 12: The searched architecture on the CIFAR10-DVS dataset.
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Figure 13: The searched architecture on the DVS128-Gesture dataset.
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F EVOLUTIONARY TRAJECTORY UNDER DIFFERENT DATASETS

This section provides the evolutionary trajectory on various datasets to justify the proposed DSAS
method can successfully converge to the good fitness values, i.e., the MAS+TGS metric. Specif-
ically, Figure 14 indicates the evolutionary trajectory on ImageNet, where the best individual is
achieved at the last generation, and the evolutionary process becomes stable at the 10-th genera-
tion. Moreover, as shown in Figure 15, the best individual emerges by the 10-th generation and
subsequently stabilizes on the Tiny-ImageNet dataset. Additionally, on the CIFAR dataset, the evo-
lutionary progress is more stable than the ImageNet and Tiny-ImageNet datasets, as presented in
Figure 16. Finally, as for the neuromorphic dataset, both of them converge faster than the static
datasets, as shown in Figure 17 and Figure 18. This is because the scale of the static dataset is more
complex than neuromorphic ones. Thus, static datasets need more generations to converge.
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Figure 14: The evolutionary trajectory on the ImageNet dataset.
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Figure 15: The evolutionary trajectory on the
Tiny-ImageNet dataset.
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Figure 16: The evolutionary trajectory on the
CIFAR dataset.
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Figure 17: The evolutionary trajectory on the
CIFAR10-DVS dataset.
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Figure 18: The evolutionary trajectory on the
DVS128-Gesture dataset.
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