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Abstract
Spatiotemporal learning is challenging due to the
intricate interplay between spatial and temporal
dependencies, the high dimensionality of the data,
and scalability constraints. These challenges are
further amplified in scientific domains, where data
is often irregularly distributed (e.g., missing val-
ues from sensor failures) and high-volume (e.g.,
high-fidelity simulations), posing additional com-
putational and modeling difficulties. In this paper,
we present SCENT, a novel framework for scal-
able and continuity-informed spatiotemporal rep-
resentation learning. SCENT unifies interpolation,
reconstruction, and forecasting within a single ar-
chitecture. Built on a transformer-based encoder-
processor-decoder backbone, SCENT introduces
learnable queries to enhance generalization and
a query-wise cross-attention mechanism to effec-
tively capture multi-scale dependencies. To en-
sure scalability in both data size and model com-
plexity, we incorporate a sparse attention mech-
anism, enabling flexible output representations
and efficient evaluation at arbitrary resolutions.
We validate SCENT through extensive simula-
tions and real-world experiments, demonstrating
state-of-the-art performance across multiple chal-
lenging tasks while achieving superior scalability.

1. Introduction
Spatiotemporal learning focuses on modeling and interpret-
ing data that exhibit variations in both space and time. This
approach is crucial for analyzing intricate real-world phe-
nomena where spatial structures are inextricably linked with
temporal dynamics, including applications such as climate
modeling (Reichstein et al., 2019), traffic forecasting (Li

1Computing and Data Sciences, Brookhaven National Labora-
tory 2Cornell University, Cornell Tech. Correspondence to: David
Keetae Park <dpark1@bnl.gov>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

et al., 2018), medical imaging (Litjens et al., 2017), and
video analysis (Wang et al., 2020). Achieving accurate
spatiotemporal learning, however, presents significant chal-
lenges due to the presence of complex spatial-temporal de-
pendencies, including spatial heterogeneity and temporal
non-stationarity, compounded by the high dimensionality
of the data. These challenges are further amplified in scien-
tific and engineering domains, where datasets are frequently
characterized by irregular distributions (e.g., arising from
sensor malfunctions) and large volumes (e.g., generated by
high-fidelity simulations), introducing further complexities
in both computation and modeling.

To address the aforementioned challenges, significant re-
search efforts have been dedicated to developing solutions
from both traditional signal processing and, more recently,
machine learning perspectives. Among the emerging ma-
chine learning approaches, Implicit Neural Representations
(INRs) have garnered increasing attention due to their in-
herent flexibility (Sitzmann et al., 2020b; Mildenhall et al.,
2020). INRs parameterize data as a continuous function,
mapping coordinates to signal values (e.g., (x, y) → (r, g, b)
for images), using a neural network. Despite their potential,
the adoption of INRs in scientific domains has been lim-
ited. This can primarily be attributed to two key challenges:
scalability and generalizability.

To bridge this methodological gap, we propose SCENT
(Scalable Conditioned Neural Field for SpatioTemporal
Learning), a novel framework designed to address the lim-
itations of existing INR approaches. SCENT leverages
a Transformer-based encoder-processor-decoder architec-
ture to efficiently process large-volume spatiotemporal data,
demonstrating strong scalability with respect to both dataset
size and model parameter count. Furthermore, SCENT
incorporates trainable query mechanisms to enhance gen-
eralizability, circumventing the computational overhead as-
sociated with existing strategies such as latent optimiza-
tion (Dupont et al., 2022) or meta-learning (Chen & Wang,
2022).

Overall, the major contributions of our work include:

• We offer a unified framework for spatiotemporal learn-
ing, capable of performing joint interpolation, recon-
struction, and forecasting.
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Figure 1. Challenging data scenarios motivating this study. (a) Learning continuous ground truth signal (GT) given noisy, mal-
functioning, sparse, or moving sensors is a daunting challenge. However, these challenges are common in scientific data, including
AirDelhi (Chauhan et al., 2024) data which measure the particulate matter levels (PM2.5) from moving vehicles.

• We empirically demonstrate that SCENT is scalable
with larger models and datasets.

• We conduct extensive experiments to evaluate the effi-
cacy of the proposed SCENT framework, demonstrat-
ing its superiority over state-of-the-art (SOTA) meth-
ods in a range of spatiotemporal learning tasks.

2. Problem Setting
Background. Spatiotemporal learning is a critical field
for modeling data that evolves across space and time, with
diverse applications in climate modeling (Reichstein et al.,
2019), medical imaging (Litjens et al., 2017), and biochem-
istry (Jumper et al., 2021). While traditional methods like
RNNs and LSTMs (Hochreiter & Schmidhuber, 1997) ad-
dress temporal sequences, they often struggle with long-
range dependencies and spatial correlations, limitations that
Transformer-based architectures like ViT (Dosovitskiy et al.,
2021) and TimeSformer (Bertasius et al., 2021) have be-
gun to overcome. Implicit Neural Representations (INRs)
offer a powerful, continuous approach to data modeling,
mapping coordinates to function values using a neural net-
work for compact encoding and resolution-agnostic inter-
polation (Sitzmann et al., 2020b; Mildenhall et al., 2020).
However, standard INRs lack generalizability, requiring
retraining for new data instances; this has led to the devel-
opment of Generalizable INRs (GINRs) leveraging meta-
learning (Sitzmann et al., 2020a; Chen et al., 2021; Dupont
et al., 2022; Bauer et al., 2023). Conditioned Neural Fields
(CNFs) are closely related to GINRs, providing a powerful,
single-step framework for solving PDEs by learning con-
tinuous function representations conditioned on input pa-
rameters, aligning with GINRs’ goal of learning continuous
functions and addressing challenges in high-dimensional
and sparse-data problems (Wang et al., 2024; Li et al., 2022).
A detailed literature review is provided in the Appendix A.

Problem Statement. We consider a spatiotemporal dis-
crete observation denoted as ut

x, where x = (x, y, z) ∈ R3

represents the spatial coordinates, and t ∈ R denotes the
sampled time. Given a set of Ni input observations mea-
sured at time ti, we define:

U ti =
{
uti
x1
, uti

x2
, . . . , uti

xNi

}
.

Our objective is to develop a model F capable of learning
the underlying continuous spatiotemporal function from
these discrete Ni observations, enabling it to predict M
target outputs at a different time to:

Û to = F
(
U ti

)
,

where the target outputs are given by:

U to =
{
uto
x′
1
, uto

x′
2
, . . . , uto

x′
No

}
.

The specific task performed by (F ) is determined by the
relationship between the input and output spatiotemporal
coordinates:

• Reconstruction. If
(
{xj}Ni

j=1, ti

)
=

(
{x′

k}
No
k=1, to

)
,

the model is tasked with reconstructing the same ob-
servations it was provided.

• Spatiotemporal Interpolation. If
(
{xj}Ni

j=1, ti

)
̸=(

{x′
k}

No
k=1, to

)
, the model estimates the function at

novel spatiotemporal locations.
• Forecasting. A special case of interpolation where
to > ti, requiring the model to predict future values.

Our goal is to develop a model (F ) capable of jointly per-
forming reconstruction, interpolation, and forecasting of
complex scientific data given arbitrary spatiotemporal coor-
dinates (x, y, z, t).
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Figure 2. SCENT overview. (a) Detailed architecture of SCENT is illustrated. Our unique contributions are drawn with red boxes.
Specifically, we introduce time coordinates to both encoder and decoder for learning continuous time representations. Also, we introduce
Context Embedding Network and Calibration Network for improved spatial encoding and decoding, respectively. nenc, nproc, and ndec

denote the number of layers in encoder, processor, and decoder respectively. (b) At the inference stage, a single SCENT model is capable
to jointly perform reconstruction, spatiotemporal interpolation, and forecasting.

Figure 3. Warp-unrolling forecasting (WUF). (a) Conventional
forecasting includes single-step unrolling which accumulates error.
A dimming blue color is used to represent the increasing error.
(b) WUF helps mitigate error accumulations caused by extensive
unrolling steps.

3. SCENT
3.1. Encoder-Processor-Decoder Framework

The encoder-processor-decoder architecture is proposed as
a general framework that scales linearly with input and out-
put sizes, overcoming the quadratic scaling limitations of
transformers with input sequence length (Jaegle et al., 2022).
Prior works have leveraged this architecture to learn condi-
tioned neural fields (CNFs) for solving partial differential

equations (Lee, 2022; Lee & Oh, 2024; Serrano et al., 2024;
2023; Li et al., 2023), where the architecture is particularly
beneficial, as these models flatten the input and treat each
sample point as an individual token. Additionally, this ar-
chitecture facilitates learning continuity-informed represen-
tations using inducing point learning within cross-attention
layers (Jaegle et al., 2022; Lee & Oh, 2024). Building on
these advancements, we evaluate the models’ potentials in
complex real-world scientific problems, often characterized
by intricate noise patterns and irregular sensor distributions.
In the remaining subsections, we describe notable develop-
ments on top of the existing architecture, as displayed by
red-colored objects in Fig. 2(a).

3.2. Time-Targeted Spatial Encoder

The encoder processes an input data U ti ={
uti
x1
, uti

x2
, . . . , uti

xNi

}
, representing Ni samples from

the space coordinate {xj}Ni
j=1 at a given time ti. Here,

{xj}Ni
j=1 can be structured on a grid or an irregular mesh.

Using a cross-attention mechanism, the encoder transforms
U ti into a fixed-size set of tokens Zti

M = {z1, z2, . . . , zM},
where M is the number of latent trainable query tokens.
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The encoder Eθ is then expressed as:

Eθ :
(
U ti , {xj}Ni

j=1, ti, to

)
→ Zti

M ,

where ti is the input time, and to is the targeted output time.
Including to enhances attention to relevant information, lead-
ing to improved performance (Table 3).

Specifically, we encode the spatiotemporal coordinates
{xj}Ni

j=1, ti, to using Fourier features (Tancik et al., 2020).
Fourier features map input coordinates to a higher-
dimensional space using sinusoidal functions of varying
frequencies, enabling models to capture fine-grained and
periodic variations in the data. Meanwhile, the input sam-
ples uti

x are separately embedded using a linear projection
layer with parameters frozen. This effectively increases the
dimensionality of function value representation uti

x, empir-
ically enhancing performance. Both Fourier features and
encoded samples are concatenated, and sent through Con-
text Embedding Network (CEN) which consists of sparse
self-attention layers to enrich context encoded in individual
tokens. Within CEN, each token attends to randomly sub-
sampled S tokens where S ≪ Ni. As the underlying data
is in continuous field, sparse attention is an efficient way
to encode global contexts to individual tokens. The final
latent representation is then summarized through a cross
attention against the learning queries which consist of M
tokens, where M ≪ Ni. We justify the benefits of the linear
projection and CEN by the ablation study (Table 3).

3.3. Temporal Warp Processor

We define the Time Warp Processor (TWP) for learning
continuous temporal dynamics, denoted as Pθ : Zti

M →
Zto
M , where to = ti +∆t,∆t ∈ [0, th] and th represents a

hyperparameter for the maximal time horizon used during
training. Depending on ∆t, TWP can either perform input
reconstruction (∆t = 0) or forecasting (∆t > 0), allowing
joint reconstruction and forecasting with a single model.
This flexibility also enables the use of input-output pairs
sampled at non-integer time intervals, which is particularly
useful for spatiotemporal data with time-varying sampling
rates (Chauhan et al., 2024; Nie et al., 2024).

Novel Unrolling Strategy. TWP can be leveraged to min-
imize accumulating prediction errors during long-horizon
forecasting, which empirically leads to improved perfor-
mance over baselines (Section 4.5). Previous models have
been reported to struggle with long-term forecasting due
to rapidly accumulating errors during inference and un-
rolling (Serrano et al., 2024). While we adhere to the stan-
dard practice of training models for next-state prediction,
we do not perform one-step unrolling for the entire forecast-
ing time steps. Instead, we utilize time warping, advancing
directly to the time horizon th once to − ti > th, using

it as a reference state for predicting subsequent time steps
(Fig. 3). This ensures that at any given time state, only a
minimal number of prediction steps are required, thereby
reducing the potential accumulation of errors. We denote
this strategy as warp-unrolling forecasting (WUF) and use
this for benchmark datasets (Table 2).

3.4. Time-Conditioned Decoder

The decoder Dθ : Zto
M → U to utilizes the latent processed

tokens Z(to) to approximate the function values at to. To
this end, we apply Fourier features encoding to x and to, and
use the resulting queries for cross-attention against Z(to).
Then we apply ndec sparse self-attention layers (Calibration
Network, abbreviated as CN) to calibrate spatiotemporal de-
coding. During training U to includes No available samples
at to. During inference, however, Z(to) may be evaluated
on arbitrary points in x.

4. Experiments
We conduct evaluations using a diverse set of baseline mod-
els, encompassing state-of-the-art regular-grid methods such
as FNO (Li et al., 2020), adaptable transformer architectures
represented by OFormer (Li et al., 2023), as well as neu-
ral field-based approaches like DINO (Yin et al., 2023),
CORAL (Serrano et al., 2023) and AROMA (Serrano et al.,
2024). All training and evaluations are conducted using
mean squared error (MSE), relative MSE (Rel-MSE), and
root MSE (RMSE). RMSE is specifically used to measure
PM2.5 levels for AirDelhi datasets (Section 4.1.3). Rel-
MSE is defined as:

Rel-MSE =

∑N
j=1(Û

to
j − U to

j )2∑N
j=1(U

to
j )2

. (1)

Most experiments were performed on a single NVIDIA
H100 80GB HBM3 GPU. The largest model variant used
in the scalability evaluation (Fig. 4) required distributed
training across eight of them. Details of the algorithm can be
found in Appendix B, while information on the dataset and
training procedures is provided in Appendices C through G.

4.1. Datasets

4.1.1. BENCHMARK NAVIER-STOKES DATASETS

We use three benchmark Navier-Stokes datasets (Li et al.,
2020), each corresponding to different viscosity coefficients.
These are designed to model the dynamics of a viscous
and incompressible fluid governed by the 2D Navier-Stokes
equation in vorticity form on the unit torus. The Navier-
Stokes 1× 10−3 (NS-3) dataset (Yin et al., 2023; Serrano
et al., 2023), with a viscosity coefficient ν = 1 × 10−3,
includes 256 training trajectories and 32 testing trajectories.
NS-3 models relatively slower fluid dynamics with a time
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Figure 4. Scalability evaluations. (a) Texts next to each circle are the number of model parameters, and circle size is also proportional
to it. Red dotted lines are scalability trends derived with exponential functions for comparisons. (b) Colors indicate training runs with
identical model sizes. Texts next to each circle are the number of training instances, and the circle size is also proportional to it.

horizon of first 20 steps beyond the initial condition. The
Navier-Stokes 1× 10−4 (NS-4) dataset, with a viscosity co-
efficient ν = 1× 10−4, is a more turbulent variant. Lastly,
the Navier-Stokes 1× 10−5 (NS-5) dataset, with the lowest
viscosity coefficient ν = 1 × 10−5, represents the most
turbulent fluid dynamics. Both NS-4 and NS-5 contain 1000
training and 200 testing trajectories and a maximum time
steps of 30 and 20 steps, respectively. For all three datasets,
we use the vorticity at t0 = 10 as the initial condition for
testing. These datasets provide a range of viscosity con-
ditions, making them suitable for studying fluid dynamics
across different turbulence levels.

4.1.2. SIMULATED LARGE-SCALE COMPLEX DATASETS

We introduce a new class of datasets to specifically sim-
ulate complex yet common real-world data scenarios as
visualized in Fig. 1(a). This simulated dataset, derived from
the Navier-Stokes equations, is designed to be significantly
larger than benchmark datasets (Section 4.1.1), incorpo-
rating real-world challenges such as sensor noise, missing
values, and dynamically moving or reconstructed sensor
locations.

Concretely, we introduce five datasets. While each variant
represents different data challenges, they consist of the same
underlying ground truth. • Ground truth (S1): We utilize
the Navier-Stokes equation with viscosity and boundary con-
ditions to simulate highly complex and fast diffusion dynam-
ics (Appendix E). This setup ensures that our simulations
capture the intricate interactions of fluid motion, enabling a
more realistic representation of challenging spatiotemporal
processes. • Noisy sensors (S2): multiplicative noise is sam-
pled (Nartasilpa et al., 2016) and applied to S1 following:
u′(x, t) = u(x, t) · η(x, t), where η(x, t) ∼ N (µ, σ), u is
an input sample, η is sample-level noise, and x = (x, y, z)
and t denote the spatial and temporal coordinates respec-
tively. We use µ = 1 and σ = 0.2. • Sensor malfunctions
(S3): scientific sensors are often temporarily unavailable or

malfunctioning (Nathaniel et al., 2023). We empty out three
square areas with different sizes to simulate lost sensors.
• Randomly sparse sensors (S4): sensor locations may
be randomly placed, such as for remote sensing (Myneni
et al., 2001) in climate science. We randomly mask out
50% of the data to simulate the sparcity. • Dynamically
moving sensors (S5): A more challenging scenario arises
when sampling locations are sparse and dynamically shift-
ing (Chauhan et al., 2024; Nie et al., 2024). To simulate this,
we randomly select twenty non-overlapping 10× 10 square
regions as input locations. The output regions are then trans-
lated by (h, v), where h, v ∈ [−10, 10] denote horizontal
and vertical shifts. Regions crossing image boundaries are
mirrored to maintain continuity.

4.1.3. REAL DATA 1: AIRDELHI

The AirDelhi (Chauhan et al., 2024) dataset offers a compre-
hensive collection of fine-grained spatiotemporal particulate
matter (PM) measurements from Delhi, India. To address
the limitations of static sensor networks, the researchers
mounted lower-cost PM2.5 sensors on public buses through-
out the Delhi-NCR region. The dataset includes PM2.5
measurements across various locations and times, with data
collected at a granularity of 20 samples per minute. The
dynamic nature of the data, with sensors moving along pre-
defined bus routes, introduces challenges such as sparse and
temporally varying measurements. This necessitates the
development of models capable of handling sparse and dy-
namically moving sensors. Here we use three data variants
for model performance comparisons.

• AirDelhi Benchmark (AD-B): This dataset was originally
introduced as a benchmark for evaluation. Concretely, this
data is collected between November 12, 2020, and January
30, 2021. In this data, initial days are omitted due to limited
sample data and fewer instruments on buses. Also excluded
are nightly data between 10:00 PM and 5:30 AM, as buses
remain stationary at bus depots during this period. The geo-
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Figure 5. Qualitative comparisons for forecasting. (a) Using partial input from the S5 dataset, each pretrained model is assessed on the
full mesh (GT), performing both joint forecasting and spatial interpolation. (b) Models forecast PM2.5 on the spatiotemporal locations
where measurements are available (GT). ‘delta’ (upper rows) represents the absolute difference between each prediction and GT.

graphical region is divided into 1 km2 spatial grids, which
are further segmented into spatiotemporal cells with a 30-
minute time interval. The average of all samples within
each spatiotemporal cell is calculated to determine repre-
sentative PM values. We use the ‘AB’ and ‘CP’ sets as
training and test datasets, respectively. This dataset features
differing numbers of samples for input (Ni) and output (No),
which demands a high degree of model flexibility. Notably,
SCENT stands out as the only model capable of naturally
handling a variable Ni and No. • AirDelhi Temporal (AD-
T): this dataset still uses the 1 km2 grid, but increases time
resolution from 30 minutes to a finer 1 minute, and averag-
ing all samples within each spatiotemporal cell for repre-
sentative PM values. This increases available data instances
but makes data spatially more sparse and thus challenging
to predict. Unlike the original dataset, where the train-test
split was based on specific days, we randomly shuffle all the
data before splitting it into training and testing sets. This
approach ensures there is no distribution shift between the
training and test data. • AirDelhi Fine-grained (AD-F):
this dataset features a 0.02 km2 spatial grid with a 1-minute
temporal resolution. The high granularity of the spatial res-
olution makes it nearly continuous, enabling the evaluation
of models in learning continuous representations effectively.

4.1.4. REAL DATA 2: KUROSHIO PATH

The Kuroshio current, originating from the North Equatorial
Current (NEC) and flowing northward along the eastern side
of the Philippine Islands, is the world’s second-largest warm
current. Accurately predicting its path is crucial because its
variations significantly affect the exchange of water masses
and heat between the North Pacific subtropical and subarctic
circulations. We use 50-year records from the China Ocean
Reanalysis (CORA) (Han et al., 2013) as our benchmark and
follow the data processing guidelines established by Wu et al.
(2023). CORA provides daily oceanographic reanalysis data
for the Kuroshio current spanning 50 years (January 1958-
December 2007).

4.1.5. REAL DATA 3: RAINFOREST NOWCASTING

We use the RY product from the German Weather Service
(DWD), a quality-controlled rainfall composite at 1 km ×
1 km spatial and 5-minute temporal resolution. Data from
2012 - 2016 are used for training, and 2017 for testing.
The task is to predict rainfall fields for future timestamps
t ∈ [5, 10, . . . , 60] minutes, given four historical fields.
Following RainNet (Ayzel et al., 2020), we use 173,345
/ 43,456 instances for training / test splits. We downsample
the original 900 × 900 resolution to 64 × 64.
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4.2. Robustness to Data Challenges

A robust model should reconstruct continuous fields from
sparse, noisy data while capturing temporal dynamics. To
evaluate this capability, we assess forecasting performance
across five challenging datasets (S1-S5, Fig. 1(a)) using
four representative baseline models. All models are trained
with supervision on next-state prediction. Since FNO lacks
mesh independence, we modify the original architecture
to accommodate our sparse and irregular dataset. Sparse
data variants are zero-padded to align with a regular grid
representation for input processing. To prevent the model
from trivially predicting zero values, a data mask is applied
to the output during loss computation. The time horizon (th)
is set to 3 for training. This implies that during training, the
time step (∆t) is randomly selected from [0, 3], allowing
the model to learn time-continuity given varying temporal
intervals as well as reconstruction (∆t = 0). Each training
trajectory consists of 24 time steps, and a total of 100k
trajectories are used. Training is conducted using Rel-MSE
as the supervision loss, a cosine learning rate scheduler over
50k iterations, and a batch size of 256. During validation,
∆t is fixed to 1.

Results. Table 1 presents forecasting performance compar-
isons. SCENT consistently outperforms all baseline models
on the simulated datasets, showcasing its resilience in chal-
lenging environments and its ability to effectively capture
spatiotemporal patterns. As expected, performance gener-
ally degrades in more challenging environments, reflecting
the increased difficulty of learning from sparse or noisy data.
Surprisingly, FNO performs competitively despite its lack
of mesh independence, likely due to its inherent bias toward
learning low-frequency components, allowing it to maintain
relatively strong performance.

4.3. Scalability Analysis

Scientific data volumes are rapidly increasing (Yu et al.,
2023; Kitamoto et al., 2023; Kaltenborn et al., 2023), reach-
ing the exabyte scale in cases such as ATLAS (Peters &
Janyst, 2011). To assess scalability, we analyze model and
dataset size variations, examining both model width (i.e.,
latent dimension) and depth (i.e., number of layers). To our
knowledge, this is the first systematic scalability study of
continuity-informed architectures (e.g., INRs, CNFs), and
we compare against FNO by varying model width to assess
large-scale adaptability. After constructing SCENT mod-
els of varying sizes (Appendix F), we design corresponding
FNO models with approximately matching parameter counts
for fair comparison.

Results. Fig. 4(a) shows both FNO and SCENT exhibit
decreasing Rel-MSE as model size increases. However,
SCENT consistently outperforms FNO across all model

Figure 6. Joint reconstruction, interpolation, and forecasting.
Given dataset S5 inputs shown on top, neural fields are tested
for reconstruction/interpolation (ti) and forecasting at continuous
time (t̄io, to). For comparison purposes, interpolation results from
nearest-neighborhood and RBF algorithms are shown on the left.
‘Mean Rel-MSE’ denotes average performance at t̄io evaluated
with the validation dataset.

sizes and shows better linear scalability, whereas FNO dis-
plays a clear convergence pattern. Additionally, Fig. 4(b)
indicates larger datasets improve forecasting performance,
as the model effectively leverages additional samples to
capture complex underlying patterns from sparse sensor
data.

4.4. Learning Spatiotemporal Continuity

Our primary objective is to represent a spatiotemporal field
conditioned on a sparse input, as outlined in Section 2. An
ideal model should, given an input at ti, be capable of both
reconstruction and spatial interpolation at to, as well as
forecasting at any continuous time within the given time
horizon. To evaluate this capability, we assess and com-
pare model performance, with a particular focus on learning
time-continuous representations. Specifically, given an S5
data input U ti , we infer the data field at three time points,
ti, t̄io, to, where t̄io = (ti + to)/2 denotes the midpoint
time. Reconstruction performances at t̄io are examined
against ground truth. We downsample each trajectory by a
factor of two, reserving the rest for evaluating time conti-
nuity in learning. We compare the results against CORAL,
which also learns time-continuous conditioned neural fields
(Table 4). Additionally, we evaluate our model against de-
terministic interpolation methods, namely nearest-neighbor
and radial basis function (RBF) interpolation. Unlike our
approach, these methods require data at both ti and to to
interpolate the spatiotemporal full mesh effectively.
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Table 1. Forecasting performance comparisons on simulated (Rel-MSE) and real datasets (RMSE).

MODEL
SIMULATED CHALLENGING ENVIRONMENTS REAL DATA (AIRDELHI)

S1 S2 S3 S4 S5 AD-B AD-T AD-F

FNO 4.27× 10−2 2.10× 10−1 2.81× 10−1 2.35× 10−1 3.77× 10−1 48.79 55.04 55.66
OFORMER 1.63× 10−1 2.57× 10−1 3.30× 10−1 3.00× 10−1 6.17× 10−1 70.62 57.00 54.58
CORAL 4.12× 10−1 4.83× 10−1 4.69× 10−1 4.89× 10−1 9.06× 10−1 60.51 55.26 48.41
AROMA 1.29× 10−1 2.38× 10−1 2.83× 10−1 6.67× 10−1 5.25× 10−1 40.78 63.06 47.49
SCENT 2.51× 10−2 2.08× 10−1 2.70× 10−1 2.28× 10−1 3.26× 10−1 44.20 53.24 45.35

Table 2. Long-term forecasting performances on Navier-Stokes
benchmark datasets. MSE is used for NS-3 (for fair comparisons
against reported prior arts), while Rel-MSE is used for NS-4 and
NS-5.

MODEL
BENCHMARK DATASETS

NS-3 NS-4 NS-5

FNO 1.55× 10−4 1.53× 10−1 1.24× 10−1

DINO 2.51× 10−2 7.25× 10−1 3.72× 10−1

CORAL 5.76× 10−4 3.77× 10−1 3.11× 10−1

OFORMER 7.76× 10−3 1.36× 10−1 2.40× 10−1

GNOT 3.21× 10−4 1.85× 10−1 1.65× 10−1

AROMA 1.32× 10−4 1.05× 10−1 1.24× 10−1

SCENT 7.78× 10−5 1.03× 10−1 1.17× 10−1

Table 3. Ablation study for SCENT on dataset S5. ✓indicates
activated modules. Abbreviations: CEN=Context Encoding Net-
work; CN=Calibration Network; Proj=linear projection; TT=Time-
Targeted: whether to provide tout for the TTSE.

CEN CN PROJ TT REL-MSE CONTRAST

✓ ✓ ✓ ✓ 3.26× 10−1 -
✗ ✓ ✓ ✓ 4.02× 10−1 +23.3%
✓ ✗ ✓ ✓ 3.64× 10−1 +11.0%
✓ ✓ ✗ ✓ 3.42× 10−1 +4.9%
✓ ✓ ✓ ✗ 3.40× 10−1 +4.29%
✗ ✗ ✓ ✓ 4.61× 10−1 +41.4%
✗ ✗ ✗ ✓ 4.82× 10−1 +47.8%
✗ ✗ ✗ ✗ 5.47× 10−1 +67.8%

Results. Fig. 6 presents the reconstructed results for a
given input. Notably, SCENT accurately interpolates and re-
constructs all three time points, closely matching the ground
truth (GT). While CORAL supports time interpolation, it
inherits suboptimal performance from training with the com-
plex S5 dataset (Table 1), resulting in an inaccurate recon-
struction of fields across different time points. Interpolation
using radial basis functions (RBF) yields reasonable results;
however, it is important to note that the inputs for interpola-
tion methods and neural fields differ. Neural fields operate
at a disadvantage as they are provided only with the initial
time state. To further evaluate time continuity, we report the
mean reconstruction error against the GT at t̄io on the full
test dataset, with the quantitative results aligning well with
the visual assessments.

4.5. Benchmark Performance and Model Ablations

In this section, we highlight the key innovations in our algo-
rithm, compare it against popular benchmark datasets, and
present ablation studies on the SCENT architecture. To eval-
uate SCENT’s ability to perform extended time forecasting,
we test it on NS-3,4,5 (Section 4.1.1) using an unrolling
approach. Specifically, all models are trained with super-
vision on next-state prediction. At test time, we unroll the
dynamics following the WUF framework, as illustrated in
Section 3.3. Additionally, we conduct an ablation study on
S5, systematically removing our key architectural compo-
nents — CEN, CN, Proj, and TT (Fig. 2) — to assess their
individual contributions to performance.

Results. Table 2 presents the results of long-term forecast-
ing performance across the benchmark datasets. SCENT
outperforms all baseline models across all datasets, which
we attribute to WUF, fundamentally enabled by the time-
continuity learned by the model. This advantage is particu-
larly evident in the NS-3 dataset, where the fluid dynamics
are relatively slower, hence error accumulation during next-
state unrolling is more pronounced. On NS-4 and NS-5,
SCENT and AROMA achieve comparable performances.
Our ablation study in Table 3 highlights the contributions of
individual architectural modifications introduced in SCENT.
The performance gap relative to the best-performing model,
referred to as contrast, demonstrates that all four compo-
nents play a crucial role in the model’s effectiveness. No-
tably, performance deteriorates significantly when two or
more modules are deactivated, with Rel-MSE increasing by
67.8% when all modules are not used.

4.6. Forecasting Performances on AirDelhi

We evaluate whether the superior performance observed in
previous experiments extends to the more complex AirDelhi
dataset. Similar to dataset S5, AirDelhi features sparse sen-
sors with locations that vary across time, posing a significant
challenge for spatiotemporal learning. Strong performance
on this dataset would indicate that the model effectively
infers the PM2.5 distribution from sparse observations and
accurately predicts the future diffusion of particulate matter.
While we use Mean Squared Error (MSE) as the training
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Figure 7. Kuroshio Path: RMSE (°) comparisons at various lead
times. Abbreviations: FE = Feature engineering, NN = End-to-end
neural networks, EOF = empirical orthogonal functions, CEEM-
DAN = complete ensemble empirical mode decomposition with
adaptive noise, LSTM = long short-term memory.

loss, we adopt Root Mean Squared Error (RMSE) for evalua-
tion to better capture the physical significance of the model’s
performance.

Results. Table 1 compares forecasting performance across
AirDelhi datasets. On AD-B, where the goal is to pre-
dict PM2.5 values at sparse locations given three days of
observations, SCENT ranks second after AROMA, likely
due to AROMA’s diffusion backbone effectively filtering
noise. However, the qualitative results in Fig. 5(b) high-
light SCENT’s effectiveness in capturing and expressing
PM2.5 levels. All of the five models outperform previously
reported performances on AD-B (Appendix K). For larger
and finer datasets (AD-T and AD-F), SCENT outperforms
all baselines, demonstrating its strength in learning contin-
uous representations and forecasting. Additional results
(Appendix Fig. J) indicates that SCENT better captures the
PM2.5 distribution.

4.7. Longterm Forecasting on the Kuroshio Path

We compared SCENT against four baseline methods
from Wu et al. (2023) in a 120-day Kuroshio path predic-
tion experiment, training on 40 years of data (1958-1997)
and testing on the subsequent 10 years (1998-2007). We
measured RMSE against true latitude at 10-day intervals.
During training, SCENT is used to predict the Kuroshio path
in terms of latitude (ranging from 29◦N to 36◦N) for a fixed
forecast horizon. As shown in Fig. 8, while CEEMDAN-
based feature engineering (FE) variants performed com-
petitively, SCENT achieved second-best performance be-
yond a 50-day lead time. The FE methods’ strength might
stem from the limited dataset size, but our scalability study
(Fig. 4) suggests SCENT could outperform them with more
data. Importantly, SCENT maintained stable performance
even as the lead time increased, a sharp contrast to other

Figure 8. Rainforest nowcasting: comparing RainNet and SCENT
performances at varying lead times. Green line corresponds to
the relative gain of SCENT against RainNet baseline measured in
percentage improvement.

baselines experiencing significant degradation.

4.8. Rainforest Nowcasting

SCENT is trained with a forecast horizon th = 60. We
report RMSE (mm h−1) in Figure 8. SCENT consistently
outperforms RainNet across all lead times, with the rela-
tive improvement more salient with a larger lead time. We
attribute this gain in part to SCENT’s ability to train with
variable target times to, which serves as a form of data
augmentation.

5. Conclusion
SCENT (Scalable Conditioned Neural Field for Spatiotem-
poral Learning) addresses the challenge of reconstruct-
ing and forecasting spatiotemporal fields from sparse and
noisy data. Through extensive evaluations, we demonstrate
SCENT’s superiority in learning continuous space-time rep-
resentations, outperforming baselines in diverse forecasting
and reconstruction tasks. SCENT is the first single-step
training model for learning continuous spatiotemporal rep-
resentations, eliminating multi-stage optimization bottle-
necks. Its scalability makes it suitable for large-scale ap-
plications in geophysics, astronomy, epidemiology, and nu-
clear physics (Reichstein et al., 2019; Gabbard et al., 2022;
Massucci et al., 2016; Pata et al., 2024). Future work will
focus on expanding SCENT’s adaptability to extreme-scale
datasets and real-world deployments.

Further research will also explore enhancing SCENT’s ca-
pabilities for high-frequency phenomena, often challenging
for neural fields. We will investigate integrating multimodal
data sources, allowing SCENT to leverage diverse informa-
tion for robust, accurate spatiotemporal modeling. We will
also tackle multi-scale training problems, enabling SCENT
to capture both fine-grained details and large-scale trends
within complex spatiotemporal systems.
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A. Related Work
A.1. Spatiotemporal Learning

Spatiotemporal learning has emerged as a fundamental area of research, addressing the need to model and interpret data
that evolve across both space and time. This field has far-reaching applications in diverse scientific and engineering
disciplines, enabling advancements in climate modeling (Reichstein et al., 2019), traffic forecasting (Li et al., 2018), medical
imaging (Litjens et al., 2017), and video analysis (Wang et al., 2020). Beyond these areas, spatiotemporal learning plays
a crucial role in biochemistry, where modeling molecular interactions and protein dynamics requires capturing complex
temporal dependencies in high-dimensional spatial structures (Jumper et al., 2021). In nuclear particle physics, tracking
subatomic particles in high-energy collisions demands precise spatiotemporal reconstruction to infer particle trajectories and
decay chains (Aad et al., 2019). Neuroscience increasingly relies on spatiotemporal models to analyze large-scale neural
recordings, such as EEG and fMRI, for understanding brain activity over time and across different brain regions (Van Essen
et al., 2010). Similarly, in epidemiology, disease spread modeling depends on accurately capturing transmission dynamics
across spatially distributed populations over time (Balcan et al., 2009).

Other critical applications include remote sensing and Earth observation, where satellite imagery and geospatial data must be
processed to track environmental changes, deforestation, and urbanization trends (Woodcock et al., 2008). In fluid dynamics,
understanding turbulent flow patterns and their evolution over time is key to designing efficient aerodynamic structures and
predicting oceanic and atmospheric circulation (Meneveau & Marusic, 2011). These applications highlight the growing
importance of spatiotemporal learning in scientific discovery and engineering innovation. However, effectively capturing
the complex dependencies inherent in spatiotemporal data presents significant challenges, including spatial heterogeneity
(irregularly structured and non-uniformly distributed data), temporal non-stationarity (changes in statistical properties over
time), and high dimensionality (large-scale data with intricate interdependencies). Addressing these challenges requires
scalable, generalizable, and computationally efficient modeling approaches that can learn from noisy, sparse, and dynamically
evolving spatiotemporal datasets.

A.2. Traditional Approaches to Spatiotemporal Learning

Historically, Recurrent Neural Networks (RNNs) and Long Short-Term Memory networks (LSTMs) have been employed
to model temporal sequences (Hochreiter & Schmidhuber, 1997). For instance, LSTMs have been widely used in traffic
forecasting to predict future traffic conditions based on historical data (Yu et al., 2017). Despite their effectiveness, these
models often struggle with capturing long-range dependencies and may not fully exploit spatial correlations. To address
these limitations, Transformer-based architectures have been introduced, leveraging self-attention mechanisms to model
long-range dependencies in both spatial and temporal dimensions. Vision Transformer (ViT) has demonstrated success in
image analysis by treating images as sequences of patches, enabling the modeling of global relationships (Dosovitskiy et al.,
2021). Extending this idea, TimeSformer has been proposed for video understanding, jointly modeling spatial and temporal
dependencies to achieve state-of-the-art results in action recognition tasks (Bertasius et al., 2021).

A.3. Implicit Neural Representations (INRs) for Learning Continuous Representations

Implicit Neural Representations (INRs) have emerged as a flexible and powerful approach for modeling continuous signals.
Unlike traditional grid-based representations, INRs parameterize data as continuous functions, mapping spatial coordinates
to function values using a neural network (Sitzmann et al., 2020b). This formulation allows for compact data encoding,
resolution-agnostic modeling, and seamless interpolation. INRs have been widely applied in 3D shape representation, scene
reconstruction, and signal processing, where high-dimensional structured data needs to be represented efficiently. A notable
example is Neural Radiance Fields (NeRF), which employs INRs for view synthesis, enabling the rendering of high-fidelity
3D scenes from sparse observations (Mildenhall et al., 2020).

Despite these advantages, INRs face challenges in generalizability, as a trained INR typically encodes only a single instance
of data and does not naturally adapt to new instances. This limitation necessitates retraining the model for each new
data sample, making INRs computationally expensive for large-scale applications. Generalizable INRs (GINRs) aim
to overcome this by introducing mechanisms that allow a single model to adapt across multiple instances, rather than
learning a fixed function for each data sample. Locality-Aware Generalizable Implicit Neural Representations introduce
local feature conditioning that allows GINRs to adapt dynamically to different regions of a dataset, improving efficiency
and generalization (Lee et al., 2023). Furthermore, MetaSDF and MetaSIREN employ gradient-based meta-learning to
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enable few-shot adaptation, allowing GINRs to learn priors across multiple data instances and generalize to unseen samples
more effectively (Sitzmann et al., 2020a; Chen et al., 2021). Functa treats each data instance as a function and leveraging
function-space representations for improved generalization (Dupont et al., 2022). Spatial Functa extends this approach to
large-scale datasets like ImageNet, introducing spatially aware latent spaces that enhance expressivity and enable GINRs to
perform large-scale classification and generation tasks (Bauer et al., 2023).

A.4. Conditioned Neural Fields as GINRs

Recent work by Wang et al. (2024)(Wang et al., 2024) highlights the close relationship between CNFs and INRs, emphasizing
that both frameworks model continuous fields but differ in their conditioning mechanisms. While INRs typically encode
static signals without external conditioning, CNFs introduce input-dependent variations, making them well-suited for
physics-informed learning in PDE solving. This connection unifies perspectives on operator learning and neural field-based
modeling, bridging the gap between classical numerical methods and neural representations.

Conditioned Neural Fields (CNFs) provide a powerful framework for solving Partial Differential Equations (PDEs) by
learning continuous function representations conditioned on input parameters, initial conditions, or constraints (Li et al.,
2022). Unlike traditional numerical solvers that rely on discretization, CNFs approximate time-evolving fields in a resolution-
independent manner, making them particularly effective for high-dimensional and sparse-data problems. This approach
aligns closely with GINRs, which parameterize data as continuous functions rather than grid-based representations (Sitzmann
et al., 2020b).

A.5. Baseline Selection

Spatiotemporal learning requires modeling dynamic systems such as fluid flows, climate forecasting, and wave propagation,
all of which are governed by PDEs. PDE-based neural solvers provide strong priors that enhance generalization, consistency,
and interpretability. To evaluate our approach (SCENT) against established methods, we compare against FNO, which learns
spectral representations for PDE solutions, OFormer, a Transformer-based operator learner, and CORAL and AROMA,
which leverage neural fields for dynamic system modeling. These baselines offer diverse perspectives on how different
architectures generalize across spatiotemporal interpolation, reconstruction, and forecasting tasks.

Table 4. Comparing model capacities for learning spatiotemporal continuity from discrete data.

MODEL
MESH AGNOSTIC

LEARNING
SPACE&TIME CONTINUOUS

LEARNING
SINGLE-STEP TRAINING

FNO (LI ET AL., 2020) ✗ ✗ ✓
OFORMER (LI ET AL., 2023) ✓ ✗ ✓
CORAL (SERRANO ET AL., 2023) ✓ ✓ ✗
AROMA (SERRANO ET AL., 2024) ✓ ✗ ✗
SCENT (OURS) ✓ ✓ ✓
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B. SCENT: Pseudo-Algorithm

We omit spatiotemporal mesh variables
(
{xj}Ni

j=1, ti, to

)
in the algorithm for simplification.

Algorithm 1 Training and Inference for Model F

Training Procedure:
Model F , training dataset D with ntr trajectories, each of T timesteps
Time horizon th, total training steps Ntrain, loss function g

Initialize model parameters θ
for iteration i = 1 to Ntrain do

Select ith trajectory from D
Sample (U ti , U to) with time horizon th, where to − ti = ∆t ∈ {0, 1, 2, . . . , th}
Forward Pass: Compute model prediction Û to = F (U ti)

Compute loss: L = g(Û to , U to)

Backpropagation: Compute gradients∇θL and update θ

end for
return Trained model F

Validation Procedure:
Validation dataset V with nval trajectories with timesteps T, trained model F , validation metric g

Freeze model F {Disable gradient updates}
Initialize empty list B = [ ]

for each validation trajectory in V do
for each (U ti , U to) where ti ∈ [0, T − 1] and to = ti + 1 do

Forward propagate: Û to = F (U ti)

Compute loss: L = g(Û to , U to)

Append L to list B
end for

end for
return 1

|B|
∑

b∈B b {Return the average}

Forecasting Procedure:
Trained model F , a set of evaluation samples E with desired targeted time to
Initialize empty list B = [ ]

for each evaluation sample U ti in E do
Compute quotient and remainder: q = ⌊(to - ti)/th⌋, tr = (to − ti) mod th
for j = 1 to q do {Performing Warp-Unrolling Forecasting (Section 3.3)}

Update tc ← ti + th

Forward propagate: Û tc = F (U ti)

Update ti ← tc
end for
if r > 0 then

Forward propagate: Û to = F (U ti+tr ) {One last forward pass with the remainder tr}
end if
Append Û to to list B

end for
return list B {Return predicted samples}
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C. Data statistics and Hyperparameters for training SCENT on Navier-Stokes Benchmark
Datasets

DATASET NAME

NS-3 NS-4 NS-5

DATA STATISTICS # TRAJECTORIES - TRAIN 256 1000 1000
# TRAJECTORIES -VALIDATION 64 200 200
MAXIMUM T 30 30 20
INITIAL T 10 10 10
SPATIAL RESOLUTION (64,64) (64,64) (64,64)
N POINTS - INPUTS (N) 4096 4096 4096
N POINTS - INPUTS (M) 4096 4096 4096

TRAINING

MAX LR 0.001 0.0006 0.0008
MIN LR 0 0 0.000008
LR SCHEDULER COSINE COSINE COSINE
WARMUP STEPS 0 2000 2000
BATCH SIZE 100 100 100
TOTAL STEPS 150000 110000 110000
OPTIMIZER ADAMW ADAMW ADAMW
BETA1 0.9 0.9 0.9
BETA2 0.999 0.999 0.999
TRAINING TIME HORIZON 5 5 5
WEIGHT DECAY 0.00001 0.00001 0.00001

MODEL

EMBED DIM 128 128 128
LATENT DIM 128 128 128
LINEAR PROJECTION DIM 64 64 64
# LEARNABLE QUERIES 64 256 256
# LAYERS - PROCESSOR 2 2 2
# LAYERS - ENCODER 4 4 4
# LAYERS - DECODER 4 4 4
# HEADS 4 4 4
SPARSE ATTENTION - GROUP SIZE 1 8 8
FF MULTIPLIER 4 4 4

EMBEDDING

OUTPUT SCALE 0.1 0.1 0.1
LATENT INIT SCALING (STD) 0.02 0.02 0.02
FOURIER FEATURES # FREQUENCY BANDS 6 12 12
FOURIER FEATURES MAX RESOLUTION 20 20 20
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D. Data statistics and Hyperparameters for Training SCENT on Simulated Datasets

DATASET NAME

S1 S2 S3 S4 S5

DATA STATISTICS

# TRAJECTORIES - TRAIN 100000 100000 100000 100000 100000
# TRAJECTORIES -VALIDATION 1000 1000 1000 1000 1000
MAXIMUM T 50 50 50 50 50
INITIAL T 1 1 1 1 1
TEMPORAL SUBSAMPLE STEP SIZE 2 2 2 2 2
SPATIAL RESOLUTION (64,64) (64,64) (64,64) (64,64) (64,64)
N POINTS - INPUTS (N) 4096 4096 2840 2048 2000
N POINTS - INPUTS (M) 4096 4096 2840 2048 2000

TRAINING

MAX LR 0.0008 0.0008 0.0008 0.0008 0.0008
MIN LR 0.00008 0.00008 0.00008 0.00008 0.00008
LR SCHEDULER COSINE COSINE COSINE COSINE COSINE
WARMUP STEPS 2000 2000 2000 2000 2000
BATCH SIZE 256 256 256 256 256
TOTAL STEPS 100000 100000 50000 50000 50000
OPTIMIZER ADAMW ADAMW ADAMW ADAMW ADAMW
BETA1 0.9 0.9 0.9 0.9 0.9
BETA2 0.999 0.999 0.999 0.999 0.999
TRAINING TIME HORIZON 3 3 3 3 3
WEIGHT DECAY 0.0001 0.0001 0.0001 0.0001 0.0001

MODEL

EMBED DIM 164 164 164 164 164
LATENT DIM 128 128 128 128 128
LINEAR PROJECTION DIM 64 64 64 64 64
# LEARNABLE QUERIES 128 128 128 128 128
# LAYERS - PROCESSOR 2 2 2 2 2
# LAYERS - ENCODER 6 6 6 6 6
# LAYERS - DECODER 6 6 6 6 6
# HEADS 4 4 4 4 4
SPARSE ATTENTION - GROUP SIZE 2 2 8 8 8
FF MULTIPLIER 4 4 4 4 4

EMBEDDING

OUTPUT SCALE 0.1 0.1 0.1 0.1 0.1
LATENT INIT SCALING (STD) 0.02 0.02 0.02 0.02 0.02
FOURIER FEATURES # FREQUENCY BANDS 12 12 12 12 12
FOURIER FEATURES MAX RESOLUTION 20 20 20 20 20

E. Additional Descriptions on Simulated Datasets
This dataset represents an incompressible fluid dynamics system governed by the vorticity transport equation:

∂ω

∂t
= −u · ∇ω + ν∆ω + f,

where the vorticity is defined as:

ω = ∇× u, ∇ · u = 0. (2)

Here, u denotes the velocity field, and ω represents the vorticity. Both quantities are defined on a spatial domain with
periodic boundary conditions. The parameter ν represents the kinematic viscosity, and f is an external forcing function
applied to sustain turbulence.

The input at time t is given as vt = ωt. The spatial domain is defined as:

Ω = [−π, π]2.

The vorticity field is initialized using a Gaussian Random Field (GRF) with parameters: alpha = 2.5, τ = 3.0.
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Here, α controls the smoothness of the initial vorticity distribution, while τ determines the correlation length scale of the
spatial structures. The external forcing function used in the simulation is:

f(x1, x2) = −4 cos(4x2), (3)

where x2 represents the vertical spatial coordinate.

This forcing function introduces a structured periodic forcing along the vertical direction, promoting rotational flow
characteristics. The periodic nature of the cosine function ensures a repeating vortex structure, which sustains turbulence and
prevents energy dissipation over time. The negative sign maintains a consistent direction of vorticity input, reinforcing the
rotational dynamics within the system. As a result, this setup generates a persistent and well-defined turbulent flow pattern.
A Reynolds number of Re = 100 is used, indicating a moderately turbulent regime where inertial forces are dominant over
viscous forces, allowing for complex vortex interactions while maintaining numerical stability. This is particularly relevant
for spatiotemporal learning, as it provides a complex yet structured temporal evolution of the vorticity field, making it an
ideal testbed for evaluating models that aim to learn continuous representations of dynamic physical systems. We generate
in total 100k trajectories, with 50 time steps per trajectory. Among T = 50 data, we use every two steps ({0, 2, 4, . . . , 48})
for training and validation. The remaining time steps ({1, 3, 5, . . . , 49}) are reserved for evaluating the model’s ability to
learn continuous temporal representations.
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F. Hyperparameters for Model Scalability Evaluations(Fig. 4(a))
We use dataset S5 for the model scalability evaluations.

MODEL NAME

M1 M2 M3 M4 M5 M6 M7

TRAINING MAX LR 0.0008 0.0007 0.0006 0.0005 0.0004 0.0003 0.0002
MIN LR 0.00008 0.00007 0.00006 0.00005 0.00004 0.00003 0.00002
LR SCHEDULER COSINE COSINE COSINE COSINE COSINE COSINE COSINE
WARMUP STEPS 2000 2000 2000 2000 2000 2000 2000
BATCH SIZE 256 256 256 256 256 256 256
TOTAL STEPS 50000 50000 50000 50000 50000 50000 50000
OPTIMIZER ADAMW ADAMW ADAMW ADAMW ADAMW ADAMW ADAMW
BETA1 0.9 0.9 0.9 0.9 0.9 0.9 0.9
BETA2 0.999 0.999 0.999 0.999 0.999 0.999 0.999
TRAINING TIME
HORIZON

3 3 3 3 3 3 3

WEIGHT DECAY 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

MODEL

LATENT DIM 128 192 256 384 512 768 1024
# LEARNABLE QUERIES 128 138 164 192 224 224 256
# LAYERS - PROCESSOR 2 2 2 2 2 4 6
# LAYERS - ENCODER 6 6 6 6 6 6 6
# LAYERS - DECODER 6 6 6 6 6 6 6
# HEADS - PROCESSOR 4 4 4 6 8 8 12
# HEADS - ENCODER 2 2 2 2 4 4 4
# HEADS - DECODER 2 2 2 2 4 4 4
EMBED DIM 164 164 164 164 164 164 164
LINEAR-
PROJECTION DIM

64 64 64 64 64 64 64

SPARSE ATTENTION
GROUP SIZE

8 8 8 8 8 8 8

FF MULTIPLIER 4 4 4 4 4 4 4

EMBEDDING

OUTPUT SCALE 0.1 0.1 0.1 0.1 0.1 0.1 0.1
LATENT INIT
SCALING (STD) 0.02 0.02 0.02 0.02 0.02 0.02 0.02

FOURIER FEATURES
# FREQUENCY BANDS

12 12 12 12 12 12 12

FOURIER FEATURES
MAX RESOLUTION

20 20 20 20 20 20 20

G. Hyperparameters for Dataset Scalability Evaluations (Fig. 4(b))
Other hyperparameters follow Appendix F for each corresponding model size.

MODEL
NAME

LATENT
DIM

DATASET
NAME

# TRAJECTORIES
BATCH

SIZE
TOTAL
STEPS

MAX LR MIN LR

M1 128
S5-30 30000 76 50000 0.0008 0.00008
S5-50 50000 128 50000 0.0008 0.00008

S5-100 100000 256 50000 0.0008 0.00008

M2 256
S5-30 30000 76 50000 0.0006 0.00006
S5-50 50000 128 50000 0.0006 0.00006

S5-100 100000 256 50000 0.0006 0.00006

M3 512
S5-30 30000 76 50000 0.0004 0.00004
S5-50 50000 128 50000 0.0004 0.00004

S5 - 100 100000 256 50000 0.0004 0.00004
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H. Learning Spatiotemporal Continuity: additional results
Two additional instances are illustrated. Please refer to main manuscript Fig. 6 for interpretation.
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I. Forecasting on S5 dataset: additional results
Four additional instances are illustrated. Please refer to main manuscript Fig. 5(a) for full details and interpretations.
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J. Forecasting on AD-B dataset: additional results
Four additional instances are illustrated. Please refer to main manuscript Fig. 5(b) for details and interpretations.
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K. AirDelhi AD-B: Comparisons Against Previously Reported Benchmark Performances
Here, we report and compare performances against SCENT and other baselines. Our experiments with conditioned neural
fields set new record in AD-B benchmark. Inverse Distance Weighting (IDW) computes the weighted average of all
visible samples based on their distances, assigning this value to the held-out locations. Random Forest (RF) is a non-linear
model designed to capture complex spatial relationships. It excels in non-linear regression tasks by utilizing an ensemble
of decision trees, with the final prediction obtained as the mean output across all trees. XGBoost (XGB) incrementally
enhances predictions by combining weak estimators. During training, it employs gradient boosting to optimize performance
while sequentially adding new trees. ARIMA (Auto-Regressive Integrated Moving Average) is a statistical model for time-
series forecasting that applies linear regression. N-BEATS (Neural Basis Expansion Analysis for Time Series) (Oreshkin
et al., 2020) is a deep learning model designed for zero-shot time-series forecasting. Non-Stationary Gaussian Process
(NSGP) (Patel et al., 2022) is a recent Gaussian process baseline that models a non-stationary covariance for latitude and
longitude, along with a locally periodic covariance for time.

PRIOR REPORTED
PERFORMANCES

UPDATED
PERFORMANCES

MODEL RMSE MODEL RMSE

IDW 86.52 FNO 48.79
RF 110.49 OFORMER 70.62

XGBOOST 102.68 CORAL 60.51
NSGP 95.83 AROMA 40.78

ARIMA 148.86 SCENT 44.2
N-BEATS 106.41 - -

L. Computational Complexity Analysis
Summary. This section provides Big-O time comparisons between SCENT, AROMA, and FNO. In summary, SCENT’s
cost is sensitively affected by S which denotes the number of tokens attended within sparse attention layers in CEN
(Section 3.2) and CN (Section 3.4). Meanwhile, AROMA with a diffusion transformer backbone is costly if the number of
refinement step K and unrolling steps T increase. Lastly, FNO is sensitive to the model width C and also the unrolling steps
T . We show that at the scale of the NS-3 experiment (Section 2), SCENT is the most expensive during training among three
models, while the gap shrinks for larger unrolling steps. SCENT scales linearly with W , while AROMA scales linearly with
K and T . Depending on their values, one could be more expensive than the other. Notably, W ≈ T

th
where th is the time

horizon of SCENT, thanks to Warp-Unrolling Forecasting (Section 3.3, Fig. 3). Thus, for a longer time forecasting SCENT
is more efficient. Please refer to following subsections for big-O time complexity derivations for individual models.

Table 5. Big-O time complexity
MODEL FORMULA

FNO O(T (LN logNC + LNd2C))
AROMA O((2N + 4KTL2M + L1M)Md)
SCENT O(WLsNSd+WNMd+WLmM2d)

L.1. Big-O time complexity of SCENT

For SCENT equipped with:

• Sparse attention: Ls layers where each of the N tokens attends to S tokens (S ≪ N ).
• Cross-attention: Two layers between N and M tokens.
• Self-attention: Lm layers operating on M tokens.
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Table 6. Hyperparameters derived from experiments in Section 4.2.
PARAMETER SYMBOL VALUE

FOURIER LAYERS IN FNO L 4
SPATIAL GRID POINTS N 2000
FOURIER MODES d 16
MODEL WIDTH C 60
UNROLLING STEPS (FNO, AROMA) T 1 OR 20
UNROLLING STEPS (SCENT) W 1 OR 7
SPARSE ATTENTION LAYERS Ls 6
SELF-ATTENTION LAYERS Lm 2
SPARSE ATTENTION TOKENS S 500
COMPRESSED TOKENS M 128
LATENT CHANNELS d 128

Table 7. Sample cost computed using hyperparameters in Table 6
UNROLLING T = 1 UNROLLING T = 20

MODEL COST RELATIVE SCALE COST RELATIVE SCALE

FNO 1.28E+08 1.0 2.56E+09 1.0
AROMA 2.29E+08 1.78 3.09E+09 1.21
SCENT 8.04E+08 6.28 5.63E+09 2.20

Sparse Attention Blocks

Each token from N attends to only S tokens, reducing the full self-attention cost from O(N2d) to:

O(LsNSd)

Cross-Attention Between N and M Tokens

Each cross-attention operation has cost:
O(NMd)

With two such layers, the total remains:
O(NMd)

Self-Attention on M Tokens

A self-attention block on M tokens with Lm layers incurs:

O(LmM2d)

Final Big-O Complexity

Summing all contributions:
O(LsNSd+NMd+ LmM2d)

Considering W unrolling during inference, it becomes:

O(WLsNSd+WNMd+WLmM2d)

L.2. Big-O for AROMA

AROMA’s computational complexity is provided as following (Serrano et al., 2024):

O
(
(2N + 4KL2M + L1M)Md

)
(4)
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where:

• K = Number of refinement steps
• T = Number of autoregressive calls in unrolling
• L2, L1 = Number of layers in different parts of the architecture
• N = Number of observations
• M = Number of tokens used to compress information
• d = Number of channels used in the attention mechanism

Diffusion Transformer incurs additional costs due to iterative refinement:

O(4KTL2M
2d) (5)

which scales with K (refinement steps) and T (autoregressive calls).

L.3. Big-O for FNO

For an FNO (Li et al., 2020) model with:

• L = Number of Fourier layers
• N = Number of spatial grid points
• d = Number of Fourier modes (spectral channels)
• C = Model width (number of feature channels per layer)
• T = Number of autoregressive unrolling

The key computational operations are:

Fast Fourier Transform (FFT) and Inverse FFT (IFFT)

O(LN logNC) (6)

FFT is applied across all feature channels.

Linear Transform in Fourier Space

O(LNd2C) (7)

Applies transformations to Fourier modes across all channels.

Total Complexity for Multiple Layers

O
(
T (LN logNC + LNd2C)

)
(8)

The unrolling factor T accounts for repeated forward passes in autoregressive prediction.
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