FINDINGDORY: A Benchmark to Evaluate Memory in
Embodied Agents

Karmesh Yadav* Yusuf Ali* Gunshi Gupta
Georgia Tech Georgia Tech University of Oxford
Yarin Gal Zsolt Kira
University of Oxford Georgia Tech
Abstract

Large vision-language models have recently demonstrated impressive performance
in planning and control tasks, driving interest in their application to real-world
robotics. However, deploying these models for reasoning in embodied contexts is
limited by their ability to incorporate long-term experience collected across multi-
ple days and represented by vast collections of images. Current VLMs typically
struggle to process more than a few hundred images concurrently, highlighting the
need for more efficient mechanisms to handle long-term memory in embodied set-
tings. To effectively evaluate these models for long-horizon control, a benchmark
must specifically target scenarios where memory is crucial for success. Existing
long-video QA benchmarks overlook embodied challenges like object manipulation
and navigation, which demand low-level skills and fine-grained reasoning over
past interactions. Moreover, effective memory integration in embodied agents
involves both recalling relevant historical information and executing actions based
on that information, making it essential to study these aspects together rather than
in isolation. In this work, we introduce a new benchmark for long-range embodied
tasks in the Habitat simulator. This scalable, procedurally-generated benchmark
evaluates memory-based capabilities across 60 tasks requiring sustained engage-
ment and contextual awareness in an environment. We also present baselines that
integrate state-of-the-art VLMSs with low level navigation policies, assessing their
performance on these memory-intensive tasks and highlight areas for improvement.
Our dataset and code can be found herel

1 Introduction

Memory is a core capability for intelligent agents, enabling them to recall past experiences, adapt
to dynamic environments, and make informed decisions over extended timescales. In humans and
animals, memory supports navigation, reasoning, and goal-directed behavior. As we develop more
capable embodied systems, robust memory mechanisms become essential—especially in settings
involving high-dimensional, multimodal inputs. Recent advances in Vision-Language Models (VLMs)
have enhanced high-level reasoning for embodied tasks by leveraging large-scale multimodal training.
However, most VLM applications focus on short-term or static tasks such as image captioning or
VQA, which require minimal memory. Extending these models to long-horizon control introduces
new challenges: unlike VQA, embodied agents must integrate fine-grained changes in observations
over time and act based on past experiences. Efforts on long-context understanding—through long
video or document comprehension (Song et al., 2023} [Xiong et al.l 2025 [Ma et al., 2024) fall short
in modeling long-term memory for physical decision-making. Many benchmarks rely on multiple-

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: SPACE in Vision,
Language, and Embodied Al (SpaVLE) .

https://huggingface.co/datasets/findingdory/findingdory-habitat

choice questions and are susceptible to guessing, or require heavy annotation efforts. In contrast, we
propose embodied memory tasks that demand fine-grained recall and multi-hop reasoning.

Table 1: Example task categories in FINDINGDORY with their text prompts and memory requirements.
Refer TableE]for complete task suite. See Appendix for specific task instances.

Task Category

Example Instructions Memory Requirement

= Interaction
Relationship

~— Interaction

& Order

o

E .

& Time-Based

s Unordered

@) Revisitation

% Ordered

Navigate to any object that you did not interact with Differentiate b/w interacted &
yesterday. uninteracted objects.

Navigate to the object which you interacted with

which is the farthest from your current location. Spatial relationships to objects.

Navigate to the object you interacted with

immediately after {objectocatesory) Sequence of objects interactions.

Time of interaction & final position
of objects.

Navigate to the object that you interacted with at
{HH:MM]} yesterday.

Revisit all the receptacles you picked objects from Past object locations and best
yesterday. visitation order.

Revisit all the objects you interacted with yesterday Past object locations and their
interaction order.

= Revisitation in specific order.
We introduce FINDINGDORY, a benchmark for evaluating long-horizon memory in photorealistic
simulated environments. It includes 60 diverse tasks categorized by memory requirements, de-
manding both spatial and temporal reasoning while discouraging heuristics or guessing. Tasks are
designed such that success depends on memory, and involve dynamic scenes that evolve through agent
interaction. FINDINGDORY is procedurally extensible, enabling it to scale with model capabilities.
Unlike traditional QA datasets reliant on manual annotations, our benchmark uses simulation for
automatic, quantifiable evaluation. Tasks such as navigation to a previously placed object require
not only explicit memory retrieval but also effective spatio-temporal reasoning to select the entity
that is closest to the agent. We propose metrics that assess not just recall, but also efficiency in task
completion. Finally, we comprehensively evaluate high-level VLM policies equipped with low-level
navigation, highlighting strengths and limitations in memory-demanding tasks.

2 FINDINGDORY
2.1 Benchmark Overview

The goal of FINDINGDORY is to evaluate an agent’s ability to retain and utilize past experiences to
efficiently complete future tasks. Unlike standard navigation or perception-based evaluations, our
benchmark explicitly tests memory by structuring tasks around past interactions To achieve this, we
design a two-phase setup consisting of an experience collection phase, where scripted oracle agents
autonomously gather experiences in the environment, followed by an interaction phase, where they
are evaluated on their ability to recall and act upon that history.

This decomposition allows for a controlled and standardized evaluation of memory, ensuring that the
agent’s ability to remember past interactions is isolated from its ability to explore effectively. The
experience collection phase introduces dynamism into the environment by having the agent interact
with and rearrange different objects. This ensures that the history contains meaningful state changes,
allowing us to construct tasks that require spatio-temporal reasoning. Using oracle information from
the simulator, the agent moves objects between designated receptacles. Episodes vary in length from
400 to 3500 frames, containing 2-11 object rearrangements. Further details in Appendix [C.3]

Once the experience collection phase ends, the interaction phase begins. Here, a new task is sampled
from a predefined set of templated instructions, requiring the agent to recall and act upon the state
of the environment from the previous phase. The agent is given access to its full history, including
recorded images, pose, and past actions. This setup explicitly tests its ability to integrate long-
term memory into decision-making. In the next section, we outline the task instructions, with
implementation details provided in Appendix [C.T]

2.2 Tasks

Our benchmark is designed to evaluate a broad spectrum of memory challenges faced by embodied
agents, beyond narrow tasks that could be solved with simple heuristics or non-generalizable strategies.

High Level Success Rate Plot
A A A A A

A

g
>
>

A

>

@
3

High Level Success Rate
N
3

N
S

)

Interaction Conditional Object Spatial Room Interaction Time-Based Duration Unordered Ordered
(6) Interaction (7) Attributes (5) Relationship (5) Visitation (5) ~ Order (16) (2) Tracking (3) Revisitation (6) Revisitation (3)

Figure 1: FINDINGDORY Task Performance

We construct tasks that require reasoning over the temporal sequence or durations of events, the
spatial relationships between visited locations, the nature of interactions performed within the
environment, and remembering miscellaneous attributes (e.g., color, shape, material) of different
entities in the environment. We include tasks that refer indirectly to objects that were interacted with
during experience collection. This enables the benchmark to distinguish baselines that can do flexible
visual and semantic reasoning over memory, from methods that create static representations of scenes
such as semantic maps (Chang et al., |2023) or textual memory (Kahatapitiya et al.| [2024)).

Al Object
Tasks (60) Recall (2)

[single-Goal Temporal Tasks| [Multi-Goal Tasks|

Single versus Multiple Goals: The majority of tasks in our benchmark involve single-goal navigation,
where agents must reason over their experience to identify a destination and trace the shortest path to it.
A smaller subset includes multi-goal tasks, requiring navigation to multiple destinations, sometimes
in a specific order. Notably, single-goal tasks often demand reasoning over extended history, such
as identifying unmanipulated objects by recalling all past interactions. Object interactions add
further complexity by requiring agents to track movement across pre- and post-rearrangement states,
requiring them to track object movement and ignore distractors (see Figure b)) - in contrast to
single-frame information retrieval.

Extensibility through Procedural Generation Our task set is procedurally extensible, allowing
difficulty to be increased by modifying experience collection conditions. For instance, a greater
number of object interactions expands the temporal reasoning space. Some tasks require recalling
specific objects or receptacles, tracking “when” (temporal sequencing) and “how” (interaction
type: picked vs. placed). Other tasks demand reasoning over global spatial context (e.g., rooms
visited, farthest location), semantic attributes (e.g., material or functionality), and tracking temporal
progression (e.g., the object that took the longest to rearrange).

3 Results

We present our experimental setup including the baselines and evaluation metrics in Appendix [D} In
this section, we empirically analyze the performance of the outlined baselines on FINDINGDORY,
presenting results grouped according to the categories described in Section 2.2}

VLMs struggle on the FINDINGDORY benchmark. From Figure|l] we observe consistently low
success rates on all task subsets across baselines, with GPT-40 achieving the highest performance at
27.3%, Gemini-2.0-Flash reaching 25.7%, while Qwen2.5-VL and Gemma-3 score in the 13-16%
range. Notably, the supervised fine-tuned (SFT) variant outperforms all frozen VLMs, achieving
an average improvement of 25% across tasks. Spatial relationship tasks have generally lower
performance as they require VLMs to reason about distances between different entities relative to
the agent. In contrast, tasks involving room identification yield high performance, likely due to the
limited number of distinct rooms within environments and relatively simpler condition of navigating
to any location within the goal room. Comparable performance between conditional interaction and
object attribute tasks suggests that current VLMs can locate objects based on categories or attributes
with similar accuracy. Temporal tasks highlight additional challenges, as models consistently struggle
with accurately identifying the interaction order among entities, which requires multi-hop reasoning.
Duration tracking poses similar challenges requiring models to infer time spent for each interaction.

Poor performance on multi-goal tasks. From Figure[I] we observe that performance of each VLM
baseline that we consider is close to zero on most multi-goal tasks. This suggests that VLMs find it
hard to track and remember multiple object-receptacle interactions. For the multi-goal evaluations,
we use a single-shot prompt and require the high level VLM agent to predict all target frame indices in
one single response - primarily to avoid multiple inferences with long sequence lengths. Qualitatively,

we observe that the VLMs generally fail to even predict the correct number of targets required to
solve the multi-goal task. Our trained Qwen model performs slightly better, achieving close to 20%
accuracy. but still significantlv lags behind Oracle performance.

Relaxed Success Rate Comparison Plot Relaxed Success Rate Comparison Plot High Level Success Rate and SPL Plot Qwen ImageNav vs Mappi

= crr = o

8

= au

3 8
& &

IS
8

Relaxed Success Rate
8

Relaxed Success Rate

S

High Level Success Rate and SPL
w

(a) (b) (©) (d)

Figure 2: (a, b) Relaxed metrics for objects and receptacles tasks (respectively). (¢) Success Rate vs
SPL performance. (d) Hierarchical policy results on FINDINGDORY.

VLMs can identify target receptacles but not precisely locate them spatially. We conduct an
experiment to analyze the performance difference between tasks involving objects and receptacle enti-
ties. From Figure[2b] we observe that both the relaxed SC-SR and DTG-SR metrics (see Appendix[C.4]
for details) are higher for receptacle-based tasks. This suggests that VLMs are able to identify frames
from which large entities (receptacles) are easily viewed but cannot accurately identify frames which
are spatially closest to the target entity. In contrast, object-focused tasks do not exhibit the same

improvement (see Figure[2a), as only few frames clearly show the objects.

Object Interaction
Recall (1) (6)

VLMs struggle with identifying the closest entity that solves the task. In Fig. [2c|we report the
HL-SPL metric (Appendix [D.2) which captures the efficiency with which the high level VLM-based
modules select goal frames nearest to the current robot position. We observe that for tasks involving
multiple valid solution objects (consequently, multiple solution frames), there is a wide gap between
HL-SR and HL-SPL (upto 50% in case of interaction-based tasks). This implies that although VLMs
can correctly recognize valid entities, they fail to perform a fine-grained spatial analysis of the
multiple valid entities being rearranged dynamically.

Policy decomposition causes performance degradation. To benchmark the hierarchical agent
proposed in Appendix we employ Qwen2.5-VL-7B as high-level VLM with image-goal
navigation policy and mapping policy as the low-level agents. The low-level policy activates only
when the high-level VLM select correct subgoal. As depicted in Figure[2d] the (LL-SR) metric drops
across all FINDINGDORY tasks for both low-level navigation policies. The mapping agent suffers
only a 25% relative drop in LL-SR but the image-goal navigation suffers significantly. We attribute the
drop in performance for the latter to a substantial difference between the VLM-selected image-goal
frames (typically concentrated near receptacle surfaces) and the randomly sampled image-goals
seen during policy training. Additionally, the LL-SPL of both baselines remains in single digits,
highlighting the need for more efficient low-level navigation policies.

High Level Success Rate Comparison across Video Length

g

Gemma3
—=— Qwen
Gemini

Frame Subsampling. We analyze how the number of
input frames affects high-level performance by evaluat- can
ing agents on subsampled interaction videos of varying

lengths (Figure [3). The results suggest that frozen VLMs s e

— despite being capable of accepting long contexts — do IO ®
not improve with more frames. In fact, their performance
often degrades at higher frame counts (minimal subsam-
pling), indicating that they struggle to reason over larger
number of frames. In contrast, the fine-tuned model (Qwen-SFT) demonstrates clear gains when
trained with longer videos, leveraging additional context to improve reasoning. This indicates that
with appropriate supervision, models can move beyond shallow matching and utilize richer temporal
signals from the interaction history.

2N owos
3 8 &

s

High Level Success Rate (%)

96 192 384 768
Number of Frames

Figure 3: Model performance at differ-
ent number of subsampled video frames.

4 Conclusion

We introduced FINDINGDORY, a benchmark for evaluating long-horizon memory in embodied
agents grounded in a photorealistic indoor simulator. Our findings reveal limitations in VLM context
scaling, particularly in handling long observation sequences required for memory-intensive tasks.
FINDINGDORY provides informative metrics that disentangle different aspects of memory and allows
procedural task generation to support research on context scaling and memory efficiency in VLMs.

References

Explore vision capabilities with the gemini api. https: //at. google. dev/ gemini-api/docs/vision?
Lang=python.

Constructions Aeronautiques, Adele Howe, Craig Knoblock, ISI Drew McDermott, Ashwin Ram, Manuela
Veloso, Daniel Weld, David Wilkins Sri, Anthony Barrett, Dave Christianson, et al. Pddll the planning domain
definition language. Technical Report, Tech. Rep., 1998.

Abrar Anwar, John Welsh, Joydeep Biswas, Soha Pouya, and Yan Chang. ReMEmbR: Building and Reasoning
Over Long-Horizon Spatio-Temporal Memory for Robot Navigation. arXiv e-prints, art. arXiv:2409.13682,
2024.

Abrar Anwar, John Welsh, Joydeep Biswas, Soha Pouya, and Yan Chang. Remembr: Building and reasoning
over long-horizon spatio-temporal memory for robot navigation. In 8th Annual Conference on Robot Learning,
2024.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang,
Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jiangiang Wan, Pengfei Wang, Wei Ding,
Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang
Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025.

Dhruv Batra, Aaron Gokaslan, Aniruddha Kembhavi, Oleksandr Maksymets, Roozbeh Mottaghi, Manolis Savva,
Alexander Toshev, and Erik Wijmans. Objectnav revisited: On evaluation of embodied agents navigating to
objects. arXiv preprint arXiv:2006.13171, 2020.

Shyamal Buch, Cristébal Eyzaguirre, Adrien Gaidon, Jiajun Wu, Li Fei-Fei, and Juan Carlos Niebles. Revisiting
the “Video” in Video-Language Understanding. arXiv e-prints, art. arXiv:2206.01720, 2022.

Matthew Chang, Theophile Gervet, Mukul Khanna, Sriram Yenamandra, Dhruv Shah, So Yeon Min, Kavit Shah,
Chris Paxton, Saurabh Gupta, Dhruv Batra, Roozbeh Mottaghi, Jitendra Malik, and Devendra Singh Chaplot.
GOAT: GO to Any Thing. arXiv e-prints, art. arXiv:2311.06430, 2023.

Jasmine Collins, Shubham Goel, Achleshwar Luthra, Leon Xu, Kenan Deng, Xi Zhang, Tomas F Yago Vicente,
Himanshu Arora, Thomas Dideriksen, Matthieu Guillaumin, et al. Abo: Dataset and benchmarks for
real-world 3d object understanding. In CVPR, 2022.

Laura Downs, Anthony Francis, Nate Koenig, Brandon Kinman, Ryan Hickman, Krista Reymann, Thomas B
McHugh, and Vincent Vanhoucke. Google scanned objects: A high-quality dataset of 3d scanned household
items. In ICRA, 2022.

Chaoyou Fu, Yuhan Dai, Yondong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu Zhou,
Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evaluation benchmark of
multi-modal llms in video analysis. arXiv preprint arXiv:2405.21075, 2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila
Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint arXiv:2410.21276, 2024.

Kumara Kahatapitiya, Kanchana Ranasinghe, Jongwoo Park, and Michael S. Ryoo. Language Repository for
Long Video Understanding. arXiv e-prints, art. arXiv:2403.14622, 2024.

Charles C Kemp, Aaron Edsinger, Henry M Clever, and Blaine Matulevich. The design of stretch: A compact,
lightweight mobile manipulator for indoor human environments. In 2022 International Conference on
Robotics and Automation (ICRA), pages 3150-3157. IEEE, 2022.

Mukul Khanna*, Yongsen Mao*, Hanxiao Jiang, Sanjay Haresh, Brennan Shacklett, Dhruv Batra, Alexander
Clegg, Eric Undersander, Angel X. Chang, and Manolis Savva. Habitat Synthetic Scenes Dataset (HSSD-200):
An Analysis of 3D Scene Scale and Realism Tradeoffs for ObjectGoal Navigation. arXiv preprint, 2023.

Mukul Khanna*, Ram Ramrakhya*, Gunjan Chhablani, Sriram Yenamandra, Theophile Gervet, Matthew Chang,
Zsolt Kira, Devendra Singh Chaplot, Dhruv Batra, and Roozbeh Mottaghi. Goat-bench: A benchmark for
multi-modal lifelong navigation, 2024.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke
Zhu, Abhinav Gupta, and Ali Farhadi. AI2-THOR: an interactive 3d environment for visual Al. arXiv, 2017.

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Benchmarking
multimodal 1lms with generative comprehension. arXiv preprint arXiv:2307.16125, 2023.

https://ai.google.dev/gemini-api/docs/vision?lang=python
https://ai.google.dev/gemini-api/docs/vision?lang=python

Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen, Ping Luo,
Limin Wang, and Yu Qiao. MVBench: A Comprehensive Multi-modal Video Understanding Benchmark.
arXiv e-prints, art. arXiv:2311.17005, 2023.

Xiaojian Ma, Silong Yong, Zilong Zheng, Qing Li, Yitao Liang, Song-Chun Zhu, and Siyuan Huang. Sqa3d:
Situated question answering in 3d scenes. In International Conference on Learning Representations, 2023.

Yubo Ma, Yuhang Zang, Liangyu Chen, Meiqi Chen, Yizhu Jiao, Xinze Li, Xinyuan Lu, Ziyu Liu, Yan
Ma, Xiaoyi Dong, Pan Zhang, Liangming Pan, Yu-Gang Jiang, Jiaqi Wang, Yixin Cao, and Aixin Sun.
Mmlongbench-doc: Benchmarking long-context document understanding with visualizations, 2024.

Arjun Majumdar, Karmesh Yadav, Sergio Arnaud, Jason Ma, Claire Chen, Sneha Silwal, Aryan Jain, Vincent-
Pierre Berges, Tingfan Wu, Jay Vakil, et al. Where are we in the search for an artificial visual cortex for
embodied intelligence? Advances in Neural Information Processing Systems, 36:655-677, 2023.

Arjun Majumdar, Anurag Ajay, Xiaohan Zhang, Pranav Putta, Sriram Yenamandra, Mikael Henaff, Sneha Silwal,
Paul Mcvay, Oleksandr Maksymets, Sergio Arnaud, Karmesh Yadav, Qiyang Li, Ben Newman, Mohit Sharma,
Vincent Berges, Shiqi Zhang, Pulkit Agrawal, Yonatan Bisk, Dhruv Batra, Mrinal Kalakrishnan, Franziska
Meier, Chris Paxton, Sasha Sax, and Aravind Rajeswaran. Openeqa: Embodied question answering in the era
of foundation models. In Conference on Computer Vision and Pattern Recognition (CVPR), 2024.

Karttikeya Mangalam, Raiymbek Akshulakov, and Jitendra Malik. EgoSchema: A Diagnostic Benchmark for
Very Long-form Video Language Understanding. arXiv e-prints, art. arXiv:2308.09126, 2023.

So Yeon Min, Xavi Puig, Devendra Singh Chaplot, Tsung-Yen Yang, Akshara Rai, Priyam Parashar, Ruslan
Salakhutdinov, Yonatan Bisk, and Roozbeh Mottaghi. Situated Instruction Following. arXiv e-prints, art.
arXiv:2407.12061, 2024.

Tianwei Ni, Michel Ma, Benjamin Eysenbach, and Pierre-Luc Bacon. When do transformers shine in RL?
decoupling memory from credit assignment. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

Jurgis Pasukonis, Timothy P Lillicrap, and Danijar Hafner. Evaluating long-term memory in 3d mazes. In The
Eleventh International Conference on Learning Representations, 2023.

Marco Pleines, Matthias Pallasch, Frank Zimmer, and Mike Preuss. Memory gym: Partially observable
challenges to memory-based agents. In International Conference on Learning Representations, 2023.

Santhosh Kumar Ramakrishnan, Erik Wijmans, Philipp Kraehenbuehl, and Vladlen Koltun. Does spatial
cognition emerge in frontier models? arXiv preprint arXiv:2410.06468, 2024.

Ruchit Rawal, Khalid Saifullah, Ronen Basri, David Jacobs, Gowthami Somepalli, and Tom Goldstein. Cinepile:
A long video question answering dataset and benchmark. arXiv preprint arXiv:2405.08813, 2024.

Allen Z. Ren, Jaden Clark, Anushri Dixit, Masha Itkina, Anirudha Majumdar, and Dorsa Sadigh. Explore until
confident: Efficient exploration for embodied question answering. In arXiv preprint arXiv:2403.15941, 2024.

Vishnu Sashank Dorbala, Prasoon Goyal, Robinson Piramuthu, Michael Johnston, Reza Ghanadhan, and Dinesh
Manocha. S-EQA: Tackling Situational Queries in Embodied Question Answering. arXiv e-prints, art.
arXiv:2405.04732, 2024.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub,
Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra. Habitat: A Platform for Embodied Al
Research. ICCV, 2019.

James A Sethian. A fast marching level set method for monotonically advancing fronts. proceedings of the
National Academy of Sciences, 93(4):1591-1595, 1996.

Dingjie Song, Shunian Chen, Guiming Hardy Chen, Fei Yu, Xiang Wan, and Benyou Wang. Milebench:
Benchmarking mllms in long context. arXiv preprint arXiv:2404.18532, 2024.

Enxin Song, Wenhao Chai, Guanhong Wang, Yucheng Zhang, Haoyang Zhou, Feiyang Wu, Xun Guo, Tian
Ye, Yan Lu, Jeng-Neng Hwang, et al. Moviechat: From dense token to sparse memory for long video
understanding. arXiv preprint arXiv:2307.16449, 2023.

Andrew Szot, Alexander Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah Maestre, Mustafa
Mukadam, Devendra Singh Chaplot, Oleksandr Maksymets, et al. Habitat 2.0: Training home assistants to
rearrange their habitat. In NeurlPS, 2021.

Andrew Szot, Max Schwarzer, Harsh Agrawal, Bogdan Mazoure, Rin Metcalf, Walter Talbott, Natalie Mackraz,
R Devon Hjelm, and Alexander T Toshev. Large language models as generalizable policies for embodied
tasks. In The Twelfth International Conference on Learning Representations, 2024.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer, Damien
Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal understanding across millions
of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin,
Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, et al. Gemma 3 technical report. arXiv preprint
arXiv:2503.19786, 2025.

Cunxiang Wang, Ruoxi Ning, Boqi Pan, Tonghui Wu, Qipeng Guo, Cheng Deng, Guangsheng Bao, Qian Wang,
and Yue Zhang. Novelqa: A benchmark for long-range novel question answering, 2024.

Saim Wani, Shivansh Patel, Unnat Jain, Angel Chang, and Manolis Savva. Multion: Benchmarking semantic
map memory using multi-object navigation. NeurlPS, 2020.

Quanting Xie, So Yeon Min, Tianyi Zhang, Kedi Xu, Aarav Bajaj, Ruslan Salakhutdinov, Matthew Johnson-
Roberson, and Yonatan Bisk. Embodied-RAG: General Non-parametric Embodied Memory for Retrieval and
Generation. arXiv e-prints, art. arXiv:2409.18313, 2024.

Haomiao Xiong, Zongxin Yang, Jiazuo Yu, Yunzhi Zhuge, Lu Zhang, Jiawen Zhu, and Huchuan Lu. Streaming
video understanding and multi-round interaction with memory-enhanced knowledge, 2025.

Zhuo Xu, Hao-Tien Lewis Chiang, Zipeng Fu, Mithun George Jacob, Tingnan Zhang, Tsang-Wei Edward
Lee, Wenhao Yu, Connor Schenck, David Rendleman, Dhruv Shah, Fei Xia, Jasmine Hsu, Jonathan Hoech,
Pete Florence, Sean Kirmani, Sumeet Singh, Vikas Sindhwani, Carolina Parada, Chelsea Finn, Peng Xu,
Sergey Levine, and Jie Tan. Mobility VLA: Multimodal instruction navigation with long-context VLMs and
topological graphs. In 8th Annual Conference on Robot Learning, 2024.

Karmesh Yadav, Arjun Majumdar, Ram Ramrakhya, Naoki Yokoyama, Alexei Baevski, Zsolt Kira, Oleksandr
Maksymets, and Dhruv Batra. Ovrl-v2: A simple state-of-art baseline for imagenav and objectnav. https:
// arziv. org/abs/2303. 07798, 2023.

Jihan Yang, Shusheng Yang, Anjali W Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking in space: How
multimodal large language models see, remember, and recall spaces. arXiv preprint arXiv:2412.14171, 2024.

Sriram Yenamandra, Arun Ramachandran, Karmesh Yadav, Austin Wang, Mukul Khanna, Theophile Gervet,
Tsung-Yen Yang, Vidhi Jain, Alexander William Clegg, John Turner, et al. Homerobot: Open-vocabulary
mobile manipulation. arXiv preprint arXiv:2306.11565, 2023.

Ce Zhang, Taixi Lu, Md Mohaiminul Islam, Ziyang Wang, Shoubin Yu, Mohit Bansal, and Gedas Bertasius. A
simple llm framework for long-range video question-answering, 2023.

Peiyuan Zhang, Kaichen Zhang, Bo Li, Guangtao Zeng, Jingkang Yang, Yuanhan Zhang, Ziyue Wang, Hao-
ran Tan, Chunyuan Li, and Ziwei Liu. Long context transfer from language to vision. arXiv preprint
arXiv:2406.16852, 2024.

Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Shitao Xiao, Xi Yang, Yongping Xiong, Bo Zhang, Tiejun Huang,
and Zheng Liu. Mlvu: A comprehensive benchmark for multi-task long video understanding. arXiv preprint
arXiv:2406.04264, 2024.

Hao Zhu, Raghav Kapoor, So Yeon Min, Winson Han, Jiatai Li, Kaiwen Geng, Graham Neubig, Yonatan
Bisk, Aniruddha Kembhavi, and Luca Weihs. Excalibur: Encouraging and evaluating embodied exploration.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
14931-14942, 2023.

https://arxiv.org/abs/2303.07798
https://arxiv.org/abs/2303.07798

Supplementary Material

A Related Work

Table 2: Comparison of FINDINGDORY with popular memory-focused embodied Al benchmarks.

Benchmark Photorealism i ing Task Specific: Categories # Resulting Tasks ~ Memory Length (7*) Isolates Memory

One-hot
One-hot
One-hot
Language
Language
Language + Image
Language
Language

1 500-1000 steps
3 128-512 steps (Extensible)
500 steps
240 (val/test) X (Uses semantic map)
1600 75 steps
1800 — 3600 (val) 500 steps (Static Env)
21 Requires exploration
~ 6000 (val) 500-3500 steps (Extensible)

MemoryMaze (PaSukonis et al.|2023]
MemoryGym (Pleines et al. 12023
MultiON (Wani et al.| 2020}

SIF (Min et al. 2024}

OpenEQA (Active) (Majumdar et al.|2024]
GoatBench (Khanna* et al.| 2024
Excalibur (Zhu et al.{2023)

Ours

NSO I%x %
A A NN

X% X X X
% % X% X% X% X X

=

In this section, we review related work on long-video question answering and embodied Al bench-
marks that incorporate historical experience in their problem formulation. We defer the discussion of
different approaches for augmenting policies with memory-like mechanisms to Appendix [A.3]

A.1 Video QA benchmarks

Recent analyses of video QA benchmarks (Mangalam et al., 2023 Buch et al.| [2022)) show that
many tasks can be solved by attending to key frames, not full video sequences, suggesting that
current benchmarks may favor keyframe selection over evaluating long-term memory. Long-context
evaluations for foundation models also focus on “needle-in-a-haystack”™ tasks, evaluating retrieval
of specific details rather than integrating information across many segments (Zhang et al.| [2024).
While recent video benchmarks feature more challenging questions (Mangalam et al.,2023; [Li et al.}
2023; Wang et al.} 2024; [Fu et al., 2024; |Song et al., 2023 [2024; [Li et al.| 2023} Rawal et al.,[2024;
Yang et al., [2024; |Zhou et al., [2024; Majumdar et al.||2024), they adopt multiple-choice QA formats
which are not suitable for evaluating fine-grained decision-making over long histories. They may
also allow models to succeed through guessing and are not extensible since they require substantial
human annotation effort.

A.2 Embodied AI benchmarks

Various benchmarks have been proposed to evaluate multi-modal language models in embodied
settings where agents must leverage their experience in environments to improve future decision-
making (Wani et al.,|2020). Many focus on embodied question answering (EQA), such as HM-EQA
(Ren et al., 2024)), which requires active exploration, and Open-EQA (Majumdar et al., |2024])), which
tests VLMs in a passive setting with pre-collected episode histories. Notably, Open-EQA found
that a blind LLLM baseline—one that ignores visual input—still performed well, suggesting that
multiple-choice evaluation can introduce biases and reduce the need for genuine memory recall. Other
benchmarks study the situated instruction following setting where agents must gather information to
interpret ambiguous instructions (Sashank Dorbala et al., [2024; [Ma et al.| 2023} [Min et al., [2024)).
However, many allow agents to sidestep memory challenges by precomputing relevant objects
and locations based on recent history, effectively turning potentially memory-intensive tasks into
structured instruction-following problems. Memory-Maze and Memory-Gym (Pasukonis et al., 2023
Pleines et al.|[2023)) focus on partially observable decision-making with history-based state modeling,
but their simplistic visuals and small state spaces limit their relevance to complex real-world memory
settings.

In Table |2} we compare our proposed benchmark to the most related benchmarks within embodied Al
and RL research with respect to the following desired properties:

1. Photorealism: Measures the visual complexity of environments, affecting the meaningful
evaluation of foundation models trained on real-world data.

2. Scope of semantic reasoning needed over memory: Distinguishes between benchmarks
that require agents to recall diverse semantic information versus a narrow set of attributes
such as object locations.

3. Task Specification: Evaluates whether tasks are defined using flexible language-based
descriptions, enabling richer memory challenges.

4. Memory horizon length: Adapting the definition from N1 et al.| (2023)), this measures
the temporal scope over which memory must be maintained for optimal task performance.

Unlike static benchmarks requiring localized frame recall, dynamic environments demand
reasoning over events distributed across extended observation sequences. This metric
becomes difficult to quantify when tasks require substantial exploration phases.

5. Memory isolation: Whether benchmark performance isolates memory evaluation from
confounding factors, particularly exploration requirements, which represent orthogonal
challenges to memory recall and reasoning.

Our benchmark isolates memory evaluation by avoiding confounding related to exploration and
focuses on careful and extensible task curation with automated metrics, requiring agents to recall and
reason over long-horizon environmental observations.

A.3 An overview of approaches tackling memory in Long VQA and embodied tasks

Many recent works equip large language models with memory-like capabilities through task-specific
knowledge bases or semantic maps for navigation planning (Min et al.,|2024; (Chang et al., 2023]).
MobilityVLA (Xu et al., [2024)) leverages long-context VLMs to process past frames, enabling
goal-frame selection via Gemini, while topological mapping guides navigation without explicit
pathfinding. ReMEmbR (Anwar et al, [2024) and Embodied RAG (Xie et al.| |2024) introduce
nonparametric memory trees to store and retrieve past experiences for planning. For video question
answering, Zhang et al.|(2023)); Kahatapitiya et al.|(2024) propose a streaming-based approach that
accumulates frame-wise captions for later querying. However, this method constrains memory to the
expressivity of vision-language or captioning models, potentially omitting critical details. We include
the hierarchical approach involving long-context VLMs and the approach utilizing textual memory
traces as baselines in our evaluations on the benchmark tasks.

B Limitations

While FINDINGDORY provides a rigorous evaluation framework for long-horizon memory in embod-
ied Al, it has certain limitations that highlight areas for future improvement.

First, our most competitive baseline, which integrates a VLM with a navigation policy, is constrained
by its low-level controller. Current memory-guided navigation policies struggle to take the shortest
paths in large environments after reasoning over long interaction histories. As a result, models perform
poorly on spatial awareness metrics, making it difficult to assess their true memory capabilities beyond
basic path efficiency. Future work should explore improved memory-driven navigation policies to
better leverage long-term spatial reasoning.

Second, in the experience collection phase, our scripted oracle policy for object interactions (Magic
Grasp) executes pick-and-place actions in an unnatural way—objects are abruptly transferred from
the receptacle surface to the agent’s gripper without smooth motion. This may confuse VLMs, as the
sudden change is visually subtle and may be overlooked if the model does not attend to the specific
frames where it occurs. Developing more naturalistic interaction models could improve the realism
and interpretability of memory traces.

Third, while we introduce distractor objects to discourage guessing, we do not explicitly control how
prominently these objects appear in the experience collection phase. Currently, objects the agent
interacts with are often viewed more frequently and closely compared to distractors, which tend to be
featured less prominently in the agent’s field of view. Although some tasks mitigate this by explicitly
referencing non-interacted objects, future iterations of the benchmark may need stronger distractions
by ensuring more balanced exposure between distractors and interacted objects.

Finally, while the experience collection phase involves both navigation and manipulation, the current
interaction phase tasks are all navigation-based, as memory reasoning is primarily required for
locating objects rather than executing pick-and-place actions, which are Markovian once the goal is
known. However, our benchmark is easily extensible to include manipulation-based memory tasks,
which would further enrich the evaluation of long-term reasoning in embodied Al

Despite these limitations, FINDINGDORY establishes a strong foundation for studying long-horizon
memory, offering extensible challenges that will evolve alongside advances in vision-language models
and embodied learning.

C Benchmark Details

C.1 Implementation details

Simulation Setup and Dataset Composition. We build FINDINGDORY using the Habitat simu-
lator (Savva et al., [2019; |Szot et al., 2021)) and scenes from the Habitat Synthetic Scenes Dataset
(HSSD)(Khanna* et al.,|2023)). Our benchmark uses 107 scenes from the training split and 30 from
the validation split, resulting in 1,478 training and 100 validation episodes. We populate these
scenes with the same object sets used in OVMM(Yenamandra et al., 2023), combining assets from
Al2Thor (Kolve et al.| [2017), Amazon-Berkeley Objects (Collins et al.l 2022), Google Scanned
Objects (Downs et al.,[2022), and HSSD (Khanna* et al., [2023).

Across these episodes, we include 839/247 object instances spanning 84/72 distinct categories in
the train/val splits, respectively. Objects are rearranged during the experience collection phase to
induce temporally grounded memory challenges. Additionally, agents interact with 17/16 distinct
receptacle categories in the train/val splits (e.g., tables, chairs, beds). To support attribute-based
tasks (see Table[I)), we generate semantic descriptions of object instances using GPT-40. We prompt
the model with multi-view images of each object to extract attributes such as shape, color, material,
and functionality. These descriptions are used to populate the object attribute task templates (5 total),
which are limited to the validation set and undergo manual quality review.

In total, our benchmark includes 82, 174 training and 5, 876 validation task instances. Details on the
procedural generation pipeline for episodes and instructions are provided in Appendix [C.2]

Agent Setup. We adopt the Hello Robot Stretch embodiment (Kemp et al.,2022) in our simulation.
The agent is equipped with RGB and depth sensors (resolution 640 x 480) and a GPS+Compass sensor.
The agent can execute one of four discrete navigation actions: MOVE_FORWARD (0.25m), TURN_LEFT
/ TURN_RIGHT (by 10°) and a STOP action. During the experience collection phase, the agent can also
manipulate its arm joints (extension, lift, yaw, pitch, roll) and activate a manipulation_mode for
pick-and-place actions, which rotates the base (90°) and directs the head camera toward the gripper.

PDDL-based Task Verification. Since we operate with a large and diverse set of instruction
templates (see Table[I)), we leverage the PDDL (Aeronautiques et al., [1998) specification system
as instantiated in [Szot et al.| (2024). For each instruction template, we create a template goal
condition that uses various predicate expressions such as is_robot_at_object(x, "OBJECT" or
is_robot_at_receptacle(x, "RECEPTACLE" where x is some placeholder variable. These place-
holder variables are sampled based on various constraints such as farget_color or interaction_order
that are defined through the template. Together, the placeholder constraints and goal conditions
enable us to create scalable, automated verification routines for each task in FINDINGDORY.

C.2 FINDINGDORY Episode Creation

In this section, we give details about our episode creation pipeline that allows us to procedurally
generate data for our benchmark.

Object-Receptacle Pairing. The first step in the episode creation involves generating valid spawning
positions for various object-receptacle pairs by sampling entities from the respective split in consider-
ation (train/val). The objective is to identify candidate objects that can be picked up from a start
receptacle and placed stably on a goal receptacle. We use the pipeline proposed in|Yenamandra et al.
(2023) to procedurally generate various object placements on receptacle surfaces by running physics
checks for stable placements. To make the generation procedure easier, we assume that each object
is picked and placed only once during an episode. Additionally, we constrain the start receptacle
category to be distinct from the goal receptacle category. We also ensure that for each candidate
object category, a corresponding non-interacted object of the same category is spawned to serve as
distractor entities during the interaction phase. Figures[@b|and fic|provide a distribution of distractor
objects and receptacles in the val episodes. The number of sampled object-receptacle pairings is
equal to the number of rearrangements in the particular episode and can be configured through an
argument. In essence, this controls the distribution of video frame lengths in the FINDINGDORY
tasks(see Figure[a).

Object Placement Sequences. Once we have identified the set of candidate objects and the
corresponding goal receptacles, we require an oracle policy through which we can “naturally”
drop objects on the receptacle surfaces. In practice, one can achieve this by training a “place”
skill through end-to-end reinforcement learning or use a heuristic agent that can place objects
on receptacles but both frameworks do not guarantee perfect 100% success which is crucial for
solvability in FINDINGDORY tasks. To address this, we construct an offline pipeline that produces
the set of low-level “oracle" joint actions that lead to stably placing the object on the goal receptacle.
We spawn the agent (with the object snapped in its end-effector) at the associated viewpoints of
goal receptacles on the navigation mesh. From each viewpoint, we try to execute a heuristic,
state-machine based placing policy which performs a set of predefined joint effector actions after
identifying a “clutter-free" region in the receptacle pointcloud (using an onboard depth sensor). The
output of this routine produces a set of low level joint actions and the corresponding receptacle
viewpoint for each goal receptacle that was identified in the previous object-receptacle pairing stage.
We reject episodes where the heuristic-based place policy cannot stably place the object from any of
the associated goal receptacle viewpoints.

Task Creation. Once we have the final filtered set of episodes, we populate task instructions for
each episode using yaml-based instruction templates as used in[Szot et al.| (2024). We employ the
instruction templates to procedurally populate various placeholders such as object names, attributes
and appearance orders that create specific task instructions grounded in the entities (objects and
receptacles) present in the episode in an automated manner. We present the diverse instructions
templates we use for each task category in Table [3] In total, we create 82174/5876 unique task
instructions within the train/val split respectively.

Frame Length Distribution Interaction Count Distribution

o
o
!

o
©
s

Frequency
~
o

N

Relative Percentage (%)
N

1500 2000 2500 3000 2 3 4 5 6 7 8 9 10 11
Frame Length Number of Interactions

(a) Distributions of frame counts and interaction counts across episodes.

d d

Distribution of Distractor Objects per Epi Distribution of Receptacles per Epi

BN Candidate Receptacles
0 Non-Interacted Receptacles

Frequency
Frequency

0l
1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20
Number of Distractor Objects Number of Receptacles

(b) Number of objects per episode. (c) Number of receptacles per episode.
Figure 4: Summary statistics of episode data.

C.3 Experience Collection Phase

We now outline the details of the experience collection phase grounded in the episodes created by the
pipeline outlined in the previous section. The experience collection phase is designed to collect a
“clean" and “natural" video sequence of an agent interacting in an home environment while interacting
with various entities. We focus on object rearrangements as the core interaction routine followed by
the embodied agent. We construct an OracleAgent agent that uses privileged information from the
simulator instance to efficiently generate such interaction routines. We now detail the OracleAgent
policy to generate such video sequences for a particular episode.

Nav-to-Pick. The agent begins by being spawned at a random location in the scene associated with a
particular episode. We then query a ShortestPath function that leverages privileged simulator
information to navigate to the object that has to be picked up. The OracleAgent follows the shortest
path to the object and collects images as it navigates in the environment.

Pick. Once the OracleAgent reaches the object location, it executes a hardcoded pick policy
sequence which results in the object being magically grasped by the OracleAgent. The pick
policy uses the onboard depth sensor to orient itself with the object instance placed on the
receptacle infront of the agent. Once the object is in clear view (using the ground truth instance
mask from the simulator), the and effector extends outwards to perform a magic_grasp action.
In cases when the object is not visible, we re-query the ShortestPath function to navigate to
an alternate viewpoint associated with the receptacle that would lead to the object being clearly visible.

Nav-to-Place. After grasping the object, the OracleAgent navigates to the corresponding goal
receptacle that was sampled during the episode creation phase. Specifically, the agent navigates to
the specific viewpoint associated with the goal receptacle from which the pre-recorded placement
action sequence is to be executed.

Place. Once the agent reaches the specific viewpoint, we re-play the end-effector action sequence
that was found to lead to a stable object placement during episode creation. This marks the end of a
single rearrangement interaction routine and the agent transitions to rearrange the next candidate
object in the episode until no more objects are left.

Final Navigation. At the end of all interaction routines within an episode, the agent navigates to a
predefined location to ensure that it does not remain in close proximity to the final interacted object
or the final goal_receptacle. This ensures that tasks are not solvable by selecting only the last few
frames in the video sequence. We ensure that the agent navigates to a distance of 3 m away from the
final interaction location.

The above OracleAgent routine enables us to procedurally create videos of the agent rearranging
objects in the environment. Additionally, as the agent navigates the environment between the pick and
place substeps, it collects additional frames detailing the scene environment which can be useful (or
serve as distractor frames) when attempting to solve FINDINGDORY tasks. We present an example
experience collection trajectory and associated “magic" pick-place sequence in Figures[TT]and [I2]

C.4 Evaluations

In this section, we define the primary evaluation metrics employed to benchmark the performance
of various baselines on the FINDINGDORY tasks. Following Batra et al.| (2020), we focus on
metrics that systematically quantify both the success and efficiency of the agent in solving specified
instructions. Success focuses on accurately selecting frames from the interaction video that lead
to task completion, while efficiency evaluates if the agent selects and navigates to the optimal
frame that solves the task using the fewest low-level control actions. Notably, optimizing effi-
ciency poses a significant challenge for current methods (Ramakrishnan et al.,2024; |Yang et al.| 2024)).

High-Level Policy Success Rate (HL-SR). This metric measures the percentage of episodes in which
the high-level agent correctly predicts frame indices required to solve the specified task. We define
an episode as successful if the frame(s) predicted by the VLM satisfy the following criteria:

* Distance-to-Goal: The agent is within a specified distance of the target entity upon reaching
the predicted frame. We use thresholds of 2.0 m for objects and 0.1 m for receptacles.
The larger threshold for objects accounts for the possibility of objects being positioned on
elongated receptacles (e.g., couches), potentially affecting reachability.

* Angle-to-Goal: The agent is oriented within a specified angular distance toward the target
entity’s center. We set angle thresholds of 45° for objects and 90° for receptacles due to
their typically larger dimensions.

e Semantic Coverage: The semantic mask of the target entity covers at least 0.1% of the pixels
in the frame.

* Room Region Check: For room visitation tasks, we verify if the agent is located within the
designated target region.

These thresholds and criteria were qualitatively validated through manual inspection to ensure their
appropriateness; During evaluation, these criteria are verified by teleporting the robot to the pose
associated with the frame(s) selected by the high-level agent.

Low-Level Policy Success Rate (LL-SR). This metric measures the percentage of episodes where the
low-level navigation agent successfully navigates to the target entity. The low-level agent is activated
only if the high-level agent correctly predicts the frame indices, meaning LL-SR is evaluated condi-
tionally upon HL-SR being true for each episode. The success criteria match those outlined for HL-SR.

Success-weighted-by-Path-Length. This metric evaluates task completion efficiency, computed per
task episode as follows (Batra et al., 2020):

SPL; =S, - _ b
max(p;, ;)

where S; denotes HL.-SR/LL-SR for computing the HL-SPL/LL-SPL respectively, /; is the length of
the shortest possible path to the closest successful goal frame (or shortest path to revisit all subgoals),
and p; is the actual path length traveled by the agent.

Additionally, we introduce two relaxed success metrics to analyze baseline failure modes:

* Distance-to-Goal-Only Success Rate (DTG-SR). Computed identically to HL-SR but with-
out the semantic coverage requirement. This metric helps quantify instances where the agent
selects frames close to the goal without necessarily capturing it visually.

* Semantic Coverage Success Rate (SC-SR). Computed identically to HL-SR but without
the distance-to-goal requirement. This metric evaluates instances where the agent correctly
selects frames showing the target entity but fails to meet proximity criteria.

D Experimental Setup

In this section, we describe the primary baselines evaluated on FINDINGDORY.

D.1 Evaluated Approaches

To establish strong baselines, we adopt a hierarchical architecture (Figure [I0) comprising two
modules:

(1) a high-level goal selection module, which processes the interaction history to select goal frames,
and

(2) a low-level navigation policy, which executes actions to reach the selected frame.

This architecture enables reasoning over long-horizon multimodal experience while delegating fine-
grained control to a learned policy. Inspired by prior work (Xu et al.| [2024), we avoid directly
predicting actions using VLMs due to their poor performance in continuous control, and instead
restrict them to high-level goal prediction.

D.1.1 High-Level Goal Selection

Video LM Agent. This agent receives the full interaction video along with a task instruction. Each
frame in the video is annotated with its index and the time of day at which it was captured. The
agent is tasked with predicting the index of a frame from the video that corresponds to a viable goal
state. Specifically, the predicted frame should represent a viewpoint from which, if the agent were
to navigate back to the same camera position, it could successfully complete the task. Although

the model outputs a single frame index, selecting the correct one often requires reasoning over
multiple temporally scattered observations, including frames where the agent may not be actively
interacting. Since different VLMs are capable of handling different numbers of frames in context, we
subsample the frames passed to each model based on what empirically performs best. We evaluate
both proprietary (Gemini-2.0-Flash (Team et al., 2024)), GPT-40) and open-source (Qwen2.5-VL (Bai
et al.,2025), Gemma-3 (Team et al.| |2025))) vision-language models capable of processing long video
contexts. See Appendices [E.I|to[E.3|for more details.

Textual Memory Agent. Similar to Min et al.| (2024); |Anwar et al.| (2024), we also consider an
explicit, memory-building baseline which breaks down the video frames into chunks and uses a VLM
to generate textual summaries for each video chunk. After “captioning” the entire video sequence, the
VLM selects frame indices by reasoning over the generated textual descriptions. See Appendix [E.4]
for more details.

Supervised Fine-Tuning (SFT). We additionally explore a supervised fine-tuning approach where
the high-level VLM is trained to predict goal frame indices, given the task prompt and interaction
history. Since multiple frames may validly represent the goal (e.g., several consecutive frames
showing an object being placed), we supervise the model on the full list of acceptable target frames.
At test time, a single frame is sampled from the list of predictions and is considered correct if it
matches any of these valid frames. This setup enables the model to learn task-specific cues from
examples and serves as a stronger baseline than zero-shot prompting, particularly for tasks requiring
subtle temporal grounding. We provide additional details in Appendix [E.3]

D.1.2 Low-Level Navigation

To execute the high-level plan, we use a low-level policy that takes the selected goal frame and
outputs discrete actions: MOVE-FORWARD, TURN-RIGHT, TURN-LEFT, and STOP. Our primary policy
is the LSTM-based controller from OVRLv2 (Yadav et al.l2023), trained to reach image goals from
egocentric RGB-D observations (see Appendix [F.1)).

We also evaluate a mapping-based policy that deterministically navigates to the location corresponding
to the goal frame using a global map, without relying on learned visual features (Appendix [F.2).

Solvability. Since the action space of our high-level baseline is constrained to frames observed during
the experience collection phase, there are tasks for which this is insufficient. For example, in the task
“Navigate to a room that you did not visit yesterday,” all available waypoints correspond to previously
visited locations, making it impossible to satisfy the instruction regardless of the selected frame.
To establish an upper bound on task difficulty, we quantify the percentage of episodes that could
theoretically be solved through optimal goal selection from interaction history, assuming perfect
navigation (teleportation) to the selected waypoint. This upper bound is the dashed line (Oracle) in

Figure[T]
D.2 Evaluation Metrics

We benchmark agent performance on the FINDINGDORY tasks using Low Level Success Rate
(LL-SR), assessing whether the agent finds the right target entities, and Low Level Success-weighted-
by-Path-Length (LL-SPL), evaluating if the agent selects and navigates to the optimal entity using the
shortest possible path. Since we use a hierarchical baseline, we additionally introduce a High-Level
Policy Success Rate (HL-SR), and High-Level Policy SPL (HL-SPL) which measures the accuracy
and efficiency of the high-level policy in selecting the correct and closest goal frames for navigation.
To further analyze failure modes, we also report two relaxed variants: Distance-to-Goal-Only SR
(DTG-SR), which relaxes the requirement that the target object must be visible in the selected frame,
and Semantic Coverage SR (SC-SR), which ignores spatial proximity. Additional metrics, success
criteria, and threshold specifics are provided in Appendix [C.4]

E Baseline Details

E.1 Gemini Agent

We experiment with the gemini-2.0-flash model which can process upto 1 million tokens in the
context window. We strictly follow the outlined Google Gemini API developer guidelines (gem)

gemini-2.0-flash Task Prompt

You are an intelligent question answering agent. In the prompt video preceeding the text, you will be
shown a long stream of images that have been collected by a robot while navigating around a home
and asked to answer a question about the space to assist a user in completing tasks in this home. In
the video stream, the robot is picking up objects and rearranging them to different arbitrary locations
throughout the house.

The questions asked by user will require being able to look at the full set of images collected by robot
to be able to provide the answer. Your task is to identify the exact point in the video (by timestamp)
where the user should move to best accomplish their goal. You can do this by outputting the exact
timestep in the video where you are most confident that the object or place that they should move to,
was viewed closely.

The images in the video also have the time of day information in top left. You need to use the time of
day information for tasks that require to revisit objects or receptacles at a specific time of day.

For some tasks that require revisiting multiple receptacles or objects, you should output multiple
frame indices corresponding to the correct order of revisitation (only if specified). For all user goals,
identify the minimum number of objects or receptacles (targets) that you need to revisit to complete the
user’s goal. For each revisitation, you should select one corresponding timestep in the video that you
will move to. You need to ensure that you are not revisiting targets that are not relevant to the user’s goal.

Generate timestamps in the MM: SS format where the first two digits represent minutes and the last two
digits represent seconds. To solve the tasks effectively, you should try to summarize the video by listing
out the objects that were picked and placed, the receptacles from which each object was picked up and
the receptacle where it was dropped.

The user’s goal is to: {goal}. Now look at the full video containing all the images. Give
your final response with NUM_TARGETS_TO_REVISIT: ||<num_target>||. TIMESTAMP_INDEX:
| |<timestamp_1>,...,<timestamp_num_target>||. You can include multiple timestamps if the
task requires visiting more than one target (one timestamp for each target). Do not add any other text.

Figure 5: System Prompt for gemini-2.0-flash model

to structure the prompt and perform API calls over the long videos in the FINDINGDORY tasks.
We do not use a “structured output” format such as json in the output responses as we empirically
observed it failed to produce coherent outputs when supplied with long videos in the context. Since
the gemini-2.0-flash model expects the input frames to be sampled at 1 FPS, we prompt the
model to directly generate specific timestamps in the recommended MM: SS format to localize the
frame corresponding to the target entity. We provide the detailed prompt that we use for evaluations

in Fig.]
E.2 Qwen and Gemma Agent

We run the Qwen2.5-VL-7B (Bai et al.| |2025) and Gemma3-12B (Team et al.| |2025) locally for
evaluations on the FINDINGDORY tasks. The Qwen model uses a maximum of 768 frames sampled
uniformly across the input sequence while Gemma does not impose a maximum frame limit. For
evaluation on 768 frames, we use two A40 GPUs with 48GB of memory. For experiments with
shorter context lengths and higher subsampling (24—384 frames), a single A40 GPU suffices. We
provide the full task prompt we use for inference with Qwen and Gemma in Fig. [6] and utilize
structured JSON outputs.

E.3 GPT Agent

We use the official OpenAl GPT-40 (Hurst et al.||2024)) API to run evaluations on the FINDINGDORY
tasks with video frames subsampled at 96 frames to optimize API costs. For running complete
evaluation on the entire validation task suite, we incurred a total cost of ~ 400 USD. We provide the
full system prompt used for GPT-40 evaluations in Fig.

Qwen/Qwen2.5-VL-7B-Instruct and google/gemma-3-12b-it Task
Prompt

You are an expert and intelligent question answering agent. You will be shown a video that was
collected by a robot yesterday while navigating around a house and picking and placing objects. Your
job is to help the robot complete a task today by looking at the video and finding the frame indices that
the robot should move to. Make sure your response is all within the JSON.

Note:
- The robot uses a magic grasp action to pick up an object, where a gripper goes close to the object and
the object gets magically picked up.

Output Format (should be in JSON format):

[T

json
{

"chain_of_thought": str.

"frame_indices": list[int].
}
€c¢
Where:
- Chain of Thought: A detailed explanation of the robot’s thought process in determining the frame
indices.
- Frame Indices: The frame indices in the video stream showing the object or place that the robot should
move to.

- When deciding which frame indices to choose, make sure you choose the frame indices that are closest
to the object/place.

- If task requires the agent to go to multiple places, output one frame index per object/place. (Do not use
ellipsis)

The robot’s goal is: {goall}

Figure 6: System Prompt for Qwen2.5-VL and Gemma3 model

E.4 Text Agent

We implement the the text-based VLM agent using the Qwen2.5-VL (Bai et al., 2025) model. For
every chunk_size number of frames in the video, we generate a description using the VLM. We then
attach the frame indices and time of day information to the generated summary for the frame window
in consideration. We use the prompt shown in Fig. [§]to generate the structured JSON outputs for
each chunk in the video. We then concatenate all the generated JSON outputs and pass it to the Qwen
model to perform text-only reasoning over the entire text-based history of the video. The text-based
reasoning prompt is provided in Fig. [0] We note that using the same Qwen model for generating the
individual text summaries and performing the final text-based reasoning helps in optimizing inference
load as we maintain only a single instance of the VLM through the entire evaluation.

E.5 Supervised Finetuning Baseline

We leverage the FINDINGDORY training split which consists of 82174 unique task instantiations
across the categories mentioned in Table [I} Each video-instruction pair is coupled with a list of
ground-truth frame indices that solve the task. For multi-goal tasks, each subgoal has a corresponding
ground-truth frame indices sublist. Since the FINDINGDORY video sequences can be extremely long,
we uniformly subsample all videos to 96 frames. The ground truth frame indices are also subsampled
to match the shorter video lengths to ensure the model chooses from within the subsampled frames.

Training Details. We conduct full-finetuning of the Qwen/Qwen2.5-VL-3B model using the open-
source huggingface/trl library. For hyperparameter optimization, we utilized a smaller represen-
tative split of the training dataset with 36274 samples and conducted a grid search over the learning
rate, num_epochs and weight_decay parameters. The best checkpoints from all runs were selected by
evaluating performance on all video-instruction pairs in the full validation split. This “offline" evalua-

gpt-40-2024-07-18 Task Prompt

** OBJECTIVE **

You are an expert and intelligent question answering agent. You will be shown a video that was
collected by a robot yesterday while navigating around a house and picking and placing objects.

Your job is to help the robot complete a task today by looking at the video and finding the frame indices
that the robot should move to, to complete the task.

*## OUTPUT FORMAT **

(l(json

"chain_of_thought": str.

"frame_indices": list[int].
(X3
Where:
- Chain of Thought: A detailed explanation of the robot’s thought process in determining the frame
indices.
- Frame Indices: The frame indices in the video stream showing the object or place that the robot should
move to.
- When deciding which frame indices to choose, make sure you choose the frame indices that are closest
to the object/place.
- If task requires the agent to go to multiple places, output one frame index per object/place.

** NOTES **
- The robot uses a magic grasp action to pick up an object, where a gripper goes close to the object and
the object gets magically picked up.

sk TASK *
The robot’s goal is: {goal}

Figure 7: System Prompt for gpt-4o0 model

tion is conducted without instantiating the simulator by directly comparing the model’s predicted
keyframe indices with the ground-truth keyframe indices using exact string matching (thus, we dont
compute metrics proposed in Appendix [D.2)). We use the cosine learning rate decay scheduler for all
experiments. For the final training on the larger dataset, we found that a learning rate of 5 x 10~°
over 5 epochs with 0 weight decay worked best. For all experiments, we train in bfloat16 format
using 8 A40 GPUs on a single node with a batch size of 1 and gradient_accumulation of 4 - providing
an effective batch_size of 32 samples. To further optimize training, we use gradient_checkpointing
and highly optimized flash_attention implementation. In this setup, the full training run takes ~ 120
hrs to complete.

Goal Sampling for Online Simulator Eval. The best trained checkpoint is used in online simulator
evaluations on the FINDINGDORY task suite. Since the model is trained to predict the complete list
of ground-truth frame indices, we select a single representative index from each generated subgoal
solution list to serve as the predicted frame index. Empirically, we found that choosing either the first
or a random index (of a sublist corresponding to a subgoal) yields comparable performance, while
using the last index results in slightly worse performance. Therefore, we use the first index of each
list as a simple and effective heuristic.

F Low-level Policy Details

F.1 Image-Goal Navigation Agent

Policy Training. We train the image-goal navigation policy using the architecture and training recipe
described in [Yadav et al.|(2023). Specifically, we employ an end-to-end reinforcement learning
policy trained using DDPPO, which predicts discrete navigation actions conditioned on visual RGB
inputs and a goal image. The agent utilizes a ViT based visual encoder along with a 2-layer LSTM
backbone. Similar to OVRL-v2 (Yadav et al.,|2023), the output patch representations from the ViT

10

Text Agent (VLM) Task Prompt

You are an expert and intelligent question answering agent. You will be shown a stream of
{chunk_size} images taken by a robot while navigating around a simulated house and picking and
placing objects. Your job is to describe the image based on the output format. Make sure your response
is all within the JSON format.

Output Format (should be in JSON format):

cc¢

json
{
"room_name": str.
"picking_placing_or_navigating": str("picking", "placing" or "navigating").

"object_being_manipulated": str.
"receptacle_being_manipulated": str.
"other_objects_in_scene": list[str].

(X3

Where:

- Room name: The name of the room the robot is in.

- Picking, placing, or navigating: Whether the robot is picking or placing an object, or navigating
around the house.

- Object being manipulated: The object that the robot is picking or placing (if relevant).

- Receptacle being manipulated: The receptacle that the robot is picking up from or placing an object
into (if relevant).

- Other objects in scene: Objects present in the scene besides the main object and the receptacle.

Note:
- The robot uses a magic grasp action to pick up an object, where a gripper goes close to the object and
the object gets magically picked up.

Figure 8: System Prompt for Qwen2.5-VL model to generate text summaries based on chunk_size
frames

are reshaped into a 3D grid and downsampled to a lower dimension using a convolutional layer called
the compression layer. However, we slightly deviate from OVRL-v2 by first concatenating the patch
representations from the current and goal images before passing them through the compression layer.

The policy training occurs in the training scene split of the HSSD dataset (Khanna* et al.| [2023)),
consisting of 1166 episodes distributed across 111 scenes (a subset of the original 125 training
scenes). In the Habitat simulator, the agent is modeled as a Hello Robot Stretch (Kemp et al., 2022)
with a height of 1.41 m and a cylindrical base radius of 0.25 m. The agent’s RGB sensor is positioned
at a height of 1.31 m, with a resolution of 160 x 120 pixels and a horizontal field of view of 43°.
During training, each episode has a maximum step budget of 1000 steps, with success defined by
invoking the STOP action within 1.0 m of the goal image position.

As our visual encoder, we use the VC-1-Base (Majumdar et al., 2023)) model which was previously
finetuned with ImageNav on a smaller training scene split from the HSSD dataset. Empirically, we
found that freezing the visual encoder after this targeted finetuning significantly accelerates the overall
training performance. During the VC-1 finetuning, we use a smaller learning rate of 1.5 x 10~ for
the encoder.

We train the agents for a total of 500M timesteps on 32 A40 GPUs running 32 parallel environments
each (1024 envs in total). Following the approach from Majumdar et al.| (2023)), we collect 64 steps
of experience and subsequently perform 2 PPO epochs with a mini-batch size of 2. The reward
function employed is the improved formulation proposed by |Yadav et al.|(2023)), using parameters:
success weighting ¢, = 5.0, angle success weighting ¢, = 5.0, goal radius r, = 1.0, angle threshold
0, = 25°, and slack penalty v = —0.002. We optimize using AdamW with a learning rate of
2.5 x 10~* and weight decay 1076,

11

Text Agent (LLM) Task Prompt

You are an expert and intelligent question answering agent. You will be provided a list of textual
descriptions of the environment created by an agent while navigating around a house and picking and
placing objects. The descriptions correspond to logs made after collecting and viewing a small chunk
of frames, and contain information about which frame numbers they correspond to. You will also be
provided a goal that now needs to be accomplished, for which you will need to use the history to decide
where to go. Your job is to identify the desired frame index to navigate to, based on the provided task.
Make sure your response is all within the JSON.

Agent’s History information:

- Room name: The name of the room the agent was in.

- Picking, placing, or navigating: Whether the robot was picking or placing an object, or navigating
around the house.

- Object being manipulated: The object that the robot was picking or placing (if relevant).

- Receptacle being manipulated: The receptacle that the robot was picking up from or placing an object
into (if relevant).

- Other objects in scene: Objects present in the scene besides the main object and the receptacle.

Output Format (should be in JSON format):

(X3

json
{
"chain_of_thought": str.
"frame_indices": list[int].
[
Where:

- Chain of Thought: A detailed explanation of your thought process in determining the frame indices.
- Frame Indices: A list of one or more frame indices relevant to accomplishing the goal.

- If its a single object/place task, output only one frame index.

- If task requires the agent to go to multiple places, output one frame index per object/place. (Do not use
ellipsis)

Agent’s history: history

The goal is {goal}

Figure 9: System Prompt for Qwen2.5-VL model to perform textual reasoning over the concatenated
textual summaries

We select the best-performing policy checkpoint based on a validation success rate obtained by
evaluating on 1000 image-goal navigation episodes from the FINDINGDORY validation set, achieving
a success rate of 78% and SPL of 48.21%.

F.2 Explicit Mapping Agent

We augment the OracleAgent (see Appendix|C.3)) with a top-down occupancy map as it navigates the
environment to generate the video sequence. In addition, we also store the 2D poses corresponding
to each frame that is collected in the video sequence. The constructed map is employed by a
path planning module to generate a deterministic navigation sequence to the 2D map coordinates
that correspond to the image-goal location selected by the high-level goal selection agent (see
Appendix [D.T).

Map Construction. We leverage the onboard depth sensor and project the depth image at each
timestep into an egocentric pointcloud using camera intrinsics. The pointcloud is then binned along
the z-axis to compute occupancy values on a local 2D grid map centered around the current position
of the agent. The pose sensor provides the instantaneous pose of the agent which is employed to
register the computed local map in the global map of the environment. In this way, we continuously
update the global map as the OracleAgent navigates the environment and visits multiple pick-place

12

Output
CoT: I see a toy bee on
the table in frame 48. —> 10 low-
frane Index: [18] level policy

Vision Language Model
(VLM)

Prompt
You are an intelligent agent.

Locate the frames the agent
should navigate to, to finish
the task.

Goal is: Find a toy bee.

VC-1
ViT-Base 7

Ay

2 \

> COMP _sec_3 1sTM —>FC— &

Layer

Goal Image
Tied
Weights

VC-1
ViT-Base

Current
Location

Goal
Position
Current Image

Image-Goal Navigation Agent Mapping Agent

Figure 10: Hierarchical agent architecture when using a VLM for goal frame selection and low level
policies for action generation.

targets. We freeze the map updates during the pick-place subroutines as no additional occupancy
information is encountered during their execution.

Planner. When the high-level goal agent selects a particular goal frame, we lookup the corresponding
target 2D pose in the global map. Simlar to the local navigation policy employed in
(2023)), we use the Fast Marching Method [1996) to generate the shortest path to the goal
pose. We use one of four discrete navigation actions (see Appendix [C.I)) to reach each waypoint on
the generated shortest path.

13

G Qualitative Examples

In this section, we include representative qualitative examples from the FINDINGDORY task suite.
In Figure [TT] we provide a birds-eye view depiction of the trajectory executed during experience
collection (see Appendix [C.3) in a validation episode involving 5 pick-place interaction routines.
For this episode, the collected video consists of 1308 frames in total. We provide detailed responses
(and meta-analysis) from various baselines across the various task categories in Figures[T3|to[T8] In
the following, we briefly discuss the different failure modes encountered in the generated responses
across the 3 high-level task categories defined in Table[T]

Single-Goal Spatial Tasks. We observe that for the Object Recall task (Figure[[3)), the models are
able to identify a frame with the target chest of drawers but do not select the closest frames to ensure
success. In the Interaction based tasks (Figures[I3]and [I4), we observe models fail to accurately list
the sequence of interaction events which can be partially attributed to supplying only 96 subsampled
frames from the original video. In one case, GPT-4o instead focuses on a “distractor” target object
(Figure[T4). All models perform poorly on the Spatial Relationship tasks (Figure[T4) as they are
unable to coherently reason about the spatial layout of the house in the provided video.

Single-Goal Temporal Tasks. For the Interaction Order task, we observe that the closed-source
models are able to accurately identify the target object but the open-source variants fail to do so
(Figure [T6). Models are generally able to select the correct frame in the Time-Based task as the
model only needs to retrieve a single frame corresponding to the correct overlaid timestamp. For
the Duration Tracking task, only GPT-40 generates the correct reasoning and frame prediction.
Intersetingly, Gemma-3 tries to track the duration spent in each room by matching the floor color
observed in the images but eventually fails at the task (Figure[T7).

Multi-Goal Tasks. All models fail to perform successfully on tasks under this category. Only GPT-4o0
gets a correct response for all subgoals. Surprisingly, the reasoning trace has a hallucination but this
mistake is omitted in the final frame sequence prediction (Figure[I8). The models struggle to coher-
ently list the event sequence and also hallucinate interactions. Furthermore, Gemini-2.0-flash
also struggles to adapt the sequence of events it lists into the query revisitation sequence specified in
the task (Figure[T8).

Figure 11: An example experience collection trajectory executed by OracleAgent.

14

Figure 12: Example “magic" pick-place sequences executed by the OracleAgent for sample episode

in Fig. [TT}

15

Single-Goal Spatial Tasks
Object Recall

Task: Navigate to a chest of drawers.

?(GPT-40: To accomplish the task of navigating to a chest of drawers, I need to identify the frames where the
chest of drawers is visible. The focus will be on frames showing the chest of drawers most prominently and
closely. Starting from frame @, I will scan through the images focusing on furniture that matches a typical
chest of drawers. I observed a chest of drawers in frames 53 and 54 located in the kitchen area, which confirms
the presence in those frames.

frame_indices: [53]

Meta Analysis: Misidentifies kitchen counter as target object

\// Gemini-2.0-flash: The robot performs the following actions: - Picks up a green spray bottle and blue
lunchbox from a chair and places it on a table. - Picks up an apple from a table and places it on another
chair. - Picks up the lunchbox from the table and puts it in the bathroom sink. - Picks up a shoe from a shelf
and places it next to a lamp on a bedside table. - Picks up a green alarm clock from a dresser and places it
near the washing machine. - Picks up a panda figurine from a shelf and places it next to the lamp. - Picks up
the spray bottle from the bedside table. - Picks up the panda figurine from bedside table and places it near a
chair. The user wants to navigate to a chest of drawers. The video shows chest of drawers at [00:37], [00:47]
[00:53], [00:71], [00:78]. NUM_TARGETS_TO_REVISIT: ||1||. TIMESTAMP_INDEX: ||00:37|

frame_indices: [37]

?(Qwen-2.5-VL: The robot needs to navigate to a chest of drawers. In the video, the robot moves through
various rooms and eventually reaches a room with a chest of drawers visible on the right side of the screen.
frame_indices: [49]

Meta Analysis: Selects a frame too distant from the target despite a closer one being available

?< Gemma-3: The robot needs to navigate to a chest of drawers. I will examine the video frames to identify the
chest of drawers and select the frame index that shows the chest of drawers clearly. The chest of drawers
appears in frames 71, 72, and 78. Frame 71 shows the chest of drawers clearly, so I will select that frame
index.

frame_indices: [71]

Meta Analysis: Selects a frame too distant from the target despite a closer one being available

?(Text Agent: The goal is to navigate to a chest of drawers. From the history, we see that the agent
navigated through various rooms including the bedroom and living room. The dresser mentioned in the placing
action at frame index 672 could be a chest of drawers. Therefore, the most relevant frame index to achieve the
goal is 672.

frame_indices: [672]

Meta Analysis: Selects a frame where target objects is not visible but was visible in nearby frames

Interaction
Task: Navigate to any receptacle you placed an object on.

\// GPT-40: To find a frame where the robot placed an object on a receptacle, I analyzed the video frames. In
Frame 15, the robot places a lunchbox on a table. This frame clearly shows the object being placed, which
matches the goal of navigating to a receptacle where an object was placed. Thus, Frame 15 is the most relevant
frame for the task.

frame_indices: [15]

?(Gemini-2.0-flash: Here's a breakdown of the objects picked and placed in the video, to help answer the
user's question: * **Spray bottle:** Picked from a chair (00:03), placed on a nightstand (01:16). *

| unchbox: Picked from a chair (00:03), placed on a bathroom sink (80:25). * **Apple:** Picked from a table
(00:07), kept on the ottoman (01:34). * **Shoe:** Picked from shelf (00:33), placed under lamp (00:41). *
Alarm clock: Picked from a side table (00:55), kept on bathroom sink (81:05). * **Toy:** Picked from a
table (01:27), placed on a chair (01:33). The user wants to navigate to any receptacle where an object was
placed. So, we can choose any of the destination receptacles. Let's pick the ottoman (where the apple was
placed). NUM_TARGETS_TO_REVISIT: |[1]|. TIMESTAMP_INDEX: ||@1:34]|

frame_indices: [94]

Meta Analysis: Misidentifies the location of placing the apple which is the table

?(Qwen-2.5-VL: The robot needs to navigate to a receptacle where it previously placed an object. From the

video, we can see that the robot has placed various objects on different surfaces such as tables, chairs, and

dressers. To achieve the goal, the robot should identify the last object it placed and then move to the
receptacle where it was placed.

frame_indices: [12, 25, 47, 63, 78, 93]

ﬂeta Analysis: Provides incorrect reasoning and identifies multiple frames (some incorrect) instead of single
rame

?(Gemma-3: The robot needs to navigate to the receptacles where it placed objects. Let's analyze the video to
identify those frames. 1. **Frame 11:** The robot places a suitcase on a table. 2. **Frame 26:** The robot
places a suitcase on a sink. 3. **Frame 65:** The robot places a clock on a sink. 4. **Frame 93:** The robot
places a suitcase on a chair. Therefore, the frame indices to navigate to are 11, 26, 65, and 93.
frame_indices: [11, 26, 65, 93]

Meta Analysis: Incorrect event tracking and reasoning leads to misidentified frames

\// Text Agent: The goal is to navigate to any receptacle where an object has been placed. From the history
the last action was placing an alarm clock on the dresser in the bedroom. Therefore, I should navigate to the
bedroom.

frame_indices: [576]

Meta Analysis: Incorrect event tracking but still selects a valid frame

Figure 13: FINDINGDORY Spatial Tasks for the sample episode in Figure|l1} Each VLM model uses
96 subsampled frames. Text Agent processes full video as defined in Appendix @
16

Single-Goal Spatial Tasks

Conditional Interaction
Task: Navigate to the receptacle that you picked the backpack from.

>< GPT-40: The task requires the robot to return to the receptacle where it previously picked up the backpack. By reviewing
the sequence of frames in the video, frames 3 through 17 show the robot's interaction with the backpack. The backpack is
first clearly seen on a chair in frame 3, and the robot interacts with it until frame 17. After frame 17, the robot seems to
have moved away from the chair with the backpack. Thus, the frame closest to the object (the chair with the backpack) before
it was picked is frame 3.

frame_indices: [3]

Meta Analysis: Ignores backpack that was picked from the table and focuses on “distractor” backpack that agent never
interacted with

?(Gemini-2.0-flash: Here's a breakdown of the video and the solution: * **Video Summary:** * The robot picks up a green
spray bottle and a dinosaur lunchbox from a chair (00:03). * The robot picks up a red apple from a table (00:07). * The
robot picks up the dinosaur lunchbox from a table (00:15). * The robot places the dinosaur lunchbox on a bathroom sink
(00:26). * The robot picks up a black-and-blue sneakers from a shelf (00:33). * The robot places a black-and-blue sneakers
on the cabinet next to a table lamp (00:41). * The robot picks up the green alarm clock (00:56). * The robot placed the
alarm clock next to the lunch box on the bathroom counter (01:05). * The robot picks up the green spray bottle and panda toy
from the cabinet next to the lamp (081:16). * The robot places the green spray bottle and the lunchbox back on the chair
(01:33). * **Task:** Navigate to the receptacle that you picked the backpack from. * **Solution:** The robot picked the
backpack from the chair at 00:03. Therefore, the response is: NUM_TARGETS_TO_REVISIT: ||1||. TIMESTAMP_INDEX: ||00:03|
frame_indices: [3]

Meta Analysis: Correctly tracks events but makes error in reasoning over the events

\//gwen-Z.S-VL: The robot needs to navigate back to the location where it picked up the backpack. From the video, the
backpack was picked up on frame 16 when the robot was in the bathroom. Therefore, the robot should move to the frame where
the backpack was last seen.

frame_indices: [16]

Meta Analysis: Backpack was dropped in the bathroom

v/’Gemma-3: The robot picked up the backpack from a receptacle. I need to find the frame index where the receptacle is
visible. The backpack was picked up in frames 15-16. The receptacle is the small table with a dinosaur-themed bag on it. The
frame index where the receptacle is visible is frame 15.

frame_indices: [15]

?(Text Agent: The goal is to navigate to the receptacle where the backpack was picked. From the history, we see that the
backpack was picked in the bedroom at frame index 384. Therefore, we should navigate to the bedroom.

frame_indices: [384]

Meta Analysis: Incorrect event tracking

Spatial Relationship

Task: Navigate to the receptacle that you picked an object from which is the farthest from your current location.

XGPT-4o: The robot picked up objects from various receptacles during the navigation. To determine the farthest receptacle
from the current location, it's important to identify the locations where the robot previously picked up items and then
calculate which of these locations is the farthest from the end point of the video. Key frames to consider include: - Frame
4: Picked up an item from the chair near the glass door. - Frame 17: Picked up an item from a table in what seems to be the
living area. - Frame 41: Picked up a shoe from a different location. The current location (final frame) seems to indicate
the robot is in a bedroom. Relative to this, the farthest picking location would likely be Frame 4, where the robot picked
an item up from a chair near the glass door. This probable distance is because the living room and shoe area seem to be
closer to the bedroom than the chair near the glass door. Thus, the robot should navigate to the receptacle at Frame 4.
frame_indices: [4]

Meta Analysis: Incorrect description of final agent location as bedroom. In addition, chair from which item was picked is
visible clearly visible in final frame

?(Gemini-2.0-flash: Here's how we can solve this problem: 1. **Summarize the Robot's Actions:** * **Chair:** * Picked up a
spray bottle and a lunchbox from the chair near the sliding doors (00:03). * Placed the spray bottle on the nightstand next
to the lamp in the bedroom (@1:16). * Picked up an apple from the table in the balcony (00:07). * Dropped the lunchbox on
the bathroom sink (00:26). * **Tablex* * Picked up a shoe from the shelf behind the sofa (80:33). * Dropped the shoe to the
nightstand (00:41). * **Washing Machine** * Picked up an alarm clock from the top of washing machine(80:56). * Dropped the
alarm clock near the lunchbox in the bathroom sink (01:08). * **Chair near sofa** * Picked up a toy from the chair near the
sofa(01:27). * Dropped the lunchbox near the chair in the balcony (01:35). 2. **Determine Distances:** * The chair near the
sliding doors and washing machine appears to be the farthest receptacles from current position (frame 00:00). 3. **Identify
the First Receptacle:** The first receptacle is the chair near the sliding doors. 4. **Final Answer:** Based on the
analysis, the final answer is: NUM_TARGETS_TO_REVISIT: ||1]|. TIMESTAMP_INDEX: ||00:03]|
frame_indices: [3]

Meta Analysis: Incorrect event tracking and no clear spatial reasoning exhibited

?(Qwen-2.5-VL: The robot needs to navigate to the farthest receptacle from its current location. It has previously picked
up a red object from a table and a lunchbox from a sink. The red object is on a table, and the lunchbox is on a sink. The
table is located in the dining area, and the sink is in the bathroom. The dining area is further away from the current
location than the bathroom. Therefore, the robot should move towards the dining area.
frame_indices: [12]

Meta Analysis: Agent final location is close to the chair from which the red object was picked

?(Gemma-3: The robot's goal is to navigate to the receptacle that it picked an object from which is the farthest from its
current location. The robot picked up a blue object from a table in the first few frames. The receptacle is the table. The
table is located in the outdoor area of the house. The robot is currently in the bathroom. Therefore, the robot should
navigate to frame 84, which shows the table in the outdoor area.
frame_indices: [84]

Meta Analysis: Incorrect event tracking and spatial reasoning

?(Text Agent: To determine the farthest receptacle from the current location, we need to calculate the distance between
the agent and each receptacle it has interacted with. However, since we don't have explicit distance data, we'll assume the
order of rooms visited reflects the order of interaction. The farthest room from the starting point would likely be the last
one visited. In this case, the last room visited is the 'living room' at frame index 1308.

frame_indices: [1308]

Meta Analysis: No spatial reasoning and reliance on unfounded assumptions

Figure 14: FINDINGDORY Spatial Tasks for the sample episode in Figure Each VLM model uses
96 subsampled frames. Text Agent processes full video as defined in Appendix@
17

Single-Goal Spatial Tasks

Object Attributes
Task: Navigate to a red colored object again that you interacted with yesterday.

\//GPT-4o: The video shows consecutive frames captured by a robot inside a house. The task is to identify the frame
where the robot had an interaction with a red-colored object. Upon reviewing the frames, the robot interacted
closely with a red apple. This interaction can be observed between frames 6 and 11, with the robot's gripper
appearing close to the apple. Therefore, the frame where the robot seems closest to the apple is frame 7.
frame_indices: [7]

\//Gemini-Z.G-flash: The robot picks up the following objects and places them at different locations: - A green
spray bottle and a lunch box from a chair and places them on a table in the bathroom (frame 26). - A red apple from
a table and does not drop it, implies it is still holding it (frame 11). - A shoe from a shelf and drops it next to
a lamp in a bedroom (frame 41). - An alarm clock from a counter and drops it near the lunch box in the bathroom
(frame 65). - A panda toy from a shelf in a bedroom and drops it near the spray bottle (frame 77). The user wants to
revisit the red colored object (red apple). Since the robot never dropped it, we should revisit the table where it
picked up the apple to see if it placed it back there. NUM_TARGETS_TO_REVISIT: ||1||. TIMESTAMP_INDEX: ||00:07]|
frame_indices: [7]

Meta Analysis: Does not identify the dropping of apple on table but selects correct frame based on where the apple
was viewed

\//Qwen-Z.S-VL: The robot needs to navigate back to the red object it interacted with yesterday. From the video
frames, the red object appears on a table in the living room at frame 10.
frame_indices: [10]

?(Gemma-3: The robot's goal is to navigate to a red colored object that it interacted with yesterday. Looking
through the video, I can see the robot interacting with a red suitcase multiple times. The first time the robot
interacts with the red suitcase is around frame 15. The robot then interacts with the suitcase again around frame
25, 66, 68, 86, 92, and 95. I will choose frame 15 as the frame index to navigate to the red suitcase.
frame_indices: [15]

Meta Analysis: Fails to identify the red apple object that was dropped on the table

?< Text Agent: To accomplish the goal of navigating to a red colored object, I need to identify the red object from
the history. From the given history, there is no explicit mention of a red object. However, if we assume the red
object was picked or placed at some point, we should look for the most recent navigation action involving a red
object. Since the history does not specify the color, we'll choose the last navigation action as it might be the
most recent interaction.
frame_indices: [1308]

Meta Analysis: Fails to identify the red apple object that was dropped on the table

Room Visitation

Task: Navigate to the room where you placed the backpack in.

?(GPT-40: The robot needs to find the room where it placed the backpack. While reviewing the frames, the backpack
appears prominently in frames 3, 25, and 93, among others. The most recent placement seems to be in frame 93, which
occurs at time 11:06, showing the backpack is located on a chair initially visible in the earlier part of the
video. This suggests that the robot placed the backpack there later in the sequence since it was previously
interacting with it near the bathroom sink (frame 25). Thus, the correct location the robot should navigate to is
found in frame 93.

frame_indices: [93]

Meta Analysis: Focuses on “distractor” backpack that agent never interacted with

v/’Gemini-Z.a-flash: Here's a breakdown of the objects picked and placed, to help answer the question: * **Spray
Bottle:** Picked from the chair at 00:03, placed on the nightstand at 81:16 * **Red Apple:** Picked from the table
at 00:07, placed on the chair at 00:03 * **Shoe:** Picked from shelf at 00:33, placed near the lamp at 00:41 *
Lunchbox: Picked from table at 00:15, placed on bathroom counter at 00:26 * **Clock:** Picked from the drawer
at 00:56, placed on the lunchbox on bathroom counter at 81:05 * **Panda Toy:** Placed on the nightstand at 61:16
picked from the nightstand lamp table at ©1:16, placed on table at 0@8:15 The lunchbox (referred to as "backpack" in
the prompt) was placed on the bathroom counter. So, to navigate to where the backpack was placed, we should go to
the bathroom. NUM_TARGETS_TO_REVISIT: ||1||. TIMESTAMP_INDEX: ||00:26|

frame_indices: [26]

\// Qwen-2.5-VL: The robot needs to navigate to the room where it placed the backpack. From the video, we can see
the backpack being placed on a sink in a bathroom. The robot should move to this location to find the backpack.
frame_indices: [25]

?(Gemma-3: The robot needs to navigate to the room where the backpack was placed. From the video, the backpack
was placed on a chair in a room with a table and a plant. The frames showing the backpack on the chair are frames
93 and 95. I will choose frame 93 as it is a clearer view of the backpack and the surrounding environment.
frame_indices: [93]

Meta Analysis: Focuses on “distractor” backpack that agent never interacted with

?(Text Agent: To determine the room where the backpack was placed, I need to find the frame where the agent was
placing an object. From the history, the last frame where the agent was placing an object was at frame 672, where
the alarm clock was placed on the dresser in the bedroom. Since the goal is to navigate to the room where the
backpack was placed, we should look for a frame where the agent was navigating to a specific room. The next
navigation frame is at 768, which is in the bathroom. However, there is no indication that the backpack was placed
in the bathroom. The next navigation frame is at 864, which is in the bathroom as well. The next navigation frame
is at 960, which is in the bedroom. Therefore, the backpack was likely placed in the bedroom.

frame_indices: [960]

Meta Analysis: Misses tracking frames where backpack is picked from table in living room and placed in bathroom
sink

Figure 15: FINDINGDORY Spatial Tasks for the sample episode in Figure Each VLM model uses
96 subsampled frames. Text Agent processes full video as defined in Appendix@
18

Single-Goal Temporal Tasks
Interaction Order
Task: Navigate to the object you that you interacted with between the interactions with apple and shoe.

w/’GPT-4o: First, identify the interactions involving the apple and shoe. The apple interaction occurs at
frames 7 to 11. The shoe interaction occurs at frames 33 to 43. Between these interactions, the robot
interacted with a lunchbox. The relevant frames for this interaction are from 25 to 28 and 64 to 68. The robot
should navigate to the lunchbox in this task.

frame_indices: [26]

7(Gemini-2.0-flash: Here's a breakdown of the robot's actions in the video: 1. **00:03**: Robot picks up a
spray bottle and lunchbox from a chair. 2. **@@:07**: Robot picks up an apple from a table. 3. **0@:15%%:
Robot places the lunchbox on another table. 4. **@@:25%*: Robot places the lunchbox on the bathroom sink. 5.
00:33: Robot picks up a shoe from a shelf. 6. **@@:41**: Robot places the shoe under a lamp on a
nightstand. 7. **@@:55%*: Robot picks up an alarm clock from a table. 8. **@1:05%*: Robot places the alarm
clock near the lunchbox on the bathroom sink. 9. **@1:16**: Robot places the spray bottle on a nightstand. The
object interacted with between the apple and shoe is the lunchbox. It was picked up at 00:03 and placed on the
sink at 00:25. NUM_TARGETS_TO_REVISIT: ||1||. TIMESTAMP_INDEX: ||00:03|
frame_indices: [3]

Meta Analysis: Correct event tracking and target identification but incorrectly navigates to the object
picking location instead of final placement location

?(Qwen-2.5-VL: The robot needs to navigate from the apple interaction to the shoe interaction. The apple
interaction occurred at frame 10, and the shoe interaction occurred at frame 35. Therefore, the robot should
move to the frame right after the apple interaction.
frame_indices: [11]

Meta Analysis: Fails to identify the backpack target object for navigation

?(Gemma-3: The robot interacted with an apple in frame 7 and a shoe in frame 43. The object between these
interactions is the green alarm clock. The robot interacted with the alarm clock in frame 55. Therefore, the
frame index to move to is 55.
frame_indices: [55]

Meta Analysis: Incorrect target object identification due to temporal reasoning error

?(Text Agent: The goal is to navigate to the object you interacted with between the interactions with apple
and shoe. From the history, the interaction with the apple occurred at frame 672 and the interaction with the
shoe occurred at frame 384. Therefore, we need to find the frame index between these two events.
frame_indices: [576]

Meta Analysis: Incorrect event tracking and ignores the initial interaction with the apple

Time-Based

Task: Navigate to the object that you interacted with at 8:26 yesterday.
**For this task, the query timestamp can be slightly different but target solution object remains constant

V/IGPT—40: To find the frame index where the robot should move, we need to first identify the object that was
interacted with at 8:06. Reviewing the timestamps on the images, we can see that the robot interacted with an
object around that time. At 8:08 (frame 39), the robot is near the nightstand with a lamp and small weights.
The robot's interaction here suggests it is the object of interest. Moving a bit further into frames, the shoe
is being interacted with from frame 39 to frame 41. Therefore, the frame closest to this moment, and thus
relevant for the task, is frame 39.

frame_indices: [39]

\/%emini-z.a-flash: The robot performs the following actions: - Picks up a spray bottle from the chair
(00:03), - Picks up an apple from the table (00:07), - Picks up a lunchbox from the table (00:16), - Places
lunchbox on bathroom sink (80:26), - Picks up a shoe from the shelf (00:33), - Places shoe on the nightstand
(00:41), - Picks up an alarm clock from the table next to the washing machine (00:56), - Places alarm clock on
the bathroom sink next to lunchbox (81:85), - Picks up a panda figurine next to the lamp (81:16), - Places
spray bottle next to the lamp (81:17). The user is asking to revisit the object that was interacted with at
08:21, which is the shoe. NUM_TARGETS_TO_REVISIT: ||1||. TIMESTAMP_INDEX: ||00:41]|

frame_indices: [41]

\/’Qwen-Z.S-VL: The robot needs to navigate back to the object it interacted with at 8:26 yesterday. From the
video frames, the object it interacted with appears to be a shoe on the floor near the bed at frame 43.
frame_indices: [43]

?(Gemma-3: The robot interacted with a suitcase at 08:27. I need to find the frame index where the robot is
closest to the suitcase. Looking at the images, the suitcase is visible in frames 64, 65, 66, 67, 68, 69, 88
90, 92, 93, 94, 95. Frame 93 seems to be the closest to the suitcase.
frame_indices: [93]

Meta Analysis: Identifies the incorrect target object. In addition, focuses on the “distractor” backpack which
was not interacted with

7(Text Agent: To determine the frame index corresponding to the interaction at 8:27 yesterday, I need to
find the timestamp closest to 8:27. The timestamps provided are in a 24-hour format, so 8:27 would be 26:27 in
military time. The closest timestamp in the history is 09:27, which corresponds to the frame indices 864 and
960. Since the goal is to navigate to the object interacted with at 8:27, we should choose the frame index
that aligns with this timestamp.
frame_indices: [864]

Meta Analysis: Erroneous conversion of query timestamp to a new value (89:27). But retrieves the correct
object corresponding to interaction at 89:27

Figure 16: FINDINGDORY Temporal Tasks for the sample episode in Figure Each VLM model
uses 96 subsampled frames. Text Agent processes full video as defined in Appendix @
19

Single-Goal Temporal Tasks
Duration Tracking
Task: Navigate to to the room that you spent most time in.

v//GPT-4o: I need to identify which room the robot spent the most time in during the navigation. Analyzing
the frames, the setting shifts around a few distinct locations, primarily different rooms in the house. The
living room appears frequently, with repetitive views of chairs, tables, and decorative setups. The frames
in the living room span from the start, go through frames with consistent furniture and decor like in frames
1-12, and reappear frequently towards the latter part, such as around frames 50-60ish. Other parts like the
bathroom or kitchen have fewer frames indicating less time spent. Thus, identifying the living room as the
room where the robot spent the most time, the earliest close frame in that setting is a good reference for
moving to the dominant room setting.

frame_indices: [1]

?< Gemini-2.0-flash: The robot spends most of its time in the living room and the bedroom. Since both rooms
are spent similar amount of time, I will default to choosing the living room. NUM_TARGETS_TO_REVISIT: ||1]].
TIMESTAMP_INDEX: |[01:34]|
frame_indices: [94]

Meta Analysis: Decides to choose the living room but selects a frame where agent is in the smaller patio
area

>< Qwen-2.5-VL: The robot needs to navigate to the room it spent the most time in. Based on the frames, the
robot spends more time in the bedroom, as indicated by the higher frame numbers and the presence of personal
items like a bed, nightstand, and alarm clock. Therefore, the robot should move to the bedroom.
frame_indices: [40]

Meta Analysis: Ignores the large proportion of frames that are situated in the living room

>< Gemma-3: The robot spent most of its time in the room with the blue floor. The video starts in a room
with a blue wall, then moves to a room with a white floor, then to a room with a blue floor. The robot
spends a significant amount of time in the room with the blue floor, moving around and interacting with
various objects. The robot then moves to a room with a white floor, then to a room with a blue wall, then to
a bathroom, and then back to the room with the blue floor. Therefore, the robot should navigate to the room
with the blue floor.
frame_indices: [1, 51, 52, 58, 66, 81, 82, 83, 92, 93, 94, 95]
Meta Analysis: Does not reason about the general semantic structure of the rooms. Selects multiple correct
:rames based on matching the floor color but selects incorrect frames from the patio area due to similar
loor color

v/,Text Agent: To determine the room where the agent spent the most time, I need to calculate the duration
of time spent in each room. The timestamps provide the start and end times for each navigation event. By
subtracting the start timestamp from the end timestamp, we can calculate the duration of time spent in each
room. The room with the longest duration is the one where the agent spent the most time.

frame_indices: [1248]

Meta Analysis: Selects correct frame but does not provide concrete duration spent in each room

Figure 17: FINDINGDORY Temporal Tasks for the sample episode in Figure Each VLM model
uses 96 subsampled frames. Text Agent processes full video as defined in Appendix @

20

Multi-Goal Tasks
Unordered Revisitation
Task: Revisit all the receptacles you picked objects from yesterday.

\/GPT-4o: The video shows the robot navigating through a house while picking up objects from various receptacles. To
complete the task, the robot needs to revisit the same receptacles where objects were picked up. 1. Frame 3 shows the robot
picking an object from the chair. Revisit this chair. 2. Frame 7 shows the robot picking an object (an apple) from the
dining table. Revisit this table. 3. Frame 15 shows the robot picking an object from a round table beside a chair. Revisit
this table. 4. Frame 33 shows the robot picking a shoe from a low shelf. Revisit this shelf. 5. Frame 55 shows the robot
picking a clock from a countertop. Revisit this countertop. 6. Frame 76 shows the robot picking a spray bottle from a side
table near a lamp. Revisit this table. These are the main locations the robot picked objects from, so these frames need to
be revisited.

frame_indices: [3, 15, 33, 55, 76]

Meta Analysis: Incorrectly identifies apple being picked from table whereas the apple was dropped on table. But omits index
7 in final solution without any clear reason

?(Gemini-2.0-flash: Here's a breakdown of the objects picked and placed, to determine the receptacles that need
revisiting: * **Spray bottle & Lunchbox:** * Picked from: Chair in the living room (00:63) * Placed on: Chair in the living
room (00:04), then plant table (00:15), then sink (00:26). * **Apple:** * Picked from: Plant table (00:07) * Placed on:
Plant table (00:11). * **Shoe:** * Picked from: Shelf in living room (00:33) * Placed on: Nightstand in bedroom (00:41). *
unchbox: * Picked from: Sink in bathroom (00:27) * Placed on: Ottoman (01:24) * **Clock:** * Picked from: Washing
Machine (@0:56) * Placed on: Sink in bathroom (01:08) * **Panda Toy:** * Picked from: Nightstand in bedroom (01:16) * Placed
on: Chair in living room (01:27) Now, let's identify the timestamps for revisiting the original receptacles: 1. **Chair in
living room:** Where the spray bottle and lunchbox were initially placed. (00:03) 2. **Plant table:** Where the apple was
initially placed. (00:07) 3. **Shelf in living room:** Where the shoe was initially placed. (00:33) 4. **Washing machine:**
Where the clock was initially placed. (00:56) 5. **Nightstand in bedroom:** Where the panda toy was initially placed.
(01:16) 6. **Sink in bathroom** Where the lunchbox was initially placed. (00:27) NUM_TARGETS_TO_REVISIT: |[6]].
TIMESTAMP_INDEX: ||00:03,00:07,00:33,00:56,01:16,00:27]|

frame_indices: [3, 7, 33, 56, 76, 27

Meta Analysis: Incorrect event tracking and misidentifies backpack placement frames as pick frames

?(Qwen-2.5-VL: The robot needs to revisit all the receptacles it picked objects from yesterday. From the video, we can see
that the robot picked up objects from various receptacles such as a table, a suitcase, a nightstand, and a dresser. To
achieve the goal, the robot should revisit these locations in the order they were visited.

frame_indices: [12 16, 34, 50]

Meta Analysis: Inadequate reasoning and hallucinates suitcase as a receptacle

?(Gemma-3: Error parsing output
frame_indices: [-1]
Meta Analysis: Model fails to produce any coherent output

>< Text Agent: To revisit all the receptacles from which objects were picked yesterday, I need to identify the rooms where
objects were picked and then navigate back to those rooms. From the history, we see that objects were picked from the living
room, kitchen, bedroom, and bathroom. Therefore, I should navigate to these rooms.

frame indices: [0, 96, 192, 288, 384, 480, 576, 672, 768, 864, 960, 1056, 1152, 1248]

Meta Analysis: Incorrectly focuses only on room revisitation instead of revisitlng specific receptacles

Ordered Revisitation

Task: Revisit all the receptacles you placed objects on yesterday in specific order. The order to revisit them is: fifth
second, first, third.

?(6PT-40: The robot needs to revisit specific receptacles in order. To do this, it needs to identify the frames where
objects were placed: 1. **First Receptacle (Fifth in order of placement):** - Frame 64: Lunchbox on the sink in the
bathroom. 2. **Second Receptacle (Second in order of placementg :¥% - Frame 7: Apple on the table in the dining area. 3.
Third Receptacle (First in order of placement): - Frame 16: Lunchbox on the small table in the living room. 4. **Fourth
Receptacle (Third in order of placement):** - Frame 33: Shoe on the shelf in the entryway. The robot should start with the
lunchbox on the sink (fifth placement), then the apple on the table (second placement{ revisit the lunchbox in the living
room (first placement), and finally go to the shoe on the shelf (third placement).

frame_indices: [64, 7, 16, 33

Meta Analysis: Unable to list out the original object placement events and then adapt to the query revisitation sequence

?(Gemini-2.0-flash: Here's a summary of the objects picked and placed, and their locations: * **Apple:** Picked from the
table near the plant (00:07), placed on the table on the balcon (00:93%. * **Spray bottle:** Picked from the chair on the
balcony (00:03), placed under the lamp on the nightstand (@1:16§. * **Shoe:** Picked from the shelf (00:33), placed under
the lamp on the nightstand (@1:41). * **Lunchbox:** Picked from the table (80:15), placed on the bathroom counter (00:25). *
Clock: Picked from the table next to the washing machine (00:55), placed on the bathroom counter next to lunchbox
(01:05). * **Panda:** Picked from under the lamp on the nightstand, placed on the side table in living room #91:27). Given
the objects and placements, let's identify the receptacles for revisitation in the required order: 1. The fifth item that
was placed was the **clock** on the bathroom counter. 2. The second item that was placed was the **spray bottle** under the
lamp on the nightstand. 3. The first item that was placed was the **apple** on the chair on the balcony. 4. The third item
that was placed was the **shoe** under the lamp on the nightstand. Here are the timestamps: * **Lunchbox and clock on the
bathroom counter:** 00:25 * **Spray bottle and shoe on the nightstand:** @1:16 * **Apple on the chair on the balcony:**
00:03 ' text NUM_TARGETS_TO_REVISIT: ||4||. TIMESTAMP_INDEX: ||00:25,01:16,00:03,01:16|| °

frame_indices: [25, 76, 3, 76]

Meta Analysis: Correctly lists out original placement sequence although hallucinates interaction with spray bottle. Confuses
picking and placement timestamps while generating final solution

?(Qwen-2.5-VL: The robot needs to revisit the receptacles it placed objects on yesterday in the specified order: fifth
second, first, third. To achieve this, we need to identify the frames where these receptacles were visited. The frames
provided show the robot interacting with various objects and moving through different rooms. We need to find the frames
corresponding to the receptacles in the given order.

frame_indices: [59, 13, 26, 48]

Meta Analysis: No clear reason1ng on how the original placement sequence was adapted to the query revisitation seqeuence

?(Gemma-3: Error parsing output
frame_indices: [-1]
Meta Analysis: Model fails to produce any coherent output

?(Text Agent: To accomplish the goal of revisiting the receptacles in the specified order, I need to identify the
receptacles that were placed with objects. From the history, the receptacles mentioned are 'dresser' and 'sink'. The order
to revisit them is fifth, second, first, third. Based on the timestamps and room names, the 'dresser' was visited at frame
indices 672 and 768, and the 'sink' was visited at frame indices 288 and 384. The order given is fifth, second, first,
third, so we should start with the 'dresser' (frame indices 672 and 768), then the 'sink' (frame indices 288 and 384).
frame_indices: [672, 768, 288, 384]

Meta Analysis: Only lists out two receptacles on which objects were placed but task requires revisiting all of them

Figure 18: FINDINGDORY Multi-Goal Tasks for the sample episode in Figure Each VLM model
uses 96 subsampled frames. Text Agent processes full video as defined in Append1x@
21

Table 3: Task Categories with all associated prompts

Memory Type

Example Instructions

Object Recall

Interaction

Conditional
Interaction

Object Attributes

Spatial Relationship

Room Visitation

Navigate to a {target_object_name}.

Navigate to a {target_receptacle_name}.

Navigate to any receptacle you interacted with.

Navigate to any receptacle you did not interact with.

Navigate to any object that you interacted with yesterday.

Navigate to any object that you did not interact with yesterday.

Navigate to any receptacle you picked an object from.

Navigate to any receptacle you placed an object from.

Navigate to the {target_object_name} that you interacted with yesterday.

Navigate to a {target_object_name} that you did not interact with yesterday.

Navigate to a {target_receptacle_name} you did not interact with yesterday.

Navigate to a {target_receptacle_name} you picked an object from.

Navigate to a {target_receptacle_name} you placed an object on.

Navigate to the receptacle that you picked the {target_object_name} from.

Navigate to the object that you picked from the {target_receptacle_name}.

Navigate back to a {target_shape} shaped object that you interacted with yesterday.
Navigate back to a {target_color} colored object that you interacted with yesterday.
Navigate to an interacted object with {target_print_or_design} on it.

Find an already interacted object that is made of {target material}.

Go back to an interacted object that is used for {target_functionality}.

Navigate to the receptacle that you interacted with which is the farthest from your current
location.

Navigate to the receptacle that you did not interact with which is the farthest from your
current location.

Navigate to the receptacle that you picked an object from which is the farthest from your
current location.

Navigate to the receptacle that you placed an object on which is the farthest from your
current location.

Navigate to the object which you interacted with which is the farthest from your current
location.

Navigate to the room where you picked the {target_appearance_order} object from.
Navigate to the room where you placed the {target_appearance_order} object in.
Navigate to the room where you picked the {target_object_name} from.

Navigate to the room where you placed the {target_object_name} in.

Navigate to a room that you did not visit yesterday.

Navigate to the {target_appearance_order} object that you interacted with yesterday.
Navigate to the {target_appearance_order} receptacle that you picked an object from.
Navigate to the {target_appearance_order} receptacle that you placed an object on.
Navigate to the receptacle that you picked the {target_appearance_order} object from.
Navigate to the object that you picked from the {target_appearance_order} receptacle.
Navigate to the object you interacted with immediately after ending the interaction with
{target_object_name}.

Navigate to the object you interacted with immediately before interacting with {tar-
get_object_name}.

Navigate to the object you interacted with {target_num_counts} interactions after {tar-
get_object_name}.

Navigate to the object you interacted with {target_num_counts} interactions before {tar-
get_object_name}.

Navigate to the object that you interacted with between the interactions with {tar-
get_object_name_1} and {target_object_name_2}.

Navigate to the receptacle that you placed an object on right before you started interacting
with {target_object_name]}.

Navigate to the receptacle that you picked an object from right after you finished interacting
with {target_object_name}.

Continued on the next page...

22

Interaction Order

Memory Type Example Instructions
Navigate to the receptacle that you placed an object on {target_num_counts} interactions
before you started interacting with {target_object_name}.
Navigate to the receptacle that you picked an object from {target_num_counts} interactions
after you finished interacting with {target_object_name}.
Navigate to the receptacle that you placed an object on between the interactions with
{target_object_name_1} and {target_object_name_2}.
Navigate to the receptacle that you picked an object from between the interactions with
{target_object_name_1} and {target_object_name_2}.

Time-Based Navigate to the receptacle that you interacted with at {XX:XX} yesterday.
Navigate to the object that you interacted with at {XX:XX} yesterday.
Navigate to the object which took the longest time to rearrange.

Duration Tracking Navigate to the room that you spent the most time in.
Navigate to the object which took the shortest time to rearrange.
Revisit all the receptacles you picked objects from yesterday.
Revisit all the receptacles you placed objects on yesterday.

Unordered Revisit all the {target_receptacle_name} you placed objects on yesterday.

Revisitation Revisit all the {target_receptacle_name} you picked objects from yesterday.
Revisit all the objects you interacted with yesterday.
Revisit all the receptacles you interacted with yesterday.
Revisit all the receptacles you picked objects from yesterday in specific order.

Ordered
Revisitation Revisit all the receptacles you placed objects on yesterday in specific order.

Revisit all the objects you interacted with yesterday in specific order.

23

	Introduction
	FindingDory
	Benchmark Overview
	Tasks

	Results
	Conclusion
	Related Work
	Video QA benchmarks
	Embodied AI benchmarks
	An overview of approaches tackling memory in Long VQA and embodied tasks

	Limitations
	Benchmark Details
	Implementation details
	FindingDory Episode Creation
	Experience Collection Phase
	Evaluations

	Experimental Setup
	Evaluated Approaches
	High-Level Goal Selection
	Low-Level Navigation

	Evaluation Metrics

	Baseline Details
	Gemini Agent
	Qwen and Gemma Agent
	GPT Agent
	Text Agent
	Supervised Finetuning Baseline

	Low-level Policy Details
	Image-Goal Navigation Agent
	Explicit Mapping Agent

	Qualitative Examples

