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ABSTRACT

This work studies heterogeneous Multi-Objective Reinforcement Learning
(MORL), where objectives exhibit considerable discrepancies in, amongst others,
sparsity. The heterogeneity can cause dense objectives to overshadow sparse but
long-term rewards, leading to sample inefficiency. To address this issue, we pro-
pose Parallel Reward Integration with reflectional Symmetry for heterogeneous
MORL (PRISM), a novel algorithm that aligns reward channels and enforces re-
flectional symmetry as an inductive bias. We design ReSymNet, a theory-inspired
model that aligns time frequency across objectives, leveraging residual blocks to
gradually learn a ‘scaled opportunity value’ for accelerating exploration while
maintaining the optimal policy. Based on the aligned reward objectives, we then
propose SymReg, a reflectional equivariance regulariser to enforce reflectional
symmetry in terms of agent mirroring. SymReg constrains the policy search to a
reflection-equivariant subspace that is provably of reduced hypothesis complexity,
thereby improving generalisability. Across MuJoCo benchmarks, PRISM con-
sistently outperforms the baseline and oracle (with full dense rewards) in both
Pareto coverage and distributional balance, achieving hypervolume gains of over
100% against the baseline and even up to 32% against the oracle. The code is at
https://anonymous.4open.science/r/reward_shaping-1CCB.

1 INTRODUCTION

Reinforcement Learning (RL) has been approaching human-level capabilities in many decision-
making tasks, such as playing Go (Silver et al., 2017), autonomous vehicles (Kiran et al., 2021),
robotics (Tang et al., 2025a), and finance (Hambly et al., 2023). Multi-Objective Reinforcement
Learning (MORL) extends this framework to handle multiple reward channels simultaneously, al-
lowing agents to balance competing objectives efficiently (Liu et al., 2014; Hayes et al., 2022). For
example, a self-driving car must constantly balance multiple goals, such as minimising travel time
while maximising passenger safety and energy efficiency. Prioritising speed would compromise
the safety objectives, introducing the need for flexible and robust policies that can optimise across
diverse and sometimes conflicting goals.

This paper considers an important, yet premature, setting where reward channels exhibit consid-
erable heterogeneity in facets such as sparsity. Dense objectives can overshadow their sparse and
long-horizon counterparts, steering policies toward short-term gains, while neglecting the objectives
that are harder to optimise but potentially more important. A straightforward approach is to employ
reward shaping methods to align the reward channels. However, existing algorithms, such as intrin-
sic curiosity (Pathak et al., 2017; Aubret et al., 2019) and attention-based exploration (Wei et al.,
2025), are developed for single-objective cases and have significant deficiencies: separately shaping
individual objectives can distort the Pareto front and structures between objectives. This highlights
a critical gap in the literature: MORL requires a reward shaping method that enables efficient inte-
gration of the parallel but heterogeneous reward signals, leveraging their intrinsic structure, in order
to improve sample efficiency.

To this end, we propose Parallel Reward Integration with reflectional Symmetry for Multi-objective
reinforcement learning (PRISM), a method that structurally shapes the reward channels and lever-
ages the reflectional symmetry in agents in heterogeneous MORL problems. We design a Reward
Symmetry Network (ReSymNet) that predicts the reward given the state of the system and any avail-
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able performance indicators (e.g., dense rewards in this work). The available sparse rewards are used
as supervised targets. In ReSymNet, residual blocks are employed to approximate the ‘scaled op-
portunity value’, which has been proven to help accelerate training, decrease the approximation
error, while maintaining the optimal solution of the native reward signals (Laud, 2004). ReSymNet
stacks residual blocks that progressively refine per-step predictions through additive corrections, re-
constructing dense reward signals. It aims at maintaining consistent optima with the original sparse
objectives while ironing out the heterogeneity and enhancing performance. After proper training,
our ReSymNet can be a plug-and-play technique, compatible with any off-the-shelf MORL algo-
rithm in an iterative refinement cycle, where the agent observes the shaped rewards to improve its
policy and the reward model observes better trajectories from the updated policy to improve the
approximated reward function. To exploit the structural information across reward signals, we de-
sign a Symmetry Regulariser (SymReg) to enforce reflectional equivariance of the objectives, which
provably reduces the hypothesis complexity. Intuitively, incorporating reflectional symmetry as an
inductive bias allows an agent to generalise experience from one situation to its mirrored counterpart.

The complementary components of PRISM synergise as follows. Heterogeneous reward structures
cause asymmetric policy learning that violates the agent’s physical symmetry: when dense objec-
tives provide immediate gradients while sparse objectives only signal at the end of an episode, the
policy may overfit to the denser objectives in specific states, failing to respect reflectional symmetry.
ReSymNet eliminates temporal heterogeneity by aligning objectives to the same frequency, whereas
SymReg enforces reflectional symmetry by preventing asymmetric learning dynamics.

We prove that PRISM constrains the policy search into a subspace of reflection-equivariant policies.
This subspace is a projection of the original policy space, induced by the reflectional symmetry op-
erator, provably of reduced hypothesis complexity, measured by covering number (Zhou, 2002) and
Rademacher complexity (Bartlett & Mendelson, 2002). This reduced complexity is further trans-
lated to improved generalisation guarantees. In practice, this means that by encouraging policies to
respect natural symmetries, the agent effectively searches over a smaller, more structured hypothe-
sis space, reducing overfitting and improving sample efficiency. We further extend this analysis to
the approximately reflection-equivariant cases, where PRISM does not necessarily converge to the
reflection-equivariant subspace exactly, showing that policies in this more realistic setting inherit
similarly improved generalisability.

We conduct extensive experiments on the MuJoCo MORL environments (Todorov et al., 2012; Fel-
ten et al., 2023), using Concave-Augmented Pareto Q-learning (CAPQL) (Lu et al., 2023) as the
backbone for PRISM. Sparse rewards are constructed by releasing cumulative rewards at the end of
an episode. PRISM achieves hypervolume gains of over 100% against the baseline operating directly
on sparse signals, and even up to 32% over the oracle (full dense rewards), indicating a substantially
improved Pareto front coverage. These gains are echoed in distributional metrics, confirming that
PRISM learns a set of policies that are also better balanced and more robust. Comprehensive ab-
lation studies further confirm that the design of ReSymNet and the inclusion of SymReg are both
critical.

2 RELATED WORK

Multi-Objective Reinforcement Learning. MORL algorithms typically fall into three categories:
(1) single-policy methods that optimise user-specified scalarisations (Moffaert et al., 2013; Lu et al.,
2023; Hayes et al., 2022); (2) multi-policy methods that approximate the Pareto front by solving
multiple scalarisations or training policies in parallel (Roijers et al., 2015; Van Moffaert & Nowé,
2014; Reymond & Nowé, 2019; Lautenbacher et al., 2025); and (3) meta-policy and single universal
policy methods that learn adaptable policies given some preferences (Chen et al., 2019; Yang et al.,
2019; Basaklar et al., 2023; Mu et al., 2025; Liu et al., 2025). While these works have advanced
Pareto-optimal learning, less attention has been given to heterogeneity in reward structures.

Reward Shaping. A large volume of literature tackles sparse rewards through reward shaping.
Potential-based shaping (Ng et al., 1999) ensures policy invariance but requires hand-crafted poten-
tials. However, this method’s reliance on a manually designed potential function proved limiting.
Intrinsic motivation methods reward novelty or exploration (Pathak et al., 2017; Burda et al., 2019),
while self-supervised methods predict extrinsic returns from trajectories (Memarian et al., 2021;
Devidze et al., 2022; Holmes & Chi, 2025). Recent advances utilise statistical decomposition to
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address sparsity (Gangwani et al., 2020; Ren et al., 2022), or capture complex reward dependen-
cies using transformers (Tang et al., 2024; 2025b). These approaches improve sample efficiency in
single-objective RL, but do not extend naturally to MORL, where heterogeneous sparsity and scale
can distort learning dynamics and Pareto-optimal trade-offs.

Reflectional Equivariance. To incorporate reflectional symmetry, a possible method is data aug-
mentation, which adds mirrored transitions to the replay buffer but doesn’t guarantee a symmetric
policy and increases data processing costs (Lin et al., 2020). Mondal et al. (2022) propose latent
space learning that encourages a symmetric representation through specialised loss functions. An-
other line of research focuses on equivariant neural networks (van der Pol et al., 2020; Mondal et al.,
2020; Wang et al., 2021). For example, Wang et al. (2022) design a stronger inductive bias via
architecture-level symmetry, which hard-codes equivariance into the model for instantaneous gener-
alisation. However, Park et al. (2025) show that strictly equivariant architectures can be too rigid for
tasks where symmetries are approximate rather than perfect. Building on this insight, our framework
helps overcome the limitations of strictly equivariant architectures through tunable flexibility whilst
being model-agnostic.

3 PRELIMINARIES

Multi-Objective Markov Decision Process. Formally, we define an MORL problem via the Multi-
Objective Markov Decision Process (MOMDP) model, as a tuple M = (S,A,P, r, γ): an agent at
state s from a finite or continuous state space S, taking action a from a finite or continuous action
space A, moves herself according to a transition probability function P : S × A × S ′ → [0, 1],
also denoted as P (s′|s, a). The agent receives a reward via an L-dimensional vector-valued reward
function r : S×A → RL, where L is the reward channel number, which decays by a discount factor
γ ∈ [0, 1). The goal in MORL is to find a policy π : S → A that optimises the expected cumulative
vector return, defined as J(π) = Eπ [

∑∞
t=0 γ

trt]. This paper addresses episodic tasks, where each
interaction sequence has a finite horizon and concludes when the agent reaches a terminal state, at
which point the environment is reset. Episodes τi are i.i.d. draws from the behaviour distribution D,
which describes the probability of observing different possible trajectories under the policy being
followed.

Reward Sparsity. Reward sparsity can be modelled as releasing the cumulative reward accumulated
since the last non-zero reward with probability prel at each timestep. When prel = 0, this reduces
to the most extreme case: the agent receives rewards from dense channels DC = {d1, d2, . . . , dD}
with observable rewards rdi

t at every timestep, but the sparse channel is revealed only once at the
end of the episode as Rsp

T =
∑T

t=1 r
sp
t . The central challenge is to recover instantaneous sparse

rewards rspt for each (st, at) using only the cumulative observation Rsp
T and correlations with dense

channels. Formally, given a trajectory τ = {(s1, a1), . . . , (sT , aT )} with cumulative sparse reward
Rsp(τ), the task is to infer rsp = [rsp1 , . . . , r

sp
T ]⊤, where rspt is the sparse reward at timestep t, such

that
∑T

t=1 r
sp
t ≈ Rsp(τ). For prel > 0, an episode decomposes into sub-trajectories where the same

formulation applies.

Generalisability and Hypothesis Complexity. A generalisation gap, at the episodic level, charac-
terises the generalisability from a good empirical performance to its expected performance on new
data (Wang et al., 2019). It depends on the hypothesis set’s complexity, which is measured in this
work by covering number (Zhou, 2002) and Rademacher complexity (Bartlett & Mendelson, 2002).

Definition 1 (l∞,1 distance). Let X be a feature space and F a space of functions from X to Rn.
The l∞,1-distance on the space F is defined as l∞,1(f, g) = maxx∈X (

∑n
i=1 |fi(x)− gi(x)|).

Definition 2 (covering number). The covering number, denoted N∞,1(F , r), is the minimum num-
ber of balls of radius r required to completely cover the function space F under the l∞,1-distance.

Definition 3 (Rademacher complexity). Let F be a class of real-valued functions on a feature space
X , and let τ1, . . . , τN be i.i.d. samples from a distribution over X . The empirical Rademacher
complexity of F is R̂N (F) = Eσ[supf∈F

1
N

∑N
i=1 σif(τi)], where σ1, . . . , σN are independent

Rademacher random variables taking values ±1 with equal probability. The Rademacher complex-
ity of F is the expectation over the sample set.
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Figure 1: Overview of ReSymNet.

4 PARALLEL REWARD INTEGRATION WITH REFLECTIONAL SYMMETRY

This section introduces our algorithm PRISM.

4.1 RESYMNET: REWARD SYMMETRY NETWORK

To address the challenge of heterogeneous reward objectives, PRISM first transforms sparse rewards
into dense, per-step signals. We frame this as a supervised learning problem, inspired by but distinct
from inverse reinforcement learning, as we do not assume access to expert demonstrations (Ng &
Russell, 2000; Arora & Doshi, 2021). The goal is to train a reward model, Rpred, parametrised by
ψ, that learns to map state-action pairs to individual extrinsic rewards.

We hope to train the reward shaping model on a dataset collected by executing a purely random
policy, ensuring broad state-space coverage. For each timestep t, we construct a feature vector
ht = [st, at, r

dense
t ], where st is the state, at is the action, and rdense,t are the dense rewards obtained

from taking action at at state st, which crucially leverages the information from already-dense
objectives to help predict the sparse ones. Figure 1 visualises the ResNet-like architecture.

Remark 1. Residual connections in Rpred are inspired by the theory of scaled opportunity value
(Laud, 2004), whose additive corrections preserve optimal policies, shorten the effective reward
horizon, and improve local value approximation (see Appendix B).

The network is optimised by minimising the mean squared error between the sum of its per-step
predictions over a trajectory and the true cumulative sparse reward observed for that trajectory:

L(ψ) =
∑
τ∈D

(∑
t∈τ

Rpred(ht;ψ)−Rsp(τ)

)2

. (1)

To ensure the learned reward function is robust and adapts to the agent’s improving policy, we
incorporate two techniques: (1) we train an ensemble of reward models to reduce variance and
produce a more stable shaping signal, and (2) we employ iterative refinement: the reward model is
periodically updated using new, on-policy data collected by the agent. This allows the reward model
to correct for the initial distribution shift and remain accurate as the agent’s behaviour evolves from
random exploration to expert execution, as outlined in Algorithm 1 in Appendix B.

4.2 SYMREG: ENFORCING REFLECTIONAL EQUIVARIANCE

However, aligning reward frequencies alone is insufficient, as heterogeneous rewards cause the pol-
icy to learn asymmetrically across objectives, violating the agent’s physical symmetry. To address
this, we leverage reflectional symmetry as an inductive bias to prevent asymmetric policy learning.
For example, for legged agents, flexing a leg is essentially the mirror image of extending it. Standard
policies must learn both motions separately, wasting data. By encoding symmetry as an inductive
bias, experience from one motion can be reused for its mirror, improving sample efficiency and
robustness.

4
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Figure 2: Reflectional symmetry in a two-legged agent. The left panel shows a transition from state
s to s′ under action a, whereas the right panel shows the reflected transition, where states and actions
are transformed by Lg and Kg , respectively.

We formalise this physical intuition using group theory, specifically the reflection group G = Z2.
This group consists of two transformations: the identity and a negation/reflection operator, g. Let
S ⊆ Rds and A ⊆ Rda denote the state and action spaces, respectively, where ds is the dimension
of the state space and da of the action space. We define index sets Isasym ⊂ {1, . . . , ds} and Issym ⊂
{1, . . . , ds} such that Isasym∩Issym = ∅ and Isasym∪Issym = {1, . . . , ds}. This partitions the state vector
as s = (sasym, ssym) where sasym = sIs

asym
and ssym = sIs

sym
. We first partition the state vector s into an

asymmetric part, sasym (e.g., the torso’s position), and a symmetric part, ssym (e.g., the leg’s relative
joint angles and velocities in Figure 2). The state transformation operator, Lg : S → S, reflects the
symmetric part of the state as follows: Lg(s) = (sasym,−ssym). Similarly, we define index sets Iaasym
and Iasym for the action space, and the action space is split up into an asymmetric part, aasym, and a
symmetric part, asym. The action transformation operator, Kg : A → A, reflects the symmetric part
of the action (e.g., the leg torques): Kg(a) = (aasym,−asym).

The goal is to learn a policy, π, that is equivariant in terms of the aforementioned transformation.
A policy π is reflectional-equivariant if it satisfies the following condition for all states s ∈ S:
π(Lg(s)) = Kg(π(s)). This property means that the action for a reflected state is the same as the
reflection of the action for the original state. To enforce this, we introduce a Symmetry Regulariser
(SymReg) that explicitly penalises deviations from the desired symmetry property. During training,
for each observation s, we compute both the standard policy output π(a|s;ϕ), parameterised by ϕ,
and the policy output for the reflected state π(a|Lg(s);ϕ). The equivariance loss is then defined as:

Leq = Es∼D,a∼πϕ

[
∥π(a|Lg(s);ϕ)−Kg(π(a|s;ϕ))∥21

]
.

SymReg measures the deviation between the policy’s actual response to a reflected state and the
expected reflected response. The total training objective combines the standard policy gradient loss,
Jπ(ϕ), with SymReg: Ltotal = Jπ(ϕ) + λLeq, where λ is a hyperparameter controlling SymReg.

5 THEORETICAL ANALYSIS

This section presents theoretical guarantees of PRISM’s generalisability. Let Π be the full hypothesis
space of policies represented by ReSymNet, R(π; τ) is the cumulative return for a single trajectory
τ obtained following policy π.
Remark 2. As the backbone of the whole method, the hypothesis complexity and generalisability of
ReSymNet contribute significantly to the generalisability of the whole algorithm. Due to space limit,
we present Theorem B.5 in the appendices for the covering number of ReSymNet’s hypothesis space.

The theory relies on these assumptions:
Assumption 1 (bounded returns). For all policies π and trajectories τ , 0 ≤ R(π; τ) ≤ B.
Assumption 2 (Lipschitz-continuous return). There exists LR > 0 such that for all π, π̃ ∈ Π and
any trajectory τ , |R(π; τ)−R(π̃; τ)| ≤ LRd(π, π̃), where d(π, π̃) := sups∈S ∥π(s)− π̃(s)∥1.
Assumption 3 (compact spaces). The state space S and action space A are compact metric spaces.
Assumption 4 (bounded policy). Policies π ∈ Π have bounded inputs and weights.
Assumption 5 (episode sampling). The behaviour distribution D has state marginal lower-bounded
by pmin > 0 on the state support of interest (finite-support or density lower-bound assumption).

The Assumptions are reasonably mild. Bartlett et al. (2017) prove that feedforward ReLU are Lip-
schitz functions; since our policies are implemented as ReLU networks, this ensures bounded sen-
sitivity of the policy outputs to perturbations. Assuming further that the return function is Lipschitz

5
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in the policy outputs, it follows that returns are Lipschitz in the policies themselves, as stated in
Assumption 2. Assumption 5 ensures that all relevant states are sufficiently sampled under the be-
haviour policy, which is, in practice, reasonable because policy exploration mechanisms prevent the
policy from collapsing onto a subset of states.

5.1 GENERALISABILITY OF REFLECTION-EQUIVARIANT SUBSPACE

Let G = Z2 act on states and actions via Lg,Kg . An orbit-averaging operator Q(π)(s) =
1
2

(
π(s) + Kg(π(Lg(s)))

)
maps any policy to a reflection-equivariant subspace (Qin et al., 2022).

The regulariser Leq = Es∥π(Lg(s))−Kg(π(s))∥21 encourages convergence to the fixed-point sub-
space, defined as follows.
Definition 4 (reflection-equivariant subspace). We define reflection-equivariant subspace as Πeq :=
{π : π(Lg(s)) = Kg(π(s))}.

We prove that Q is reflectional equivariant, a projection, and that its image coincides with the set
of equivariant policies in Lemmas C.4, C.5, and C.6 in Appendix C.3, respectively. Thus, Q is
surjective onto Πeq. To prove that the subspace Πeq is less complex, we show that the projection Q
is non-expansive, which implies its image has a covering number no larger than the original space.
Theorem 5.1. The space Πeq has a covering number less than or equal to that of Π. Let N∞,1(F , r)
be the covering number of a function space F under the l∞,1-distance. Then, N∞,1(Πeq, r) ≤
N∞,1(Π, r).

The l∞,1-distance between two policies πϕ and πθ is d(πϕ, πθ) = sups ∥πϕ(s) − πθ(s)∥1. The
distance between their projections, d(Q(πϕ),Q(πθ)), is no larger using the fact that Kg is a norm-
preserving isometry, ∥Kg(a)∥1 = ∥a∥1, and that Lg is a bijection, which implies that the supremum
over s equals the supremum over Lg(s). Hence Q is non-expansive, and a non-expansive surjective
map cannot increase the covering number. Following Lemma C.6, N (Πeq, r) ≤ N (Π, r). A detailed
proof can be found in Appendix C.4.

The symmetrisation technique is fundamental in empirical process theory that reduces the problem
of bounding uniform deviations to analysing Rademacher complexity (Bartlett & Mendelson, 2002).
Corollary 5.2. For any class F of functions bounded in [0, B], the expected supremum of empirical
deviations satisfies:

E

[
sup
f∈F

∣∣∣∣∣ 1N
N∑
i=1

(f(τi)− E[f ])

∣∣∣∣∣
]
≤ 2E[RN (F)],

where RN (F) = Eσ

[
supf∈F

1
N

∑N
i=1 σif(τi)

]
is the Rademacher complexity and σi are indepen-

dent Rademacher random variables taking values ±1 with equal probability.

This bound transforms the original centred empirical process into a symmetrised version that is
often easier to analyse. We now prove a high-probability uniform generalisation bound over the
reflection-equivariant subspace. A detailed proof can be found in Appendix C.5. We recognise that
PRISM does not necessarily converge to it, which will be discussed in the following subsection.
Theorem 5.3. With RΠeq

= {τ 7→ R(π; τ) : π ∈ Πeq}, fix any accuracy parameter r ∈ (0, B) and
confidence δ ∈ (0, 1). Then with probability at least 1− δ,

sup
π∈Πeq

|J(π)− ĴN (π)| ≤ C

(∫ B

r

√
logN∞,1(RΠeq

, ε)

N
dε

)
+

8r√
N

+B

√
log(2/δ)

2N
,

where C is an absolute numeric constant, J(π) is the population expected return and ĴN (π) =
1
N

∑N
i=1R(π; τi) is the empirical return on N i.i.d. episodes τ1, . . . , τN .

Corollary 5.4. Under the same assumptions as Theorem 5.3, for any r ∈ (0, B) and δ ∈ (0, 1), the
upper bound in Theorem 5.3 for Πeq is at most the same bound obtained by replacing Πeq with Π.
By Lemma C.8, the return-class covering numbers can be bounded by those of the policy class with
radius scaled by 1/LR. Mathematically, following Theorem 5.1, for every ε > 0,

logN∞,1

(
Πeq, ε/LR

)
≤ logN∞,1

(
Π, ε/LR

)
, (2)

hence the upper bound in Theorem 5.3 is no larger when evaluated on Πeq.

6
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The equivariance regulariser projects policies onto a smaller fixed-point subspace Πeq, which prov-
ably has covering numbers no larger than Π. The return class inherits this reduction via the Lipschitz
map, so the Dudley entropy integral for Πeq is bounded by that of Π. As a consequence, the upper
bound on the generalisation gap is no larger for Πeq compared to Π.

5.2 GENERALISABILITY OF PRISM

We now study the generalisability of PRISM, which does not necessarily converge to the reflection-
equivariant subspace exactly. Rather, PRISM might converge to an approximately reflection-
equivariant class. Using the orbit averaging Q, we quantify this effect below.

Definition 5 (approximately reflection-equivariant class). Approximately reflection-equivariant
class is defined as Πapprox(εeq) := {π ∈ Π : Leq ≤ εeq}.

Theorem 5.5. Let ξ := 1
2

√
εeq/pmin. Then for every policy π ∈ Π,

|J(π)− J(Q(π))| ≤ LR · d(π,Q(π)) ≤ LRξ. (3)

Then every π ∈ Πapprox(εeq) lies in the sup-ball of radius ξ around Πeq . Consequently, for any
target covering radius r > ξ, we have:

N∞,1

(
Πapprox(εeq), r

)
≤ N∞,1

(
Πeq, r − ξ

)
. (4)

By Lipschitzness of returns, the expected return of a policy and its projection differ by at most
LRd(π,Q(π)). The mismatch ∆π controls this distance, and Lemma C.10 bounds its supremum
by ξ, giving the first inequality. Geometrically, Πapprox(εeq) is contained in a ξ-tube around Πeq .
Hence any (r − ξ)-cover of Πeq yields an r-cover of Πapprox(εeq), proving the covering-number
relation (see Appendix C.6 for a detailed proof).

Theorem 5.6. With RΠeq
= {τ 7→ R(π; τ) : π ∈ Πeq}, fix any accuracy parameter r ∈ (0, B) and

confidence δ ∈ (0, 1). Then with probability at least 1− δ,

sup
π∈Πapprox(εeq)

|J(π)−ĴN (π)| ≤ C

(∫ B

r

√
logN∞,1(RΠeq , ε)

N
dε

)
+

8r√
N

+B

√
log(2/δ)

2N
+2LRξ.

For π ∈ Πapprox(εeq), decompose the generalisation error relative to its projection Q(π) ∈ Πeq .
The difference in population returns |J(π)−J(Q(π))| and in empirical returns |ĴN (π)−ĴN (Q(π))|
are both bounded by LRξ (Theorem 5.5). The middle term |J(Q(π)) − ĴN (Q(π))| is exactly the
generalisation error for an equivariant policy. Taking the supremum, we obtain the equivariant bound
(Theorem 5.3) plus 2LRξ. Appendix C.6 provides a detailed proof.

Corollary 5.7. Under the same assumptions as Theorem 5.6, for any r ∈ (0, B) and δ ∈ (0, 1),
the upper bound in Theorem 5.6 for Πapprox(εeq) is at most the same bound obtained by replacing
Πapprox(εeq) with Π. By Lemma C.8, the return-class covering numbers can be bounded by those
of the policy class with radius scaled by 1/LR. Mathematically, following Theorems 5.1 and 5.5,
for any target covering radius r > ξ:

logN∞,1

(
Πapprox(εeq), r/LR

)
≤ logN∞,1

(
Πeq, (r− ξ)/LR

)
≤ logN∞,1

(
Π, (r− ξ)/LR

)
, (5)

hence the upper bound in Theorem 5.6 is no larger when evaluated on Πeq.

The covering relation incurs a slack of size ξ, leading to bounds of the form N(Πapprox(εeq), r) ≤
N(Πeq, r − ξ) ≤ N(Π, r − ξ) . By contrast, in Corollary 5.4, this slack disappears. Thus, the exact
case guarantees a strict reduction in complexity, whereas the approximate case trades a ξ-shift in the
radius for retaining proximity to the equivariant subspace.

6 EXPERIMENTS

We conduct extensive experiments to verify PRISM. The code is at https://anonymous.
4open.science/r/reward_shaping-1CCB.

7

https://anonymous.4open.science/r/reward_shaping-1CCB
https://anonymous.4open.science/r/reward_shaping-1CCB


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

6.1 EXPERIMENTAL SETTINGS

Environments. Four MuJoCo (Todorov et al., 2012) environments are used: mo-hopper-v5, mo-
walker2d-v5, mo-halfcheetah-v5, and mo-swimmer-v5. Table 3 in Appendix D displays the envi-
ronments and their dimensions, highlighting the diversity in space complexity. As a result, a method
must be able to find general solutions applicable to various MORL challenges, instead of being just
tailored to one specific type of problem. Furthermore, the division of asymmetric and symmetric
state and action spaces to model equivariance is detailed in Appendix D.

Baselines. PRISM is adaptable to any off-the-shelf MORL algorithm. In this work, CAPQL (Lu
et al., 2023) is used as a backbone model, which is a method that trains a single universal network to
cover the entire preference space and approximate the Pareto front. We produce (1) oracle: instead
of artificially setting a reward channel to be sparse, this baseline model can be seen as the gold
standard, and (2) baseline: instead of utilising the proposed reward shaping model, this method
uses CAPQL (Lu et al., 2023) and only observes the sparse rewards.

Evaluation. We use hypervolume (HV), Expected Utility Metric (EUM), and one distributional
metric, Variance Objective (VO) (Cai et al., 2023), for evaluation. The used hyperparameters, to-
gether with a detailed explanation of evaluation metrics, can be found in Appendix E.

6.2 EMPIRICAL RESULTS

Reward Sparsity Sensitivity. Figure 3 illustrates the sensitivity of MORL agents to varying levels
of reward sparsity. Across all environments, we observe a sharp decline in HV when one objective
is made extremely sparse, with reductions ranging from 20 to 40% relative to the dense setting. For
instance, mo-hopper-v5 exhibits a 35% drop in HV under extreme sparsity, while mo-halfcheetah-
v5 and mo-walker2d-v5 show declines of 43% and 21%, respectively. These results confirm that
sparse objectives worsen policy quality, as agents tend to neglect long-term sparse signals in favour
of denser objectives. For the remainder of the paper, we continue with the most difficult setting
where extreme sparsity is imposed on the reward objective along the first dimension.

(a) Mo-hopper-v5 (b) Mo-walker2d-v5 (c) Mo-halfcheetah-v5 (d) Mo-swimmer-v5

Figure 3: The obtained hypervolume for various levels of sparsity amongst various dimensions.

Return Distribution of Policy. Figure 4 illustrates the impact of mixed sparsity on MORL across
the considered environments. Each subplot compares the approximated Pareto fronts obtained when
objective one is dense (blue dots) versus when it is made sparse (orange dots), while keeping all
other objectives dense. Extreme sparsity is imposed, where the sparse reward is released at the end
of an episode. The results demonstrate a consistent pattern across all environments: when objective
one becomes sparse, agents systematically fail to discover high-performing solutions along this
dimension, instead concentrating their learning efforts on the remaining dense objectives.

The consistent pattern across environments suggests that agents exhibit a systematic bias toward
optimising dense reward signals. This overfitting to dense rewards fundamentally distorts the true
Pareto front of the problem, leading to a loss of valuable solutions that might represent optimal
policies for real-world scenarios where sparse objectives often encode important long-term goals.

Comparison Experiments. Table 1 reports the obtained results for HV, EUM, and VO. The results
are averaged over 10 trials, with the standard deviations shown in grey.

PRISM consistently outperforms both the oracle and baseline across environments. For mo-hopper-
v5, PRISM improves hypervolume by 21.5% over the oracle (1.58 × 107 compared to 1.30 × 107)
and 88% over the baseline. Similar gains are observed for mo-walker2d-v5, where PRISM achieves
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(a) Mo-hopper-v5 (b) Mo-walker2d-v5 (c) Mo-halfcheetah-v5 (d) Mo-swimmer-v5

Figure 4: The approximated Pareto front for dense rewards (blue dots) and sparse rewards (orange
dots). Sparsity is imposed on the first reward objective.

Table 1: Experimental results. We report the average hypervolume (HV), Ex-
pected Utility Metric (EUM), and Variance Objective (VO) over 10 trials, with
the standard error shown in grey. The largest (best) values are in bold font.

Environment Metric Oracle Baseline PRISM

Mo-hopper-v5
HV (×107) 1.30± 0.13 0.84± 0.05 1.58± 0.05
EUM 129.04± 7.96 97.64± 4.18 147.43± 2.61
VO 59.07± 3.45 43.36± 1.61 66.66± 1.40

Mo-walker2d-v5
HV (×104) 4.21± 0.11 3.34± 0.16 4.77± 0.07
EUM 107.58± 2.86 82.13± 4.34 120.43± 1.64
VO 53.22± 1.39 39.18± 2.49 59.35± 0.80

Mo-halfcheetah-v5
HV (×104) 1.70± 0.20 0.97± 0.00 2.25± 0.18
EUM 81.29± 21.85 -1.46± 0.27 89.94± 15.33
VO 36.84± 10.06 -1.01± 0.20 40.72± 7.02

Mo-swimmer-v5
HV (×104) 1.21± 0.00 1.09± 0.02 1.21± 0.00
EUM 9.41± 0.12 4.10± 0.80 9.44± 0.14
VO 4.22± 0.08 1.58± 0.40 4.24± 0.07

a 13% HV improvement over oracle and 43% over the baseline. Notably, in mo-halfcheetah-v5,
PRISM yields a 32% improvement in HV compared to the oracle (2.25 × 104 against 1.70 × 104)
and more than doubles the sparse result. These improvements imply that PRISM not only restores
solutions lost under sparsity but also expands the range of trade-offs accessible to the agent. Im-
provements in EUM follow the same trend, with increases of up to 50% compared to the baseline.
The concurrent increase in EUM demonstrates that these solutions provide higher expected utility,
confirming that PRISM learns policies that are both diverse and practically useful.

On distributional metrics, PRISM delivers more consistent performance than both the oracle and
baseline. VO in mo-hopper-v5 increases from 43.36 (baseline) and 59.07 (oracle) to 66.66 under
PRISM, and mo-walker2d-v5 shows a 51% gain over the baseline. These gains are crucial because
they indicate that PRISM does not simply maximise HV by focusing on extreme solutions, but
also produces Pareto fronts that are better balanced, robust, and fair across objectives. Figure 6 in
Appendix F, which shows the approximated Pareto fronts, aligns with these results.

We provide two distinct examples to analyse the behaviour of the learned reward signals compared
to the oracle for mo-walker2d-v5. Figure 5a illustrates a full 1000-step episode. The shaped reward
is highly correlated with the dense reward throughout the entire trajectory. The alignment of peaks
and troughs confirms that ReSymNet captures the dynamics of the environment, ensuring accurate
credit assignment without temporal drift.

Figure 5b highlights a key theoretical advantage of ReSymNet. In high-performance regions (e.g.,
steps 250–270), the shaped reward amplifies the signal, exceeding the magnitude of the oracle. By
creating steeper gradients for desirable behaviours, the shaped reward can provide more effective
guidance than the raw environmental signal, explaining why PRISM is capable of outperforming
the oracle.
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(a) Full-episode stability (b) Signal optimisation

Figure 5: The dense (blue line) and shaped rewards (orange line) over time for mo-walker2d-v5.
Sparsity is imposed on the first reward objective.

Ablation Study. We analyse the performance of the following ablation models (w/o is the abbre-
viation for without), which remove several aspects of the reward shaping model or the equivariance
loss: (1) PRISM: This is the full proposed framework, (2) w/o residual: This ablation model re-
moves the two residual blocks from the reward shaping model, (3) w/o dense rewards: We remove
the dense rewards as input features to the reward model, (4) w/o ensemble: We remove the ensem-
ble of reward shaping models, and only employ one, (5) w/o refinement: Rather than updating the
reward shaping model with expert trajectories, this approach merely trains the reward shaping model
using the random trajectories collected at first, and (6) w/o loss: We remove the equivariance loss
term and merely use the reward shaping model. We also include two ablation studies that remove
ReSymNet from PRISM and replace the reward shaping model as follows: (7) uniform: Distributes
the episodic sparse rewardRsp(τ) equally across all T timesteps, and (8) random: Samples random
weights αt ∼ U(−1, 1) for each timestep, normalises to sum to one, and scales by the total reward.

The ablation results in Tables 10 and 11 in Appendix G highlight the contribution of individual
components. Removing residual connections reduces HV and EUM across all environments (e.g.,
mo-hopper-v5 EUM falls from 147.43 to 128.40), showing their importance for scaled opportunity
value. Excluding dense reward features or ensembles also lowers performance, but only moderately,
suggesting that state–action features already contain substantial signal. Interestingly, removing it-
erative refinement barely reduces performance; in some cases, such as mo-halfcheetah-v5, HV, and
EUM remain comparable or even slightly higher than the full model. This implies that shaping re-
wards from a broad set of random trajectories is already highly effective. Removing the symmetry
loss reduces performance across environments, indicating that the loss term successfully reduces the
search space. Similar patterns are observed for VO. Considering ReSymNet, uniform achieves mod-
erate performance by providing per-step gradients and leveraging SymReg, while random performs
poorly due to noisy, misleading rewards. PRISM consistently outperforms both by learning reward
decomposition with ReSymNet and enforcing structural consistency via SymReg, enabling accurate
credit assignment in complex multi-objective tasks. The ablation results imply that PRISM’s archi-
tecture provides multiple overlapping mechanisms for stability, but the symmetry loss and residual
structure are the main drivers of consistent performance.

7 CONCLUSION

This work proposes Parallel Reward Integration with reflectional Symmetry for Multi-objective rein-
forcement learning (PRISM), a framework designed to tackle sample inefficiency in heterogeneous
multi-objective reinforcement learning, particularly in environments with sparse rewards. Our ap-
proach is centred around two key contributions: (1) ReSymNet, a theory-inspired reward model that
leverages residual blocks to align reward channels by learning a refined ‘scaled opportunity value’,
and (2) SymReg, a novel regulariser that enforces reflectional symmetry as an inductive bias in the
policy’s action space. We prove that PRISM restricts policy search to a reflection-equivariant sub-
space, a projection of the original policy space with provably reduced hypothesis complexity; in this
way, the generalisability is rigorously improved. Extensive experiments on MuJoCo benchmarks
show that PRISM consistently outperforms even a strong oracle with full reward access in terms of
a wide range of metrics, including HV, EUM, and VO.
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Toygun Basaklar, Suat Gumussoy, and Ümit Y. Ogras. PD-MORL: Preference-driven multi-
objective reinforcement learning algorithm. In Eleventh International Conference on Learning
Representations (ICLR 2023). OpenReview.net, 2023.

Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by random net-
work distillation. In 7th International Conference on Learning Representations (ICLR 2019).
OpenReview.net, 2019.

Xin-Qiang Cai, Pushi Zhang, Li Zhao, Jiang Bian, Masashi Sugiyama, and Ashley Llorens. Distri-
butional Pareto-optimal multi-objective reinforcement learning. In 37th International Conference
on Neural Information Processing Systems (NIPS 2023), volume 36, pp. 15593–15613. Curran
Associates, 2023.
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A NOTATION

In this appendix, we provide an overview of the notation used in Table 2.

Table 2: Notation.

Symbol Meaning

S State space
A Action space
P (s′|s, a) Transition probability
r(s, a) ∈ RL Vector-valued reward with L objectives
γ ∈ [0, 1) Discount factor
π : S → A Policy mapping
J(π) = Eπ

[∑∞
t=0 γ

trt
]

Expected cumulative vector return

D Behaviour distribution to sample episodes from
DC = {d1, . . . , dD} Dense reward channels
rdit Reward from dense channel di at timestep t
rspt Sparse reward at timestep t
τ = {(s1, a1), . . . , (sT , aT )} Trajectory
Rsp(τ) Cumulative sparse reward in episode τ
prel Probability of releasing sparse reward
ht = [st, at, r

dense
t ] Input feature vector for ReSymNet

Rpred ReSymNet
rsht Shaped reward at timestep t

Lg,Kg Reflection operators on states and actions
∆π(s) = π(Lg(s))−Kg(π(s)) Equivariance mismatch
Leq Equivariance regularisation loss
Π Hypothesis space of policies
Πeq = {π : π(Lg(s)) = Kg(π(s))} Reflection-equivariant subspace
Πapprox(εeq) Approximate equivariant policies with tolerance εeq
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B ADDITIONAL DETAILS AND THEORY OF RESYMNET

We give additional details of ReSymNet as well as the theoretical motivation behind its architecture
in this appendix.

B.1 THEORETICAL MOTIVATION VIA SCALED OPPORTUNITY VALUE

The use of residual connections in Rpred is motivated by the theory of scaled opportunity value
(Laud, 2004).
Definition 6 (Opportunity value). LetM be an MDP with native reward functionR. The opportunity
value of a transition (s, a, s′) is defined as the difference in the optimal value of successor and
current states: OPV(s, a, s′) = γVM (s′)− VM (s), where VM is the optimal state-value function
under MDP M .
Definition 7 (Scaled opportunity value). For a scale parameter k > 0, the scaled opportu-
nity value shaping function augments the native reward with a scaled opportunity correction:
OPVk(s, a, s

′) = Fk(s, a, s
′) = k(γVM (s′)− VM (s)) + (k − 1)R(s, a).

Lemma B.1. Let M be an MDP with reward function R and optimal policy π⋆. With k sufficiently
large, the MDP with shaped reward Fk satisfies: (1) policy invariance, π⋆ remains optimal under
Fk; (2) horizon reduction, the effective reward horizon is reduced to 1; and (3) improved local
approximation, the additive term increases the separability of local utilities, reducing approximation
error in value estimation.

Residual blocks mirror the additive structure of scaled opportunity value: each block refines its input
prediction via: R(i)

pred(ht;ψ) = R(i−1)
pred (ht;ψ) + ∆i(ht;ψ), where ∆i is a learned correction. A

single block can be viewed as approximating a scaled opportunity-value transformation of its input,
while stacking multiple blocks implements iterative refinement: each stage reduces the residual
error left by the previous one. This residual formulation both stabilises training and aligns with the
principle of scaled opportunity value, gradually shaping per-step predictions into horizon-1 signals
that remain consistent with the sparse episodic return Rsp(τ).

B.2 GENERALISABILITY OF RESYMNET

We extend the theoretical justification of ReSymNet from optimisation to generalisation. Following
the stem–vine decomposition of He et al. (2020), we prove that residual connections do not increase
hypothesis complexity, and derive a high-probability bound.

Notation and Assumptions. ReSymNet maps feature vectors ht ∈ Rd0 to sparse reward predictions
rspt ∈ R through a residual network. We decompose the network into:

• A stem: the main feedforward pathway consisting of K layers, each with a weight matrix Ai ∈
Rdi−1×di and nonlinearity σi : Rdi → Rdi for i = 1, . . . ,K.

• A collection of vines: residual connections (skip connections) indexed by triples (s, t, i) where s
is the source vertex (where the connection starts), t is the target vertex (where it reconnects), and
i distinguishes multiple vines between the same pair of vertices. We denote the set of all vine
indices as IV .

We denote vertices in the network as N(t), where t indexes the position in the computational graph.
Each vine V(s, t, i) is itself a small feedforward network with weight matrices As,t,i

1 , . . . ,As,t,i
Ks,t,i

and nonlinearities σs,t,i
1 , . . . , σs,t,i

Ks,t,i
, where Ks,t,i is the number of layers in that vine. The output at

vertex N(t) is:
Ft(X) = FS

t (X) +
∑

(s,t,i)∈IV

FV
s,t,i(X),

where FS
t (X) is the stem’s output at vertex t and the sum runs over all vines that reconnect at vertex

t.
Assumption 6 (Bounded parameters). Each stem weight matrix satisfies ∥Ai∥σ ≤ si for i =

1, . . . ,K, where ∥ · ∥σ denotes the spectral norm. Each vine weight matrix satisfies ∥As,t,i
j ∥σ ≤
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ss,t,ij . All nonlinearities are ρi-Lipschitz continuous: for any x1,x2 in the domain,

∥σi(x1)− σi(x2)∥2 ≤ ρi∥x1 − x2∥2.

Input features satisfy ∥ht∥2 ≤ Bh, network per-step outputs satisfy |Rpred(ht;ψ)| ≤ Bpred for all t,
and sparse rewards satisfy |Rsp(τ)| ≤ Br for all trajectories τ . Trajectories have length bounded
by Tmax.

Lemma B.2. Let X ∈ Rn×d be a data matrix with n samples and d features, satisfying ∥X∥2 ≤ B.
Consider the hypothesis space formed by all linear transformations with bounded spectral norm:

HA = {XA : A ∈ Rd×m, ∥A∥σ ≤ s}.

Then the ε-covering number satisfies:

logN∞,2(HA, ε) ≤
⌈
s2B2m2

ε2

⌉
log(2dm),

where m is the output dimension.

This lemma (Bartlett et al., 2017) shows that the complexity of a single linear layer scales with the
square of its spectral norm and input norm.
Lemma B.3. For an K-layer feedforward network with hypothesis space Hff , the covering number
satisfies:

N∞,2(Hff , ε) ≤
K∏
i=1

sup
A1,...,Ai−1

Ni,

where Ni is the covering number of layer i (viewed as a function of its input) when the preceding
layers A1, . . . ,Ai−1 are held fixed. The supremum is taken over all choices of the preceding weight
matrices within their respective spectral norm bounds.

This result shows that the covering number of a deep network is the product of the covering numbers
of its individual layers. For residual networks, where outputs are sums of stem and vine contribu-
tions, we require:
Lemma B.4. Let F and G be two function classes. If WF is an εF -cover of F (meaning every
f ∈ F is within distance εF of some element in WF ), and WG is an εG-cover of G, then the set

WF +WG = {f + g : f ∈ WF , g ∈ WG}

is an (εF + εG)-cover of the sum class F + G = {f + g : f ∈ F , g ∈ G}, and

N∞,2(F + G, εF + εG) ≤ N∞,2(F , εF )N∞,2(G, εG).

Proof. For any f + g ∈ F +G, there exist wf ∈ WF and wg ∈ WG such that ∥f −wf∥2 ≤ εF and
∥g − wg∥2 ≤ εG. By the triangle inequality:

∥(f + g)− (wf + wg)∥2 ≤ ∥f − wf∥2 + ∥g − wg∥2 ≤ εF + εG.

The covering number bound follows since there are at most |WF | · |WG| distinct pairs (wf , wg).

Theorem B.5. Under Assumption 6, let {εj}Kj=1 be tolerances for each stem layer and
{εs,t,i}(s,t,i)∈IV

be tolerances for each vine, satisfying

K∑
j=1

εj +
∑

(s,t,i)∈IV

εs,t,i ≤ ε.

Then the covering number of ReSymNet’s hypothesis space Hres satisfies:

N∞,2(Hres, ε) ≤
K∏
j=1

N∞,2(Hj , εj)
∏

(s,t,i)∈IV

N∞,2(HV
s,t,i, εs,t,i),
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where Hj is the hypothesis space of stem layer j and HV
s,t,i is the hypothesis space of vine V(s, t, i).

Applying Lemma B.2 to each weight matrix, this yields:

logN∞,2(Hres, ε) ≤
R
ε2
,

where the complexity measure R is:

R =

K∑
i=1

s2i ∥Fi−1(X)∥22
ε2i

log(2d2i ) +
∑

(s,t,i)∈IV

(ss,t,i)2∥Fs(X)∥22
ε2s,t,i

log(2d2s,t,i).

Here, Fi−1(X) denotes the output of the network after layer i − 1 (the input to layer i), and di is
the dimension at layer i.

Proof. We proceed by analysing how residual connections compose with the stem. Consider vertex
N(t) where one or more vines reconnect. The output is:

Ft(X) = FS
t (X) +

∑
(s,t,i)∈IV

FV
s,t,i(X).

Let Wt be an εt-cover of Ht (all possible stem outputs at vertex t). For each vine V(s, t, i) that
reconnects at t, let WV

s,t,i be an εs,t,i-cover of HV
s,t,i (all possible outputs of that vine). By repeated

application of Lemma B.4, the set:

W ′
t =

WS +
∑

(s,t,i)∈IV

WV
s,t,i :WS ∈ Wt,W

V
s,t,i ∈ WV

s,t,i


is an

(
εt +

∑
(s,t,i)∈IV

εs,t,i

)
-cover of H′

t (the combined outputs at vertex t), with covering num-
ber:

N∞,2(H′
t, ε

′
t) ≤ N∞,2(Ht, εt) ·

∏
(s,t,i)∈IV

N∞,2(HV
s,t,i, εs,t,i),

where ε′t = εt +
∑

(s,t,i)∈IV
εs,t,i.

Each vine V(s, t, i) is itself a chain-like feedforward network, so Lemma B.3 applies to bound
N∞,2(HV

s,t,i, εs,t,i). For identity vines (containing no trainable parameters), we have N V
s,t,i = 1

since there is only one function in the class.

Propagating this argument through all K stem layers yields:

N∞,2(Hres, ε) ≤
K∏
j=1

N∞,2(Hj , εj)
∏

(s,t,i)∈IV

N∞,2(HV
s,t,i, εs,t,i).

The bound on R follows by applying Lemma B.2 to each weight matrix. For the stem, layer i
contributes:

logNi ≤
s2i ∥Fi−1(X)∥22d2i

ε2i
log(2di−1di) ≈

s2i ∥Fi−1(X)∥22
ε2i

log(2d2i ),

where we simplify by assuming similar dimensions. Summing over all stem layers and all vine
layers gives R.

Corollary B.6. Let Hff be the hypothesis space of feedforward networks with the same total number
of weight matrices Ktotal = K +

∑
(s,t,i)∈IV

Ks,t,i as ReSymNet. Then for any ε > 0,

N∞,2(Hres, ε) ≤ N∞,2(Hff , ε).

Proof. Both covering numbers have the product form
∏Ktotal

k=1 Nk, where each factor Nk corresponds
to a single weight matrix. By Lemma B.2, each Nk depends only on the spectral norm sk of that
weight matrix and the norm of its input ∥Fk−1(X)∥2, regardless of whether the matrix appears in
the stem or a vine. Therefore, when the total number of weight matrices and their norms are held
fixed, the covering numbers are bounded identically.
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B.3 ALGORITHM CHART

Algorithm 1: ReSymNet with any MORL algorithm
Input: Release probability prel, number of initial episodes N , number of expert episodes E, dense

channels DC, any off-the-shelf MORL algorithm, number of timesteps per cycle M , number of
ensembles K, number of iterative refinements IR, validation split, patience

Output: Trained reward ensemble E = {Rpred,ψ1 , . . . ,Rpred,ψK}, trained MORL policy
/* Collecting random experiences */
for i← 1 to N do

Execute a random policy to collect trajectory τ = {(s0, a0), . . . , (sT , aT )} until episode ends
Set l = 0
foreach t ∈ T do

With probability prel, release cumulative sparse reward Rspt =
∑t
s=l r

sp
s at timestep t

Set l = t if sparse reward is released

Segment τ into sub-trajectories {τj} based on released rewards
foreach sub-trajectory τj do

foreach (st, at) ∈ τj do
Compute features: ht = [st, at, r

dense
t ]

Add datapoint
(
{ht}t∈τj , Rsp(τj)

)
to dataset D

/* Ensemble training */
for k ← 1 to K do

Split D into Dtrain and Dval using the validation split
Train reward modelRpred,ψk following Equation 1 using early stopping on the validation loss:

L(ψk) =
∑

τ∈Dtrain

(∑
t∈τ

Rpred(ht;ψk)−Rsp(τ)

)2

/* RL training with iterative refinement */
timestep = 1
for cycle← 1 to IR do

for t← timestep to M + timestep do
Observe st and at following the current policy and compute features ht
r
(k)
t ←Rpred(ht;ψk) for k = 1, . . . ,K

rsh
t ← 1

K

∑K
k=1 r

(k)
t

Use rsh
t with the dense rewards as the reward at timestep t and update RL algorithm

/* Iterative refinement */
Collect E expert trajectories to obtain Dnew using the new policy
foreachRpred,ψk ∈ E do

UpdateRpred,ψk using new data Dnew

timestep = t

C PROOFS

This appendix collects all proofs omitted from the main text.

C.1 LEMMAS

This section introduces the general lemmas used to obtain an upper bound on the generalisation gap.

Dudley Entropy Integral. The Rademacher complexity can be bounded through the metric entropy
of the function class using Dudley’s entropy integral (Dudley, 1967; Bartlett & Mendelson, 2002).

Lemma C.1 (Dudley Entropy Integral). For any coarse-scale parameter r ∈ (0, B), the empirical
Rademacher complexity satisfies:

R̂N (F) ≤ C

(∫ B

r

√
logN∞,1(F , r)

N
dε

)
+

4r√
N
,
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where C > 0 is an absolute constant, and N∞,1(F , r) is the covering number of F in ℓ∞ at scale r
with respect to N samples

This inequality connects the probabilistic complexity (Rademacher complexity) to the geometric
complexity of the function class and covering numbers.

McDiarmid’s Concentration Inequality. To convert expectation bounds into high-probability
statements, we employ McDiarmid’s bounded difference inequality (McDiarmid et al., 1989).

Lemma C.2 (McDiarmid’s Concentration Inequality). If each trajectory’s replacement can change
any empirical average by at most B/N , then for any t > 0:

Pr

(∣∣∣∣∣supf∈F

1

N

N∑
i=1

(f(τi)− E[f ])− E

[
sup
f∈F

1

N

N∑
i=1

(f(τi)− E[f ])

]∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−2Nt2

B2

)
.

This concentration result allows us to bound the deviation between the random supremum and its
expectation, completing the pipeline from covering numbers to high-probability uniform generali-
sation gaps.

C.2 GENERALISATION OF SCALARISED RETURNS

This section shows that generalisation for an arbitrary scalar return implies guarantees for the
scalarised components of the Pareto front.

Corollary C.3. Let Π be a policy class equipped with a metric d(·, ·), and let R(π; τ) ∈ RL denote
the vector-valued return of policy π on trajectory τ . Following Assumption 1:

sup
τ

∥R(π; τ)−R(π̃; τ)∥∞ ≤ LR d(π, π̃) for all π, π̃ ∈ Π.

For any weight vector ω ∈ RL define the scalarised return Rω(π; τ) = ω⊤R(π; τ) and let Rω
Π be

the class of scalarised returns induced by Π. Then for any ε > 0,

N∞,1(Rω
Π, ε) ≤ N∞,1

(
Π, ε/Lω

R

)
, where Lω

R := ∥ω∥1 LR.

In particular, when ∥ω∥1 = 1 we have Lω
R = LR and the scalarised return class has covering

numbers no larger than those of the policy class. Consequently, any complexity reduction obtained
by projecting Π to an equivariant subspace (e.g. Πeq) is inherited by the scalarised objective class
Rω

Π.

Proof. Fix ω ∈ RL and let π, π̃ ∈ Π. For any trajectory τ ,

∣∣Rω(π; τ)−Rω(π̃; τ)
∣∣ = ∣∣ω⊤(R(π; τ)−R(π̃; τ)

)∣∣ ≤ L∑
j=1

|ωj |
∣∣Rj(π; τ)−Rj(π̃; τ)

∣∣.
Using maxj |Rj(π; τ)−Rj(π̃; τ)| = ∥R(π; τ)−R(π̃; τ)∥∞, we obtain∣∣Rω(π; τ)−Rω(π̃; τ)

∣∣ ≤ ∥ω∥1 ∥R(π; τ)−R(π̃; τ)∥∞.

Taking the supremum over trajectories and applying the vector Lipschitz assumption yields

sup
τ

∣∣Rω(π; τ)−Rω(π̃; τ)
∣∣ ≤ ∥ω∥1 LR d(π, π̃) = Lω

R d(π, π̃).

Thus the scalarised return map π 7→ Rω(π; ·) is Lipschitz with constant Lω
R = ∥ω∥1LR. Following

Lemma C.8, for any ε > 0,
N∞,1(Rω

Π, ε) ≤ N∞,1

(
Π, ε/Lω

R

)
.

This proves the displayed inequality. The special case ∥ω∥1 = 1 follows immediately. Finally, since
the inequality holds for any policy class Π, replacing Π by the equivariant subspace Πeq shows
that any complexity reduction (N (Πeq, ·) smaller than is directly inherited by the scalarised return
class.
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C.3 PROJECTION TO REFLECTION-EQUIVARIANT SUBSPACE

Let the full hypothesis space of policies be Π = {πϕ : ϕ ∈ Φ}, where ϕ represents the neural
network parameters and Φ represents the parameter space. The reflection group G = Z2 = {e, g}
acts on the state and action spaces via operators Lg and Kg , respectively.

We can map any policy to its equivariant counterpart using an orbit averaging operator Q : Π → Π,
defined as:

Q(πϕ)(s) =
1

|G|
∑
h∈G

ρ(h)πϕ(h
−1 · s)

=
1

|G|
∑
h∈G

Kh

(
πϕ(Lh(s))

)
= 1

2 (πϕ(s) +Kg(πϕ(Lg(s)))) . (6)

Here, ρ(h) is the abstract representation in the action space, and h−1 · s is the abstract action in
the state space. In the second line we replace ρ(h) with the action transformation Kh, and h−1 · s
with the state transformation Lh(s). For the reflection group G = Z2 = {e, g}, since g = g−1 we
may drop the inverse without ambiguity. This operator averages a policy’s output with its reflected-
transformed equivalent. The regulariser, Leq = Es[∥πϕ(Lg(s))−Kg(πϕ(s))∥21], encourages policies
to become fixed points of this operator, thereby learning policies within the subspace of equivariant
functions, denoted Πeq.

The operator Q and the subspace Πeq have several crucial properties, which we state in the following
lemmas.

Lemma C.4. For any π ∈ Π, the function Q(π) is reflectional equivariant:

Q(π)(Lg(s)) = Kg(Q(π)(s)), ∀s ∈ S.

Proof. By direct calculation:

Q(π)(Lg(s)) =
1
2

(
π(Lg(s)) +Kg(π(Lg(Lg(s))))

)
= 1

2

(
π(Lg(s)) +Kg(π(s))

)
,

KgQ(π)(s) = 1
2

(
Kg(π(s)) +KgKg(π(Lg(s)))

)
= 1

2

(
Kg(π(s)) + π(Lg(s))

)
,

sinceKg and Lg are involutions. Thus, the two expressions coincide. Therefore Q(π) is equivariant.

Lemma C.5. The operator Q is a projection, meaning it is idempotent: Q(Q(π)) = Q(π) for any
π ∈ Π.

Proof. We apply the operator to its own output:

Q(Q(π))(s) =
1

2
(Q(π)(s) +Kg(Q(π)(Lg(s)))) .

First, evaluating the second term, Q(π)(Lg(s)):

Q(π)(Lg(s)) =
1

2
(π(Lg(s)) +Kg(π(Lg(Lg(s)))))

=
1

2
(π(Lg(s)) +Kg(π(s))) .
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Substituting this back:

Q(Q(π))(s) =
1

2

(
Q(π)(s) +Kg

[
1
2 (π(Lg(s)) +Kg(π(s)))

])
=

1

2
Q(π)(s) +

1

4
(Kg(π(Lg(s))) +Kg(Kg(π(s))))

=
1

2
Q(π)(s) +

1

4
(Kg(π(Lg(s))) + π(s))

=
1

2
Q(π)(s) +

1

2

(
1
2 (π(s) +Kg(π(Lg(s))))

)
=

1

2
Q(π)(s) +

1

2
Q(π)(s)

= Q(π)(s).

Thus Q is idempotent.

Lemma C.6. The image of the operator Q coincides with the set of equivariant policies: Im(Q) =
{Q(π) : π ∈ Π} = Πeq.

Proof. We establish set equality by showing inclusion in both directions.

First inclusion (Im(Q) ⊆ Πeq): By Lemma C.4, for any π ∈ Π, the output Q(π) is equivariant.
Therefore, every element in the image of Q belongs to Πeq.

Second inclusion (Πeq ⊆ Im(Q)): Let πeq be any equivariant policy, so πeq ∈ Πeq. We need to show
that πeq can be expressed as Q(π) for some π ∈ Π.

Since πeq is equivariant, it satisfies πeq(Lg(s)) = Kg(πeq(s)) for all s. Therefore:

Q(πeq)(s) =
1

2
(πeq(s) +Kg(πeq(Lg(s))))

=
1

2
(πeq(s) +Kg(Kg(πeq(s)))) (by equivariance)

=
1

2
(πeq(s) + πeq(s)) (since Kg is an involution)

= πeq(s).

Therefore, πeq = Q(πeq) ∈ Im(Q). This shows that equivariant policies are fixed points of Q,
which is consistent with Lemma C.5. Since every equivariant policy is its own image under Q, we
have Πeq ⊆ Im(Q). Combining both inclusions yields Im(Q) = Πeq. Therefore Q is surjective
onto Πeq.

C.4 REDUCED HYPOTHESIS COMPLEXITY OF REFLECTION-EQUIVARIANT SUBSPACE

To prove that the subspace Πeq is less complex, we show that the projection Q is non-expansive,
which implies its image has a covering number no larger than the original space.

Theorem C.7. The space Πeq has a covering number less than or equal to that of Π. Let N∞,1(F , r)
be the covering number of a function space F under the l∞,1-distance. Then, N∞,1(Πeq, r) ≤
N∞,1(Π, r).

Proof. We show that Q is non-expansive. The l∞,1-distance between two policies πϕ and πθ is

d(πϕ, πθ) = sup
s

∥πϕ(s)− πθ(s)∥1.
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The distance between their projections is:

d(Q(πϕ),Q(πθ)) = sup
s

∥∥ 1
2

(
πϕ(s) +Kg(πϕ(Lg(s)))

)
− 1

2

(
πθ(s) +Kg(πθ(Lg(s)))

)∥∥
1

= 1
2 sup

s
∥(πϕ(s)− πθ(s)) +Kg(πϕ(Lg(s))− πθ(Lg(s)))∥1 .

≤ 1
2 sup

s

(
∥πϕ(s)− πθ(s)∥1 + ∥Kg(πϕ(Lg(s))− πθ(Lg(s)))∥1

)
.

≤ 1
2

(
sup
s

∥πϕ(s)− πθ(s)∥1 + sup
s

∥πϕ(Lg(s))− πθ(Lg(s))∥1
)
.

= 1
2

(
d(πϕ, πθ) + d(πϕ, πθ)

)
= d(πϕ, πθ),

where we use the triangle inequality, the fact that Kg is a norm-preserving isometry, ∥Kg(a)∥1 =
∥a∥1, and that Lg is a bijection, which implies that the supremum over s equals the supremum over
Lg(s). Hence Q is non-expansive, and a non-expansive surjective map cannot increase the covering
number. Following Lemma C.6, N (Πeq, r) ≤ N (Π, r).

The following lemma links coverings of the policy class (with metric d) to coverings of the induced
return class (supremum over trajectories). This is the deterministic Lipschitz step that makes the
entropy of returns comparable to the entropy of the policy class.

Lemma C.8. For any policy set P ⊆ Π and any ε > 0,

N∞,1

(
{τ 7→ R(π; τ) : π ∈ P}, ε

)
≤ N∞,1

(
P, ε/LR

)
,

where the left covering number is with respect to the sup-norm over trajectories and the right is with
respect to d(·, ·).

Proof. Let {π1, . . . , πM} be an ε/LR-cover of P under d(·, ·). For any π ∈ P choose j with
d(π, πj) ≤ ε/LR. Then for every trajectory τ ,

|R(π; τ)−R(πj ; τ)| ≤ LRd(π, πj) ≤ ε,

so the set {τ 7→ R(πj ; τ)}Mj=1 is an ε-cover of the return-class. Thus, the covering inequality
holds.

C.5 GENERALISATION OF REFLECTION-EQUIVARIANT SUBSPACE

We now prove a high-probability uniform bound over the equivariant class.

Theorem C.9. With RΠeq = {τ 7→ R(π; τ) : π ∈ Πeq}, fix any accuracy parameter r ∈ (0, B)
and confidence δ ∈ (0, 1). Then with probability at least 1− δ,

sup
π∈Πeq

|J(π)− ĴN (π)| ≤ C

(∫ B

r

√
logN∞,1(RΠeq

, ε)

N
dε

)
+

8r√
N

+B

√
log(2/δ)

2N
,

where C is an absolute numeric constant, J(π) is the population expected return and ĴN (π) =
1
N

∑N
i=1R(π; τi) is the empirical return on N i.i.d. episodes τ1, . . . , τN .

Proof. Let F = RΠeq
. Following Corollary 5.2, we have:

E
[

sup
f∈RΠeq

∣∣∣ 1N N∑
i=1

(f(τi)− E[f ])
∣∣∣] ≤ 2E

[
RN (RΠeq

)
]
.

Applying Lemma C.1, for any r > 0:

E
[

sup
f∈RΠeq

∣∣∣ 1N N∑
i=1

(f(τi)− E[f ])
∣∣∣] ≤ C

(∫ B

r

√
logN∞,1(RΠeq , ε)

N
dε

)
+

8r√
N
. (7)
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Now apply Lemma C.2 to convert the expectation bound into a high-probability statement, with
probability at least 1− δ:

sup
f∈RΠeq

∣∣∣ 1N N∑
i=1

(f(τi)− E[f ])
∣∣∣ ≤ E

[
sup

f∈RΠeq

∣∣∣ 1N N∑
i=1

(f(τi)− E[f ])
∣∣∣]+B

√
log(2/δ)

2N
. (8)

Combining Equations 7 and 8 yields the claimed inequality.

C.6 GENERALISATISABILITY OF PRISM

Lemma C.10. If a policy π satisfies Leq ≤ εeq , then

sup
s

∥∆π(s)∥1 ≤
√

εeq
pmin

.

Consequently, the sup–ℓ1 distance between π and its orbit projection Q(π) satisfies

d(π,Q(π)) = sup
s

∥π(s)−Q(π)(s)∥1 ≤
√

εeq
pmin

.

Proof. Assume the state space has density dµ
ds (s) ≥ pmin on the common support. Let s∗ be such

that ∥∆π(s
∗)∥1 = sups ∥∆π(s)∥1. The expectation is:

εeq = Eµ

[
∥∆π(s)∥21

]
=

∫
∥∆π(s)∥21dµ(s).

For any neighbourhood Bδ(s
∗) of s∗:

εeq ≥
∫
Bδ(s∗)

∥∆π(s)∥21dµ(s).

By continuity of ∥∆π(·)∥1 and the density lower bound:∫
Bδ(s∗)

∥∆π(s)∥21dµ(s) ≥ (∥∆π(s
∗)∥1 − ϵ)

2
∫
Bδ(s∗)

dµ(s) ≥ (∥∆π(s
∗)∥1 − ϵ)

2
pmin·vol(Bδ(s

∗)),

for sufficiently small δ and any ϵ > 0. Taking δ → 0 and ϵ→ 0:

εeq ≥ pmin

(
sup
s

∥∆π(s)∥1
)2

.

Rearranging gives sups ∥∆π(s)∥1 ≤
√

εeq
pmin

.

We can now translate this approximation to a bound on returns and to a covering-number statement.

Theorem C.11. Let ξ := 1
2

√
εeq/pmin. Then for every policy π,

|J(π)− J(Q(π))| ≤ LR · d(π,Q(π)) ≤ LRξ.

Define the approximately reflection-equivariant class Πapprox(εeq) := {π ∈ Π : Leq(π) ≤ εeq}.
Then every π ∈ Πapprox(εeq) lies in the sup-ball of radius ξ around Πeq . Consequently, for any
target covering radius r > ξ:

N∞,1

(
Πapprox(εeq), r

)
≤ N∞,1

(
Πeq, r − ξ

)
.

Proof. The first claim is that |J(π)− J(Q(π))| ≤ LR · d(π,Q(π)) ≤ LRξ.

First, we establish the LR-Lipschitz property of the expected return J(π) = Eτ [R(π; τ)]. Using the
property from that the return function R is LR-Lipschitz, we have:

|J(π)− J(Q(π))| = |Eτ [R(π; τ)−R(Q(π); τ)]|
≤ Eτ

[
|R(π; τ)−R(Q(π); τ)|

]
≤ Eτ

[
LR · d(π,Q(π))

]
= LR · d(π,Q(π)).

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Next, we bound the distance d(π,Q(π)). Using the definition of the projection Q(π), we find the
distance from π to its projection:

d(π,Q(π)) = sup
s

∥π(s)−Q(π)(s)∥1

= sup
s

∥∥π(s)− 1
2 (π(s) +Kg(π(Lg(s))))

∥∥
1

= 1
2 sup

s
∥π(s)−Kg(π(Lg(s)))∥1 .

The term inside the norm is equal to the equivariance mismatch ∆π(s
′) := π(Lg(s

′))−Kg(π(s
′))

evaluated at s′ = Lg(s), since Lg is an involution.

∆π(Lg(s)) = π(Lg(Lg(s)))−Kg(π(Lg(s))) = π(s)−Kg(π(Lg(s))).

Since Lg is a bijection, sups ∥∆π(Lg(s))∥1 = sups′ ∥∆π(s
′)∥1. By Lemma C.10, this supremum

is bounded by ξ. Therefore:

d(π,Q(π)) =
1

2
sup
s′

∥∆π(s
′)∥1 ≤ ξ.

The second claim is that for any radius r > ξ, we haveN∞,1

(
Πapprox(εeq), r

)
≤ N∞,1

(
Πeq, r−ξ

)
.

We know that for any π ∈ Πapprox(εeq), its projection Q(π) ∈ Πeq satisfies d(π,Q(π)) ≤ ξ.
This implies that the set Πapprox(εeq) is contained in a ξ-neighbourhood of Πeq . Let {πj}Mj=1

be a minimal (r − ξ)-cover for Πeq , where M = N∞,1(Πeq, r − ξ). Now, consider any policy
π ∈ Πapprox(εeq). There must exist a centre πj from our cover such that d(Q(π), πj) ≤ r − ξ. By
the triangle inequality, we can bound the distance from π to this centre πj :

d(π, πj) ≤ d(π,Q(π)) + d(Q(π), πj)

≤ ξ + (r − ξ) = r.

This shows that the set {πj}Mj=1 is an r-cover for Πapprox(εeq). Since we have found a valid cover
of size M , the size of the minimal cover must be no larger:

N∞,1

(
Πapprox(εeq), r

)
≤ N∞,1

(
Πeq, r − ξ

)
.

Theorem C.12. With RΠeq = {τ 7→ R(π; τ) : π ∈ Πeq}, fix any accuracy parameter r ∈ (0, B)
and confidence δ ∈ (0, 1). Then with probability at least 1− δ,

sup
π∈Πapprox(εeq)

|J(π)−ĴN (π)| ≤ C

(∫ B

r

√
logN∞,1(RΠeq

, ε)

N
dε

)
+

8r√
N

+B

√
log(2/δ)

2N
+2LRξ.

Proof. For any policy π ∈ Πapprox(εeq), we can decompose the generalisation error using the
triangle inequality by introducing its exact-equivariant projection Q(π) ∈ Πeq:

|J(π)− ĴN (π)| ≤ |J(π)− J(Q(π))|+ |J(Q(π))− ĴN (Q(π))|+ |ĴN (Q(π))− ĴN (π)|.
We bound each of the three terms on the right-hand side.

From Theorem C.11, we have:

|J(π)− J(Q(π))| ≤ LR · d(π,Q(π)) ≤ LRξ.

Since the return function R(·; τ) is LR-Lipschitz:

|ĴN (Q(π))− ĴN (π)| =

∣∣∣∣∣ 1N
N∑
i=1

(R(Q(π); τi)−R(π; τi))

∣∣∣∣∣
≤ 1

N

N∑
i=1

|R(Q(π); τi)−R(π; τi)|

≤ 1

N

N∑
i=1

LR · d(π,Q(π)) ≤ LRξ.
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The middle term, |J(Q(π)) − ĴN (Q(π))|, is the generalisation error for an exactly equivariant
policy. Combining the bounds, we get:

sup
π∈Πapprox(εeq)

|J(π)− ĴN (π)| ≤ sup
π′∈Πeq

|J(π′)− ĴN (π′)|+ LRγ.

Applying the high-probability bound from Theorem C.9 to the supremum over Πeq yields the final
result.

D ADDITIONAL DETAILS OF ENVIRONMENTS

This appendix presents the tables on the environments and how the state space is divided into a
symmetric and an asymmetric part. First Table 3 highlights the differences between environments
in dimension sizes. Tables 4, 5, 6, and 7 show the division for mo-hopper-v5, mo-walker2d-v5,
mo-halfcheetah-v5, and mo-swimmer-v5, respectively. The action space is always divided into an
empty set for the asymmetric part, and the complete set for the symmetric part.

Table 3: Considered MuJoCo environments.

State Space Action Space Reward Space

Mo-hopper-v5 S ∈ R11 A ∈ R3 R ∈ R3

Mo-walker2d-v5 S ∈ R17 A ∈ R6 R ∈ R2

Mo-halfcheetah-v5 S ∈ R17 A ∈ R6 R ∈ R2

Mo-swimmer-v5 S ∈ R8 A ∈ R2 R ∈ R2

Table 4: Reflectional symmetry partition for mo-hopper-v5 observation space.

Index Observation Component Type Symmetry

0 z-coordinate of the torso position Asymmetric
1 angle of the torso angle Asymmetric
2 angle of the thigh joint angle Symmetric
3 angle of the leg joint angle Symmetric
4 angle of the foot joint angle Symmetric
5 velocity of the x-coordinate of the torso velocity Asymmetric
6 velocity of the z-coordinate of the torso velocity Asymmetric
7 angular velocity of the angle of the torso angular velocity Asymmetric
8 angular velocity of the thigh hinge angular velocity Symmetric
9 angular velocity of the leg hinge angular velocity Symmetric
10 angular velocity of the foot hinge angular velocity Symmetric
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Table 5: Reflectional symmetry partition for mo-walker2d-v5 observation
space.

Index Observation Component Type Symmetry

0 z-coordinate of the torso position Asymmetric
1 angle of the torso angle Asymmetric
2 angle of the thigh joint angle Symmetric
3 angle of the leg joint angle Symmetric
4 angle of the foot joint angle Symmetric
5 angle of the left thigh joint angle Symmetric
6 angle of the left leg joint angle Symmetric
7 angle of the left foot joint angle Symmetric
8 velocity of the x-coordinate of the torso velocity Asymmetric
9 velocity of the z-coordinate of the torso velocity Asymmetric
10 angular velocity of the angle of the torso angular velocity Asymmetric
11 angular velocity of the thigh hinge angular velocity Symmetric
12 angular velocity of the leg hinge angular velocity Symmetric
13 angular velocity of the foot hinge angular velocity Symmetric
14 angular velocity of the left thigh hinge angular velocity Symmetric
15 angular velocity of the left leg hinge angular velocity Symmetric
16 angular velocity of the left foot hinge angular velocity Symmetric

Table 6: Reflectional symmetry partition for mo-halfcheetah-v5 observation
space.

Index Observation Component Type Symmetry

0 z-coordinate of the front tip position Asymmetric
1 angle of the front tip angle Asymmetric
2 angle of the back thigh angle Symmetric
3 angle of the back shin angle Symmetric
4 angle of the back foot angle Symmetric
5 angle of the front thigh angle Symmetric
6 angle of the front shin angle Symmetric
7 angle of the front foot angle Symmetric
8 velocity of the x-coordinate of front tip velocity Asymmetric
9 velocity of the z-coordinate of front tip velocity Asymmetric
10 angular velocity of the front tip angular velocity Asymmetric
11 angular velocity of the back thigh angular velocity Symmetric
12 angular velocity of the back shin angular velocity Symmetric
13 angular velocity of the back foot angular velocity Symmetric
14 angular velocity of the front thigh angular velocity Symmetric
15 angular velocity of the front shin angular velocity Symmetric
16 angular velocity of the front foot angular velocity Symmetric

Table 7: Reflectional symmetry partition for mo-swimmer-v5 observation
space.

Index Observation Component Type Symmetry

0 angle of the front tip angle Asymmetric
1 angle of the first rotor angle Symmetric
2 angle of the second rotor angle Symmetric
3 velocity of the tip along the x-axis velocity Asymmetric
4 velocity of the tip along the y-axis velocity Symmetric
5 angular velocity of the front tip angular velocity Asymmetric
6 angular velocity of first rotor angular velocity Symmetric
7 angular velocity of second rotor angular velocity Symmetric
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E ADDITIONAL DETAILS OF EXPERIMENTAL SETTINGS

Evaluation Measures. For the approximated Pareto front, we consider three well-known metrics
that investigate the extent of the approximated front.

First, we consider hypervolume (HV) (Fonseca et al., 2006), which measures the volume of the ob-
jective space dominated by the approximated Pareto front relative to a reference point. A downside
of many evaluation measures is that they require domain knowledge about the true underlying Pareto
front, whereas HV only considers a reference point without any a priori knowledge, making it ideal
to assess the volume of the front. The reference point is typically set to the nadir point or slightly
worse, and following Felten et al. (2023), we set it to −100 for all objectives and environments. The
HV is defined as follows:

HV (CS, r) = λ

( ⋃
cs∈CS

x ∈ RL : cs ⪯ x ⪯ r

)
,

where CS = cs1, cs2, . . . , csn is the coverage set, or the Pareto front approximation, r ∈ RL is
the reference point, cs ⪯ x means csi ≤ xi for all objectives i = 1, . . . , L, and λ(·) denotes the
Lebesgue measure. Yet, hypervolume values are difficult to interpret, as they do not have a direct
link to any notion of value or utility (Hayes et al., 2022).

As such, we also consider the Expected Utility Metric (EUM) (Zintgraf et al., 2015), which com-
putes the expected maximum utility across different preference weight vectors, and is defined as
follows:

EUM(CS,W) =
1

|W|
∑
ω∈W

max
cs∈CS

U(ω, cs),

where W = {ω1,ω2, . . . ,ωk} is a set of weight vectors, |W| is the cardinality of the weight set,
U(ω, cs) is the utility function, which is set to U(ω, s) = ω · cs =

∑L
i=1 ωi · csi.

To specifically assess performance with respect to distributional preferences, we also consider one
metric designed to evaluate the optimality of the entire return distribution associated with the learned
policies (Cai et al., 2023).

To be precise, we consider the Variance Objective (VO), which evaluates how well the policy set
can balance the trade-off between maximising expected returns and minimising their variance. A
set of M random preference vectors is generated, where each vector specifies a different weighting
between the expected return and its standard deviation for each objective. The satisfaction score
u(pi, πj) for a policy πj under preference pi is a weighted sum of the expected return E[Z(πj)]
and the negative standard deviation −

√
Var[Z(πj)]. The final metric is the mean score over these

preferences, rewarding policies that achieve high expected returns with low variance:

VO(Π, {pi}Mi=1) =
1

M

M∑
i=1

max
πj∈Π

u(pi, πj).

Hyperparameters. Due to time, computational limitations, and the excessive number of hyper-
parameters, we do not perform an extensive hyperparameter tuning process. Below are the used
hyperparameters. All hyperparameters that are not mentioned below are set to their default value.

The probability of releasing sparse rewards prel is always set to a one-hot vector, where sparsity
is imposed on the reward dimension related to moving forward. Since the main goal is to move
forward, imposing sparsity on this channel should make it a more difficult task for the reward shaping
model. Furthermore, we deal with extreme heterogeneous sparsity, where most channels exhibit
regular rewards, but one channel only releases a reward at the end of an episode, making it more
difficult for the model to link certain states and actions to the observed cumulative reward.

The hyperparameters in Table 8 for ReSymNet are identical for each environment. The advantage of
using the same hyperparameters for each environment is that if one configuration performs well ev-
erywhere, it could indicate that the proposed method is inherently stable, especially given the noted
diversity between the considered environments. However, this does come at a cost of potentially
suboptimal performance per environment.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 8: Hyperparameters for ReSymNet.

PRISM

Initial collection N 1000
Expert collection E 1000
Number of refinements IR 2
Timesteps per cycle M 100,000
Epochs 1000
Learning rate 0.005
Learning rate scheduler Exponential
Learning rate decay 0.99
Ensemble size |E| 3
Hidden dimension 256
Dropout 0.3
Initialisation Kaiman (He et al., 2015)
Validation split 0.2
Patience 20
Batch size 32

The hyperparameter controlling the symmetry loss differs per environment, since some environ-
ments require strict equivariance, whereas others require a more flexible approach. Table 9 shows
the used values.

Table 9: SymReg hyperparameter.

Mo-hopper-v5 Mo-walker2d-v5 Mo-halfcheetah-v5 Mo-swimmer-v5

λ 0.01 1 0.01 0.005

F PARETO FRONTS

Figure 6 shows the approximated Pareto fronts. The results demonstrate that shaped rewards yield
superior performance, covering a wider and more optimal range of the objective space compared to
dense and sparse rewards.

(a) Mo-hopper-v5 (b) Mo-walker2d-v5 (c) Mo-halfcheetah-v5 (d) Mo-swimmer-v5

Figure 6: The approximated Pareto front for dense rewards (blue dots), sparse rewards (orange dots),
and shaped rewards (green dots). Sparsity is imposed on the first reward objective.

G ABLATION STUDY

Tables 10 and 11 report the obtained values for the ablation study. Results are again averaged over
ten trials, similar to the main experiments.
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Table 10: PRISM ablation study results. We report the average hypervolume (HV), Expected Utility Metric (EUM), and Variance
Objective (VO) over 10 trials, with the standard error shown in grey. w/o is the abbreviation of without. The largest values are in bold
font.

Environment Metric PRISM w/o residual w/o dense rewards w/o ensemble w/o refinement w/o loss

Mo-hopper-v5
HV (×107) 1.58± 0.05 1.29± 0.09 1.38± 0.11 1.38± 0.08 1.55± 0.04 1.42± 0.07
EUM 147.43± 2.61 128.40± 6.06 134.67± 6.89 135.28± 4.91 145.89± 2.73 137.85± 4.22
VO 66.66± 1.40 58.61± 2.71 61.21± 3.03 61.51± 2.19 66.54± 1.34 62.71± 1.83

Mo-walker2d-v5
HV (×104) 4.77± 0.07 4.65± 0.11 4.66± 0.06 4.60± 0.08 4.60± 0.09 4.58± 0.13
EUM 120.43± 1.64 114.33± 2.48 116.83± 1.65 113.79± 2.02 114.98± 2.84 112.77± 3.01
VO 59.35± 0.80 56.46± 1.21 57.67± 0.73 56.19± 0.97 57.03± 1.42 55.59± 1.44

Mo-halfcheetah-v5
HV (×104) 2.25± 0.18 1.95± 0.20 2.08± 0.21 1.91± 0.19 2.23± 0.18 1.90± 0.19
EUM 89.94± 15.33 73.06± 16.57 82.24± 16.97 81.60± 17.65 92.68± 14.79 71.12± 16.91
VO 40.72± 7.02 32.99± 7.65 37.31± 7.99 36.76± 8.06 42.28± 6.85 32.12± 7.75

Mo-swimmer-v5
HV (×104) 1.21± 0.00 1.21± 0.00 1.20± 0.00 1.20± 0.00 1.21± 0.00 1.20± 0.00
EUM 9.44± 0.14 9.39± 0.15 9.07± 0.11 9.25± 0.13 9.46± 0.13 9.35± 0.14
VO 4.24± 0.07 4.20± 0.08 4.09± 0.05 4.15± 0.08 4.24± 0.07 4.24± 0.07

Table 11: ReSymNet ablation study results. We report the av-
erage hypervolume (HV), Expected Utility Metric (EUM), and
Variance Objective (VO) over 10 trials, with the standard error
shown in grey. w/o is the abbreviation of without.

Environment Metric uniform random

Mo-hopper-v5
HV (×107) 1.38± 0.08 0.49± 0.06
EUM 135.19± 5.30 65.22± 6.63
VO 63.90± 2.34 29.62± 3.68

Mo-walker2d-v5
HV (×104) 4.67± 0.07 1.18± 0.10
EUM 116.72± 2.11 16.52± 4.98
VO 56.22± 1.01 3.77± 2.46

Mo-halfcheetah-v5
HV (×104) 0.98± 0.00 0.78± 0.05
EUM -1.34± 0.39 -10.52± 2.67
VO -0.85± 0.20 -6.51± 1.48

Mo-swimmer-v5
HV (×104) 1.09± 0.01 1.10± 0.02
EUM 4.37± 0.69 3.75± 0.87
VO 1.56± 0.33 1.06± 0.40

H GENERALISABILITY

H.1 SPARSITY ON OTHER OBJECTIVES

We further investigate the robustness of PRISM by inverting the sparsity setting: we maintain the
forward velocity reward as dense but make the control cost objective sparse. Table 12 shows that,
without hyperparameter tuning, PRISM handles this problem much better than the baselines.

For mo-hopper-v5, PRISM improves HV by 16% over the oracle (1.51×107 compared to 1.30×107)
and 27% over the baseline. Similar gains are observed for mo-walker2d-v5, where PRISM achieves
a 9% HV improvement over the oracle and 45% over the baseline. Notably, in mo-halfcheetah-v5,
the baseline suffers a collapse (HV of 0.00), whereas PRISM recovers the performance to exceed
the oracle (1.72 × 104 against 1.70 × 104). These improvements imply that PRISM effectively
reconstructs the dense penalty signal, preventing the agent from exploiting the delay to maximise
velocity at the cost of extreme energy inefficiency.

Improvements in EUM follow the same trend, with mo-walker2d-v5 showing an increase of roughly
33% compared to the baseline (114.62 vs 85.95). On distributional metrics, PRISM delivers more
consistent performance than the baseline. In mo-swimmer-v5, the baseline’s VO drops to −0.61,
indicating high instability, whereas PRISM achieves 3.95, comparable to the oracle (4.22). These
gains are crucial because they indicate that PRISM produces Pareto fronts that are not only high-
performing but also balanced and robust, effectively mitigating the high-variance behaviour from
the baseline.
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Table 12: Experimental results on the control cost objective. We report the average
hypervolume (HV), Expected Utility Metric (EUM), and Variance Objective (VO)
over 10 trials, with the standard error shown in grey. The largest (best) values are
in bold font.

Environment Metric Oracle Baseline PRISM

Mo-hopper-v5
HV (×107) 1.30± 0.13 1.19± 0.10 1.51± 0.11
EUM 129.04± 7.96 124.82± 7.21 142.89± 7.38
VO 59.07± 3.45 56.21± 3.20 67.58± 3.31

Mo-walker2d-v5
HV (×104) 4.21± 0.11 3.16± 0.13 4.59± 0.14
EUM 107.58± 2.86 85.95± 3.27 114.62± 2.80
VO 53.22± 1.39 41.29± 1.49 54.84± 1.25

Mo-halfcheetah-v5
HV (×104) 1.70± 0.20 0.00± 0.00 1.72± 0.19
EUM 81.29± 21.85 -101.49± 3.23 76.50± 20.85
VO 36.84± 10.06 -56.26± 1.63 31.27± 8.68

Mo-swimmer-v5
HV (×104) 1.21± 0.00 1.05± 0.02 1.21± 0.01
EUM 9.41± 0.12 1.50± 1.00 9.32± 0.19
VO 4.22± 0.08 -0.61± 0.68 3.95± 0.08

H.2 SENSITIVITY TO SPARSITY

Figure 7 demonstrates that PRISM maintains robust performance across varying levels of reward
sparsity. While performance is generally consistent, we observe minor fluctuations at interme-
diate values (e.g., prel = 0.2 in mo-hopper-v5 and mo-walker2d-v5). Two key factors explain
this behaviour: (1) PRISM was hyperparameter-tuned specifically for the extreme sparsity setting
(prel = 0), which is the most challenging MORL scenario. We utilised a fixed set of hyperparame-
ters across all experiments to demonstrate method stability rather than optimising for each sparsity
level, and (2) increasing prel increases the number of available reward signals (data points) per
episode. Since ReSymNet was calibrated for the data-scarce sparse setting, the increase of super-
vision targets at higher prel levels changes optimisation dynamics, leading to temporary instability.
Despite these factors, PRISM consistently recovers high performance, proving its capability to han-
dle heterogeneous reward structures without requiring specific tuning for denser environments.

(a) Mo-hopper-v5 (b) Mo-walker2d-v5 (c) Mo-halfcheetah-v5 (d) Mo-swimmer-v5

Figure 7: The obtained hypervolume for various levels of sparsity for PRISM.

H.3 SENSITIVITY TO MORL ALGORITHMS

To demonstrate that PRISM is a model-agnostic framework not limited to specific architectures, we
evaluated its performance using GPI-PD (Generalised Policy Improvement with Linear Dynamics)
(Alegre et al., 2023) as an alternative backbone to CAPQL. Table 13 confirms that PRISM remains
highly effective, consistently outperforming the sparse baseline and obtaining near-oracle perfor-
mance.

In mo-hopper-v5, PRISM achieves an HV of 1.65 × 107, matching the oracle exactly and far ex-
ceeding the baseline (0.67 × 107). This trend of near-perfect recovery is consistent across mo-
walker2d-v5 and mo-swimmer-v5. This indicates that the shaped rewards generated by ReSymNet
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Table 13: Experimental results of GPI-PD. We report the average hypervolume
(HV), Expected Utility Metric (EUM), and Variance Objective (VO) over 10 tri-
als, with the standard error shown in grey. The largest (best) values are in bold
font.

Environment Metric Oracle Baseline PRISM

Mo-hopper-v5
HV (×107) 1.65± 0.10 0.67± 0.04 1.65± 0.07
EUM 151.45± 5.87 85.87± 3.17 148.19± 4.26
VO 72.26± 2.90 41.21± 1.44 70.24± 2.51

Mo-walker2d-v5
HV (×104) 5.93± 0.10 3.20± 0.23 5.61± 0.10
EUM 141.88± 2.38 76.41± 6.47 132.67± 2.26
VO 67.63± 1.17 35.64± 3.91 63.19± 1.75

Mo-halfcheetah-v5
HV (×104) 1.80± 0.22 1.00± 0.02 2.24± 0.16
EUM 164.75± 14.21 -1.31± 0.54 99.89± 8.06
VO 73.90± 7.05 -1.14± 0.31 40.74± 5.17

Mo-swimmer-v5
HV (×104) 1.23± 0.01 1.12± 0.01 1.22± 0.00
EUM 9.68± 0.17 5.17± 0.58 9.56± 0.13
VO 4.23± 0.14 2.18± 0.39 4.37± 0.18

are robust enough to guide different policy optimisation mechanisms effectively. In mo-halfcheetah-
v5, PRISM achieves a significantly higher HV (2.24) compared to the oracle (1.80).

Notably, these results were obtained with minimal hyperparameter tuning due to computational
constraints. While this lack of fine-tuning explains the slight gap in EUM/VO metrics for mo-
halfcheetah-v5 compared to the oracle, the method’s ability to achieve such strong results with a
completely different backbone highlights PRISM’s inherent stability and generalisability.

I DECLARATION ON LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used for (1) polishing the wording of the manuscript for
clarity and readability, (2) brainstorming about algorithm names and their abbreviations, and (3)
searching for algorithms for consideration in the preliminary stage.
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