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Abstract

As diseases progress, they increasingly impact more cognitive and biological factors. By
formulating probabilistic models with this basic assumption, Event-Based Models (EBMs)
enable researchers to discover the progression of a disease that makes earlier diagnosis
and effective clinical interventions possible. We build on prior EBMs with two major
improvements: (1) dynamic estimation of healthy and pathological biomarker distributions,
and (2) explicit modeling of disease stage distribution. We tested existing approaches
and our novel approach on 9,000 synthetic datasets and also the real-world ADNI data.
We found that our stage-aware EBM (SA-EBM) significantly outperforms prior methods,
such as Gaussian Mixture Model (GMM) EBM, Kernel Density Estimation EBM and
Discriminative EBM, in accurately recovering the order of disease events and assigning
individual disease stages. Our package can be installed by pip install pysaebm. Source
codes for the package, experiments, and visualizations are available in Appendix N, or at
https://saebm.hongtaoh. com.

1. Introduction

Understanding how diseases progress over time is central to early diagnosis, prognosis, and
intervention. This is especially the case for chronic and neurodegenerative conditions such as
Alzheimer’s and related dementias (ADRDs) including post-stroke vascular contributions to
cognitive impairments and dementia (VCID) and frontotemporal lobar dementia (FTLD),
and Parkinson’s disease. While longitudinal studies are ideal, they are often expensive, time-

*. Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed
to the design and implementation of ADNI and/or provided data but did not participate in analysis or
writing of this report. A complete listing of ADNI investigators can be found in Appendix O.
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consuming, and logistically challenging (Young et al., 2024), resulting in limited availability.
As a result, there is increasing interest in inferring disease progression from cross-sectional
data, where there is a single data point per participant.

Table 1 represents a typical cross-sectional dataset containing biomarker measurements
from both healthy and progressing participants. The challenge is to infer the temporal
sequence where biomarkers become pathological as the disease develops. This table clearly
illustrates that the task is daunting without the support of advanced statistical models.

Table 1: Participant biomarker measurements

ID TImpacted FUS-FCI P-Tau MMSE AB HIP-FCI PCC-FCI

1 Yes 27.16 -6.14 24.49 147.99 1.59 2.80
2 Yes 17.20 57.89 24.43 157.13 -4.06 8.84
3 Yes 13.99 62.51 20.87 158.12 6.48 4.42
4 No 3.38 26.23 27.05 275.64 -2.94 10.68
5 No 9.90 20.60 28.97 242.11 -2.81 5.69
6

No 9.29 40.00 26.53 343.85 -3.56 7.31

Note: Refer to Table 2 in Appendix A for detailed information about biomarkers.

To enable accurate inferences of the progression order from cross-sectional datasets,
the Event-Based Model (EBM; Fonteijn et al., 2012) posits that each biomarker from an
impacted participant is associated with an event that encodes whether the biomarker is
affected by the disease and thus generated from an atypical distribution. The disease follows
a latent progression across biomarkers, with each participant occupying an unknown stage
along this trajectory. The EBM uncovers this trajectory by analyzing biomarker patterns
across participants, even using only cross-sectional observations.

The EBM has been applied to cross-sectional participant data of a number of different
diseases (Chen et al., 2016; Eshaghi et al., 2018; Hu et al., 2025). Despite the remarkable
progress of different EBMs over the last decade, there are still limitations in existing ap-
proaches. For example, in the calculation of data likelihood, there is typically an implicit
assumption of a uniform distribution over disease stages; However, participants in severe
stages may be underrepresented in clinical studies (Donohue et al., 2014), resulting in non-
uniform empirical distributions. Further, the estimation of healthy and atypical biomarker
distributions is usually done without conducting inference about the distribution of disease
stages and about the progression order. This can result in less accurate estimates. Thus,
for the most accurate inferences, the disease progression order and biomarker distributions
should be estimated in a joint manner.

In this work, we introduced Stage-Aware Event Based Modeling (SA-EBM), which ad-
dresses these two challenges by jointly determining progression order, disease stage distribu-
tion, and biomarker distributions. We evaluated SA-EBM on a comprehensive set of 9,000
synthetic datasets. It demonstrated improved performance compared to the state-of-the-
art EBM methods in both ordering (i.e., recovering the order of disease events) and staging
(i.e., assigning individual disease stages) tasks. Our results highlighted the robustness of
SA-EBM across various progression scenarios, including varied disease stage distributions,
disease progression simulation frameworks, and biomarker distributions that may deviate
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from SA-EBM’s assumptions. We also applied the method to ADNI (Mueller et al., 2005), a
large data set of patients with neurodegenerative diseases and matched controls. We found
that the SA-EBM estimated participant stages consistent with the stage of their clinical
diagnosis (unobserved by the model) and a disease progression ordering that is partially
consistent with the current scientific consensus.

In summary, our contributions are:

1. We propose a novel Stage-Aware EBM framework that jointly models and updates

the disease stage distribution, the biomarker progression order, and the parameters
of biomarker distributions.

. We implement five parameter estimation methods within the proposed SA-EBM
framework.

. We benchmark our methods and existing EBM algorithms on 9,000 synthetic datasets
inspired by hypothetical and real-world clinical data, and also on the real-world ADNI
dataset (Mueller et al., 2005). We explored the effect of sample sizes and proportions
of healthy (control) samples on model performance.

. We demonstrate that SA-EBM methods achieve robust improvements in ordering and
staging accuracy compared to benchmark algorithms.

Generalizable Insights about Machine Learning in the Context of Healthcare

Our work provides several insights applicable to machine learning in healthcare beyond
disease progression modeling;:

e Simpler models might outperform sophisticated ones: Our Gaussian assumption-based
models consistently outperform complicated KDE-based approaches, even in data
with irregular patterns, demonstrating that sophisticated models may offer limited
empirical benefits when applied to noisy and sparse clinical data.

Sensitivity of models to the proportion of control samples: A crucial element in clinical
research is the recruitment of subjects with appropriate study eligibility criteria. To
better inform this process, models should undergo systematic evaluations regarding
their sensitivity to different sample sizes and proportions of healthy samples.

Dynamic updates of parameters: Our work shows substantial improvements in ac-
curacy through iterative and dynamic parameter updating by incorporating evolving
knowledge about the underlying data structure—an approach that can benefit other
healthcare models where initial parameter estimation is uncertain.

Importance of Bayesian priors given limited data: Incorporating and updating Bayesian
priors, as shown in our work, is particularly important in healthcare settings with lim-
ited or imbalanced datasets.
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2. Related Work

Event-based models (EBMs) were pioneered by Fonteijn et al. (2012) to uncover the pro-
gression sequence of neurodegenerative diseases from cross-sectional data. The fundamental
premise of EBMs is that biomarkers become pathological in a consistent sequence across
patients, with each disease stage reflecting the abnormality of an additional biomarker.

Several advancements have been made to the EBM framework. Some studies have
focused on relaxing the strict ordinal ordering assumption. Temporal EBM (TEBM, Wi-
jeratne et al., 2023), for instance, introduced a continuous representation of the ordering,
while others have incorporated variability in ordering across subjects (Huang and Alexan-
der, 2012; Venkatraghavan et al., 2019) or allowed for multiple central orderings (SuStaln,
Young et al., 2018). Further, a recently proposed model, the Parsimonious EBM (P-EBM,
Cs et al., 2025) allows for some biomarkers to be affected simultaneously.

Additional enhancements have concentrated on the statistical underpinning of EBM.
A critical limitation in early EBM implementations was the assumption of uniform dis-
tribution of disease stages. The original EBM by Fonteijn et al. (2012) and subsequent
implementations by Young et al. (2014) and Firth et al. (2020) assumed equal probability
for all disease stages—while in many observational cohorts such as ADNI later stages are
typically underrepresented (Donohue et al., 2014).

Further constraints of the original EBM include assuming biomarker data follows Gaus-
sian distributions and limited applicability to settings with a large number of biomarkers.
KDE-EBM (Firth et al., 2020) employs Kernel Density Estimation to handle non-normal
biomarker distributions, and Scaled EBM (sEBM; Tandon et al., 2023) and Variational
EBM (vEBM; Wijeratne and Alexander, 2024) address challenges with high-dimensional
biomarker data.

Despite these advancements, existing approaches such as EBM (Fonteijn et al., 2012),
ALPACA (Huang and Alexander, 2012), DEBM (Venkatraghavan et al., 2019), SuStaln
(Young et al., 2018), KDE-EBM (Firth et al., 2020), TEBM (Wijeratne et al., 2023), sEBM
(Tandon et al., 2023), vEBM (Wijeratne and Alexander, 2024) and P-EBM (Cs et al., 2025)
typically estimate biomarker distributions once using methods like Gaussian Mixture Models
(GMM) or Kernel Density Estimation (KDE), and then fix these parameters throughout
inference, including during the Markov Chain Monte Carlo (MCMC) procedure. This static
approach is hindered by a circular dependency in EBMs: accurate parameter estimation for
biomarker distributions requires knowledge of the disease ordering and patient staging, but
these are precisely what the algorithm aims to discover. Further, most existing approaches
calculate data likelihood without modeling the distribution of disease stages, assuming equal
representativeness of all disease stages.

Our work directly addresses these limitations by introducing a Stage-Aware EBM (SA-
EBM) framework that dynamically updates biomarker distribution parameters and the dis-
ease stage distribution throughout MCMC. This approach leverages Bayesian principles to
integrate evolving information about the underlying data structure, enabling more accurate
biomarker ordering and patient staging across a range of scenarios.
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3. Methods
3.1. Event-Based Modeling Framework

In the EBM framework, each biomarker exists in a “pre-event” or “post-event” state, with
the “event” signifying the point at which the biomarker becomes pathological. Assuming
a set of NV biomarkers, we have N possible disease stages. Let J denote the total number
of participants, j index participants, and k; be their current disease stage, where k; = 0
for healthy participants and k; > 0 for progressing participants. Let n be a biomarker and
S(n) be its index (1-based) of the disease progression order S. EBM assumes biomarker
n becomes pathological when k; > S(n), with pre-event and post-event states modeled by
separate distributions parameterized by ¢ and @ respectively.

Let X denote the full data, X; be the biomarker measurements for participant j, and
xjn be biomarker n’s measurement of participant j. The likelihood of X; for a progressing
participant with k; > 0 is:

N
P(X;|8,2=1) = Z (X | 8,2 =1,k;) (1)

where P(k;) is the prior probability of stage k;, and z; indicates this is a progression subject
(otherwise z; = 0). p(X; | S,k;) is computed as:
k;

N
p(Xj | S, zj = 1akj) = Hp(xj,Si | 052) H p(xj,Si | ¢5’z) (2)

1=1 i=k;+1

post-event likelihood pre-event\Tikelihood

where S; is the i-th (1-based) biomarker to become pathological according to S, and z; g,
is its measurement for participant j. The likelihood for a healthy participant is:

N
P(X; ]S, 2 =0) =[] plzs; | ¢s.) (3)
i=1
The total likelihood of the dataset is:
J
P(X|8,2z) = H (X, |8, z2) (4)

where z = (21, 29, ..., 27). The goal of EBM is to find an S that maximizes the data likeli-
hood. However, for a large N, exhaustive search of all possible orderings becomes compu-
tationally infeasible. In such cases, EBM employs Metropolis-Hastings MCMC to estimate
the most probable ordering by proposing random swaps in the sequence and accepting or
rejecting those proposals based on the resulting likelihood ratios.

3.2. Stage-Aware Event-Based Model (SA-EBM)

We introduce Stage-Aware EBM (SA-EBM) to address three major challenges in existing
EBM implementations: First, the true parameters ¢ and 6 of the biomarker distributions
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are unknown and must be estimated from the data. Second, the distribution of disease
stages (P(kj))g _, in the above equations is also unknown a priori. Third, the progression
of the disease S is unknown and so, it will be estimated from the data simultaneously.
Unlike previous EBMs that use static ¢ and @ estimated without taking into account
the likely disease stages of participants, or update the disease stage distribution during
MCMC without a proper Bayesian prior, SA-EBM considers (P(lcj)),]g\;:1 as drawn from a

Dirichlet distribution, and iteratively update ¢, 6, and (P(k‘j))g:l based on the evolving
best estimates from the sampler. Detailed procedures are displayed in Algorithm 1.

Algorithm 1 Stage-Aware Event-Based Model (SA-EBM) Algorithm
L= (P(kj));g\;:1 ~ Dirichlet(ay), where ag = 1

2: 0 = (Gn)flvzl (post-event state) and ¢ = (¢n)7]1\[:1 (pre-event state) using K-Means
clustering and conjugate prior updates on the biomarker data

. Initialize S as sampled uniformly from all permutations: S ~ Uniform(N!).

{=—00

: for i =1 to M (number of MCMC iterations) do

Propose S’ by randomly swapping two biomarkers in S.

A= (P(kj| X;,8,0,¢,7) Vhkje{1,2,.. N}

Compute 0’, ¢’ based on S’ and A

U'=L(X |80, ¢ ) using Equation 4

10:  p=min(1,exp({’ —¥¢))

11: U ~ Uniform(0, 1)

12.  if U < p then

13: S« S

14: v

15: 6« 0 and ¢ + ¢

16: A (P(kj | X;,8,0,¢,7): k€ {1,2,..,N})T,

© X TSP T AW

17: 7 + 7’ ~ Dirichlet ([a0kj + Z;Izl Aj7kj]f€\§:1>
18: end if

19: end for

20: Return 0, ¢, 7, A, (£,;,)M_,, and (S,,)M_,

Note: When the variant is Hard K-Means, lines 7, 8, and 15 do not apply, and
line 9 becomes ¢/ = L (X | S’,0, ¢, )

Based on Bayes’ rule, for all k; € {1,2,..., N}, we have

P(k}] ’Xj,S/,O,qf),ﬂ') O(P(k] ’W)P(X] ‘ kj,S/,0,¢,W) (5)

where P(k; | w) = m; and P(X | k;,S',0, ¢, ) can be calculated using Eq. 1.

We implement five different approaches to estimating and updating biomarker distri-
bution parameters 8 and ¢ within the SA-EBM framework. Details are available in Ap-
pendix B.
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4. Synthetic Experiments

We designed a series of controlled synthetic experiments to evaluate the performance of SA-
EBM against existing event-based modeling (EBM) algorithms. Our goal was to assess both
the accuracy of inferred biomarker orderings and subjects’ disease stages under a wide range
of realistic conditions, including ordinal vs. continuous disease stages following uniform
vs. non-uniform distributions, biomarker data following normal vs. non-normal biomarker
distributions, and varying participant sizes and healthy group percentages (ratios). We
generated synthetic data using two distinct models: an EBM-native model based on Fonteijn
et al. (2012) and a sigmoid model adapted from Venkatraghavan et al. (2019).

4.1. EBM-Native Generative Model with Ordinal £;

The EBM-native model simulates the core assumptions of the EBM framework. Measure-
ment of biomarker n in subject j, i.e., x, ;, is generated as follows:

1. Stage Assignment: A disease stage k; is assigned to each subject. Healthy subjects
are assigned k; = 0. For impacted subjects:

e A stage distribution 7 is sampled from a Dirichlet distribution: 7 ~ Dirichlet(cx).
This distribution represents the probability of an impacted participant being in
each disease stage.

e The number of subjects in different disease stages, represented by k, is drawn
from a Multinomial distribution: k ~ Multinomial(Jimpacted; 7), Where Jimpacted
is the number of impacted subjects; therefore, sz\i 1 ki = Jimpacted-

e Generate a sequence of Jimpacted disease stages based on k and concatenate it with
Jhealthy instances of k; = 0. The combined sequence of J = Jimpacted + Jhealthy
is uniformly randomized, determining the final stage k; € {0,1,..., N} for each
participant.

2. Biomarker Generation: For each biomarker n, if S(n) < kj, @, ; is generated from the
post-event distribution with parameters 8,, = (unyg,ai g); Otherwise, the pre-event
distribution with parameters @, = (fin, 4, 02 ¢).

Mathematically:

Tnj | 8y kj, O, Py 2j ~ I(z5 = 1) | 1(S(n) < kj) p(@n; | On) + 1(S(n) > kj) p(@n,; | ¢n)

+ (1= 1(z = 1) p(xn,; | ¢n)
(6)

where S ~ Uniform(N!) is a discrete variable following a distribution of uniform permu-
tation. This permutation is randomized for each dataset. The graphical model of this
generative process is presented in Figure 1.

For stage distribution 7 ~ Dirichlet(a), we tested two configurations:
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®n,
[—
Biomarker n =1,..., N

Biomarker n =1,..., N

Participant j =1,...,J

Figure 1: Graphical model of EBM

1. a =100y, approximating a uniform distribution.

2. A specific a to mimic a normal distribution.

For biomarker measurements, we used both normal and non-normal distributions (with
details available in Table 3 and Figure 4 in Appendix C and E):

e Normal Distributions: Parameters were estimated from ten biomarkers related to
Alzheimer’s disease reported in Chen et al. (2016).

e Non-Normal Distribution: Custom mixture distributions were designed to capture
irregular, non-Gaussian behaviors.

We conducted four experiments with data generated from the EBM-native model:

Experiment 1: S & Ordinal k; (Dirichlet-Multinomial with a mimicking a normal
distribution) & Normal x,, ; with fixed parameters.

Experiment 2: S & Ordinal k; (Dirichlet-Multinomial with o mimicking a normal
distribution) & Non-Normal z, ;.

Experiment 3: S & Ordinal k; (Dirichlet-Multinomial with a; = 100 Vi, mimicking
a uniform distribution) & Normal z, ; with fixed parameters.

Experiment 4: S & Ordinal k; (Dirichlet-Multinomial with a; = 100 Vi, mimicking
a uniform distribution) & Non-Normal z,, ;.

4.2. Sigmoid Model with Continuous k;

We also used a modified version of the generative model from Venkatraghavan et al. (2019),
based on the simulation framework by Young et al. (2015). This model assumes that
biomarker values for healthy individuals follow normal distributions, while those for pro-
gressing individuals deviate monotonically from healthy values over time. In this model, k;
is continuous. The differences between our model and that used in Venkatraghavan et al.
(2019) are: First, we introduce directional variability by randomly flipping the sign of the
sigmoid trajectory per biomarker; Second, we assume a global progression order, ensuring
that all individuals share the same event times within a given experiment. Biomarker values
are generated as follows:
When k; =0,
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x”?j ~ N(Hn7d); 0-’7217¢)
When k; > 0,

(=)™ Ry,

Tng ~ Nlpin,g, U""z’) + 1 4 e—Pn(ki—&n)

Ry, = ping — pin,g is the range of a biomarker. p, = max (1, ﬁ) controls the

slope. I,, ~ Bernoulli(0.5) randomly flips the direction of progression of the biomarker n.
The ideal sigmoid transitions for all biomarkers are analyzed and visualized in Appendix G.
We explored both ordinal (S) and continuous (§) formulations of event time. Let & =
(&1,&92,...,&N) denote the vector of event times, where &, is the event time associated with
biomarker n, drawn from a scaled Beta distribution with parameters described below:

Experiment 5: S & Continuous k; (scaled Beta distribution, A = N,a = g = 1,
approximating uniform).

Experiment 6: S & Continuous k; (scaled Beta distribution, A = N,a =5, = 2).

Experiment 7: £ (Scaled Beta distribution, A = N,a = = 2, approximating normal)
& Continuous k; (scaled Beta distribution, A = N, = 8 = 1, approximating uniform).

Experiment 8: £ (Scaled Beta distribution, A = N, = 8 = 2, approximating normal)
& Continuous k; (scaled Beta distribution, A = N,a = 5,5 = 2).

We added variability to &, ; to account for individual differences in event times: &, ; =
clip (&, + 0, 0, N), where § ~ N(0, N - 0.05). N = 10 in our experiments ensured 95%
of the noise fell within [-1,+1]. This experiment is designed to be closer to real-world
datasets and to provide a fair comparison with DEBM (Venkatraghavan et al., 2019).

Experiment 9: £ (Scaled Beta distribution, A = N, a = § = 2, approximating normal)
with added noise & Continuous k; (scaled Beta distribution, A = N,a =5, 5 = 2).

In Appendix E, Figure 4 visualizes the pre- and post-event distributions for each biomarker
in theoretical normal distributions, non-normal distributions, and the sigmoid model (a
dataset of Experiment 9). Table 4 provides a summary of configurations of all experiments.

4.3. Experiment Setup

For each experiment, we varied the total numbers of participants (J = 50,200,500, 1000)
and healthy ratios (r = 0.1,0.25,0.5,0.75,0.9), creating 50 random datasets per configura-
tion. Each dataset includes both healthy and progressing participants, with known ground
truth for S and k;. In total, we generated 9,000 datasets (9 experiments x 4 participant
sizes x 5 healthy ratios x 50 repetitions).

We evaluated our five SA-EBM variants (Hard K-Means, Conjugate Priors, MLE, EM,
and KDE) against established algorithms selected to represent the state-of-the-art in event-
based modeling:

1. EBM with GMM: We included two independent implementations of EBM approach
using Gaussian Mixture Models:
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e UCL GMM: The implementation from the UCL POND research group (Firth
et al., 2020)

e DEBM GMM: The GMM-based implementation released alongside DEBM (Venka-
traghavan et al., 2019)

2. DEBM: The discriminative Event-Based Model by Venkatraghavan et al. (2019),
which was specifically designed to handle subject-specific variations in event order
and incorporates updates to staging probabilities.

3. KDE-EBM (UCL KDE): The nonparametric KDE implementation by Firth et al.
(2020) designed to handle non-Gaussian biomarker distributions.

These benchmark algorithms were selected to represent diverse approaches within the
EBM framework, covering different parameter estimation techniques (parametric vs. non-
parametric), different assumptions about event ordering (fixed vs. variable), and different
approaches to staging probability estimation (static vs. dynamic). Meanwhile, all these
methods are fixed-parameter approaches in the sense that distribution parameters are es-
timated once (e.g., via GMM or KDE) and kept fixed throughout inference. This design
choice makes them ideal baselines to contrast with our stage-aware model.

All algorithms were run with 10,000 MCMC iterations, except for DEBM which em-
ploys a different inference algorithm. For methods requiring an initialization phase for ¢, 6
estimation (DEBM GMM, UCL GMM, and UCL KDE), we used 10 initializations with
1,000 EM iterations each, which is more than demonstrated by POND (2025).

4.4. Evaluation Metrics

We evaluated algorithm performance using two main metrics: (1) the accuracy of biomarker
ordering and (2) the accuracy of patient staging.

For ordering accuracy, we employed normalized Kendall’s Tau distance: a standard
metric in progression modeling (Young et al., 2023; Tandon et al., 2023; Cs et al., 2025)
that measures the distance between two ordered sequences. Normalized Kendall’s Tau
distance ranges from 0 (perfect match) to +1 (inverse order). We measured the distance
between the ordering picked by the model and the real ordering. SA-EBM selected the
biomarker ordering that maximized the data log-likelihood. Benchmark algorithms were
evaluated based on the orderings they directly produced.

For staging accuracy, we used mean absolute error (MAE) to quantify the average de-
viation between predicted and true participants’ stages. For experiments with continu-
ous ground truth stages, we converted these to ordinal positions by finding the appro-
priate insertion point within the sorted sequence of event times. For our SA-EBM al-
gorithms, after MCMC iterations, we had obtained the ordering with the highest data
log-likelihood Spax, and final 8, ¢, w. Based on these, we calculated the staging poste-
rior: (P(k; | X, Smax, 0, ¢, m) Vk;j € {0,1,2, '--vN});']:y Note that we ignored the ground
truth of diagnosis labels, i.e., healthy or impacted here. We then sampled k; from a discrete
distribution P(k;) using weighted random selection: k; ~ Categorical(P(k;)).

10
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5. Synthetic Experiments Results

We conducted all experiments on the CHTC cluster at the University of Wisconsin-Madison (Cen-
ter for High Throughput Computing, 2006), completing them in approximately 17 hours. In
Experiment 2, the UCL KDE implementation failed on 21 datasets due to singular matrix
errors, which are not handled in the algorithm by POND (2025).

5.1. Overall Performance

As shown in Figures 2 and 5 (Appendix F), SA-EBM algorithms produced higher accuracy
scores compared to the benchmark methods on both ordering and staging tasks. As shown
in Figure 7 and 8 in Appendix F, among the five SA-EBM variants, the Conjugate Priors
approach achieved the highest average ordering accuracy with a normalized Kendall’s Tau
distance of 0.19 +0.01 (95% CI), followed by MLE (0.1 +0.01) and EM (0.19 +0.01). The
Hard K-Means (0.25+0.01) and KDE (0.25+0.01) variants showed moderate performance.
The benchmark algorithms (UCL KDE, DEBM GMM, DEBM, and UCL GMM) displayed
lower performance with average normalized 7 distances above 0.32.

Only Conjugate Priors (0.62+0.05), MLE (0.6440.06), and KDE (0.88+0.09) achieved
average MAE values below 1.00. Results of Hard K-Means (1.02+0.05), EM (1.03+0.12) ,
DEBM GMM (1.2240.05) and DEBM (1.2440.05) were below 1.50. UCL GMM (1.5640.05)
and UCL KDE (1.80 £ 0.09) had the worst average MAE values.

5.2. Results on Performance Across Experimental Conditions

Figures 2 and 5 (Appendix F) present detailed performance breakdowns across experimental
configurations, sample sizes (J) and healthy ratios (r).

Sample Size: Ordering performance generally improved with an increasing sample size
across all algorithms and all experiments. The most substantial improvements for SA-EBM
occurred between J = 50 and J = 200, with smaller incremental gains observed at J = 500
and J = 1,000. Sample size does not influence staging performance very much.

Proportion of Control Samples: As the healthy ratio (r) increased, the ordering
performance of benchmark algorithms decreased substantially. In contrast, SA-EBM main-
tained relatively stable performances across all proportions of control samples. At r = 0.9
and J = 500 (corresponding to only 50 progressing subjects), our method achieved perfor-
mance comparable to settings with more impacted participants (e.g., r = 0.1, J = 200). As
for the performance on staging tasks, the accuracy of SA-EBM variants, except for EM in
some experiments, improved as the healthy ratio increased. Accuracy trends of benchmark
algorithms varied by the specific algorithm. For example, staging accuracy of DEBM GMM
and DEBM in general improved as the healthy ratio increased. Staging accuracy of UCL
GMM decreased with higher healthy ratios whereas UCL KDE showed an “inverted V”
curve.

Biomarker Distribution: As shown in Figure 7 and 8 in Appendix F, in Experiment
2 and 4, the parametric variants of our SA-EBM approach—Conjugate Priors and MLE,
in particular—consistently outperformed the nonparametric KDE variants even with non-
Gaussian data.

11
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Figure 2: Average normalized Kendall’s Tau distance values (+95% CI). We use
Conjugate Priors to represent SA-EBM as it has the best performance. Each panel rep-
resents a different experimental configuration with varying data generation models, stage
distributions, and biomarker distributions. The X-axis within each panel shows different
participant sizes (J = 50,200, 500, 1000). Within each participant size are different healthy
ratios (r), i.e., the percentage of healthy participants among all subjects. From left to right
are r = 0.1,0.25,0.5,0.75,0.9. The Y-axis shows the normalized Kendall’s Tau distance
(lower is better). Data points represent mean performance across 50 variants of the same
experimental configuration, sample size, and healthy ratio. SA-EBM (Conjugate Priors)
consistently outperform static and baseline methods. Performance generally improves with
increasing sample size, while fixed-parameter methods degrade under high healthy ratios
and non-Gaussian data.
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Progression Model: When tested on data from continuous progression models (Exper-
iments 5-9), our SA-EBM variants maintained performance levels similar to those observed
with the original EBM model for data similar to its model assumptions (Experiments 1-4).
This was consistent across both the continuous uniform stage distributions (Experiment 5
& 7) and the continuous skewed distributions (Experiment 6, 8, & 9).

Individual Variability: In Experiment 9, which incorporated subject-level variability
in event times, our SA-EBM variants showed only a minor decrease in performance com-
pared to Experiment 8, which has the same configurations except for the perturbations to
event times.

5.3. Algorithm-Specific Performance Patterns

Among the five SA-EBM variants, Conjugate Priors showed the best performance. The
Hard K-Means approach, which represents a static parameter estimation strategy similar
to existing methods but with our staging probability updates, outperformed almost all
benchmark algorithms in both ordering and staging tasks but lagged behind our dynamic
parameter updating variants. The benchmark KDE-EBM implementation (UCL KDE)
consistently underperformed our KDE variant across all conditions and both tasks.

Figure 6 (Appendix F) displays the average performances and variability thereof for all
tested algorithms by aggregating their results across all 9,000 datasets. It clearly shows
that existing EBM implementations have lower ordering accuracies and higher variability.
It should be noted that DEBM and DEBM GMM performed well on the staging task.

6. Real World Dataset

We applied our SA-EBM algorithms to real-world data from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI, Mueller et al., 2005). The ADNI was launched in 2003 as
a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure the progression of mild cognitive impair-
ment (MCI) and early Alzheimer’s disease (AD).

We documented how we processed the ADNI data in Appendix H. The final dataset
included 726 participants, distributed across diagnostic categories as follows: AD (153,
21.1%), late MCI (236, 32.5%), Control (155, 21.3%), and early MCI (182, 25.1%). Among
them, 413 (56.9%) were men 313 (43.1%) were women. Age distribution can be found
in Figure 11 (Appendix I). These participants came from the following study protocols:
ADNI1 (275, 37.9%), ADNIGO (76, 10.5%), and ADNI2 (375, 51.7%).

Based on the superior performance of Conjugate Priors and MLE in synthetic experi-
ments, we implemented these algorithms on the ADNI dataset using various random seeds.
We selected the outcome with the highest data log-likelihood. Using the optimal seed, both
MLE and Conjugate Priors produced identical ordering results and nearly identical staging
results. We also applied UCL GMM, DEBM, and DEBM GMM to ADNI for comparison.
We failed to run UCL KDE on ADNI due to “singular matrix” error.

The result from Conjugate Priors (Figure 3) suggests that ventricular enlargement oc-
curs first, followed by cognitive decline (MMSE, RAVLT Immediate, and ADAS). Next,
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Conjugate Priors Ordering Result
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Figure 3: Ordering Result with Conjugate Priors on ADNI data: The heatmap
shows uncertainties for 10,000 MCMC iterations with 500 burn-in and no thinning. The
number inside the parenthesis in the Y-axis indicates the result according to the ordering
associated with the largest log data likelihood. Each cell indicates the probability of each
biomarker getting affected in a specific stage, according to the results from the last 9,500
MCMC iterations.

pathology in ApB;_49 protein and the two Tau-related biomarkers. Neurodegeneration in
brain regions—including the Entorhinal cortex, Hippocampus, MidTemporal area, Fusiform
gyrus, and WholeBrain—occurs last.

In contrast, as shown in Appendix K, UCL GMM (Figure 13) identifies this sequence:
brain volume loss, amyloid pathology, ventricular enlargement, cognitive decline, tau pathol-
ogy, and again brain volume loss. DEBM GMM (Figure 14) produces the following pro-
gression: abnormalities in Af8;_4o and tau proteins, followed by ventricular enlargement,
cognitive decline, and then brain atrophy. DEBM (Figure 15) identifies another sequence:
amyloid pathology, cognitive decline, tau pathology, further cognitive declines, another tau
biomarker, and lastly brain atrophy and ventricular enlargement.
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7. Discussion

Our results clearly demonstrate the benefits of the Stage-Aware EBM (SA-EBM). By dy-
namically updating distributions of disease stages and biomarker measurements, our algo-
rithms exhibit improved robustness across a wide range of challenging scenarios compared
to the prior EBM algorithms.

The advantages that SA-EBM has on both ordering and staging tasks are most evident
when the proportion of healthy participants () is high. When the number of participants
(J) is large and the ratio of healthy participants (r) is small, SA-EBM approaches still
tend to outperform other methods, but the performance advantage is smaller. This is likely
due to the computational problem being easier when there are more reliable data from
impacted participants. However, when J is small and r is large, benchmark algorithms
show substantially reduced performance. This robustness of our algorithms has important
implications for clinical study design, particularly for rare diseases where recruiting large
numbers of impacted participants is challenging.

The SA-EBM ordering results indicate that while larger sample sizes generally improve
performance, the benefits may saturate when sample sizes are in the range of 200 to 1000
participants. This may have practical implications for clinicians and researchers. It suggests
that researchers may perform reliable progression modeling even when sample sizes are
limited. However, we caution against over-interpretation of this finding as real-world clinical
studies are more complex than the synthetic benchmarks we conducted.

Interestingly, KDE-based algorithms showed reduced performance compared to those
relying on Gaussian assumptions on experiments that used non-Gaussian biomarker dis-
tributions. This seemingly counterintuitive result can be attributed to the bias-variance
tradeoff. With limited data, KDE algorithms tend to overfit, while Gaussian assumption-
based algorithms act as a form of regularization. This explains why Conjugate Priors and
MLE outperform KDE and UCL KDE. For clinical applications, this suggests that para-
metric approaches may be preferable in many practical scenarios, despite their theoretical
limitations with non-Gaussian data.

Furthermore, our algorithms exhibited robustness to data deviating from its assump-
tions. In the experiments with continuous event times and stages, and even with subject-
specific variations in event times, SA-EBM methods, especially the variants of Conjugate
Prior and MLE; still outperformed other methods. While the EBM is designed for ordinal
events and staging, its ability to accurately estimate pre- and post-event distributions, as
well as stage distributions, allows it to perform well even with data generated from a contin-
uous sigmoid model. This suggests that SA-EBM may provide accurate results regardless
of whether the disease progresses in discrete stages or along a continuous trajectory.

Our result on the ADNI dataset is different from that presented in Young et al. (2014):
tau and amyloid pathology first, followed by brain atrophy, and then cognitive impairment,
and lastly volumetric measures of brain regions. It is also different from that reported in
Archetti et al. (2019) using DEBM: AfS;_42 protein, cognitive scores, tau pathology, and
brain region atrophy. These disparities might be due to the differences in the dataset. For
example, Young et al. (2014), published more than ten years ago with limited ADNI data,
had only 285 participants. Also, Archetti et al. (2019) included participants with missing
data. Additionally, whereas both Young et al. (2014) and Archetti et al. (2019) performed
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log transformations on Tau and P-Tau measurements to improve data normality, we used
the original data. We log transformed these two quantities and the result from MLE stayed
the same. Conjugate Priors, as shown in the Figure 16 (Appendix K), showed that tau and
amyloid pathology come before cognitive decline, which is similar to Young et al. (2014).

We interpret our result in Figure 3 as follows. First, biomarkers of the same type are
grouped nicely with similarly concentrated uncertainties. For example, the three biomarkers
representing cognitive scores are grouped together and the uncertainties show they become
pathological roughly simultaneously. The same happens to amyloid and tau proteins, and
brain volumes. Second, our Ventricles — Cognition (C) — Amyloid (A) — Tau (T) —
Neurodegeneration (N) ordering is partially consistent with the ATNC ordering that is the
basis for the revised criteria of Alzheimer’s Association Workgroup 2024 (AA-2024; Jack Jr
et al., 2024). The discrepancy between our inferred ordering and the canonical progression
may reflect the heterogeneity of Alzheimer’s disease, as not all individuals adhere strictly
to the sequence outlined in the ATNC framework Mendes et al. (2025).

The staging result (Figure 17, Appendix L) and the trace plot ( Figure 12, Appendix J)
provide additional support for the ordering estimated by our SA-EBM algorithm. Specif-
ically: (1) Control and EMCI participants were predominantly assigned to the first three
stages; (2) AD participants were mostly assigned to the later stages; and (3) The log-
likelihood increased and eventually converged. In contrast, as shown in Appendix L, UCL
GMM (Figure 18) assigned CN participants to late stages. DEBM (Figure 20) and DEBM
GMM (Figure 19) performed well, although DEBM GMM assigned an excessive number of
non-CN participants to stage 0 and DEBM assigned AD patients to relatively early stages.

7.1. Limitations

While our results are promising, several limitations are acknowledged. Numerically simu-
lated datasets, which—though carefully designed to mimic real-world scenarios—may still
not capture the full complexity of clinical data, including confounders, missing data, and
measurement errors.

SA-EBM assumes a single global biomarker progression sequence shared across all par-
ticipants and is primarily concerned with ordinal order without modeling actual temporal
intervals between events. This fails to capture the complexity of real-world disease pro-
gression. Besides, we recognize that a lack of variations in event times at the subject level
might have influenced the performance of DEBM, which is based on the assumption that
each subject may have a different ordering. To make fair comparisons, we have added the
Experiment 9 where perturbations to event times are applied. The results remain consistent
with prior experiments.

Lastly, compared to fixed-parameter methods, our approach incurs a higher computa-
tional overhead due to iterative updates. That said, this does not pose a serious bottleneck.
A comprehensive runtime analysis, presented in Appendix M, demonstrates that while SA-
EBM is indeed slower than benchmark algorithms, its runtime of 1.5 minutes for 1,000
participants on a CPU-only setup remains acceptable for the majority of medical and re-
search contexts.
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Appendix A. Biomarker Glossary Table

Table 2: Glossary of Biomarkers with Source, Units, and Interpretation

Abbrev. Full Name Source Modality Unit / Scale Higher Values Indicate

MMSE Mini-Mental State Cognitive test Score (0-30) Less pathology (better global cognition)
Examination

ADAS Alzheimer’s Disease Cognitive test Score (0-70) More pathology (worse cognition)
Assessment Scale —
Cognitive

AVLT-Sum  Auditory Verbal Learning Cognitive test Score (0-75) Less pathology (better memory
Test — Sum Trials 1-5 encoding)

AB Amyloid Beta (AB1-42) CSF pg/mL Less pathology (less amyloid

deposition)

P-Tau Phosphorylated Tau (e.g., CSF pg/mL More pathology (neurofibrillary tangle
p-Tauigi) burden)

HIP-FCI Hippocampal Functional Resting-state {MRI Unitless More pathology (abnormal
Connectivity Index hyperconnectivity)

PCC-FCI Posterior Cingulate Cortex Resting-state fMRI Unitless Less pathology (preserved DMN
Functional Connectivity connectivity)

FUS-FCI Fusiform Gyrus Functional Resting-state fMRI Unitless More pathology (compensatory
Connectivity Index hyperactivation)

HIP-GMI Hippocampal Gray Matter Structural MRI Unitless Less pathology (greater structural
Integrity integrity)

FUS-GMI Fusiform Gyrus Gray Matter  Structural MRI Unitless Less pathology (greater structural

Integrity

integrity)
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Appendix B. SA-EBM Parameter Estimation Variants
B.1. Hard K-Means (Baseline)

Parameters are estimated once at initialization using K-Means clustering with conjugate
priors and remain fixed throughout MCMC. This resembles the static parameter approach
used in previous EBM implementations, but in a way that aligns more closely with the
original EBM framework by explicitly fitting two separate states of the biomarker rather
than a mixture distribution.

B.2. Conjugate Priors

Let z,,; denote the measurement of biomarker n for participant j. Both Conjugate Priors
and Maximum Likelihood Estimation require hard assignments of z,,,; to either the pre-event
or post-event cluster when estimating @ and ¢. If j is healthy, then z,, ; is assigned to the
pre-event cluster. Otherwise, the assignment is based on the stage posterior distribution:

Ppre—event(xn,j) = Z I(kj < S(n))P(k] ’ va Sa 01 ¢7 ﬂ-) (7)
kje{1,2,..,N}
Ppost—event (xn,j) =1- Ppre—event (xn,j) (8)

The measurement x,, ; is assigned to the cluster with the larger probability. In the case
where Ppre-cvent(Zn,j) = Ppost-event (€n,j), Tn,j is assigned randomly with equal probability
to either cluster.

Let X, . denote all the measurements of biomarker n in cluster ¢, where c represents
either the pre-event or post-event cluster. The mean and variance of X, . are:

_ 1

i=1
1 I 2
2 _
=272 Ko, —7) (10)
where ¢ is the size of X, .. Assuming X, . follow Gaussian distributions, we employ
Normal-Inverse-Gamma priors where parameters from the previous iteration serve as priors

for the current update. Given observations X, . and prior hyperparameters (mg, no, 33, Vo),
the posterior parameters are:

__ nomo +qT

= 11
" ng + q ( )
Ny, =N + ¢q (12)
Up = Vo + q (13)
1
2= = |(q—1)s> +vosh + 2 (3 — mg)? (14)
Un N
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where mg, and 3(2) are prior estimates of mean and variance. m,, and s2 are the resulting
posterior estimates. ng and n,, are strengths of belief in my and m,,, respectively. vy and v,
represent degrees of freedom, influencing the certainty of s% and s2. Initially, ng = vp = 1,

in the spirit of weakly informative priors (Gelman et al., 2017). If ¢ is the post-event cluster,

_ 2 _ 2
then i, 9 = my, Opno = Sn

B.3. Maximum Likelihood Estimation (MLE)

Parameters 8,, and ¢,, are updated using standard MLE after assignment of all z,, .. If c is
the post-event cluster, then p, ¢ = 7, 0721 o= 2,

B.4. Expectation-Maximization (EM)

Instead of hard assignments, measurements x,, . are soft-assigned based on stage posteriors.
For example, 1, ¢ and 072%9 are estimated as:

Z;‘Izl Ppost—event (xn,j) * Tn,j
max (10_97 Z;’T:I Ppost—event (xn,j)>
2 Zj:l Ppost—event(xn,j> : (xn,j - Un,9)2

max (10_9, E;‘le Ppost—event ($n7j>>

where Ppreevent and Ppost-event can be obtained through Equation 7 and 8.

Hno =

B.5. Kernel Density Estimation (KDE)

We use Gaussian kernels with Scott’s bandwidth selection rule. Weights are updated using
the same soft-assignment approach as EM. More specifically:

b ~1/5

= Ow " Ny

where

oy = > Wi
2 _ 2 wilwi — pu)”
w Z w;

1
Neff = =5
eff Z ’lU,LQ

A lower bound (107'2) of o, is applied to avoid division by zero.
We used a Gaussian kernel for density estimation:

L)
Z 'V 27rh2

where
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h: the selected bandwidth using Scott’s rule detailed above.
x: an arbitrary point for density estimation

fh(:n): the estimated probability density for data point x.

n: the number of measurements in the dataset.

x;: the i-th observed biomarker measurement in the dataset.

w;: normalized weights ("7 | w; = 1), representing the relative contribution of each
observed data point.
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Appendix C. Biomarker Parameters and Non-Normal Distribution
Parameter Details

Table 3: Biomarker Parameters and Non-Normal Sampling Specifications

Biomarker 0Omean Osta Pmean Pstd Non-Normal Components (Per Code Implementa-
tion)

1. Triangular(left=p — 20, mode=p — 1.50, right=p)
2. N(u+ o, (0.30)?)

MMSE 22 2.67 28 0.67 3. Exp(0.70) + (1 — 0.50)

- Equal 3-way split & combined
ADAS 20 4.00 6 1.33 Same component structure as MMSE

1. Pareto(1.5) x o + (1 — 20)
AB 150 1667 250 5000 2 Ulk—1.50, p1.50)

3. Logistic(u, o)

- Equal 3-way split & combined
P-Tau 50 33.33 25 16.67 Same component structure as AB

1. Beta(0.5,0.5) X 40 + (u — 20)

2. Exp(0.40) x sign(Bernoulli(0.5))
HIP-FCI 5 6.67 -5 1.67 3. N(g, (0.50)2) + {0,207} spikes

- Equal 3-way split & combined
HIP-GMI 0.3 0.33 0.4 0.23 Same component structure as HIP-FCI

1. Gamma(2,0.50) + (u — o)

2. Weibull(1.0) X o 4 (1 — o)

3. N(p, (0.50)?) o

- Equal 3-way split & combined

AVLT-Sum 20 6.67 40 15.00

PCC-FCI 5 3.33 12 4.00 Same component structure as AVLT-Sum
Cauchy(u, o) + N (0, (0.20)2)
FUS-GMI 0.5 0.07 0.6 0.07 Clipped to [ — 4o, p+ 4o]
. 2
FUS-FCI 20 6.00 10 333 0% Ng, (0.20)%)

90%: Logistic(pu + o, 20)

Implementation Notes:

e 1 & o use 6 parameters for affected (pathological) and ¢ for nonaffected (intact).

e For non-normal components, After sampling, all values are perturbed by additional
noise NV(0, (0.20)?) and clipped to [ — 50, p+ 50].
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Appendix D. Experimental Specifications

Table 4: Complete Experimental Specifications with Defined Notation

Exp Model Event Time Stage Distribution (for Biomarker Measurements
k;j > 0)
1 EBM Uniform permutation Dirichlet-Multinomial Pre-event: N (uh'®, (o5"®)?)
(ordinal) (¢ = [0.40,1.09,2.31, Post-event: N (ub%, (65°5%)2)
3.81,4.89, 4.89, 3.81,
2.31,1.09, 0.40])
2 EBM Same as Expl Same as Expl Biomarker-specific mixtures (see
Table 3)
3 EBM Same as Expl Dirichlet-Multinomial Same normal structure as Expl
(a; = 100)
4 EBM Same as Expl Same as Exp3 Same mixtures as Exp2
5 Sigmoid Same as Expl Beta(1,1) x N Post-event: Pre-event +
(=)™ Ry,
1 4 e—Pn(kj—5Sn)
Pre-event: N (uh'®, (o7"°)?)
6 Sigmoid Same as Expl Beta(5,2) x N Same as Exp5
7 Sigmoid Beta(2,2) X N Beta(1,1) x N Post-event: Pre-event +
(-1 Rn
1+ e—Pnlkj—€n)
Pre-event: N (uh'®, (0h7°)?)
8 Sigmoid Same as Exp7 Beta(5,2) x N Same as Exp7
9 Sigmoid clip (Beta(?7 2) X N Same as Exp8 Same as Exp7

+N(0, 0.05-N), 0, N)

Notation Clarifications:

o uPre gPre: Pre-event parameters for biomarker n

post | 5Dost: Pogt-event parameters

R, = pbo* — pPre: Biomarker dynamic range

clip(z, a,b) = min(max(z, a), b)

x N: Scales value to the interval (0, N]
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Appendix E. Distributions Used in Experiments
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Figure 4: (1) Theoretical normal distributions; (2) Theoretical non-normal dis-
tributions; (3) Empirical distributions in one dataset of experiment 9.
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Appendix F. Detailed Results of Synthetic Experiments
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Figure 5: Mean average errors (£95% CI) for staging accuracy across nine synthetic
experiments. We use Conjugate Priors to represent SA-EBM. Results are organized in the
same way as in Figure 2. SA-EBM outperforms static methods in staging accuracy.
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Normalized Kendall's Tau Distance for Ordering Results Mean Absolute Error for Staging Results
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Figure 6: Aggregated algorithm performance: The left panel shows ordering accuracy
(normalized Kendall’s Tau distance) and the right panel displays staging accuracy. Box
plots represent the performance of each algorithm across all 9,000 datasets. Representative
samples of individual data points from each corresponding result are visualized underneath.
Algorithms are sorted by the average performance represented by the open circle. The thick
line inside each box is the median. The five variants of SA-EBM are: Conjugate Priors,
MLE, EM, KDE and Hard K-Means. All five variants perform better than benchmark
algorithms in both ordering and staging tasks.
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Figure 7: Average Kendall’s Tau distance values (+95% CI) of all algorithms across
nine synthetic experiments. Each panel represents a different experimental configuration
with varying data generation models, stage distributions, and biomarker distributions. The
X-axis within each panel shows different participant sizes (J = 50,200, 500, 1000). Within
each participant size are different healthy ratios (r), i.e., the percentage of healthy partic-
ipants among all subjects. From left to right are » = 0.1,0.25,0.5,0.75,0.9. The Y-axis
shows Kendall’s Tau value (higher is better). Data points represent mean performance
across b0 variants of the same experimental configuration, sample size, and healthy ratio.
SA-EBM variants (Conjugate Priors, MLE, and EM) consistently outperform static and
baseline methods. Performance generally improves with increasing sample size, while fixed-
parameter methods degrade under high healthy ratios and non-Gaussian data.
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Figure 8: Mean Average Errors (£95% CI) for staging accuracy of all algorithms across
nine synthetic experiments. Results are organized in the same way as in Figure 2. SA-EBM
outperforms static methods in staging accuracy.
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Appendix G. Sigmoid Transitions

Without considering the noise from N (g, 4,02 ¢), the ideal development of biomarkers is
modeled as:

(=)™ Ry,
1+ exp (—pn(kj —&n))

For visualization purposes, we normalize each biomarker’s trajectory using min-max
normalization:

Xnj = png +

ij — minkj Xn,j

Norm(X,, ;) = .
(X 5) maxy; Xnj — ming, Xn,j

where the minimum and maximum are taken over all disease stages k;.
Note that each curve represents the normalized ideal trajectory of a biomarker across
disease stages.

Idealized Sigmoid Transitions for Biomarkers (Exp. 5 & 6)
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Figure 9: Normalized sigmoid progression of biomarkers for experiments 5 & 6
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Idealized Sigmoid Transitions for Biomarkers (Exp. 7 & 8)
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Figure 10: Normalized sigmoid progression of biomarkers for experiments 7 & 8
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Appendix H. ADNI Data Processing Pipeline

We used the adnimerge table, which consolidates data from the Alzheimer’s Disease Coop-
erative Study (ADCS) data system. The version we accessed was last updated on September
7, 2023. We processed and filtered data using the following steps:

e Included only participants’ baseline visits, identified by VISCODE = bl.

e Included only participants whose baseline diagnosis was Control (CN), Early Mild
Cognitive Impairment (EMCT), Late Mild Cognitive Impairment (LMCT), or Alzheimer’
Disease (AD).

e Selected twelve biomarkers commonly reported in previous studies, e.g., Cs et al.
(2025), Young et al. (2014), and Archetti et al. (2019). These biomarkers include cog-
nitive assessments (MMSE, ADAS13, RAVLT immediate), cerebrospinal fluid (CSF)
markers associated with tau and amyloid pathology (PTAU, TAU, ABETA), and
structural MRI-derived volumetric measures of specific brain regions (Ventricles, Whole-
Brain, MidTemp, Fusiform, Entorhinal, Hippocampus). We excluded participants
with missing values for any of selected biomarkers.

e Removed Duplicate observations.
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Appendix I. ADNI Participants Age Distribution

Distribution of Ages Among 726 ADNI Participants
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Figure 11: Age distribution of ADNI participants
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Appendix J. SA-EBM Trace Plots on ADNI

Traceplot of Log Likelihoods (Conjugate Priors)
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Figure 12: Traceplot of log data likelihood for Conjugate Priors on ADNI data
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Appendix K. Ordering Results for ADNI

UCL GMM Ordering Result
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Figure 13: Ordering result with UCL GMM on ADNI data: The heatmap shows
uncertainties for 10,000 MCMC iterations. The number inside the parenthesis in the Y-axis
indicates the result according to the ordering associated with the largest log data likelihood.
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DEBM GMM Ordering Result
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Figure 14: Ordering result with DEBM GMM on ADNI data: The heatmap shows
uncertainties for 50 Bootstraps. The number inside the parenthesis in the Y-axis indicates
the result according to the “MeanCentralOrdering” as generated by DEBM (Venkatragha-
van et al., 2019).
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DEBM Ordering Result
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Figure 15: Ordering result with DEBM on ADNI data: The heatmap shows uncer-
tainties for 50 Bootstraps. The number inside the parenthesis in the Y-axis indicates the
result according to the “MeanCentralOrdering” as generated by DEBM (Venkatraghavan
et al., 2019).
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Conjugate Priors Ordering Result
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Figure 16: Ordering result with Conjugate Priors on ADNI data (log transforma-
tion on Tau and P-Tau measurements): The heatmap shows uncertainties for 10,000
MCMC iterations with 500 burn-in and no thinning. The number inside the parenthesis
in the Y-axis indicates the result according to the ordering associated with the largest log
data likelihood. Each cell indicates the probability of each biomarker getting affected in a
specific stage, according to the results from the last 9,500 MCMC iterations.
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Appendix L. Staging Results for ADNI

Distribution of Disease Stages by Diagnosis, Conjugate Priors
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Figure 17: Estimated distribution of disease stages by diagnosis, using Conjugate
Priors: Note that for the staging task, we ignored the known diagnosis label, and let each
algorithm infer the staging solely based on each participant’s biomarker measurements.
It is clear that disease stages are unevenly distributed. Control and early MCI (EMCI)
participants were the majority in early stages, but late MCI (LMCI) and AD participants
became the majority later on, validating our SA-EBM.
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Distribution of Disease Stages by Diagnosis, UCL GMM
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Figure 18: Estimated distribution of disease stages by diagnosis, using UCL
GMM
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Figure 19: Estimated distribution of disease stages by diagnosis, using DEBM
GMM
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Distribution of Disease Stages by Diagnosis, DEBM
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Figure 20: Estimated distribution of disease stages by diagnosis, using DEBM
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Appendix M. Runtime Comparison
M.1. Synthetic Experiments

Table 5: Average runtime (in seconds) for EBM algorithms in synthetic experiments

Algorithm J(Number of Participants)

50 200 500 1000
UCL GMM 2.83 3.29 4.21 6.33
DEBM 3.71 4.18 4.40 5.51
UCL KDE 2.66 3.15 4.45 8.84
DEBM GMM 7.53 8.36 9.27 12.23
Hard K-Means 1.26 3.97 10.45 27.46
MLE 2.77 10.47 31.10 82.04
EM 2.56 9.91 31.33 98.28
Conjugate Priors 16.10 23.81 44.55 95.34
KDE 225.51 1125.03  4687.41 17490.38

Note: Number of biomarkers is 10.

M.2. ADNI Experiment

Table 6: Average runtime (in seconds) for EBM algorithms in the ADNI experiment

Algorithm Runtime (seconds)
UCL GMM 4.26
DEBM 4.39
DEBM GMM 8.37
MLE 61.96
Conjugate Priors 51.62

Note: 726 participants and 12 biomarkers.
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Appendix N. Data and Code Availability
e Package: https://pypi.org/project/pysaebm
e Package Source Code: https://github.com/jpcca/pysaebm

e Reproducible Code for Experiments in this study: https://github.com/hongtaoh/
saebm
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STAGE-AWARE EVENT-BASED MODELING (SA-EBM)

Appendix O. ADNI Information

A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/
wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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