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Abstract

Distributionally robust reinforcement learning (DR-RL) has recently gained sig-1

nificant attention as a principled approach that addresses discrepancies between2

training and testing environments. To balance robustness, conservatism, and3

computational traceability, the literature has introduced DR-RL models with SA-4

rectangular and S-rectangular adversaries. While most existing statistical analyses5

focus on SA-rectangular models, owing to their algorithmic simplicity and the6

optimality of deterministic policies, S-rectangular models more accurately cap-7

ture distributional discrepancies in many real-world applications and often yield8

more effective robust randomized policies. In this paper, we study the empirical9

value iteration algorithm for divergence-based S-rectangular DR-RL and establish10

near-optimal sample complexity bounds of Õ(|S||A|(1−γ)−4ε−2), where ε is the11

target accuracy, |S| and |A| denote the cardinalities of the state and action spaces,12

and γ is the discount factor. To the best of our knowledge, these are the first sample13

complexity results for divergence-based S-rectangular models that achieve optimal14

dependence on |S|, |A|, and ε simultaneously. We further validate this theoretical15

dependence through numerical experiments on a robust inventory control problem16

and a theoretical worst-case example, demonstrating the fast learning performance17

of our proposed algorithm.18

1 Introduction19

Reinforcement learning (RL) Sutton and Barto [20] is a powerful machine learning framework20

in which agents learn to make optimal sequential decisions through continuous interaction with21

an environment. While RL has achieved remarkable success across various domains, its practical22

deployment faces a significant challenge: real-world deployment conditions often differ from the23

training environment (e.g., simulations), resulting in fragile policies that fail to generalize. This24

mismatch undermines RL’s applicability in real-world settings, where discrepancies between training25

and deployment are the norm.26

The framework of distributionally robust reinforcement learning (DR-RL) was thus proposed in27

Zhou et al. [32] to address this mismatch and has since been further developed in a series of works,28

including Panaganti and Kalathil [13], Yang et al. [30], Xu et al. [28], Blanchet et al. [1], Liu et al.29

[10], Wang et al. [21], Yang et al. [31], Wang et al. [25], Shi and Chi [17].30

Popular models in distributionally robust reinforcement learning (DR-RL) include those based on31

SA-rectangular and S-rectangular uncertainty sets. The notion of rectangularity, originally introduced32

in the robust MDP literature to describe the adversary’s temporal flexibility in selecting distributions33

[8], has since been refined. With the incorporation of various information structures and a growing34
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focus on constraining adversarial power, rectangularity now serves to impose structural limitations35

on uncertainty sets, as elaborated in Le Tallec [9] and Wiesemann et al. [26]. In particular, SA-36

rectangularity allows the adversary to choose separate distributions for each state-action pair, whereas37

S-rectangularity enforces consistency across actions within a given state, thereby offering a more38

confined modeling choice.39

Existing statistical analyses of DR-RL predominantly focus on the SA-rectangular setting, primarily40

due to its computational tractability. Moreover, it has been shown that SA-rectangular models always41

admit deterministic optimal policies. However, as illustrated in the example below, the S-rectangular42

formulation can be more appropriate and less conservative in certain applications, such as inventory43

management.44

Example 1 (Inventory Model). Consider a classical inventory control problem where the inventory45

evolves according to St+1 = St + At − Dt, with {Dt : t ≥ 0} representing the stochastic46

demand process and at denoting the replenishment decision at time t. The reward function is47

R(St, At, St+1) = p(St − St+1 + At) + bmin(St+1, 0) − hmax(St+1, 0) − cAt, where p is the48

sales price, c is the purchase cost, h is the holding cost, and b is the penalty of backlog. To address49

the uncertainty in demand, distributionally robust reinforcement learning (DR-RL) provides a natural50

framework for enhancing robustness. In this context, it is reasonable to assume that the adversary can51

only modify the distribution of the demand Dt independently of the controller’s action At, leading to52

an S-rectangular uncertainty set. By contrast, the SA-rectangular formulation allows the adversary53

to choose different distributions for Dt based on the controller’s action At—for example, assigning54

low demand when At is large and high demand when At is small—granting the adversary excessive55

power and resulting in an unrealistic model.56

This example highlights how S-rectangularity constrains the adversary’s power by preventing it from57

adapting to the controller’s actions, making it a more practical and less conservative modeling choice58

in applications such as inventory management.59

While suitable for many applications, the S-rectangular formulation in DR-RL is more challenging60

than its SA-rectangular counterpart, both statistically and computationally, due to the possibility of61

randomized optimal policies. Computationally, this requires solving a full min-max problem rather62

than a simpler maximization. Fortunately, Ho et al. [7] proposed an efficient method for performing63

Bellman updates in this setting. Statistically, the challenge arises from the fact that the space of64

randomized policies is exponentially larger than the space of deterministic policies typically sufficient65

under SA-rectangularity.66

Another feature of Example 1 is that the reward depends on the current state St, the current action At,67

and the next state St+1. In contrast, the literature typically considers reward functions of the form68

R(St, At), which depend only on the current state and action. The inventory management example69

highlights the necessity of adopting a reward function of the form R(St, At, St+1) to accurately70

capture the underlying dynamics.71

In this work, we study the problem of learning the optimal value function in a divergence-based72

S-rectangular robust MDP, where the uncertainty set is defined as the sum of divergences across all73

actions. This formulation is well motivated in practice, as divergence-based uncertainty sets preserve74

absolute continuity and are widely adopted in the literature [7, 30], where efficient algorithms for75

computing the robust value function have been developed.76

However, a satisfactory analysis of the minimax statistical complexity for learning the value function77

remains missing. To the best of our knowledge, the current state-of-the-art upper bound in Yang et al.78

[30] contains a sample complexity dependence on |S| and |A| in the form of O(|S|2|A|2), where |S|79

and |A| are the cardinalities of the state and action spaces. This significantly deviates from the known80

lower bound of Ω(|S||A|). In addition, we have pointed out that in many models of practical interest81

(e.g., Example 1), the reward function depends naturally on the next state St+1, a structural feature82

that is often overlooked in the existing sample complexity literature.83

We contribute to the literature by analyzing divergence-based S-rectangular robust MDPs with reward84

functions that depend on the current state, current action, and next state, i.e., R(St, At, St+1). We85

establish a sample complexity bound of Õ(|S||A|(1− γ)−4ε−2), where ε is the target accuracy and86

γ is the discount factor. This bound is optimal in its dependence on |S|, |A|, and ε, and it holds87

uniformly over the entire range of uncertainty sizes ρ ∈ (0,+∞) and discount factors γ ∈ (0, 1).88
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To the best of our knowledge, this is the first sample complexity upper bound for divergence-based89

S-rectangular models that simultaneously achieves optimal dependence on |S|, |A|, and ε.90

To achieve the optimal |S||A| dependence, we develop a refined sensitivity analysis that improves91

upon the metric entropy bounds derived from the covering numbers of the randomized policy92

class Π = {(π(·|s))s∈S | π(·|s) ∈ ∆(A)}, where ∆(A) denotes the probability simplex over A,93

as used in Yang et al. [30]. Moreover, our analyses advance the techniques of Wang et al. [25] by94

relaxing the mutual absolute continuity requirement, thereby extending the allowable range of the95

uncertainty radius to R+, beyond the previously restrictive regime of ρ = O(p∧), while retain an96

O(1) dependence on ρ as ρ ↓ 0.97

The remainder of this paper is organized as follows: Secction 2 briefly reviews related work on SA-98

rectangular and S-rectangular distributionally robust reinforcement learning. Section 3 introduces the99

framework for learning S-rectangular distributionally robust Markov Decision Processes. Section 4100

establishes sample complexity upper bounds for value function estimation. Section 5 presents101

numerical experiments to support our theoretical results.102

2 Literature Review103

In this section, we briefly survey SA-rectangular and S-rectangular distributionally robust reinforce-104

ment learning.105

SA-rectangular DR-RL: The dynamic programming principles for SA-rectangular distributionally106

robust Markov decision processes (DR-MDPs) have been gradually established through a series of107

works under different information structures [6, 8, 12, 15, 24]. Recent advances in SA-rectangular108

distributionally robust reinforcement learning (DR-RL) have explored sample complexity in various109

settings. Broadly speaking, model-based approaches have been studied in Zhou et al. [33], Panaganti110

and Kalathil [13], Yang et al. [30], Shi and Chi [16], Xu et al. [28], Shi et al. [18], Blanchet et al. [1],111

while the statistical properties of model-free algorithms are presented in Liu et al. [10], Wang et al.112

[21, 22], Yang et al. [31].113

S-rectangular DR-RL: To extend the flexibility of robust MDP models, S-rectangularity was114

introduced in Xu and Mannor [27], Wiesemann et al. [26] as an overarching theoretical framework to115

constrain the adversary while retaining a dynamic programming equation. Ho et al. [7] developed an116

efficient optimization algorithm to solve the Bellman update under this structure. On the statistical117

side, Yang et al. [30] provided the first sample complexity result for S-rectangular DR-RL, achieving118

a rate of Õ(|S|2|A|2(1− γ)−4ε−2), which is suboptimal in its dependence on the number of states119

and actions. More recently, Clavier et al. [2] established near-optimal rates for the S-rectangular120

setting under general Lp norm uncertainty sets. However, their analysis does not directly extend to121

divergence-based uncertainty sets.122

3 Learning S-rectangular Robust Markov Decision Processes123

3.1 Classical Markov Decision Processes124

We briefly review and establish notation for classical tabular MDP models. Let ∆(S),∆(A) denote125

the probability simplex over the finite state space S and action space A respectively. An infinite hori-126

zon MDP is defined by the tuple (S,A, R, P, γ), where S and A are the finite state and action spaces,127

respectively;R : S×A×S → [0, 1] is the reward function; P = {Ps,a(·) ∈ ∆(S) : (s, a) ∈ S ×A}128

is the controlled transition kernel; and γ ∈ (0, 1) is the discount factor. Through out the paper,129

given a controlled transition kernel P , we denote Ps := (Ps,a)a∈A which is seen as a function130

Ps : A→ ∆(S).131

We define the measurable space (Ω,F) to be the canonical space (S × A)N equipped with the132

σ-field generated by cylinder sets. Define state-action process (St, At)t≥0 by the point evaluation133

Xt(ω) = st, At(ω) = at for all t ≥ 0 and ω = (s0, a0, s1, a1, . . . ) ∈ Ω.134

An agent may optimize over the class of history-dependent policies, denoted by ΠHD, where each135

policy π = (πt)t≥0 ∈ ΠHD is a sequence of decision rules. Each decision rule πt at time t136

specifies the conditional distribution of the action At given the full history, that is, a mapping137

πt : (S ×A)t × S → ∆(A). In the setting of classical infinite-horizon discounted MDPs, it is well138
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known that optimal decision-making can be achieved using stationary, Markov, deterministic policies,139

denoted ΠD, where each policy is a mapping π : S → A [14].140

However, in the context of S-rectangular DRMDPs, policies in ΠD may fail to attain the optimal141

performance achievable within the broader class ΠHD [26]. In this setting, it suffices to consider142

stationary, Markov, randomized policies, which we denote by Π throughout the paper. Each π ∈ Π is143

a mapping π : S → ∆(A), specifying a conditional distribution over actions given the current state144

St, uniformly for all t ≥ 0. Given this sufficiency, we restrict our attention to policies in the class Π145

for the remainder of the paper.146

Given a controlled transition kernel P of a classical MDP, a policy π ∈ Π and an initial distribution
µ ∈ ∆(S) uniquely defines a probability measure on (Ω,F). We will always assume that µ is the
uniform distribution over S. The expectation under this measure is denoted by Eπ

P . The infinite
horizon discounted value V π

P is defined as:

V π
P (s) := Eπ

P

[ ∞∑
t=0

γtR(St, At, St+1)

∣∣∣∣∣S0 = s

]
.

An optimal policy π∗ ∈ Π achieves the optimal value V ∗
P (s) := maxπ∈Π V

π
P (s).147

It is well known that the optimal value function is the unique solution of the following Bellman148

equation:149

v(s) = max
a∈A

∑
s′∈S

Ps,a(s
′)(R(s, a, s′) + γv(s′)). (3.1)

Let v∗ be the unique solution, then any deterministic policy π∗ : S → A with π∗(s) ∈150

argmaxa∈A
∑

s′∈S Ps,a(s
′)(R(s, a, s′) + γv∗(s′)) will achieve the optimal value V ∗

P (s).151

3.2 Robust MDPs and S-Rectangularity152

Robust MDPs extend standard MDP models by introducing an adversary that perturbs the transition153

dynamics within a prescribed uncertainty set P , aiming to minimize the control value achieved by154

the decision maker. This formulation gives rise to a dynamic zero-sum game between the controller155

and the adversary. Consequently, the controller must account for potential model misspecifications156

represented by the adversary perturbation, leading to the design of more robust policies.157

The statistical complexity of policy learning in robust MDPs has been primarily studied under SA- and158

S-rectangular uncertainty sets. As discussed in the previous section, S-rectangularity generalizes SA-159

rectangular models and provides a more expressive framework for modeling adversarial perturbations,160

constraining the adversary in a structured way while preserving the dynamic programming principle.161

From this point forward, we will be focusing on S-rectangular robust MDPs.162

Definition 1 (Wiesemann et al. [26], S-rectangularity). The uncertainty set P is S-rectangular if163

P =×s∈S Ps for some Ps ⊆ {(ψa)a∈A|ψa ∈ ∆(S),∀a ∈ A} for all s ∈ S.164

We focus on a special class of S-rectangular adversarial uncertainty sets, where the controlled165

transition kernels are perturbations of a nominal kernel P . These sets are defined via a divergence166

function f and a radius parameter ρ. The computational methods and statistical complexity associated167

with this type of uncertainty structure have been extensively studied in the literature [30, 7].168

Specifically, given a divergence function f , i.e. f : R+ → R is convex with f(0) = 1 and169

f(0) = limt↓0 f(t), we consider the S-rectangular uncertainty set P(f, ρ) =×s∈S Ps(f, ρ) under170

f -divergence and radius ρ where171

Ps(f, ρ) =

Ps,a ∈ ∆(S)

∣∣∣∣∣Ps,a ≪ P s,a,
∑

s′∈S,a∈A
P s,a(s

′)f

(
Ps,a(s

′)

P s,a(s′)

)
≤ |A|ρ

 . (3.2)

Here, ≪ denotes absolute continuity; i.e. a probability measure p ∈ ∆(S) is absolutely continuous172

with respect to q ∈ ∆(S), denoted by p ≪ q, if q(s) = 0 implies p(s) = 0 for any s ∈ S. The173

dependence of the uncertainty set on (f, ρ) is suppressed when there is no ambiguity.174

Given a policy π ∈ ΠHD and uncertainty set P = P(f, ρ), the robust value function of π is175

V π
P (s) = inf

P∈P
Eπ

P

[ ∞∑
t=0

γtR(St, At, St+1)

∣∣∣∣∣S0 = s

]
(3.3)

4



for all s ∈ S. The optimal value, defined as V ∗
P(s) := supπ∈ΠHD

V π
P (s), is achieved by π∗ ∈ Π.176

Definition 2 (DR Bellman Equation). Given S-rectangular P =×s∈S Ps, the DR Bellman equation177

is the following fixed-point equation for v : S → R178

v(s) = sup
ϕ∈∆(A)

inf
Ps∈Ps

∑
a∈A

ϕ(a)

[∑
s′∈S

Ps,a(s
′) (R(s, a, s′) + γv(s′))

]
. (3.4)

It is well known [26] that for P = P(f, ρ) the optimal value V ∗
P is the unique solution v∗ to (3.4).179

We note that value function in (3.3) assumes an adversary that fixes a controlled transition kernel over180

the entire control horizon, a setting commonly referred to as a static or time-homogeneous adversarial181

model [8, 26, 24]. This framework can be extended to more general Markovian or history-dependent182

adversarial models, while still preserving Markov optimality [24].183

To facilitate our analysis, we define the DR Bellman operators as follows.184

Definition 3 (DR Bellman Operators). Given uncertainty set P = P(f, ρ) and π ∈ Π the (population)185

DR Bellman operator is defined as186

T π(v)(s) := inf
P∈P

(∑
a∈A

π(a|s)

[∑
s′∈S

Ps,a(s
′) (R(s, a, s′) + γv(s′))

])
(3.5)

for all s ∈ S. The optimal DR Bellman operator is T ∗(v)(s) := supπ∈Π T π(v)(s),∀s ∈ S.187

3.3 Generative Model and the Empirical Bellman Estimator188

The sample complexity analysis in this paper assumes the availability of a generative model, a.k.a. a189

simulator, which allows us to sample independently from the nominal controlled transition kernel190

P s,a, for any (s, a) ∈ S ×A. In particular, given sample size n, we sample i.i.d. {S(1)
s,a, · · · , S(n)

s,a }191

from P s,a and construct the empirical transition probability192

P s,a,n(s
′) :=

1

n

n∑
i=1

1

{
S(i)
s,a = s′

}
. (3.6)

Then, we define Pn := {P s,a,n|(s, a) ∈ S × A} as the empirical nominal controlled transition193

kernel based on n samples. We define the empirical uncertainty set Pn(f, ρ) :=×s∈S Ps,n(f, ρ)194

where Ps,n(f, ρ) is from (3.2) by replacing P s,a with P s,a,n. Again, the dependence on (f, ρ) will195

be suppressed for simplicity.196

Similarly, the empirical DR Bellman operator T̂π is defined as in (3.5) with P replaced by Pn. The197

corresponding optimal empirical DR Bellman operator is T̂∗(v)(s) := supπ∈Π T̂π(v)(s),∀s ∈ S.198

Equipped with these definitions, we present our strategy to estimate the optimal value of the S-199

rectangular robust MDP via the empirical value function. This is motivated by the fact that V ∗
P = v∗200

where v∗ solves (3.4).201

Definition 4 (Empirical Bellman Estimator). Given divergence function f and radius parameter ρ, let202

P = P(f, ρ) and Pn = Pn(f, ρ). We define the empirical Bellman estimator v̂ to V ∗
P as the unique203

solution to the fixed point equation T̂∗(v̂) = v̂.204

The rest of this paper is dedicated to theoretical analyses and numerical validation of the statistical205

efficiency of estimating V ∗
P = v∗ using v̂. We conclude this section by introducing the following206

important proposition that provides an upper bound on the l∞ estimation error.207

Proposition 1. Let v∗,v̂ be the solution of T ∗(v) = v and T̂∗(v) = v, respectively. Then, the208

estimation error is upper bounded by209

∥v̂ − v∗∥∞ ≤ 1

1− γ

∥∥∥T̂∗(v∗)− T ∗(v∗)
∥∥∥
∞

with probability 1.210

The proof of Proposition 1 is deferred to Appendix A.211
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4 Sample Complexity Bounds for the Empirical Bellman Estimator212

In this section, we establish sample complexity upper bounds to achieve an absolute ϵ error in213

l∞ distance when estimating V ∗
P using v̂. We focus on two specific f -divergence uncertainty214

models. When fKL(t) = f(t) = t log t, the corresponding uncertainty set Ps(fKL, ρ) is based215

on the Kullback–Leibler (KL) divergence, which is widely used in the machine learning literature.216

Alternatively, when f = fk as defined in Definition 6, the resulting fk-divergence model captures217

another well-studied class of uncertainty sets [4].218

We note that our analysis techniques are applicable to a broader class of smooth divergence functions219

f . However, we focus on these two representative cases for demonstration purposes. This reflects that220

achieving near-tight sample complexity bounds often requires leveraging specific structural properties221

of the divergence. In particular, we highlight the desirable feature that, in the regime where the222

radius ρ ↓ 0, our bounds remain O(1) in ρ, avoiding the diverging sample complexity upper bounds223

established in earlier results, as discussed in [25].224

To facilitate our analysis and establish sample complexity results, we define the minimum support225

probability as a complexity metric parameter as follows.226

Definition 5. Define the minimum support probability as227

p∧ := min
s,a∈S×A

min
s′∈S:P s,a(s′)>0

P s,a(s
′)

As noted in the literature, the use of p∧ as a complexity metric is well justified. In the KL case,228

the convergence rate of the estimation error can degrade arbitrarily, depending on the specific MDP229

instance, if there is no lower bound on the minimum support probability. In particular, the rate can230

be as slow as Ω(n−1/β) for any β ≥ 2 as the sample size n tends to infinity [19]. Similar negative231

results hold in the fk-divergence setting when the parameter k approaches 1 [3], highlighting the232

necessity of such a complexity measure.233

4.1 The Kullback-Leibler Divergence Uncertainty Set234

In this section, we present sample complexity results under the KL-divergence uncertainty set. Our235

analysis relies on the following dual representation of the DR Bellman operator and its empirical236

version.237

Lemma 1. With P = P(fKL, ρ) where fKL(t) = t log t and ρ ∈ (0,∞), for any π ∈ Π and s ∈ S,238

the dual form of the DR Bellman operator with KL uncertainty set P is239

T π(v)(s) = sup
λ≥0

(
−λ|A|ρ−

∑
a∈A

λ logEP s,a

[
exp

(
−π(a|s)(R(s, a, S) + γv(S))

λ

)])
. (4.1)

The KL empirical DR Bellman operator T̂π satisfies (4.1) with P s,a replaced by P s,a,n.240

The proof of Lemma 1 is provided in Appendix B.1. Building on this dual formulation, we next241

analyze the statistical error between the empirical and population DR Bellman operators.242

Proposition 2. Under the KL-divergence uncertainty set with any ρ ∈ (0,∞), for any v : S → R243

and n ≥ 12p−1
∧ log(4|S|2|A|/η), with probability at least 1− η,244

∥T̂∗(v)− T ∗(v)∥∞ ≤ 9∥R+ γv∥∞√
np∧

√
log (4|S|2|A|/η).

The proof of Proposition 2 is provided in Appendix C.1. Then, combining Proposition 2 with245

Proposition 1, and the fact that ∥R+ γv∗∥∞ ≤ 1/(1− γ) under our assumption that R ∈ [0, 1], we246

arrive at the following theorem. The proof is presented in Appendix C.4.247

Theorem 1. Under the KL-divergence uncertainty set with any ρ ∈ (0,∞) and n ≥248

12p−1
∧ log(4|S|2|A|/η), with probability at least 1− η,249

∥v̂ − v∗∥∞ ≤ 9

(1− γ)2
√
np∧

√
log(4|S|2|A|/η).

250

Remark 1. Therefore, under the KL-divergence, to achieve an ϵ absolute error of estimating V ∗
P = v∗251

with v̂ in l∞ norm w.h.p., we need a total of Õ(|S||A|(1− γ)−4p−1
∧ ϵ−2) samples from the simulator.252
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4.2 fk-Divergence Uncertainty Set253

Next, we consider a subclass of the Cressie-Read family of fk-divergence with k ∈ (1,∞), as studied254

in Duchi and Namkoong [4].255

Definition 6. For k ∈ (1,∞), the fk-divergence is defined by the divergence functions fk(t) :=256

(tk − kt+ k − 1)/(k(k − 1)). We also define k∗ = k/(k − 1).257

Notably, when k = 2, the f2-divergence is the χ2-divergence, which sees extensive application in the258

statistical testing literature. Moreover, when k ↓ 1, the fk induced divergence converges to KL.259

The analysis for fk-divergence uncertainty sets follows the same strategy to KL-divergence in the260

previous subsection. Below we summarise the main results.261

Lemma 2. With P = P(fk, ρ) and ρ ∈ (0,∞), for any π ∈ Π and s ∈ S, the dual form of the DR262

Bellman operator with fk uncertainty set P is263

T π(v)(s) = − sup
η∈R|A|

c(∑
a∈A

EP s,a

[
(ηa − π(a|s)[R(s, a, S) + γv(S)])k

∗

+

]) 1
k∗

+
∑
a∈A

ηa


where c = c(k, ρ, |A|) = |A|1/k (k(k − 1)ρ+ 1)

1/k and (·)+ = max(·, 0). The fk empirical DR264

Bellman operator T̂π satisfies a similar equality with P s,a replaced by P s,a,n. P s,a,n.265

The proof of Lemma 2 is provided in Appendix B.2. Again, with this dual representation of the DR266

Bellman operators and refined estimation error analysis, we arrive at the following result.267

Proposition 3. Under the fk-divergence uncertainty set with any ρ ∈ (0,∞), for any v : S → R268

and n ≥ 12p−1
∧ log(4|S|2|A|/η), with probability at least 1− η,269

∥T̂∗(v)− T ∗(v)∥∞ ≤ 3 · 2k∗
k∗∥R+ γv∥∞√
np∧

√
log (4|S|2|A|/η).

The proof of Proposition 3 is provided in Appendix D.1. This, combined with Proposition 1, implies270

the following error convergence bound, whose proof is deferred to Appendix D.4.271

Theorem 2. Under the fk-divergence uncertainty set with any ρ ∈ (0,∞) and n ≥272

12p−1
∧ log(4|S|2|A|/η), with probability at least 1− η,273

∥v̂ − v∗∥∞ ≤ 3 · 2k∗
k∗

(1− γ)2
√
np∧

√
log(4|S|2|A|/η).

274

Remark 2. Therefore, under the fk-divergence for a fixed k, to achieve an ϵ absolute error of275

estimating V ∗
P = v∗ with v̂ in l∞ norm w.h.p., we also need a total of Õ(|S||A|(1− γ)−4p−1

∧ ϵ−2)276

samples from the simulator.277

5 Numerical Experiments278

In this section, we present two sets of numerical examples. In Section 5.1, we revisit the robust279

inventory problem from Ho et al. [7], which features uncertain demand, to demonstrate the n−1/2280

error decay rate. In Section 5.2, we consider an example from Yang et al. [30] to illustrate the linear281

dependence on |S||A|, which matches the lower bound established in Yang et al. [30].282

5.1 Robust Inventory Control Problems283

We investigate the dependency of the estimation error ε on the sample size n and evaluate our284

approach on a classical discrete-time inventory management problem with stochastic demand and285

backlog [7]. In each period t, an agent decides the order quantity to maximize cumulative discounted286

rewards, accounting for holding costs, backlog penalties, and profits.287

Let I denote the maximum inventory level, B the maximum backlog, and O the maximum order288

quantity per period. The state space is defined as S = {−B, · · · , 0, · · · , I}, the action space is289

7



A = {0, · · · , O}, where st ∈ S and at ∈ A denote the inventory and order item at the beginning of290

period t. Demand Dt ∈ {0, · · · , Dmax} is an i.i.d. sequence, with distribution PD ∈ ∆Dmax+1.291

The MDP dynamics proceed as follows. Due to storage constraints, the effective order size is292

Ãt = min(At, I − St). Then, the next state evolves as St+1 = max(St + Ãt −Dt,−B), ensuring293

that the backlog does not exceed B. The actual sales in period t are given by Xt = St − St+1 + Ãt.294

A one-step reward R(St, At, St+1) = pXt + bmin(St+1, 0)− hmax(St+1, 0)− cÃt is collected,295

where p is the sales price, c is the purchase cost, h is the holding cost, and b is the penalty of backlog.296

For our experiments, we set the parameters as follows: I = 10, B = 5, O = 5, p = 3, c = 2,297

h = 0.2, b = 3, γ = 0.9, and use the nominal demand distribution PD = [0.1, 0.2, 0.3, 0.3, 0.1],298

supported on 0, 1, 2, 3, 4. For each (s, a), we sample n0 samples from the nominal transition kernels299

to generate the estimated transition probability Pn, and solve the DR-MDP problem with uncertainty300

size ρ = 1/6 using the algorithm presented in [7].301

Figure 1 illustrates the relationship between the sample size n and the error ε between the empirical302

and population value functions. As shown in the log-log plot, the slope is approximately −0.5 for303

both the KL and χ2 cases, indicating that the error decreases at a rate proportional to 1/
√
n.304

(a) Uncertainty sets based on KL-divergence (b) Uncertainty sets based on χ2-divergence

Figure 1: Estimation error versus sample size n in the robust inventory control problem.

5.2 MDP Instances from the Lower Bound Construction in Yang et al. [30]305

Y1

Y2

x1 x2 x|S|
a1

a2
a|A| a1 a|A| a1 a|A|

1− p 1− p 1− p 1− p 1− p 1− p 1− p

1 1 1 1 1 1 1

p p p p p p p

Figure 2: MDP instances from the lower bound construction in Yang et al. [30].

In this section, we investigate the relationship between the estimation error and the sizes of the state306

space |S| and action space |A|. We adopt the classic MDP structure introduced in Gheshlaghi Azar307

et al. [5] and Yang et al. [30], which comprises three subsets: S , Y1, and Y2, as illustrated in Figure 2.308

Specifically, S denotes the set of all initial states, each associated with an action set A. When an309

action ai ∈ A is taken in state s ∈ S, the system deterministically transitions (with probability 1)310

to the corresponding state y1,s,a ∈ Y1. From each y1,s,a, the system either remains in the same311

state with nominal probability p, or transitions to the corresponding absorbing state y2,s,a ∈ Y2 with312

nominal probability 1− p. All states in Y2 are absorbing, meaning that once the system enters one of313

these states, it remains there indefinitely via a self-loop with probability 1. The reward function is314
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defined such that a reward of 1 is obtained only when the system is in any state within Y1; all other315

states yield a reward of 0. We solve the DR-MDP problem with uncertainty size ρ = 0.1.316

In our experiments, we first fix |A| = 65 and vary the number of states from 10 to 1000, with317

the results shown in Figure 3. We then fix |S| = 65 and vary |A| over the same range, with the318

corresponding results presented in Figure 4.319

To align with our theoretical results, we normalize the estimation error by dividing it by log(|S||A|).320

Figures 3 and 4 display the behavior of this normalized error as |S| and |A| vary, respectively.321

Specifically, for each (s, a) pair, we use n0 samples, resulting in a total of n0|S||A| samples. The322

left subfigures correspond to the KL-divergence case, while the right subfigures correspond to the χ2-323

divergence case. We observe that as either |S| or |A| increases, the normalized error is non-increasing.324

This is consistent with our theoretical analysis, which predicts that the sample complexity scales325

linearly (up to logarithmic factors) with the product |S||A|.326

(a) Uncertainty sets based on KL-divergence (b) Uncertainty sets based on χ2-divergence

Figure 3: Estimation error versus the number of states |S| for the MDP instances based on the lower
bound construction in Yang et al. [30].

(a) Uncertainty sets based on KL-divergence (b) Uncertainty sets based on χ2-divergence

Figure 4: Estimation error versus the number of states |A| for the MDP instances based on the lower
bound construction in Yang et al. [30].

6 Conclusion and Future Work327

In this paper, we present near-optimal sample complexity results for divergence-based S-rectangular328

robust MDPs in the discounted reward setting. Our results are the first to achieve optimal dependence329

on |S|, |A|, and ε simultaneously. We acknowledge, however, two limitations: the reliance on access330

to a generative model and the presence of a gap between our upper bound and the minimax lower331

bound established in Yang [29]. As part of future work, we aim to develop provable theoretical332

guarantees for other settings, including model-free algorithms and offline reinforcement learning.333
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A Proofs of Value Function Error Bounds424

In this section, we prove Proposition 1. We first show that both the population and the empirical425

S-rectangular Bellman operators T ∗ and T̂∗ are γ-contractions. This is a well-known fact, see for426

example [24]. We include a proof to make the paper self-contained.427

Lemma 3. T ∗ and T̂∗ are γ-contraction operators on (S → R, ∥·∥∞); i.e. for all v1, v2 : S → R,428

∥T ∗(v1)− T ∗(v2)∥∞ ≤ γ∥v1 − v2∥∞,
∥T̂∗(v1)− T̂∗(v2)∥∞ ≤ γ∥v1 − v2∥∞.

Proof. Let429

f(v)(s) =
∑
a∈A

π(a|s)

[∑
s′∈S

Ps,a(s
′) (R(s, a, s′) + γv(s′))

]
By definition, we have430

|T ∗(v1)(s)− T ∗(v2)(s)| =
∣∣∣∣sup
π∈Π

T π(v1)(s)− sup
π∈Π

T π(v2)(s)

∣∣∣∣
=

∣∣∣∣sup
π∈Π

inf
P∈P

f(v1)(s)− sup
π∈Π

inf
P∈P

f(v2)(s)

∣∣∣∣ .
Since | supX f − supX g| ≤ supX |f − g| and | infX f − infX g| ≤ supX |f − g|, we have431

|T ∗(v1)(s)− T ∗(v2)(s)|
≤ sup

π∈Π
sup
P∈P

|f(v1)(s)− f(v2)(s)|

= sup
π∈Π

sup
P∈P

∣∣∣∣∣∑
a,s′

π(a|s)Ps,a(s
′)R(s, a, s′) + γ

∑
a,s′

π(a|s)Ps,a(s
′)v1(s

′)

−
∑
a,s′

π(a|s)Ps,a(s
′)R(s, a, s′)− γ

∑
a,s′

π(a|s)Ps,a(s
′)v2(s

′)

∣∣∣∣∣
= sup

π∈Π
sup
P∈P

γ

∣∣∣∣∣∑
a,s′

π(a|s)Ps,a(s
′)v1(s

′)−
∑
a,s′

π(a|s)Ps,a(s
′)v2(s

′)

∣∣∣∣∣
≤ γ∥πs∥∞∥Ps∥∞∥v1 − v2∥∞
= γ∥v1 − v2∥∞

where ∥Ps∥∞ = sup∥v∥∞=1 ∥Psv∥∞ is the induced operator norm. The above inequality holds for432

any s ∈ S, which lead to433

∥T ∗(v1)− T ∗(v2)∥∞ ≤ γ∥v1 − v2∥∞.

We replace Ps with Ps,n, notice that ∥Ps,n∥∞ ≤ 1434

|T̂∗(v1)(s)− T̂∗(v2)(s)| ≤ γ∥πs∥∞∥Ps,n∥∞∥v1 − v2∥∞
= γ∥v1 − v2∥∞.

which lead to435

∥T̂∗(v1)− T̂∗(v2)∥∞ ≤ γ∥v1 − v2∥∞.
436

A.1 Proof of Proposition 1437

Proof. The proof of Proposition 1 follows a similar argument to that used for the continuous-case438

operator in [23].439
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Let v0 ≡ 0 and vk+1 = T̂∗(vk). û is defined as the fix point of T̂∗ v̂ = T̂∗(v̂)440

∆k+1 = vk+1 − v∗

= T̂∗(vk)− T̂∗(v∗) + T̂∗(v∗)− T ∗(v∗)

=
[
T̂∗(v∗ +∆k)− T̂∗(v∗)

]
+
[
T̂∗(v∗)− T ∗(v∗)

]
:= H(∆k) + V

By Lemma 3, we have441

∥H(∆1)−H(∆2)∥∞ =
∥∥∥T̂∗(v∗ +∆1)− T̂∗(v∗ +∆2)

∥∥∥
∞

≤ γ∥∆1 −∆2∥∞,

therefore, H is also a γ-contraction operator. Then we show442

∥∆k∥∞ ≤ γk−1

1− γ
+

k−1∑
j=0

γj∥V ∥∞

by induction: for k = 1,443

∥∆1∥∞ ≤ ∥H(∆0)∥∞ + ∥V ∥∞
= ∥H(∆0)−H(0)∥∞ + ∥V ∥∞
≤ γ ∥v∗∥∞ + ∥V ∥∞
≤ γ

1− γ
+ ∥V ∥∞ .

For any k, we have444

∥∆k+1∥∞ ≤ ∥H(∆k)∥∞ + ∥V ∥∞
= ∥H(∆k)−H(0)∥∞ + ∥V ∥∞
≤ γ ∥∆k∥∞ + ∥V ∥∞

≤ γ

 γk−1

1− γ
+

k−1∑
j=0

∥V ∥∞

+ ∥V ∥∞

=
γk

1− γ
+

k∑
j=0

∥V ∥∞.

Therefore,445

∥v̂ − v∗∥∞ = lim
k→∞

∥∆k∥∞ ≤
∞∑
j=0

γj ∥V ∥∞ =
1

1− γ

∥∥∥T̂∗(v∗)− T ∗(v∗)
∥∥∥ .

446

B Strong Duality for Divergence-Based S-Rectangular Bellman Operators447

The proofs for all f -divergence-based uncertainty sets follow a unified framework. We first present448

Lemma 4, which gives a general dual formulation for any convex f -divergence. For the KL-449

divergence and the fk-divergence, we specialise this result by substituting the corresponding conjugate450

functions f∗. The detailed derivations for the KL-divergence and the fk-divergence are provided in451

Appendix B.1 and B.2, respectively.452

Lemma 4. For any f -divergence uncertainty set, where f : R+ → R is a convex function and453

f(0) = 1 and satisfies f(0) = limt↓0 f(t), the convex optimization problem454

inf
P∈P

∑
a∈A

π(a|s)EPs,a [R(s, a, S) + γv(S)]

can be reformulated as:455

sup
λ≥0,η∈R|A|

−λ
∑
a∈A

EP s,a

[
f∗
(
ηa − π(a|s) (R(s, a, S) + γv(S))

λ

)]
− λ|A|ρ+

∑
a∈A

ηa

where f∗(t) = − infs≥0 (f(s)− st).456
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Proof. We follow the proof of Lemma 8.5 in [30], however, in our case, R is determined by the next457

state. We do a change of variables, let Ls,a(s
′) =

Ps,a(s
′)

P s,a(s′)
. The original optimization problem can be458

reformulated as:459

inf
Ls≥0

∑
a∈A

π(a|s)EP s,a
[Ls,a (R(s, a, S) + γv(S))]

s.t.
∑
a∈A

EP s,a
[f(Ls,a)] ≤ |A|ρ

EP s,a
[Ls,a] = 1 for all a ∈ A

The Lagrange function of primal problem is460

L(L, λ,η) =
∑
a∈A

π(a|s)EP s,a
[Ls,a (R(s, a, S) + γv(S))]

+ λ

(∑
a∈A

EP s,a
[f(Ls,a)]− |A|ρ

)
−
∑
a∈A

ηa

(
EP s,a

[Ls,a]− 1
)

Denoting f∗(t) = − infs≥0 (f(s)− st),461

inf
Ls≥0

L(L, λ,η)

= inf
Ls≥0

(∑
a∈A

EP s,a

[
π(a|s)Ls,a (R(s, a, S) + γv(S)) + λf(Ls,a)− ηaLs,a

])
− λ|A|ρ+

∑
a∈A

ηa

= λ
∑
a∈A

inf
Ls,a≥0

EP s,a

[
π(a|s) (R(s, a, S) + γv(S))− ηa

λ
Ls,a + f(Ls,a)

]
− λ|A|ρ+

∑
a∈A

ηa

= −λ
∑
a∈A

EP s,a

[
f∗
(
ηa − π(a|s) (R(s, a, S) + γv(S))

λ

)]
− λ|A|ρ+

∑
a∈A

ηa

462

B.1 Proof of Lemma 1463

Proof. Recall that for the KL-divergence, f(t) = t log t, whose conjugate function f∗(s) = es−1.464

Substituting f∗ into Lemma 4, we obtain the following dual form:465

sup
λ≥0,η∈R|A|

−λ
∑
a∈A

EP s,a

[
f∗
(
ηa − π(a|s) (R(s, a, S) + γv(S))

λ

)]
− λ|A|ρ+

∑
a∈A

ηa

= sup
λ≥0,η∈R|A|

−λ
∑
a∈A

exp

(
ηa − λ

λ

)
EP s,a

[
exp

(
−π(a|s) (R(s, a, S) + γv(S))

λ

)]
− λ|A|ρ+

∑
a∈A

ηa.
(B.1)

We first note that for each action a, the term λEP s,a
[·] is a positive constant with respect to ηa, while466

the term −λEP s,a
[·] exp((ηa − λ)/λ) is concave in ηa, since for any c > 0, the function −c exp(x)467

is concave. Moreover, the term
∑

a ηa is affine, and hence concave. As the sum of concave functions468

is concave, we conclude that (B.1) is concave in η. Next, we optimize with respect to η by setting469

the gradient with respect to each ηa to zero:470

− exp

(
ηa − λ

λ

)
EP s,a

[
exp

(
−π(a|s) (R(s, a, S) + γv(S))

λ

)]
+ 1 = 0

Solving for ηa, we obtain471

ηa = λ− λ logEP s,a

[
exp

(
−π(a|s) (R(s, a, S) + γv(S))

λ

)]
. (B.2)
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Substituting (B.2) into (B.1), we obtain472

sup
λ≥0,η∈R|A|

−λ
∑
a∈A

EP s,a

[
exp

(
−π(a|s) (R(s, a, S) + γv(S))

λ

)]
− λ|A|ρ.

473

B.2 Proof of Lemma 2474

Proof. We first introduce the conjugate function of fk, which will be instrumental for deriving the475

dual representation of DR Bellman operator.476

Lemma 5 (Duchi and Namkoong [4], Section 2). Recall that in fk-divergence,477

fk(t) :=
tk − kt+ k − 1

k(k − 1)

The conjugate function f∗k (s) = supt≥0 (st− fk(t)) is given by478

f∗k (s) :=
1

k

[
((k − 1)s+ 1)

k∗
+ − 1

]
where (x)+ = max(x, 0).479

Substituting f∗k into Lemma 4, and let ws,a(S) := π(a|s) (R(s, a, S) + γv(S)), we obtain480

sup
λ≥0,η∈R|A|

−
∑
a∈A

λEP s,a

[
f∗
(
ηa − ws,a(S)

λ

)]
− λ|A|ρ+

∑
a∈A

ηa

= sup
λ≥0,η∈A

−
∑
a∈A

λEP s,a

[
1

k

[(
(k − 1)

ηa − ws,a(S)

λ
+ 1

)k∗

+

− 1

]]

Since k − 1 > 0 and λ > 0 are constants with respect to the random variable S, we can factor them481

out of the expectation and the positive-part operator (·)+.482

= sup
λ≥0,η∈R|A|

− (k − 1)k
∗

kλk∗−1

∑
a∈A

EP s,a

[(
ηa − ws,a(S) +

λ

k − 1

)k∗

+

]
− λ|A|

(
ρ− 1

k

)
+
∑
a∈A

ηa

Finally, we perform the change of variables, let η̃a = ηa +
λ

k−1 , we obtain483

= sup
λ≥0,η̃∈R|A|

− (k − 1)k
∗

kλk∗−1

∑
a∈A

EP s,a

[
(η̃a − ws,a(S))

k∗
+

]
− λ|A|

(
ρ+

1

k(k − 1)

)
+
∑
a∈A

η̃a

(B.3)

Since −λ−α is concave in λ for any α > 0, and λ|A|
(
ρ+ 1

k(k−1)

)
is an affine function of λ, it484

follows that (B.3) is concave with respect to λ. To optimize over λ, we take the derivative with485

respect to λ and set it to zero, which yields:486

(k − 1)k
∗

k(k − 1)λk∗

∑
a∈A

EP s,a

[
(η̃a − ws,a(S))

k∗
+

]
− |A|

(
ρ+

1

k(k − 1)

)
= 0

Multiply k(k − 1) on both side of the equation, we have487

(k − 1)k
∗

λk∗

∑
a∈A

EP s,a

[
(η̃a − ws,a(S))

k∗
+

]
− |A| (k(k − 1)ρ+ 1) = 0

Therefore, we obtain488

λ∗ = (k − 1)|A|−1/k∗
(k(k − 1)ρ+ 1)

−1/k∗

(∑
a∈A

EP s,a

[
(η̃a − ws,a(S))

k∗

+

])1/k∗
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By substituting λ∗ into the equation (B.3) , we have489

sup
λ≥0,η∈R|A|

−
∑
a∈A

λEP s,a

[
f∗
(
ηa − ws,a(S)

λ

)]
− λ|A|ρ+

∑
a∈A

η̃a

= sup
η̃∈R|A|

−k − 1

k
|A|1/k (k(k − 1)ρ+ 1)

1/k

(∑
a∈A

EP s,a

[
(η̃a − ws,a(S))

k∗

+

])1/k∗

− 1

k
|A|1/k (k(k − 1)ρ+ 1)

1/k

(∑
a∈A

EP s,a

[
(η̃a − ws,a(S))

k∗

+

])1/k∗

+
∑
a∈A

η̃a

= sup
η̃∈R|A|

−|A|1/k (k(k − 1)ρ+ 1)
1/k

(∑
a∈A

EP s,a

[
(η̃a − ws,a(S))

k∗

+

])1/k∗

+
∑
a∈A

η̃a

490

C Proofs of Properties of the Empirical Bellman Operator: KL Case491

Our techniques in this section refine that in Wang et al. [25]. To follow the constructions in Wang492

et al. [25], we introduce some notations. Consider µs,a ∈ ∆(S) and its empirical version µs,a,n493

constructed from n i.i.d samples from µs,a. Define the collection of these measures under state s as494

µs := {µs,a : a ∈ A}. For a function u : S → R and for each s ∈ S, we define:495

∥u∥∞,µs
= max

a∈A
∥u∥L∞(µs,a),∥∥∥∥ dmn

dµn(t)

∥∥∥∥
∞,µs

= max
a∈A

∥∥∥∥ dma,n

dµa,n(t)

∥∥∥∥
L∞(µs,a)

.

For the supremum over all states, we define496

∥u∥∞ = sup
s∈S

∥u∥∞,µs
.

We define a "good event" under which the empirical measure µs,a,n uniformly approximates the497

population measure µs,a with relative error bounded by δ0 across all actions a ∈ A. Formally, this498

event is given by499

Ωn,δ0(µs) =

{
ω : sup

a∈A
sup
s′∈S

∣∣∣∣µs,a,n(ω)(s
′)− µs,a(s

′)

µs,a(s′)

∣∣∣∣ ≤ δ0

}
.

Further, the good event over all states is defined as500

Ωn,δ0 =
⋂
s∈S

Ωn,δ0(µs) =

{
ω : sup

s∈S
sup

a∈A,s′∈S

∣∣∣∣µs,a,n(ω)(s
′)− µs,a(s

′)

µs,a(s′)

∣∣∣∣ ≤ δ0

}
.

For notation simplicity, we suppress the dependence on the state variable s. Consider a function501

u : S → R. The dual function under KL-divergence is given by:502

f(µ, u, λ) := −λ|A|ρ−
∑
a∈A

λ logµa

[
e−dau/λ

]
, (C.1)

where λ > 0 is the dual regularization parameter, and we denote da := π(a|s) for simplicity.503

We define the deviation between empirical and true measures as504

ma,n = µa,n − µa,

and their convex interpolation by505

µa,n(t) = tµa + (1− t)µa,n.
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C.1 Proof of Proposition 2506

Proof. By definition and | supX f − supX g| ≤ supX |f − g|, we have507

P
(∣∣∣T̂∗(v)(s)− T ∗(v)(s)

∣∣∣ > t
)

= P

(∣∣∣∣sup
π∈Π

T̂π(v)(s)− sup
π∈Π

T π(v)(s)

∣∣∣∣ > t

)
≤ P

(
sup
π∈Π

∣∣∣T̂π(v)(s)− T π(v)(s)
∣∣∣ > t

)
.

Using (C.1) to express Bellman operator, we obtain508 ∣∣∣T̂π(v)(s)− T π(v)(s)
∣∣∣ ≤ ∣∣∣∣sup

λ>0
f(Ps,n, R(s, ·, ·) + γv, λ)− sup

λ>0
f(Ps, R(s, ·, ·) + v, λ)

∣∣∣∣
≤ sup

λ>0
|f(Ps, R(s, ·, ·) + γv, λ)− f(Ps, R(s, ·, ·) + v, λ)| .

(C.2)

We analyze the sensitivity of the mapping µ → f(µ, u, λ). For any fixed u,µ and µn, define509

gn(t, λ) = f (µn(t), u, λ) .

According to mean value theorem, there exists τ ∈ (0, 1) satisfies:510

|f(µn, u, λ)− f(µ, u, λ)| = |gn(0, λ)− gn(1, λ)|

=
∣∣∣∂tgn(t, λ)∣∣∣

t=τ

∣∣∣
=

∣∣∣∣∣∑
a∈A

λ
ma,n[e

−dau/λ]

µa,n(τ)[e−dau/λ]

∣∣∣∣∣
To bound the difference above, we invoke the following lemma.511

Lemma 6. For any fixed u and π, µn ≪ µ, we have that512

sup
λ≥0

∣∣∣∣∣∑
a∈A

λ
ma,n[e

−dau/λ]

µa,n(t)[e−dau/λ]

∣∣∣∣∣ ≤ 2∥u∥∞
∥∥∥∥ dmn

dµn(t)

∥∥∥∥
∞,µ

.

513

The proof is deferred to Appendix C.2. According to lemma 6, we have514

sup
λ≥0

|f(µn, u, λ)− f(µ, u, λ)| ≤ 2∥u∥∞
∥∥∥∥ dmn

dµn(t)

∥∥∥∥
∞,µ

.

We decomposed the probability using the event Ωn,δ0(µ) where the empirical estimates are close to515

the population measures:516

P

(
sup

λ≥0,d∈∆(A)

|f(µn, u, λ)− f(µ, u, λ)| > t

)

≤ P (Ωn,δ0(µ)
c) + P

(
2 ∥u∥∞

∥∥∥∥ dmn

dµn(τ)

∥∥∥∥
∞,µ

> t,Ωn,δ0(µ)

)
To control the denominator µa,n(τ)(s

′) appearing in the bound, we use the following lemma, which517

asserts that under the good event, the empirical and population measures remain close for all t ∈ [0, 1]:518

Lemma 7. For any s′ with µ(s′) > 0, the measure µn(t)(s
′) satisfies519

(1− δ0)µ(s
′) ≤ µn(t)(s

′) ≤ (1 + δ0)µ(s
′), ∀t ∈ [0, 1].

520
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The proof is deferred to Appendix C.3. By using lemma 7, we have µa,n(τ)(s
′) ≥ (1− δ0)µa(s

′),521

therefore,522

≤ P

(
sup
a,s′

∣∣∣∣µa,n(s
′)− µa(s

′)

µa(s′)

∣∣∣∣ > δ0

)
+ P

(
2∥u∥∞ sup

a,s′

∣∣∣∣µa,n(s
′)− µa(s

′)

(1− δ0)µa(s′)

∣∣∣∣ > t

)
.

By using the multiplicative Chernoff bound and Bernstein inequality, we have523

≤ P

(
sup
a,s′

∣∣∣∣∣ 1n
n∑

i=1

1(Si = s′)− µa(s
′)

∣∣∣∣∣ > δ0µa(s
′)

)

+ P

(
2

1− δ0
∥u∥∞ sup

a,s′

1

µa(s′)

∣∣∣∣∣ 1n
n∑

i=1

1(Si = s′)− µa(s
′)

∣∣∣∣∣ > t

)

≤ 2
∑
a∈A

∑
s′∈S

(
exp

(
−δ

2
0nµa(s

′)

3

)
+ exp

(
− t

2

2

(
4∥u∥2∞

(1− δ0)2nµa(s′)
+

2∥u∥∞t
3(1− δ0)nµa(s′)

)−1
))

.

Since µa(y) ≥ p∧, and both exponential term above is monotonically decreasing over µa(s
′), we524

have525

≤ 2|A||S|

(
exp

(
−δ

2
0np∧
3

)
+ exp

(
− t

2

2

(
4∥u∥2∞

(1− δ0)2np∧
+

2∥u∥∞t
3(1− δ0)np∧

)−1
))

.

Recall from (C.2) that526

P
(∣∣∣T̂∗(v)(s)− T ∗(v)(s)

∣∣∣ > t
)
≤ P

(
sup

λ>0,da∈∆(A)

|f(Ps, R(s, ·, ·) + γv, λ)− f(Ps, R(s, ·, ·) + γv, λ)|

)
Replacing µ with Ps and µn with Ps,n and choose δ0 = 1

2 , by union bound, we have527

P
(∥∥∥T̂∗(v)− T ∗(v)

∥∥∥
∞
> t
)

≤ P

(
sup
s

sup
λ≥0,d∈∆(A)

|f(Ps,n, R(s, ·, ·) + γv, λ)− f(Ps, R(s, ·, ·) + v, λ)| > t

)

≤ 2|S|2|A| exp
(
−np∧

12

)
+ 2|S|2|A| exp

(
− t2

2γ2

(
16∥R(s, ·, ·) + γv∥2∞

np∧
+

4∥R(s, ·, ·) + γv∥∞t
3γnp∧

)−1
)
.

Set each term to be less than η/2, we need528

n ≥ 12

p∧
log
(
4|S|2|A|/η

)
(C.3)

t ≥ 8∥R+ γv∥∞
3np∧

log
(
4|S|2|A|/η

)
+

4∥R+ γv∥∞√
np∧

√
2 log (4|S|2|A|/η). (C.4)

Under (C.3), we have529

log(4|S|2|A|/η)
np∧

≤

√
log(4|S|2|A|/η)

np∧
.

By substituting this bound into (C.4), we have530

8∥R+ γv∥∞
3np∧

log
(
4|S|2|A|/η

)
+

4∥R+ γv∥∞√
np∧

√
2 log (4|S|2|A|/η)

≤
(
8

3
+ 4

√
2

)
∥R+ γv∥∞√

np∧

√
log (4|S|2|A|/η)

≤ 9∥R+ γv∥∞√
np∧

√
log (4|S|2|A|/η)
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Therefore, for when n specifies (C.3) and t satisfies531

t ≥ 9∥R+ γv∥∞√
np∧

√
log (4|S|2|A|/η),

we have532

P
(∥∥∥T̂∗(v)− T ∗(v)

∥∥∥
∞
> t
)
≤ η.

This implies Proposition 2.533

C.2 Proof of Lemma 6534

Proof. Observe that multiplying the numerator and denominator by eda∥u∥L∞(µa)/λ preserves the535

value of the fraction. This is equivalent to rewriting the exponential terms as:536

∣∣∣∣∣∑
a∈A

λ
ma,n[e

−dau/λ]

µa,n(t)[e−dau/λ]

∣∣∣∣∣ =
∣∣∣∣∣∑
a∈A

λ
ma,n[e

da(∥u∥L∞(µa)−u)/λ]

µa,n(t)[e
da(∥u∥L∞(µa)−u)/λ]

∣∣∣∣∣ .
Since ma,n = µa,n − µa, for any constant c, we have ma,n[c] = 0, which lead to537

=

∣∣∣∣∣∑
a∈A

λ
ma,n[e

da(∥u∥L∞(µa)−u)/λ − 1]

µa,n(t)[e
da(∥u∥L∞(µa)−u)/λ]

∣∣∣∣∣ .
For any measure m,µ and random variable w1, w2, the following equation holds:538 ∣∣∣∣m[w1]

µ[w2]

∣∣∣∣ = ∣∣∣∣∑sm(s)w1(s)∑
s µ(s)w2(s)

∣∣∣∣
=

∣∣∣∣∣∣
(∑

s

µ(s)
m(s)

µ(s)
w2(s)

w1(s)

w2(s)

)(∑
s

µ(s)w2(s)

)−1
∣∣∣∣∣∣

≤
∣∣∣∣∑s µ(s)w2(s)∑

s µ(s)w2(s)

∣∣∣∣ ·max
s

∣∣∣∣m(s)

µ(s)

∣∣∣∣ ·max
s

∣∣∣∣w1(s)

w2(s)

∣∣∣∣
=

∥∥∥∥dmdµ
∥∥∥∥
L∞(µ)

∥∥∥∥w1

w2

∥∥∥∥
L∞(µ)

.

Applying this result and |
∑

·| ≤
∑

| · |, we obtain539 ∣∣∣∣∣∑
a∈A

λ
ma,n[e

−dau/λ]

µa,n(t)[e−dau/λ]

∣∣∣∣∣ ≤ ∑
a∈A

∥∥∥∥λeda(∥u∥L∞(µa)−u)/λ − 1

eda(∥u∥L∞(µa)−u)/λ

∥∥∥∥
L∞(µa)

∥∥∥∥ dma,n

dµa,n(t)

∥∥∥∥
L∞(µa)

.

Notice that when x > 0, we have ex − 1 > xex, then we obtain540

≤
∑
a∈A

∥∥∥∥∥λ
da(∥u∥L∞(µa)−u)

λ eda(∥u∥L∞(µa)−u)/λ

eda(∥u∥L∞(µa)−u)/λ

∥∥∥∥∥
L∞(µa)

∥∥∥∥ dma,n

dµa,n(t)

∥∥∥∥
L∞(µa)

≤
∑
a∈A

∥∥da(∥u∥L∞(µa) − u)
∥∥
L∞(µa)

∥∥∥∥ dma,n

dµa,n(t)

∥∥∥∥
L∞(µa)

≤
∑
a∈A

2da∥u∥∞
∥∥∥∥ dma,n

dµa,n(t)

∥∥∥∥
L∞(µa)

≤ 2∥u∥∞
∥∥∥∥ dmn

dµn(t)

∥∥∥∥
∞,µ

as claimed.541
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C.3 Proof of Lemma 7542

Proof. On the event Ωn,p, the empirical measure satisfies sups′∈S

∣∣∣µn(s
′)−µ(s′)
µ(s′)

∣∣∣ ≤ δ0. Hence, for543

any s′ with µ(s′) > 0, we have:544

(1− δ0)µ(s
′) ≤ µn(s

′) ≤ (1 + δ0)µ(s
′).

Substituting in the above bound on µn(s
′) into the definition of µn(t)(s

′) gives545

(1− (1− t)δ0)µ(s
′) ≤ tµ(s′) + (1− t)µn(s

′) ≤ (1 + (1− t)δ0)µ(s
′).

For all t ∈ [0, 1], (1− t) ≤ 1, therefore, we have546

(1− δ0)µ(s
′) ≤ µn(t)(s

′) ≤ (1 + δ0)µ(s
′).

547

C.4 Proof of Theorem 1548

Proof. Substituting ∥R + γv∥∞ ≤ 1/(1 − γ) into the bound from Proposition 2 and applying549

Proposition 1, we obtain the stated result.550

∥v̂ − v∗∥∞ ≤ 1

1− γ

∥∥∥T̂∗(v∗)− T ∗(v∗)
∥∥∥
∞

≤ 9∥R+ γv∥∞
(1− γ)

√
np∧

√
log (4|S|2|A|/η)

≤ 9

(1− γ)2
√
np∧

√
log (4|S|2|A|/η)

with probability 1− η.551

D Proofs of Properties of the Empirical Bellman Operator: f -Divergence552

Case553

D.1 Proof of Proposition 3554

Proof. Let555

f(µ, u,η) = −c(k, ρ, |A|)

(∑
a∈A

µa

[
wk∗

a

])1/k∗

+
∑
a∈A

ηa,

where wa = (ηa − dau)+. By definition, we have556

P
(∣∣∣T̂∗(v)(s)− T ∗(v)(s)

∣∣∣ > t
)

≤P
(
sup
π

∣∣∣T̂π(v)(s)− T π(v)(s)
∣∣∣ > t

)
≤P

(
sup

d∈∆(|A|)
γ

∣∣∣∣∣ sup
η∈R|A|

f(µn, R(s, ·, ·) + γv,η)− sup
η∈R|A|

f(µ, R(s, ·, ·) + γv,η)

∣∣∣∣∣ > t

)
.

We analyze the sensitivity of the mapping µ → f(µ, u, λ). To control the difference between the557

empirical and the population objective, we establish the following lemma. The proof is deferred to558

Appendix D.2.559

Lemma 8. For any fixed u and π,560 ∣∣∣∣∣ sup
η∈R|A|

f(µn, u,η)− sup
η∈R|A|

f(µ, u,η)

∣∣∣∣∣ ≤ c∥u∥∞,µ

∥∥∥∥ dmn

dµn(t)

∥∥∥∥
∞,µ

where c = 21/(k−1)k∗.561
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We decomposed the probability using the event Ωn,δ0(µ) where the empirical estimates are close to562

the population measures. Let c = 21/(k−1)k∗, and by using lemma 8, we obtain563

P

(
sup

d∈∆(|A|)
γ

∣∣∣∣∣ sup
η∈R|A|

f(µn, u,η)− sup
η∈R|A|

f(µ, u,η)

∣∣∣∣∣ > t

)

≤ P (Ωn,δ0(µ)
c) + P

(
c ∥u∥∞

∥∥∥∥ dmn

dµn(τ)

∥∥∥∥
∞,µ

> t,Ωn,δ0(µ)

)
Again using Lemma 7, we have564

≤ P

(
sup

a∈A,s′∈S

∣∣∣∣µa,n(s
′)− µa(s

′)

µa(s′)

∣∣∣∣ > δ0

)
+ P

(
c∥u∥∞,µ sup

a∈A,s′∈S

∣∣∣∣µa,n(s
′)− µa(s

′)

(1− δ0)µa(s′)

∣∣∣∣ > t

)
.

By Chernoff Bound and Bernstein Inequality, we obtain565

≤ P

(
sup

a∈S,s′∈S

∣∣∣∣∣ 1n
n∑

i=1

1(Si = s′)− µa(s
′)

∣∣∣∣∣ > δ0µa(s
′)

)

+ P

(
c

1− δ0
∥u∥∞ sup

a∈S,s′∈S

1

µa(s′)

∣∣∣∣∣ 1n
n∑

i=1

1(Si = s′)− µa(s
′)

∣∣∣∣∣ > t

)

≤ 2
∑
a∈A

∑
s′∈S

(
exp

(
−δ

2
0nµa(s

′)

3

)
+ exp

(
− t

2

2

(
c2∥u∥2∞

(1− δ0)2nµa(s′)
+

c∥u∥∞t
3(1− δ0)nµa(s′)

)−1
))

,

Since µa(s
′) ≥ p∧, and both exponential term above is monotonically decreasing over µa(s

′), we566

have567

≤ 2|A||S|

(
exp

(
−δ

2
0np∧
3

)
+ exp

(
− t

2

2

(
c2∥u∥2∞

(1− δ0)2np∧
+

c∥u∥∞t
3(1− δ0)np∧

)−1
))

Choose δ0 = 1
2 , by union bound, we obtain568

P
(∥∥∥T̂∗(v)− T ∗(v)

∥∥∥
∞
> t
)

≤ P

(
sup
s∈S

γ sup
d∈∆(A)

∣∣∣∣∣ sup
η∈R|A|

f(Ps,n, R(s, ·, ·) + γv,η)− sup
η∈R|A|

f(Ps, R(s, ·, ·) + γv,µ)

∣∣∣∣∣ > t

)

≤ 2|S|2|A| exp
(
−np∧

12

)
+ 2|S|2|A| exp

(
− t2

2γ2

(
4c2∥R(s, ·, ·) + γv∥2∞

np∧
+

2c∥R(s, ·, ·) + γv∥∞t
3γnp∧

)−1
)
.

Set each term to be less than η/2, by union bound, we need569

n ≥ 12

p∧
log
(
4|S|2|A|/η

)
(D.1)

t ≥ 4c∥R+ γv∥∞
3np∧

log
(
4|S|2|A|/η

)
+

2c∥R+ γv∥∞√
np∧

√
2 log (4|S|2|A|/η). (D.2)

Under (D.1), we have570

log(4|S|2|A|/η)
np∧

≤

√
log(4|S|2|A|/η)

np∧
.

By substituting this bound into (D.2), we obtain571

4c∥R+ γv∥∞
3np∧

log
(
4|S|2|A|/η

)
+

2c∥R+ γv∥∞√
np∧

√
2 log (4|S|2|A|/η)

≤
(
4c

3
+ 2

√
2c

)
∥R+ γv∥∞√

np∧

√
log (4|S|2|A|/η)

≤ 3 · 2k∗
k∗∥R+ γv∥∞√
np∧

√
log (4|S|2|A|/η).
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Therefore, when n satisfies (D.1) and t satisfies572

t ≥ 3 · 2k∗
k∗∥R+ γv∥∞√
np∧

√
log (4|S|2|A|/η),

we have573

P
(∥∥∥T̂∗(v)− T ∗(v)

∥∥∥
∞
> t
)
≤ η,

which implies the statement of the proposition.574

D.2 Proof of Lemma 8575

Proof. We partition R|A| into three subsets, denote as576

X1 =

{
η
∣∣∣ηa ≤ da essinf

µa

u for all a ∈ A
}
,

X2 =

{
η
∣∣∣ηa > da essinf

µa

u for all a ∈ A
}
,

X3 = R|A|\{X1 ∪X2}.
Next we prove that X3 = ∅. If η is an optimal solution, then it satisfies the conditions described in577

the following lemma.578

Lemma 9. Let η∗(µ) denote the optimal η under measure µ, then we have579 (∑
a∈A

µa

[
wk∗

a

])1/k

= c(k, ρ, |A|)µi

[
w

1/(k−1)
i

]
for all i ∈ A (D.3)

and when η ∈ X2, we have580

f(µ, u,η∗) = −
∑

a∈A µa

[
wk∗

a

]
µi

[
w

1/(k−1)
i

] +
∑
a∈A

η∗a for any i ∈ A.

581

The proof is deferred to Appendix D.3. Suppose η ∈ X3. Then, there exists some a′ ∈ A such582

that ηa′ ≤ da′ essinfµa′ u, implying that µa′

[
w

1/(k−1)
a′

]
= 0. According to (D.3), this leads to583

µa

[
wk∗

a

]
= 0 for all a ∈ A, which means η ∈ X1, contradicting the initial assumption. Hence,584

X3 = ∅.585

When η ∈ X1, we have586 ∣∣∣∣ sup
η∈X1

f(µn, u,η)− sup
η∈X1

f(µ, u,η)

∣∣∣∣ ≤ sup
η∈X1

|f(µn, u,η)− f(µ, u,η)|

=

∣∣∣∣∣
(
−0 +

∑
a∈A

ηa

)
−

(
−0 +

∑
a∈A

ηa

)∣∣∣∣∣ = 0

Otherwise, η ∈ X2, for any fixed µ,µn and u, let587

g(η, t) = f(µn(t), u,η(µn(t))),

V (t) = sup
η∈X2

g(η, t).

Before proceeding, we introduce the following version of the envelope theorem, which ensures the588

differentiability of V (t) and provides an explicit formula for its derivative. This result allows us to589

apply the mean value theorem in the subsequent analysis.590

Lemma 10 (Envelope theorem, [11], Corollary 3). Denote V as591

V (t) = sup
x∈X

f(x, t).

Suppose that X is a convex set in a linear space and f : X × [0, 1] → R is a concave function. Also592

suppose that t0 ∈ (0, 1), and that there is some x∗ ∈ X∗(t0) such that dtf(x∗, t0) exists. Then V is593

differentiable at t0 and dtV (t0) = ∂tf(x
∗, t0)594
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We examine the convexity of X and the concavity of g. X2 is a convex set since it is defined by linear595

inequalities for each coordinate. For g, since f serves as the dual objective function and is therefore596

concave, and concavity is preserved under affine mappings. So given that µn(t) is a linear function597

of t, g inherits the concavity. Therefore according to Lemma 10, V (t) is differentiable. By mean598

value theorem, there exists τ ∈ (0, 1), for which the following equation holds:599 ∣∣∣∣ sup
η∈X2

f(µn, u,η)− sup
η∈X2

f(µ, u,η)

∣∣∣∣ = ∣∣∣∣ sup
η∈X2

g(η, 0)− sup
η∈X2

g(η, 1)

∣∣∣∣
=

∣∣∣∣ ddtV (t)
∣∣∣
t=τ

∣∣∣∣ ,
and by envelope theorem, we have600

d

dt
V (t)

∣∣∣
t=τ

=
∂

∂t
g(η∗, t)

∣∣∣
t=τ

.

Recall that601

g(η, t) = −c(k, ρ, |A|)

(∑
a∈A

µa,n(t)
[
wk∗

a

])1/k∗

+
∑
a∈A

ηa,

by using (D.3), we obtain602

∂

∂t
g(η∗, t) = − c(k, ρ, |A|)(∑

a∈A µa,n(t) [wk∗
a ]
)1/k ∑

a∈A
ma,n

[
wk∗

a

]
= −

∑
a∈Ama,n

[
wk∗

a

]
µi,n(t)

[
w

1/(k−1)
i

] .
Therefore,603 ∣∣∣∣ ddtV (t)

∣∣∣
t=τ

∣∣∣∣ = ∣∣∣∣ ∂∂tg(η∗(t), t)
∣∣∣
t=τ

∣∣∣∣
=

∣∣∣∣∣∣
∑

a∈Ama,n

[
wk∗

a

]
µi,n(τ)

[
w

1/(k−1)
i

]
∣∣∣∣∣∣ .

Since the equation above holds for any i ∈ A, chose i = a for each a ∈ A, so we can rewrite the604

equation above as605 ∣∣∣∣∣ sup
η∈R|A|

f(µn, u,η)− sup
η∈R|A|

f(µ, u,η)

∣∣∣∣∣ =
∣∣∣∣∣∣
∑
a∈A

ma,n

[
wk∗

a

]
µa,n(τ)

[
w

1/(k−1)
a

]
∣∣∣∣∣∣

≤
∑
a∈A

∣∣∣∣∣∣ ma,n

[
wk∗

a

]
µa,n(τ)

[
w

1/(k−1)
a

]
∣∣∣∣∣∣ .

For each term in the summation, we analyze ηa ≥ 2da∥u∥L∞(µa) and da essinfµa
u ≤ ηa <606

2da∥u∥L∞(µa) separately. For ηa ≥ 2da∥u∥L∞(µa), by mean value theorem, there exists ξ ∈607

(ηa − dau, ηa) satisfies608 ∣∣∣∣∣∣ ma,n

[
wk∗

a

]
µa,n(τ)

[
w

1/(k−1)
a

]
∣∣∣∣∣∣ =

∣∣∣∣∣∣
ma,n

[
(ηa − dau)

k∗

+ − (ηa)
k∗

+

]
µa,n(τ)

[
(ηa − dau)

1/(k−1)
+

]
∣∣∣∣∣∣

=

∣∣∣∣∣∣
ma,n

[
dauk

∗(ξ)
1/(k−1)
+

]
µa,n(τ)

[
(ηa − dau)

1/(k−1)
+

]
∣∣∣∣∣∣ .
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Since ηa > 2da∥u∥L∞(µa), ξ < ηa ≤ 2(ηa − dau), then we have609 ∣∣∣∣∣∣
ma,n

[
dauk

∗(ξ)
1/(k−1)
+

]
µa,n(τ)

[
(ηa − dau)

1/(k−1)
+

]
∣∣∣∣∣∣

≤

∥∥∥∥∥ dauk
∗(ξ)

1/(k−1)
+

(ηa − dau)
1/(k−1)
+

∥∥∥∥∥
L∞(µa)

∥∥∥∥ dmn

dµn(τ)

∥∥∥∥
L∞(µa)

≤

∥∥∥∥∥dauk∗21/(k−1)(ηa − dau)
1/(k−1)
+

(ηa − dau)
1/(k−1)
+

∥∥∥∥∥
L∞(µa)

∥∥∥∥ dmn

dµn(τ)

∥∥∥∥
L∞(µa)

= 21/(k−1)k∗da∥u∥L∞(µa)

∥∥∥∥ dmn

dµn(τ)

∥∥∥∥
L∞(µa)

.

For da essinfµa
u ≤ ηa < 2da∥u∥L∞(µa), (ηa − dau)+ is bounded, then we have610 ∣∣∣∣∣∣ ma,n

[
wk∗

a

]
µa,n(τ)

[
w

1/(k−1)
a

]
∣∣∣∣∣∣ =

∣∣∣∣∣∣
ma,n

[
(ηa − dau)

k∗

+

]
µa,n(τ)

[
(ηa − dau)

1/(k−1)
+

]
∣∣∣∣∣∣

=

∥∥∥∥∥ (ηa − dau)+ (ηa − dau)
1/(k−1)
+

(ηa − dau)
1/(k−1)
+

∥∥∥∥∥
L∞(µa)

∥∥∥∥ dmn

dµn(τ)

∥∥∥∥
L∞(µa)

≤ 2da∥u∥L∞(µa)

∥∥∥∥ dmn

dµn(τ)

∥∥∥∥
L∞(µa)

.

To sum up, we have611

∑
a∈A

∣∣∣∣∣∣ ma,n

[
wk∗

a

]
µa,n(τ)

[
w

1/(k−1)
a

]
∣∣∣∣∣∣

≤
∑
a∈A

max

 sup
ηa≥2da∥u∥L∞(µa)

∣∣∣∣∣∣ ma,n

[
wk∗

a

]
µa,n(τ)

[
w

1/(k−1)
a

]
∣∣∣∣∣∣ , sup

da essinfµa u≤ηa

≤2da∥u∥L∞(µa)

∣∣∣∣∣∣ ma,n

[
wk∗

a

]
µa,n(τ)

[
w

1/(k−1)
a

]
∣∣∣∣∣∣


=
∑
a∈A

max
{
21/(k−1)k∗, 2

}
da∥u∥L∞(µa)

∥∥∥∥ dmn

dµn(τ)

∥∥∥∥
L∞(µa)

= 21/(k−1)k∗∥u∥∞
∥∥∥∥ dmn

dµn(τ)

∥∥∥∥
∞,µ

.

Overall, let c = 21/(k−1)k∗, when µ ∈ X1,612 ∣∣∣∣∣ sup
η∈R|A|

f(µn, u,η)− sup
η∈R|A|

f(µ, u,η)

∣∣∣∣∣ = 0 ≤ c∥u∥∞
∥∥∥∥ dmn

dµn(τ)

∥∥∥∥
∞,µ

,

when µ ∈ X2,613 ∣∣∣∣∣ sup
η∈R|A|

f(µn, u,η)− sup
η∈R|A|

f(µ, u,η)

∣∣∣∣∣ ≤ ∑
a∈A

∣∣∣∣∣∣ ma,n

[
wk∗

a

]
µa,n(τ)

[
w

1/(k−1)
a

]
∣∣∣∣∣∣ ≤ c∥u∥∞

∥∥∥∥ dmn

dµn(τ)

∥∥∥∥
∞,µ

.

614
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D.3 Proof of Lemma 9615

Since f(µ, u,η∗) is the objective function of the dual problem and η is the dual variable, f is convex616

with respect to η. To optimize f over η, we set its derivative with respect to ηi to zero, which yields617

∂

∂η∗i
f(µ, u,η∗) = 1− c(k, ρ, |A|)

(∑
a∈A

µa

[
wk∗

a

])−1/k

µi

[
w

1/(k−1)
i

]
= 0,

which means618 (∑
a∈A

µa

[
wk∗

a

])1/k

= c(k, ρ, |A|)µi

[
w

1/(k−1)
i

]
for all i ∈ A,

which is (D.3). When η ∈ X2, µi[w
1/(k−1)
i ] is positive, plug in η∗a, we obtain619

f(µ, u,η) = −c(k, ρ, |A|)

(∑
a∈A

µa

[
wk∗

a

])1/k∗

+
∑
a∈A

ηa

= −
∑

a∈A µa

[
wk∗

a

]
µi

[
w

1/(k−1)
i

] +
∑
a∈A

η∗a.

D.4 Proof of Theorem 2620

Proof. Substituting ∥R + γv∥∞ ≤ 1/(1 − γ) into the bound from Proposition 2 and applying621

Proposition 1, we obtain the stated result.622

∥v̂ − v∗∥∞ ≤ 1

1− γ

∥∥∥T̂∗(v∗)− T ∗(v∗)
∥∥∥
∞

≤ 3 · 2k∗
k∗∥R+ γv∥∞

(1− γ)
√
np∧

√
log (4|S|2|A|/η)

≤ 3 · 2k∗
k∗

(1− γ)2
√
np∧

√
log (4|S|2|A|/η)

with probability 1− η.623
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error rates).794

• If error bars are reported in tables or plots, The authors should explain in the text how795

they were calculated and reference the corresponding figures or tables in the text.796

8. Experiments compute resources797

Question: For each experiment, does the paper provide sufficient information on the com-798

puter resources (type of compute workers, memory, time of execution) needed to reproduce799

the experiments?800

Answer: [No]801

Justification: All experiments in this paper were run on standard CPU environments, so we802

did not provide detailed computing resource specifications in the paper. We believe that this803

information is of limited impact on the reproducibility of our experiments.804

Guidelines:805

• The answer NA means that the paper does not include experiments.806

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,807

or cloud provider, including relevant memory and storage.808

• The paper should provide the amount of compute required for each of the individual809

experimental runs as well as estimate the total compute.810

• The paper should disclose whether the full research project required more compute811

than the experiments reported in the paper (e.g., preliminary or failed experiments that812
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9. Code of ethics814

Question: Does the research conducted in the paper conform, in every respect, with the815

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?816

Answer: [Yes]817

Justification: Our paper does not involve human subjects or use any datasets. There are no818

ethical, societal, or environmental concerns. Therefore, the research fully complies with the819

NeurIPS Code of Ethics.820
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.822

• If the authors answer No, they should explain the special circumstances that require a823

deviation from the Code of Ethics.824

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-825

eration due to laws or regulations in their jurisdiction).826

10. Broader impacts827

Question: Does the paper discuss both potential positive societal impacts and negative828

societal impacts of the work performed?829

Answer: [NA]830
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Justification: Our work concerns the theoretical analysis of sample complexity and does not831

involve any particular application, data, or deployment. Therefore, it has no direct societal832

impact.833

Guidelines:834

• The answer NA means that there is no societal impact of the work performed.835
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11. Safeguards857
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release of data or models that have a high risk for misuse (e.g., pretrained language models,859
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Answer: [NA]861
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therefore does not pose such risks.863

Guidelines:864

• The answer NA means that the paper poses no such risks.865

• Released models that have a high risk for misuse or dual-use should be released with866

necessary safeguards to allow for controlled use of the model, for example by requiring867

that users adhere to usage guidelines or restrictions to access the model or implementing868

safety filters.869
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should describe how they avoided releasing unsafe images.871
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faith effort.874

12. Licenses for existing assets875

Question: Are the creators or original owners of assets (e.g., code, data, models), used in876

the paper, properly credited and are the license and terms of use explicitly mentioned and877

properly respected?878

Answer: [NA]879

Justification: Our paper only uses standard, widely adopted open-source libraries (e.g.,880
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pre-trained models, or code assets requiring explicit license attribution are used.882
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• The answer NA means that the paper does not use existing assets.884

• The authors should cite the original paper that produced the code package or dataset.885

• The authors should state which version of the asset is used and, if possible, include a886

URL.887

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.888

• For scraped data from a particular source (e.g., website), the copyright and terms of889

service of that source should be provided.890

• If assets are released, the license, copyright information, and terms of use in the891
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license of a dataset.894

• For existing datasets that are re-packaged, both the original license and the license of895

the derived asset (if it has changed) should be provided.896
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the asset’s creators.898

13. New assets899

Question: Are new assets introduced in the paper well documented and is the documentation900

provided alongside the assets?901

Answer: [NA]902

Justification: No new datasets, code assets, or models are introduced or released in our903

paper.904
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• The answer NA means that the paper does not release new assets.906

• Researchers should communicate the details of the dataset/code/model as part of their907

submissions via structured templates. This includes details about training, license,908

limitations, etc.909

• The paper should discuss whether and how consent was obtained from people whose910

asset is used.911

• At submission time, remember to anonymize your assets (if applicable). You can either912

create an anonymized URL or include an anonymized zip file.913

14. Crowdsourcing and research with human subjects914

Question: For crowdsourcing experiments and research with human subjects, does the paper915

include the full text of instructions given to participants and screenshots, if applicable, as916

well as details about compensation (if any)?917

Answer: [NA]918

Justification: Our paper does not involve crowdsourcing nor research with human subjects.919

Guidelines:920

• The answer NA means that the paper does not involve crowdsourcing nor research with921

human subjects.922

• Including this information in the supplemental material is fine, but if the main contribu-923

tion of the paper involves human subjects, then as much detail as possible should be924
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,926

or other labor should be paid at least the minimum wage in the country of the data927
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15. Institutional review board (IRB) approvals or equivalent for research with human929
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approvals (or an equivalent approval/review based on the requirements of your country or933
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Answer: [NA]935
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Justification: Our paper does not involve crowdsourcing nor research with human subjects.936

Guidelines:937

• The answer NA means that the paper does not involve crowdsourcing nor research with938

human subjects.939

• Depending on the country in which research is conducted, IRB approval (or equivalent)940

may be required for any human subjects research. If you obtained IRB approval, you941

should clearly state this in the paper.942

• We recognize that the procedures for this may vary significantly between institutions943

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the944

guidelines for their institution.945

• For initial submissions, do not include any information that would break anonymity (if946

applicable), such as the institution conducting the review.947

16. Declaration of LLM usage948

Question: Does the paper describe the usage of LLMs if it is an important, original, or949

non-standard component of the core methods in this research? Note that if the LLM is used950

only for writing, editing, or formatting purposes and does not impact the core methodology,951

scientific rigorousness, or originality of the research, declaration is not required.952

Answer: [NA]953

Justification: The core method development in our research does not involve LLMs as any954

important, original, or non-standard components.955

Guidelines:956

• The answer NA means that the core method development in this research does not957
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for what should or should not be described.960
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