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Abstract

Distributionally robust reinforcement learning (DR-RL) has recently gained sig-
nificant attention as a principled approach that addresses discrepancies between
training and testing environments. To balance robustness, conservatism, and
computational traceability, the literature has introduced DR-RL models with SA-
rectangular and S-rectangular adversaries. While most existing statistical analyses
focus on SA-rectangular models, owing to their algorithmic simplicity and the
optimality of deterministic policies, S-rectangular models more accurately cap-
ture distributional discrepancies in many real-world applications and often yield
more effective robust randomized policies. In this paper, we study the empirical
value iteration algorithm for divergence-based S-rectangular DR-RL and establish

near-optimal sample complexity bounds of O(|S||.A|(1 — ) ~%e~2), where ¢ is the
target accuracy, |S| and |.A| denote the cardinalities of the state and action spaces,
and v is the discount factor. To the best of our knowledge, these are the first sample
complexity results for divergence-based S-rectangular models that achieve optimal
dependence on |S]|, |A|, and € simultaneously. We further validate this theoretical
dependence through numerical experiments on a robust inventory control problem
and a theoretical worst-case example, demonstrating the fast learning performance
of our proposed algorithm.

1 Introduction

Reinforcement learning (RL) Sutton and Barto [20] is a powerful machine learning framework
in which agents learn to make optimal sequential decisions through continuous interaction with
an environment. While RL has achieved remarkable success across various domains, its practical
deployment faces a significant challenge: real-world deployment conditions often differ from the
training environment (e.g., simulations), resulting in fragile policies that fail to generalize. This
mismatch undermines RL’s applicability in real-world settings, where discrepancies between training
and deployment are the norm.

The framework of distributionally robust reinforcement learning (DR-RL) was thus proposed in
Zhou et al. [32] to address this mismatch and has since been further developed in a series of works,
including Panaganti and Kalathil [13]], Yang et al. [30], Xu et al. [28]], Blanchet et al. [1]], Liu et al.
[1O], Wang et al. [21], Yang et al. [31], Wang et al. [25], Shi and Chi [17].

Popular models in distributionally robust reinforcement learning (DR-RL) include those based on
SA-rectangular and S-rectangular uncertainty sets. The notion of rectangularity, originally introduced
in the robust MDP literature to describe the adversary’s temporal flexibility in selecting distributions
[8]], has since been refined. With the incorporation of various information structures and a growing
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focus on constraining adversarial power, rectangularity now serves to impose structural limitations
on uncertainty sets, as elaborated in Le Tallec [9] and Wiesemann et al. [26]. In particular, SA-
rectangularity allows the adversary to choose separate distributions for each state-action pair, whereas
S-rectangularity enforces consistency across actions within a given state, thereby offering a more
confined modeling choice.

Existing statistical analyses of DR-RL predominantly focus on the SA-rectangular setting, primarily
due to its computational tractability. Moreover, it has been shown that SA-rectangular models always
admit deterministic optimal policies. However, as illustrated in the example below, the S-rectangular
formulation can be more appropriate and less conservative in certain applications, such as inventory
management.

Example 1 (Inventory Model). Consider a classical inventory control problem where the inventory
evolves according to S;y; = S¢ + Ay — Dy, with {D; : t > 0} representing the stochastic
demand process and a; denoting the replenishment decision at time ¢. The reward function is
R(St, At, St+1) = p(St — St+1 + At) + bmin(St_H, 0) — hmaX(St_H, 0) — CAt, where p is the
sales price, c is the purchase cost, h is the holding cost, and b is the penalty of backlog. To address
the uncertainty in demand, distributionally robust reinforcement learning (DR-RL) provides a natural
framework for enhancing robustness. In this context, it is reasonable to assume that the adversary can
only modify the distribution of the demand D, independently of the controller’s action Ay, leading to
an S-rectangular uncertainty set. By contrast, the SA-rectangular formulation allows the adversary
to choose different distributions for D, based on the controller’s action A;—for example, assigning
low demand when A; is large and high demand when A; is small—granting the adversary excessive
power and resulting in an unrealistic model.

This example highlights how S-rectangularity constrains the adversary’s power by preventing it from
adapting to the controller’s actions, making it a more practical and less conservative modeling choice
in applications such as inventory management.

While suitable for many applications, the S-rectangular formulation in DR-RL is more challenging
than its SA-rectangular counterpart, both statistically and computationally, due to the possibility of
randomized optimal policies. Computationally, this requires solving a full min-max problem rather
than a simpler maximization. Fortunately, Ho et al. [7]] proposed an efficient method for performing
Bellman updates in this setting. Statistically, the challenge arises from the fact that the space of
randomized policies is exponentially larger than the space of deterministic policies typically sufficient
under SA-rectangularity.

Another feature of Example[I]is that the reward depends on the current state S, the current action A,
and the next state S;11. In contrast, the literature typically considers reward functions of the form
R(Sy, At), which depend only on the current state and action. The inventory management example
highlights the necessity of adopting a reward function of the form R(S;, A;, S;+1) to accurately
capture the underlying dynamics.

In this work, we study the problem of learning the optimal value function in a divergence-based
S-rectangular robust MDP, where the uncertainty set is defined as the sum of divergences across all
actions. This formulation is well motivated in practice, as divergence-based uncertainty sets preserve
absolute continuity and are widely adopted in the literature [[7, 30], where efficient algorithms for
computing the robust value function have been developed.

However, a satisfactory analysis of the minimax statistical complexity for learning the value function
remains missing. To the best of our knowledge, the current state-of-the-art upper bound in Yang et al.
[30] contains a sample complexity dependence on |S| and |.A| in the form of O(|S|?|.A[?), where |S|
and |A| are the cardinalities of the state and action spaces. This significantly deviates from the known
lower bound of ©(|S||.A|). In addition, we have pointed out that in many models of practical interest
(e.g., Example E]), the reward function depends naturally on the next state Sy 1, a structural feature
that is often overlooked in the existing sample complexity literature.

We contribute to the literature by analyzing divergence-based S-rectangular robust MDPs with reward
functions that depend on the current state, current action, and next state, i.e., R(Sy, A¢, Si11). We
establish a sample complexity bound of O(|S||.A|(1 — ) ~%e~2), where ¢ is the target accuracy and
~ is the discount factor. This bound is optimal in its dependence on |S|, |.4], and &, and it holds
uniformly over the entire range of uncertainty sizes p € (0, +00) and discount factors v € (0,1).
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To the best of our knowledge, this is the first sample complexity upper bound for divergence-based
S-rectangular models that simultaneously achieves optimal dependence on |S], |.A|, and .

To achieve the optimal |S||.A| dependence, we develop a refined sensitivity analysis that improves
upon the metric entropy bounds derived from the covering numbers of the randomized policy
class IT = {(w(-|s))ses | m(-|s) € A(A)}, where A(A) denotes the probability simplex over A,
as used in Yang et al. [30]. Moreover, our analyses advance the techniques of Wang et al. [25] by
relaxing the mutual absolute continuity requirement, thereby extending the allowable range of the
uncertainty radius to R+, beyond the previously restrictive regime of p = O(pn), while retain an
O(1) dependence on p as p | 0.

The remainder of this paper is organized as follows: Secction [2]briefly reviews related work on SA-
rectangular and S-rectangular distributionally robust reinforcement learning. Section [3]introduces the
framework for learning S-rectangular distributionally robust Markov Decision Processes. Section 4]
establishes sample complexity upper bounds for value function estimation. Section [5] presents
numerical experiments to support our theoretical results.

2 Literature Review

In this section, we briefly survey SA-rectangular and S-rectangular distributionally robust reinforce-
ment learning.

SA-rectangular DR-RL: The dynamic programming principles for SA-rectangular distributionally
robust Markov decision processes (DR-MDPs) have been gradually established through a series of
works under different information structures [6, 8, [12, [15] [24]. Recent advances in SA-rectangular
distributionally robust reinforcement learning (DR-RL) have explored sample complexity in various
settings. Broadly speaking, model-based approaches have been studied in Zhou et al. [33]], Panaganti
and Kalathil [[13]], Yang et al. [30], Shi and Chi [16], Xu et al. 28], Shi et al. [18]], Blanchet et al. [1]],
while the statistical properties of model-free algorithms are presented in Liu et al. [10], Wang et al.
[21} 22], Yang et al. [31]].

S-rectangular DR-RL: To extend the flexibility of robust MDP models, S-rectangularity was
introduced in Xu and Mannor [27]], Wiesemann et al. [26] as an overarching theoretical framework to
constrain the adversary while retaining a dynamic programming equation. Ho et al. [[7] developed an
efficient optimization algorithm to solve the Bellman update under this structure. On the statistical
side, Yang et al. [30] provided the first sample complexity result for S-rectangular DR-RL, achieving
arate of O(|S|?|A|?(1 — ) ~*e~2), which is suboptimal in its dependence on the number of states
and actions. More recently, Clavier et al. [2] established near-optimal rates for the S-rectangular
setting under general L, norm uncertainty sets. However, their analysis does not directly extend to
divergence-based uncertainty sets.

3 Learning S-rectangular Robust Markov Decision Processes

3.1 Classical Markov Decision Processes

We briefly review and establish notation for classical tabular MDP models. Let A(S), A(.A) denote
the probability simplex over the finite state space S and action space A respectively. An infinite hori-
zon MDP is defined by the tuple (S, A, R, P,), where S and A are the finite state and action spaces,
respectively; R : SX AxS — [0, 1] is the reward function; P = {P, ,(-) € A(S) : (s,a) € S x A}
is the controlled transition kernel; and v € (0, 1) is the discount factor. Through out the paper,
given a controlled transition kernel P, we denote Ps := (P ,)qe.4 Which is seen as a function
P, : A — A(S).

We define the measurable space (€2, F) to be the canonical space (S x A)YN equipped with the
o-field generated by cylinder sets. Define state-action process (.S;, A;)¢>o by the point evaluation
Xi(w) = 8¢, At(w) = aq forall t > 0 and w = (8o, ag, $1,a1,...) € .

An agent may optimize over the class of history-dependent policies, denoted by IIyp, where each
policy 7 = (m)i>0 € Hup is a sequence of decision rules. Each decision rule 7, at time ¢
specifies the conditional distribution of the action A; given the full history, that is, a mapping
i (S x A)f x & — A(A). In the setting of classical infinite-horizon discounted MDPs, it is well
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known that optimal decision-making can be achieved using stationary, Markov, deterministic policies,
denoted I, where each policy is a mapping 7 : S — A [14].

However, in the context of S-rectangular DRMDPs, policies in IIp may fail to attain the optimal
performance achievable within the broader class Ilgp [26]. In this setting, it suffices to consider
stationary, Markov, randomized policies, which we denote by II throughout the paper. Each m € Il is
amapping 7 : S — A(.A), specifying a conditional distribution over actions given the current state
S, uniformly for all ¢ > 0. Given this sufficiency, we restrict our attention to policies in the class II
for the remainder of the paper.

Given a controlled transition kernel P of a classical MDP, a policy 7 € II and an initial distribution
€ A(S) uniquely defines a probability measure on (€2, F). We will always assume that y is the
uniform distribution over S. The expectation under this measure is denoted by ET. The infinite
horizon discounted value V75 is defined as:

o0
VE(s) = Ep | > V' R(Si, Ar, Si41)
t=0
An optimal policy 7* € II achieves the optimal value V3 (s) := maxremn V5 (s).

S():S

It is well known that the optimal value function is the unique solution of the following Bellman
equation:
v(s) =max > Psa(s")(R(s, a,5") +70(s")). (€RY
ac
s'eS
Let v* be the unique solution, then any deterministic policy 7* : & — A with 7*(s) €
argmaxeed g cg Psa(s')(R(s,a,s") +yv*(s')) will achieve the optimal value V3 (s).

3.2 Robust MDPs and S-Rectangularity

Robust MDPs extend standard MDP models by introducing an adversary that perturbs the transition
dynamics within a prescribed uncertainty set P, aiming to minimize the control value achieved by
the decision maker. This formulation gives rise to a dynamic zero-sum game between the controller
and the adversary. Consequently, the controller must account for potential model misspecifications
represented by the adversary perturbation, leading to the design of more robust policies.

The statistical complexity of policy learning in robust MDPs has been primarily studied under SA- and
S-rectangular uncertainty sets. As discussed in the previous section, S-rectangularity generalizes SA-
rectangular models and provides a more expressive framework for modeling adversarial perturbations,
constraining the adversary in a structured way while preserving the dynamic programming principle.
From this point forward, we will be focusing on S-rectangular robust MDPs.

Definition 1 (Wiesemann et al. [26]], S-rectangularity). The uncertainty set P is S-rectangular if
P =X, s Ps forsome Ps C {(Ya)acalta € A(S),Va € A} forall s € S.

We focus on a special class of S-rectangular adversarial uncertainty sets, where the controlled
transition kernels are perturbations of a nominal kernel P. These sets are defined via a divergence
function f and a radius parameter p. The computational methods and statistical complexity associated
with this type of uncertainty structure have been extensively studied in the literature 30, [7]].

Specifically, given a divergence function f, i.e. f : Ry — R is convex with f(0) = 1 and

f(0) = limyyo f(t), we consider the S-rectangular uncertainty set P(f, p) = X ¢ Ps(f, p) under
f-divergence and radius p where

PS(fv p) = Ps,a S A(S) L(‘i)

Py a(s)
Here, < denotes absolute continuity; i.e. a probability measure p € A(S) is absolutely continuous

with respect to ¢ € A(S), denoted by p < ¢, if ¢(s) = 0 implies p(s) = 0 for any s € S. The
dependence of the uncertainty set on (f, p) is suppressed when there is no ambiguity.

Ps,a < Ps.,av Z Ps,a(s/)f <

s'€S,acA

) <lApb. G2

Given a policy 7 € IIyp and uncertainty set P = P(f, p), the robust value function of 7 is

ZVtR(SnAt,StH)

t=0

Ve (s) = inf EF

S() = 8] (33)
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for all s € S. The optimal value, defined as V5 (s) := sup ¢, V5 (s). is achieved by 7* € II.

Definition 2 (DR Bellman Equation). Given S-rectangular P = X cs Ps, the DR Bellman equation
is the following fixed-point equation forv : S — R

v(s) = sup inf Z o(a) Z P o(s") (R(s,a,s") +~vv(s)) | . (3.4
acA

pEA(A) P EPs ses
It is well known [26] that for P = P(f, p) the optimal value V5 is the unique solution v* to (3.4).

We note that value function in (3.3) assumes an adversary that fixes a controlled transition kernel over
the entire control horizon, a setting commonly referred to as a static or time-homogeneous adversarial
model [8} 26} 24]. This framework can be extended to more general Markovian or history-dependent
adversarial models, while still preserving Markov optimality [24].

To facilitate our analysis, we define the DR Bellman operators as follows.

Definition 3 (DR Bellman Operators). Given uncertainty set P = P(f, p) and = € II the (population)
DR Bellman operator is defined as
) (3.5)

T™(v)(s) := inf <Z w(als) Z P, o(s") (R(s,a,s") +~v(s'))
for all s € S. The optimal DR Bellman operator is 7*(v)(s) := sup,er; 77 (v)(s), Vs € S.

s'eS

PeP
acA

3.3 Generative Model and the Empirical Bellman Estimator

The sample complexity analysis in this paper assumes the availability of a generative model, a.k.a. a
simulator, which allows us to sample independently from the nominal controlled transition kernel
P o, forany (s,a) € S x A. In particular, given sample size n, we sample i.i.d. {Sglg, e ,ngfl)}
from P, , and construct the empirical transition probability

n

Poan(s) = ! pg! {ngg = s’} : (3.6)
i

Then, we define P,, := {ﬁ&a,nKS, a) € § x A} as the empirical nominal controlled transition

kernel based on n samples. We define the empirical uncertainty set P, (f, p) := Xses Psnlfsp)

where Ps . (f, p) is from (3.2) by replacing Py, with P; , ,,. Again, the dependence on (f, p) will

be suppressed for simplicity.

Similarly, the empirical DR Bellman operator T is defined as in (3:5) with P replaced by P,,. The
corresponding optimal empirical DR Bellman operator is T*(v)(s) := sup, e T™(v)(s), Vs € S.

Equipped with these definitions, we present our strategy to estimate the optimal value of the S-
rectangular robust MDP via the empirical value function. This is motivated by the fact that V5 = v*
where v* solves (3.4).

Definition 4 (Empirical Bellman Estimator). Given divergence function f and radius parameter p, let
P =P(f,p)and P,, = P, (f, p). We define the empirical Bellman estimator ¢ to V5 as the unique

solution to the fixed point equation T* () = .

The rest of this paper is dedicated to theoretical analyses and numerical validation of the statistical
efficiency of estimating V5 = v* using 9. We conclude this section by introducing the following
important proposition that provides an upper bound on the /., estimation error.

Proposition 1. Let v*,0 be the solution of T*(v) = v and T*(v) = v, respectively. Then, the
estimation error is upper bounded by

~ * 1 Tk () k) k() %
0 ="l < 7= |70 = T (")

‘ oo

with probability 1.
The proof of Proposition|[T]is deferred to Appendix
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4 Sample Complexity Bounds for the Empirical Bellman Estimator

In this section, we establish sample complexity upper bounds to achieve an absolute € error in
ls distance when estimating V5 using 0. We focus on two specific f-divergence uncertainty
models. When fky,(t) = f(t) = tlogt, the corresponding uncertainty set Ps(fkr, p) is based
on the Kullback-Leibler (KL) divergence, which is widely used in the machine learning literature.
Alternatively, when f = f, as defined in Definition[6] the resulting fi-divergence model captures
another well-studied class of uncertainty sets [4].

We note that our analysis techniques are applicable to a broader class of smooth divergence functions
f. However, we focus on these two representative cases for demonstration purposes. This reflects that
achieving near-tight sample complexity bounds often requires leveraging specific structural properties
of the divergence. In particular, we highlight the desirable feature that, in the regime where the
radius p | 0, our bounds remain O(1) in p, avoiding the diverging sample complexity upper bounds
established in earlier results, as discussed in [25]].

To facilitate our analysis and establish sample complexity results, we define the minimum support
probability as a complexity metric parameter as follows.

Definition 5. Define the minimum support probability as

Pa = min min P (s
5,a€SXA 51 €8Py ,(s')>0

As noted in the literature, the use of p, as a complexity metric is well justified. In the KL case,
the convergence rate of the estimation error can degrade arbitrarily, depending on the specific MDP
instance, if there is no lower bound on the minimum support probability. In particular, the rate can
be as slow as Q(n~1/#) for any 8 > 2 as the sample size n tends to infinity [19]. Similar negative
results hold in the fj-divergence setting when the parameter k& approaches 1 [3]], highlighting the
necessity of such a complexity measure.

4.1 The Kullback-Leibler Divergence Uncertainty Set

In this section, we present sample complexity results under the KL-divergence uncertainty set. Our
analysis relies on the following dual representation of the DR Bellman operator and its empirical
version.

Lemma 1. With P = P(fky, p) where fk1.(t) = tlogt and p € (0,00), foranyw € lland s € S,
the dual form of the DR Bellman operator with KL uncertainty set P is

T’T(v)(s) _ ig% <>\|A,D Z /\IOgEFM |:eXp <7T(G|S)(R(S,G7S) +’7U(S))>:|> L@

acA A
The KL empirical DR Bellman operator T™ satisfies @1) with Ps,a replaced by Ps,a,n-

The proof of Lemmal|l|is provided in Appendix Building on this dual formulation, we next
analyze the statistical error between the empirical and population DR Bellman operators.

Proposition 2. Under the KL-divergence uncertainty set with any p € (0,00), foranyv : S — R
and n > 12px ' log(4|S|?|A|/n), with probability at least 1 — 1,

|ﬁ%mfwwmg9“;gﬂww%uwmmm»

The proof of Proposition [2]is provided in Appendix [C.I] Then, combining Proposition [2] with
Proposition|[I] and the fact that [[R + vv* ||, < 1/(1 —7) under our assumption that R € [0,1], we
arrive at the following theorem. The proof is presented in Appendix [C.4}

Theorem 1. Under the KL-divergence uncertainty set with any p € (0,00) and n >
12p ' log(4|S|2|.A|/n), with probability at least 1 — 1,

6 = v loe <

9
T log(4]S]2|. Al /n).-

Remark 1. Therefore, under the KL-divergence, to achieve an € absolute error of estimating V5 = v*
with 9 in I, norm w.h.p., we need a total of O(|S||A|(1 — ) ~*px'e2) samples from the simulator.
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4.2 fr-Divergence Uncertainty Set

Next, we consider a subclass of the Cressie-Read family of fj-divergence with k € (1, 00), as studied
in Duchi and Namkoong [4]].

Definition 6. For & € (1,00), the fi-divergence is defined by the divergence functions fy(t) :=
(tF —kt+k—1)/(k(k —1)). We also define k* = k/(k — 1).

Notably, when k = 2, the f>-divergence is the x2-divergence, which sees extensive application in the
statistical testing literature. Moreover, when k | 1, the fj induced divergence converges to KL.

The analysis for f;-divergence uncertainty sets follows the same strategy to KL-divergence in the
previous subsection. Below we summarise the main results.

Lemma 2. With P = P(fx, p) and p € (0,00), forany m € Il and s € S, the dual form of the DR
Bellman operator with fi, uncertainty set P is

Iad
T ()(s)=— suwp || S Ep, [(na — n(a|)[R(s,a,S) + W(S)])’_ﬂ +>
n€RI cA a€A
where ¢ = c(k, p, |A|) = |AM* (k(k —1)p + 1)1/k and (-)4+ = max(+,0). The fi empirical DR
Bellman operator 'T™ satisfies a similar equality with ﬁs,a replaced by ﬁs,a,n. Ps,am.
The proof of Lemma[2]is provided in Appendix Again, with this dual representation of the DR
Bellman operators and refined estimation error analysis, we arrive at the following result.

Proposition 3. Under the fy-divergence uncertainty set with any p € (0,00), foranyv : S — R
and n > 12p; ' log(4|S|?|A|/n), with probability at least 1 — 1,

~x N 3~2k*k’*|\R+'yv||oo\/—2
IT*(0) = T*(v) [0 < NG log (4|S[2|A[/n)-

The proof of Proposition [3]is provided in Appendix [D.1] This, combined with Proposition[I} implies
the following error convergence bound, whose proof is deferred to Appendix [D.4]

Theorem 2. Under the fi-divergence uncertainty set with any p € (0,00) and n >
12p, " log(4|S|2|.A| /), with probability at least 1 — 1,

3.2k
0 — 0|0 < ————————=1/10g(4|S|2| A|/n).
[0 —v*|| _(1_7)2\/@\/ og(4[S|?Al/n)

Remark 2. Therefore, under the fj-divergence for a fixed k, to achieve an e absolute error of
estimating V3 = v* with @ in lo, norm w.h.p., we also need a total of O(|S||A|(1 — ) "*prte?)
samples from the simulator.

5 Numerical Experiments

In this section, we present two sets of numerical examples. In Section [5.1} we revisit the robust
inventory problem from Ho et al. [7], which features uncertain demand, to demonstrate the n-1/2
error decay rate. In Section[5.2] we consider an example from Yang et al. [30] to illustrate the linear
dependence on |S||.A|, which matches the lower bound established in Yang et al. [30].

5.1 Robust Inventory Control Problems

We investigate the dependency of the estimation error € on the sample size n and evaluate our
approach on a classical discrete-time inventory management problem with stochastic demand and
backlog [[7]. In each period ¢, an agent decides the order quantity to maximize cumulative discounted
rewards, accounting for holding costs, backlog penalties, and profits.

Let I denote the maximum inventory level, B the maximum backlog, and O the maximum order
quantity per period. The state space is defined as S = {—B,---,0,---, I}, the action space is
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A=10,---,0}, where s; € S and a; € A denote the inventory and order item at the beginning of
period t. Demand D; € {0, - , Dyax } is an i.i.d. sequence, with distribution Pp € ADPmax+1,

The MDP dynamics proceed as follows. Due to storage constraints, the effective order size is
A, = min(As, I — S;). Then, the next state evolves as S;11 = max(S; + A, — Dy, —B), ensuring
that the backlog does not exceed B. The actual sales in period ¢ are given by X; = Sy — Sy1 + A,.
A one-step reward R(S:, At, Sty1) = pX: + dbmin(Si41,0) — hmax(S¢41,0) — cA, is collected,
where p is the sales price, c is the purchase cost, h is the holding cost, and b is the penalty of backlog.

For our experiments, we set the parameters as follows: I = 10, B =5, 0 =5,p = 3,¢c = 2,
h =0.2,b=3,v = 0.9, and use the nominal demand distribution Pp = [0.1,0.2,0.3,0.3,0.1],
supported on 0, 1,2, 3, 4. For each (s, a), we sample ng samples from the nominal transition kernels
to generate the estimated transition probability P,,, and solve the DR-MDP problem with uncertainty
size p = 1/6 using the algorithm presented in [7].

Figure [T]illustrates the relationship between the sample size n and the error € between the empirical
and population value functions. As shown in the log-log plot, the slope is approximately —0.5 for
both the KL and x? cases, indicating that the error decreases at a rate proportional to 1/+/7.

—— KL, slope = —0.54 — 4%, slope = —0.52

(a) Uncertainty sets based on KL-divergence (b) Uncertainty sets based on x>-divergence

Figure 1: Estimation error versus sample size n in the robust inventory control problem.

5.2 MDP Instances from the Lower Bound Construction in Yang et al. [30]

Figure 2: MDP instances from the lower bound construction in Yang et al. [30]].

In this section, we investigate the relationship between the estimation error and the sizes of the state
space |S| and action space |.A|. We adopt the classic MDP structure introduced in Gheshlaghi Azar
et al. 5] and Yang et al. [30], which comprises three subsets: S, V1, and )», as illustrated in Figure@

Specifically, S denotes the set of all initial states, each associated with an action set .4. When an
action a; € A is taken in state s € S, the system deterministically transitions (with probability 1)
to the corresponding state y; 5, € Ji. From each y; 5 4, the system either remains in the same
state with nominal probability p, or transitions to the corresponding absorbing state 2 5 , € V2 with
nominal probability 1 — p. All states in ), are absorbing, meaning that once the system enters one of
these states, it remains there indefinitely via a self-loop with probability 1. The reward function is
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defined such that a reward of 1 is obtained only when the system is in any state within });; all other
states yield a reward of 0. We solve the DR-MDP problem with uncertainty size p = 0.1.

In our experiments, we first fix [A| = 65 and vary the number of states from 10 to 1000, with
the results shown in Figure|3] We then fix |S| = 65 and vary |.A| over the same range, with the
corresponding results presented in Figure 4]

To align with our theoretical results, we normalize the estimation error by dividing it by log(|S||.A|).
Figures [3| and [4| display the behavior of this normalized error as |S| and |.A| vary, respectively.
Specifically, for each (s, a) pair, we use ng samples, resulting in a total of ng|S||.A| samples. The
left subfigures correspond to the KL-divergence case, while the right subfigures correspond to the x2-
divergence case. We observe that as either |S| or |.A| increases, the normalized error is non-increasing.
This is consistent with our theoretical analysis, which predicts that the sample complexity scales
linearly (up to logarithmic factors) with the product |S||.A|.

0.05 0.10
— KL, np=1000 — % np=1000
— KL, n9=2000 — % np=2000
0.04 KL, np=5000 0.08 —— %% n=5000
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= ) o ©
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0 200 400 600 800 1000 0 200 400 600 800 1000
11 1S1
(a) Uncertainty sets based on KL-divergence (b) Uncertainty sets based on x>-divergence

Figure 3: Estimation error versus the number of states |S| for the MDP instances based on the lower
bound construction in Yang et al. [30].

0.05 0.10
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=} ° ) 4
% ° °e ° E ° il
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Figure 4: Estimation error versus the number of states |.4| for the MDP instances based on the lower
bound construction in Yang et al. [30].

6 Conclusion and Future Work

In this paper, we present near-optimal sample complexity results for divergence-based S-rectangular
robust MDPs in the discounted reward setting. Our results are the first to achieve optimal dependence
on |S], |A|, and e simultaneously. We acknowledge, however, two limitations: the reliance on access
to a generative model and the presence of a gap between our upper bound and the minimax lower
bound established in Yang [29]. As part of future work, we aim to develop provable theoretical
guarantees for other settings, including model-free algorithms and offline reinforcement learning.
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A Proofs of Value Function Error Bounds

In this section, we prove Proposition [T} We first show that both the population and the empirical
S-rectangular Bellman operators 7 * and T* are y-contractions. This is a well-known fact, see for
example [24]. We include a proof to make the paper self-contained.

Lemma 3. 7* and T* are y-contraction operators on (S — R, |-lo0)s e forallvi,vy : S = R,
[T (1) = T (v2) oo < 7l[o1 = V2lcc,
IT*(v1) = T (v2)[loo < llo1 = v2f|oo-

Proof. Let

F(0)(s) =) m(als)

acA

> Poa(s) (R(s,a,8") + w(s’))]

s'eS
By definition, we have

T (v1)(s) = T (v2)(s)] =

sup T7(v1)(s) — sup T7(v2)(s)

well mell
= inf - inf .
sup I;relpf(vl)(S) sup };relpf(vz)(S)

Since |supy f —supy g| < supy |f —g| and |infx f — infx g| < supy |f — g, we have

[T (v1)(s) = T (v2)(s)]
< sup sup | f(v1)(s) — f(v2)(s)]
7ell PeP

= sup sup
well PEP

’

> w(als)Pea(s)R(s,a,8") + v Y w(als)Pea(s)v1(s)

a,s

- Z 7(a|s)Ps,a(s )R(s,a,s") —~ Z 7(a|s)Ps,q (s )va(s")

a,s’ a,s’
= sup sup vy Z 7(als)Ps,q (s )v1(s") — Z m(a|s)Ps,q(s" )v2(s")
nell PeP a8’ a8’

<Aool Pslloo lvr — valfoo
=7|lv1 — v2/l00

where || Ps|[occ = supj,_ =1 [|Psv||, is the induced operator norm. The above inequality holds for
any s € S, which lead to

[T (v1) = T (v2)lloe < Yllv1 — V2o
We replace P with P; ,,, notice that || Py ||oc < 1
IT* (v1)(s) = T*(v2)(8)] < V75 llool| Po,nlloo [[v1 — v2lo
= 7[lv1 — va|oo-

which lead to . A
[T*(v1) — T*(v2)[[oc < Yllv1 — v2loo.

A.1 Proof of Proposition 1]

Proof. The proof of Proposition[I|follows a similar argument to that used for the continuous-case
operator in [23]].

12



a0 Letvg = 0and vy = T*(vp). @ is defined as the fix point of T* & = T*(?)
Ay = V41 —0°
=T (o) = T*(v*) + T*(v*) = T (v")
_ [T*(v* YA -T (v*)} n [T*(v*) - T*(v*)]
= H(Ak) +V
441 By Lemma 3] we have
(A = H(Ao) | = || 7707 + A1) = (0" + A2)|_ <7181 - s,

442 therefore, H is also a «y-contraction operator. Then we show

N k-1
18kl < T + SV
Y -
7=0
443 by induction: for k = 1,
[A1]loo < [H(A0)[loo + [[V]loo
= [[H(A¢) = H(0)[loo + [IV]loo
<0 oo + 1V 1loo
v
< — .
< 2+ Vi
444 For any k, we have
[Akt1lloo < TH(AR) oo + [[Vlloo
= [[H(Ag) = H(0)[loo + [[V'[loo
<Akl + 1Vl

k—1

k—1

Y

<7 177+ZHVIIW + Vo
=0

y* e
Y Z
j=0
445 Therefore,

~ * . - 1 1 Tk (% k(%
192"l = Jim [8ello € 37 IViloe = 7= [T (") = T*(0")

=0

446 O

a7 B Strong Duality for Divergence-Based S-Rectangular Bellman Operators

448 The proofs for all f-divergence-based uncertainty sets follow a unified framework. We first present
449 Lemma {4} which gives a general dual formulation for any convex f-divergence. For the KL-
4s0 divergence and the fj-divergence, we specialise this result by substituting the corresponding conjugate
451 functions f*. The detailed derivations for the KL-divergence and the fj-divergence are provided in

452 Appendix [B.T|and [B.2] respectively.

453 Lemma 4. For any f-divergence uncertainty set, where f : R, — R is a convex function and
454 f(0) = 1 and satisfies f(0) = limy o f(t), the convex optimization problem

ot GAW(GIS)EPS,Q [R(s, a, ) +~v(S)]

455 can be reformulated as:
« [ Ma —m(al|s) (R(s,a,S)+~yv(S
sup _)\ZEﬁS_G |:]c (77 ( ‘ )( ()\ ) g ( )))]—MAP'FZ%
A>0,neRIA acA ' acA
456 where f*(t) = —infs>0 (f(s) — st).
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464
465

466

467

469
470

47

Proof. We follow the proof of Lemma 8.5 in [30], however, in our case, R is determined by the next
state. We do a change of variables, let L ,(s') = %. The original optimization problem can be

reformulated as:

ind, X (el , (L (R(s.0.5) +70(5))

s+, ZE*M )l < 1 Alp
acA
Es [Lsol=1 forallae A

s,a

The Lagrange function of primal problem is

L(LAm) =) 7(als)Ep, , [Lsa (R(s,a,9) +70(S))]

acA
+A (Z Es, [f(L A|P> > ( Poolsal = 1)
acA a€A

Denoting f*(t) = —infs>o (f(s) — st),
Ak L(L, A )

— inf (Z Ep, . [w(a|s)Ls,a (R(s,a,8) +70(S)) + A\f(Ls.a) — naLMD A+ Y

L,>0
acA acA

S int Ep [W(a|8) (R(s,a,5) +v(S)) = na Lea+ f(LM)] ~AAp+ > na

acA V= A a€A
_ « ((na—m(als) (R(s,a, S) +v(5))
=-A) Ep [f ( S Ao+ na
acA acA
O
B.1 Proof of Lemmal[l]
Proof. Recall that for the KL-divergence, f(t) = tlogt, whose conjugate function f*(s) = e*~1.
Substituting f* into Lemmafd] we obtain the following dual form:
« (Mo —m(als) (R(s,a,S) +~yv(S
sup )\Z]Epw{f <77 (als) ( (/\ ) ()))]AIAIp+Zna
A>0,n€RIAI acA ' acA
a B R ) &y S S
= sup —A Z exp (77 ) Es. . [exp ( mlals) { (s; ) + 7l ))ﬂ
AzOomeRMl ST ’ B.D)
—AAlp+ Z M-
acA
We first note that for each action a, the term A\E- [ ] is a positive constant with respect to 7, while
the term —AE3_ [-] exp((na — A)/A) is concave in 7,, since for any ¢ > 0, the function —c exp(z)

is concave. Moreover the term ) 7, is affine, and hence concave. As the sum of concave functions
is concave, we conclude that (B.T) is concave in 1. Next, we optimize with respect to 1 by setting
the gradient with respect to each n, to zero:

exp (52 iy, [ (R0 )

Solving for 7,, we obtain

(B.2)

A Aoy, [exp (_ﬂ<a|s> (Rlo.0,5) + W(S))ﬂ .
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473

474
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476

477
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479

481
482

483

484

485
486

487

488

Substituting into (B.I)), we obtain
wp AN En [exp (—w(als) (R(s,a,5) + WU(S))>] ~ .

A
A>0,n€eRIAl Py

B.2 Proof of Lemmal2l

Proof. We first introduce the conjugate function of fj,, which will be instrumental for deriving the
dual representation of DR Bellman operator.

Lemma 5 (Duchi and Namkoong [4], Section 2). Recall that in fi-divergence,
th—kt+k—1
k(k—1)

The conjugate function f}(s) = sup,>q (st — fi(t)) is given by

fk(t) =

Fi(s) =7 [( =5+ )% ~1]
where ()1 = max(z,0).

Substituting f;; into Lemmad] and let w; o(S) := n(als) (R(s,a, S) + yv(S)), we obtain

sup _ Z )‘Efsa |:f* (77«1 _u;s,a(s)>:| _ )\|A|p+ Zna

AZ0meRMAL ey acA
k
. _ :
— s Y ABp | [((k— 1)%5@(5) +1) _ 1H
+

A>0meA T
Since £ — 1 > 0 and X\ > 0 are constants with respect to the random variable S, we can factor them
out of the expectation and the positive-part operator (+) ..

= —(k_l)k*ZE— —ws.a(S » )" A (- >
= sup TN -1 B.. | | M — wsal )+m ) Al { p n + Na

A>0,n€ERIA] acA acA

Finally, we perform the change of variables, let 15, = 1, + ﬁ we obtain

J— k*
~ s _(ZA% S Ep [(ﬁa _ wm(s))’ﬂ — Al (p + k(kl—1)> + a;ﬁa

A>0,7€RIAl aeA
(B.3)

Since =A™ is concave in A for any « > 0, and \|A| (p + ﬁ) is an affine function of ), it

follows that (B.3) is concave with respect to A\. To optimize over A, we take the derivative with
respect to A and set it to zero, which yields:

kE—1)% _ . 1
e . [0~ wn(05] M (o gy ) =0

Multiply k(k — 1) on both side of the equation, we have

_ 1)k
% > g, [(ia = wealS)Y] = 14| (k(k = 1)p+1) =0
acA

Therefore, we obtain

1/k*
X = (= LAY (k(k = Do+ 1) 7Y (Z Ep, , |(ia - ws,a<s>>ff}>

acA
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494

496

497
498
499
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501
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504

505

By substituting A* into the equation (B.3)) , we have

a— Ws,a S ~
sup — > AEp [f* (Wﬂ —AAlp+ >
acA

A>0,neRIAl acA
1/k*
k—1 5 .
= sup —T|A|1/k (k(k—1p+ 1)1/k (Z Es, {(na - wm(S))i D
FERIAI acA
) 1/k*
= A (k= Do+ 1) (Z Ep,., [(a - ws,a<8>>if}> +D 7l
acA acA

1/k*
= sup —|AM¥ (k(k—1)p+1)"" (Z Ep,, [<ﬁa—ws,a<5>>’f}) + D7

NERIAI acA

C Proofs of Properties of the Empirical Bellman Operator: KL Case

Our techniques in this section refine that in Wang et al. [25]]. To follow the constructions in Wang
et al. [23]], we introduce some notations. Consider 15, € A(S) and its empirical version s 4
constructed from n i.i.d samples from i, ,. Define the collection of these measures under state s as

Wy = {fts,a : @ € A}. For a function v : S — R and for each s € S, we define:

U = max ||u|| L
lulloo, e, = max[full Loe ),

H dm.,
dpn(t)

For the supremum over all states, we define

dmg p

dﬂa,n(t)

= max
acA

’OO,[LS LOQ(HS,@)

l[ulloc = sup [[ullocp, -
seS

We define a "good event" under which the empirical measure 5 , , uniformly approximates the
population measure /i, , With relative error bounded by d across all actions a € A. Formally, this
event is given by

fs,an (W) (8") = prs,a(8) ‘ < 50} .

Q, = :
160 (Ks) {w sup sup ()

acAs'€S
Further, the good event over all states is defined as

frs,an(W)(s") = prs,a(s’)
Ns,a(sl)

Q’nﬁo = m Qn,éo (,U,g) = yw:sup Sup
€S s€ES a€A,s’€S

S%}-

For notation simplicity, we suppress the dependence on the state variable s. Consider a function
u : § — R. The dual function under KL-divergence is given by:

Pl 2) = =AlAlp = >~ Nog iy [~/ (eh)
acA
where \ > 0 is the dual regularization parameter, and we denote d, := 7(a|s) for simplicity.
We define the deviation between empirical and true measures as
Magn = Ha,n — Ha,

and their convex interpolation by

ta,n(t) = tha + (1 — )t
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C.1 Proof of Proposition 2]

Proof. By definition and |supy f — supy g| < supy |f — g, we have
P ("i‘*(v)(s) - T*(v)(s)( > t)
>Q

—z)(supim@ow>—sup7wuow>
M)

well mell
sp(prwm@—Tﬂw@
S sup f(RS,na R(Sa %y ) + Y, A) — sup f(PS7 R(Sa %y ) + v, )\)

mell

Using (C.I) to express Bellman operator, we obtain

[T (0)(s) = T (w)(s)

A>0 A>0 (C.2)
< sup |f(PS7R(S7 ) ) + 7”7)‘) - f(PS?R(S7 ) ) + Uv>‘)| .
A>0

We analyze the sensitivity of the mapping p — f(, u, \). For any fixed u, g and p,,, define
(B, N) = f (b (1), 0, ).

According to mean value theorem, there exists 7 € (0, 1) satisfies:

|f(’“”n’u’/\) - f(/,L,U,A)l = |gn(0a)‘) - gn(la)‘)|

= ‘8:‘,971(757 /\) ’t—
[0y el
- —dqu/A
et fan(T)le ]
To bound the difference above, we invoke the following lemma.
Lemma 6. For any fixed uw and w, |1, < p, we have that
u/)\] d
m(l n mn
sup | Y- A O < ol | 2|
A>0 aEZ.A Ha, n _d u/)\] > dﬂn(t) oo
The proof is deferred to Appendix [C.2} According to lemmalf] we have
dm
Sup 4t ) = a0, V)] < 2l | 27
A>0 oo, [

We decomposed the probability using the event €2,, 5, (1) where the empirical estimates are close to
the population measures:

P ( sup ‘f(un’u’ A)if(lu‘vuv)‘” >t>

A>0,dEA(A)

SP(Qn,go(H)C)+P<2HUHOOH o H

dpin (T)

To control the denominator (i, ,(7)(s’) appearing in the bound, we use the following lemma, which
asserts that under the good event, the empirical and population measures remain close for all ¢ € [0, 1]:

> t7 Qn#so (M))

00,1t

Lemma 7. Forany s' with j1(s") > 0, the measure 1, (t)(s') satisfies
(1= do)u(s) < pn(t)(s") < (L+bo)u(s’), vt €[0,1].
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s21 The proof is deferred to Appendix [C.3] By using lemmal(7} we have fiq,n(7)(s") > (1 — 6o)pa(s’),
522 therefore,
"N ’
Han (") Na(/s) > t) )
(1 - 60),“(1(8 )

:ua,n(s/) — Ha (5/)

< (sup| o0

a,s’

> 50) +P <2||u||oo sup

5!

n

3 By using the multiplicative Chernoff bound and Bernstein inequality, we have

s P (iuf n Z; 1(S; = s) — pa(s')| > 5o#a(5l)>
P Jul I o TR )|
gl 2y [ 2 5= )~

N——

S2npta(s') 20l ulloct \7
<2 >, (exp (—03) +oxp (‘2 ((1 G0 Pnpa(s) | 31— 5o)nua(5’)> )

acAs'€S

524 Since 11,(y) > pa, and both exponential term above is monotonically decreasing over p,(s"), we

525 have
52np £ 4l ot ™
< - —_—— .
< 2|A|[S] (eXP ( 3 ) TP T2 L= s0)2npn + 3(1 — do)npa

526 Recall from (C.2) that

A>0,d, €A(A)

P(|T*@)s) = T (@)(s)| > t) < P ( sup [ F(PoyR(s,-,) + 70, A) = f(Py, R(s, ) + o, A>|>
527 Replacing p with P, and p,, with P ,, and choose dg = %, by union bound, we have
P (HT*(U) - T*(v)H > t)

S P (Sup sup |f(PS,naR(37'7')+7U’)‘)_f(PSaR(Sv'v')_F/U)A” >t>
s A>0,deA(A)

2 /1 . 2y . -1
< 9ISl exp (_W)+2|SQ|A|QXP< f ( 61R(s. ) +yull% , 4IR(s. >+w||oct> )

12 T2 npa 3ynpa

528 Set each term to be less than 7/2, we need

12
n=> ~log (41SI*[Al/n) (C.3)
8| R +yvlleo 2 4R + yvl| oo
> il Sk |15} 2 . _
P2 o o (USPIAl) + == 2o (AISPIAL). (€4

s29  Under (C.3), we have
log(4|S[*|Al/n) _ [log(4S[*|Al/n)
npa B npA
530 By substituting this bound into (C:4), we have

8||R+’YUHO<>
3npa

4||R+7'U||oo

AL
8 R+ 70]lo 2
< (5 +ave) s o isPLAT )

< 9||R + 70|00
B VIPA

log (4|S|*[.Al/n) + V21og (4]S[2[Al/n)

log (4/S?|Al/n)
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sst  Therefore, for when n specifies (C.3) and ¢ satisfies

9||R + ]| 0o
t> ——————1/log (4|S|2|A|/n),

532 we have
P (HT*(U) - T*(U)HOO > t) <.

533 This implies Proposition [2] O

53¢  C.2 Proof of Lemmal6

535 Proof. Observe that multiplying the numerator and denominator by e ll“llz>wa)/A preserves the
s36  value of the fraction. This is equivalent to rewriting the exponential terms as:

e—dau/)\]

Ma,n|
Z )\,Uza,n(t) [e_dau/)\]

acA

My, n[eda(”“HLw(M)—u)/)\]
Z fhan () [ealllLoe ua) =)/ A)

acA

537 Since Mgy 5, = fa,n — Ma. fOr any constant ¢, we have m, ,[c] = 0, which lead to

mayn[eda(HuHwaa)—U)/A _ 1]
Z (t)[eda(Hu”Loc(pa)_u)/)‘]

CLEA /J/a,n

sss8  For any measure m, p and random variable wy, wo, the following equation holds:

2 m(s)wi(s)
s H(s)wa(s)

e

S| (me)| i)
T s u(s)wa(s)| s [ uls) | s [wa(s)
_ ||gm wy

it (| poo uy 1102 [l oo )

530 Applying this result and |>~ | < > | - |, we obtain

§  Muale P | g erd“('ulwm‘“)” A s
—dqu/AN | — do(||u]|poo (. y—u) /X !
acA Han(t)le /] acA ealleleo o =)/ Lo (pa) dhtan(t) L (pa)
s40 Notice that when = > 0, we have e* — 1 > ze”, then we obtain
§ z )\da(l\ullL;owru)eda(uunm(m_u)/x H dmg
= do([lullLoe (ug)—u)/A
a€A ¢ e Lo (p1a) dhta,n(t) L (pa)
dm
=5 I AP P P
acA (1) dua’”(t) L (pa)
dm
<3 2alulle |
by dttan(t) |l o)
dm
< 2l | 1|
541 as claimed. O
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C.3 Proof of Lemma(7|

Proof. On the event (2, ,,, the empirical measure satisfies sup,/cg

% ‘ < . Hence, for

any s" with p(s") > 0, we have:
(1= d0)u(s") < pn(s') < (1+ do)p(s’).
Substituting in the above bound on p,, (s") into the definition of p,, (¢)(s") gives
(1= (1 =1)do)u(s") < tu(s) + (1 = )pn(s") < (1 + (1 = 1)do)pu(s").
Forall ¢ € [0,1], (1 — t) < 1, therefore, we have

(1= d0)u(s") < pn(t)(s") < (1 + do)p(s").-

C.4 Proof of Theorem[Il

Proof. Substituting |R + v||ec < 1/(1 — ) into the bound from Proposition [2| and applying
Proposition [T} we obtain the stated result.

1

— [Ten -7

< 9HR+'YU||OO
T (1 =7)ynpa

IN

[ = "l

’ oo

log (4|5[2|.A/n)

9 2
< W log (4|S[2|Al/n)

with probability 1 — 7. O

D Proofs of Properties of the Empirical Bellman Operator: f-Divergence
Case

D.1 Proof of Proposition 3]

Proof. Let

1k
Flp,u,m) = —c(k, p, | A|) (Z a [wi*D + Y s

acA acA
where w, = (1, — dqu)+. By definition, we have

P ("i‘*(v)(s) - T*(U)(s)] > t)

<P <sup T (0)(s) — T“(u)(s)] > t>
SP < sup 7y | sup f(ll’nv R(S, ) ) + v, 77) — Sup f(/'l’v R(Sv Yy ) + ’Yvﬂ’l) > t) .
deA(AD  [nerla neRIA

We analyze the sensitivity of the mapping i — f(p, u, \). To control the difference between the
empirical and the population objective, we establish the following lemma. The proof is deferred to

Appendix [D.2]
Lemma 8. For any fixed u and T,

dm,
dpn(t)

sup f(limu’ﬂ) — sup f([,L,’U,,’f]) < CHUHOO#L

neRIAl neRlAl

’oo,u

where ¢ = 21/ (F=1) o,
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563

564

565

566
567

568

569

570

571

We decomposed the probability using the event €,, 5, (1¢) where the empirical estimates are close to
the population measures. Let ¢ = 21/(*~D* "and by using lemma we obtain

P sup v
deA(]Al)

< P(Q5,()°) + P (C [

neR|Al

Again using Lemma[7] we have

<P( sup

acA,s’eS

Ma,n(s/) - Ma(s/)
Ha(s')

> 40)

sup f(lim%n) — Sup f(u’auan)

neRIAl

dm,,

dﬂn(7—>

|

PP (c||u|oo,u

By Chernoff Bound and Bernstein Inequality, we obtain

<P sup
a€S,s’eS

C
(i,

<y y o

acAs’'eS

have

i £l et
< B _
< 2[A||S] (eXp ( 3 +exp 2 \ (1= 60)%npn + 3(1 = do)npa

[ufloo sup
0

n

LS =) — pals)

i=1
1 n
Gl

a€S,s ES ,U/a

Choose g = %, by union bound, we obtain

P(HT*(U) —T*(v)

< P |sup~y sup
s€S  deA(A)

< 2|S[*| Al exp

> 1)
oo

sup f(PS,an(Sv Tyt
ne]R‘-A‘

12

2 [(4c%||R
( p/\>+2|8\ |A|exp< ( I B(s,

> 50Ma (S/)>

als'

‘oo,u

acA,s’'eS

)

>t 971750 (N))

sup

)

)

:ua,n(sl) — Ma(s
(1= d0)pra(s’

)

>t).

)

Sonpta(s’) t2 Alull3, cllulls
*P (_ 3 ) TP\ T U= 00)npua(s) 3

" —1
a —5o)nl~ta(s/)> )) |

Since p4(s’) > pa, and both exponential term above is monotonically decreasing over pi,(s’), we

) +7v,m) — sup
neRIAl

f(PsaR(87 E ) + 7”7/1’)

)

)

) ) + 70|00

242 n

Set each term to be less than 77/2, by union bound, we need

> de|| R + v oo

Under (D)), we

12
n> —
PA

377,13/\

have

log(4IS[*Al/m) _

log (4]S[?|A[ /n) +

log (4|S[*|.Al/n)

VAL N

2¢||R 4+ Y] 0o

S +lA  2¢||R(s
)+l 2l

PA

log(4IS 2| Al/n)

npa

npa

By substituting this bound into (D.2)), we obtain

Ac|| R+ yvlloo

IN

3npa

4
(36—1—2\/56) ||R+7U||oo

VIPA

3. Qk*k*HR + ] 0

VAL N

log (4]S|*|Al/n) +

) 2¢||R + yvl| oo
VIPA

log (4/S[*|Al/n)

log (4|S[*|Al/n)-

21

V2log (41S2| Al /n)

V/21og (4]S[2|Al /).

3ynpa

(D.1)

D.2)

y)
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577
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579

580

581

582

583

584
585

586

587

588
589
590

591

593
594

Therefore, when n satisfies (D.I)) and ¢ satisfies

3-2"'*l</‘*||R—|—’yv||C>o
t> v/log (4]|S|?| A ,
P g (4|S2[Al/n)

P (HT*(U) - T*(U)HOO > t) <,

which implies the statement of the proposition. O

we have

D.2 Proof of Lemmal§|

Proof. We partition R into three subsets, denote as

Xlz{’l']
Xzz{"?

X3 = RMN\{X; U X5},

Next we prove that X5 = &. If n is an optimal solution, then it satisfies the conditions described in
the following lemma.

Mo < dg essinf u forall a € A} ,
La

1q > dg essinf u for all a € .A} ,
Ha

Lemma 9. Ler n*(u) denote the optimal 1 under measure p, then we have

1/k
(Z Ha {w’f}) = c(k, p, | A|) 1 [wil/(kfl)} forallie A (D.3)
acA

and when 1) € X5, we have

K
o W . .
W + E n. foranyie€ A.

flp,u,m®) = -
Hi |:wz :| acA

The proof is deferred to Appendix Suppose 7 € X3. Then, there exists some a’ € A such
that 7y, < dg essinf;, , u, implying that p, [wi,/ (’“_1)} = 0. According to 1; this leads to
La [w’;*] = 0 for all @ € A, which means 17 € X, contradicting the initial assumption. Hence,
X3 =0.

When 1 € X, we have

sup f(py,,u,m) — sup f(u,u,n)‘ < sup |f(tp,u,n) — f(p,u,n)|
neXi neXi neXi

(—O—l—Zna) - (—04—2%)‘ =0
acA acA
Otherwise, 1 € Xo, for any fixed u, p,, and u, let

9(”7775) = f(“n(ﬂ?uvn(y‘n(t)))v

V(t) = sup g(n,t).
neXs

Before proceeding, we introduce the following version of the envelope theorem, which ensures the
differentiability of V (¢) and provides an explicit formula for its derivative. This result allows us to
apply the mean value theorem in the subsequent analysis.

Lemma 10 (Envelope theorem, [L1]], Corollary 3). Denote V as
V(t) = sup f(x,1).
xeX

Suppose that X is a convex set in a linear space and f : X x [0,1] — R is a concave function. Also
suppose that ty € (0, 1), and that there is some x* € X*(to) such that d, f (x*,ty) exists. Then V is
differentiable at to and d,;V (to) = 0y f(x*, to)
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601

602

603

604
605
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608

We examine the convexity of X and the concavity of g. X is a convex set since it is defined by linear
inequalities for each coordinate. For g, since f serves as the dual objective function and is therefore
concave, and concavity is preserved under affine mappings. So given that p,, (t) is a linear function
of ¢, g inherits the concavity. Therefore according to Lemma V (t) is differentiable. By mean
value theorem, there exists 7 € (0, 1), for which the following equation holds:

sup g(n,0) — sup g(n, 1)

sup f(t,,u,n) — sup f(p,u,n) ’
neXz neXsz

neXs neXs ‘

d
= |-Vt
dt ( ) t=T1 ’
and by envelope theorem, we have
d 0
Ly , ‘
dt ( ) t=r1 at (77 ) =T

Recall that

1/k*
g(n.t) = —c(k, p, | A) (Zuan [ H) + > N

acA acA
by using (D.3), we obtain
9 c(k, p, |A)
at? g™ t) = - k] 1/’€Z [ }
(ZaeA “a7vb(t) [’LU acA

SacaMan [wE ]
pin(0) [}/ D]
1,1 i

Therefore,

= | gm0

t=1

P aca Man [wh ]
fin (T) {w}/(kfl)}

Since the equation above holds for any 7 € A, chose i = a for each a € A, so we can rewrite the
equation above as

sup f(p,,uw,n) — sup f(p,u,n)| =
neRIAl nERIA|

Man [WE]
Z (1) [w;/(k_l)}

a€A Ha,n\T

< Z Man [0} ]

=2 () {w;/(k—l)}

For each term in the summation, we analyze 1, > 2d,|u| () and dgessinf,, u < 1, <
2dg||ul oo (. separately. For 1, > 2dg|ul e (,,). by mean value theorem, there exists £ &
Na — dalt, 7)) satisfies

Ma,n [w§*] Ma,n [( —d U) (na)k }

3

tan(™) [we/ SN ] () [0 daw) Y 4]

m dyuk* (€)Y =D
o [dauk (€)1

traon () [ (0 = dg) /4]
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609 Since 1 > 2dq|ull Lo (p,). § <

Na < 2(ng — dqu), then we have

[k (]

fan(T) [(na - dw)i/(k*l)}

w1/ (k=1
_ || daut (&) *=V H dmy,
— 1/(k—1)
(na_dau)+ LOO(UQ) dlun(T) Loo(#a)
_ dauk*2l/(k71)(,’7a_dau)i/(k—l) H dm,
> —
(10 — daw)y 7 £y 1 O )
dm
_ 21/(k71)k*da”u”Lm H n )
(#a) dﬂn(T) L (1a)

610 For dg essinf,, u < 1y < 2dallul| 1o (u,)s (Ma

Man [WE]

— dgu)4 is bounded, then we have

Man [(1a = dat)’ |

lian (1) [w;/(k—l)}

() [0 — de)/ ]

e = dau)y (M2 — dau)}*‘/(k_l) H e
= 1/(k—1
(na - dau)+/( : L>°(pq) dMn(T) L= (pa)
dm
< 2dg||ull poe (u, - )
W) || dpan (1) L% (1)
611 To sum up, we have
Z ma,n [wg*]
acA Na,n(T) {w;/(kil)}
i [0 M [0
< D max P DT |y cssint s o/ (k=)
acA Na>2da ||ullLoo (1g) ﬂa,n(T) [wa ] tigjissll‘n ﬂm u(,ﬂ')l ,U'a,n(T) [UJa :|
S28a||U[|L® (ug
dm,,
_ Z max{21/(k71)k*a2} dalull oo (ua) ’d -
acA 'un(T) =)
— 21/(k—1)k*”uHoo H dmn
d,un(T)

0o,

s12  Overall, let ¢ = 21/ (F=D* when pu € X7,

neRIAl

613 when pu € Xo,

neRIAl neRIAl

614

sup f(Hy,,u,n) — sup f(p,u,m)

sup f(p,,u,m) — sup f(p,u,n)

dm,,
=0 < cffullo :
neRIA dpiy, (T) ot
man[wk*] dmn
< n |V ScnumH H |
2t [wi/ Y] Apin(7) |,
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619

620

621
622

623

D.3 Proof of Lemmal9]

Since f(p, u, n*) is the objective function of the dual problem and 7 is the dual variable, f is convex
with respect to 7). To optimize f over 7, we set its derivative with respect to 7; to zero, which yields

—1/k
8(:)7*]”(;1,,%77 ) =1—c(k,p, | A (Zﬂa{ k}) m[ 1/ (k- 1)} _o,

¢ acA

which means
1/k
(Z fia [wf:*}) = c(k, p, | A s [ 1/ (k= ”} forall i € A,
acA
which is 1| When 1 € Xo, p; [wl-l/(kfl)] is positive, plug in 7}, we obtain

1k
F(pyum) = =k, p, |A]) <Zua[ ED +> a

acA acA

grcianek

D.4 Proof of Theorem 2]

Proof. Substituting ||R 4+ yv||ss < 1/(1 — «) into the bound from Proposition [2| and applying
Proposition [T} we obtain the stated result.

A

o= v*lloc |
(o)

1 Tk [k * [ %
_f’yHT (v*) = T"(v")
_ 32V R+ o)l
B (1 —7)y/nba

32K *
< 2
(1 —7)%/npa

with probability 1 — 7. O

log (4/S?Al/n)

log (4|5[2|.A/n)
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims regarding sample complexity and empirical validation in the
abstract and introduction are fully supported by the theoretical analyses and experiments
presented in the main text.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations in the Conclusion and Future Work section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

26



676

677
678
679

680

681

682
683

684

685
686
687
688
689

690

691

692
693
694

695

696
697

698

699
700
701
702
703
704

705

707
708
709
710
71
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729

Answer: [Yes]

Justification: We provided the full set of assumptions in Section [3] and Section d] The
complete proofs are provided in the Appendix. All theorems, lemmas, and their assumptions
are clearly stated and properly referenced.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We introduced the problem settings (inventory and MDP instances we used)
and provided all the hyperparameters in the Numerical Experiment section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

27



730

731
732
733

734

735
736

737

738

739
740

741
742
743
744

745
746
747

748
749

751
752

753
754

755
756

757

758
759

761

762
763

764

765

766
767

768
769

770

771
772

773

774
775

776

777

778
779
780

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code required to reproduce our main results are provided in the supple-
mentary material. Detailed instructions for running the code are included as well.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the hyperparameters in detail. Our experiments do not involve
data splitting, optimizer selection, or related settings, as they are not applicable in our setup.

Guidelines:

» The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: All experiments were conducted only once under a single set of hyperparame-
ters. Therefore, we do not report error bars or measures of statistical significance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: All experiments in this paper were run on standard CPU environments, so we
did not provide detailed computing resource specifications in the paper. We believe that this
information is of limited impact on the reproducibility of our experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper does not involve human subjects or use any datasets. There are no
ethical, societal, or environmental concerns. Therefore, the research fully complies with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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11.

12.

Justification: Our work concerns the theoretical analysis of sample complexity and does not
involve any particular application, data, or deployment. Therefore, it has no direct societal
impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not use any real-world datasets or pretrained models, and
therefore does not pose such risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Our paper only uses standard, widely adopted open-source libraries (e.g.,
Numpy, Pyomo, Ipopt) for implementation and experimentation. No external datasets,
pre-trained models, or code assets requiring explicit license attribution are used.

Guidelines:
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13.

14.

15.

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new datasets, code assets, or models are introduced or released in our
paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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936 Justification: Our paper does not involve crowdsourcing nor research with human subjects.

937 Guidelines:

938 * The answer NA means that the paper does not involve crowdsourcing nor research with
939 human subjects.

940 * Depending on the country in which research is conducted, IRB approval (or equivalent)
941 may be required for any human subjects research. If you obtained IRB approval, you
942 should clearly state this in the paper.

943 * We recognize that the procedures for this may vary significantly between institutions
944 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
945 guidelines for their institution.

946 * For initial submissions, do not include any information that would break anonymity (if
947 applicable), such as the institution conducting the review.

948 16. Declaration of LLM usage

949 Question: Does the paper describe the usage of LLMs if it is an important, original, or
950 non-standard component of the core methods in this research? Note that if the LLM is used
951 only for writing, editing, or formatting purposes and does not impact the core methodology,
952 scientific rigorousness, or originality of the research, declaration is not required.

953 Answer: [NA]

954 Justification: The core method development in our research does not involve LLMs as any
955 important, original, or non-standard components.

956 Guidelines:

957 * The answer NA means that the core method development in this research does not
958 involve LLMs as any important, original, or non-standard components.

959 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
960 for what should or should not be described.
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