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Abstract

Recent research on time series foundation models has primarily focused on fore-
casting, leaving it unclear how generalizable their learned representations are. In
this study, we examine whether frozen pre-trained forecasting models can pro-
vide effective representations for classification. To this end, we compare different
representation extraction strategies and introduce two model-agnostic embedding
augmentations. Our experiments show that the best forecasting models achieve
classification accuracy that matches or even surpasses that of state-of-the-art models
pre-trained specifically for classification. Moreover, we observe a positive correla-
tion between forecasting and classification performance. These findings challenge
the assumption that task-specific pre-training is necessary, and suggest that learning
to forecast may provide a powerful route toward constructing general-purpose time
series foundation models.

1 Introduction

In time series forecasting, foundation models are becoming increasingly prominent. They are large
models that are pre-trained on broad data, and therefore have the ability to generalize across unseen
datasets [3, 33, 14, 13, 6]. New benchmarks with public leaderboards such as GiftEval [1] and
BOOM [13] have accelerated advances in state-of-the-art methods. Apart from forecasting, Time
Series Classification (TSC) is another key application in time series analysis.

Earlier general-purpose time series models [20, 19] evaluated multiple downstream tasks, but recent
work shows that they have failed to reach state-of-the-art performance in either forecasting or
classification [17, 16]. More recently, the majority of newly introduced foundation models [6, 13, 25,
32, 22] have been optimized specifically for forecasting, and only few have focused on classification
[17, 24]. Some argue that pre-training objectives should be aligned with downstream applications, for
example, contrastive objectives for classification or masked reconstruction for imputation [17]. This
perspective suggests that task-specialized pre-training may be necessary for optimal performance,
which is in contrast to language and vision foundation models, where a single pre-trained model often
transfers effectively across many diverse tasks [11, 12].

This contrast motivates our central research question: How well do representations from pre-
trained forecasting models transfer to classification tasks? To answer this question, we evaluate a
diverse set of forecasting models as frozen feature extractors on TSC benchmarks, analyze key design
choices for representation extraction, and investigate the role of model architectures. Beyond the
direct application to classification, our study aims to provide broader insights into the generalizability
of learned representations, which is a step toward developing true time series foundation models.

Our contributions are as follows: (1) We show that representations from pre-trained forecasting
models yield classification accuracy on par with, and in some cases surpassing state-of-the-art
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models pre-trained explicitly for classification. (2) We analyze design decisions for leveraging
forecasting models in classification, providing practical guidance for future applications. (3) We
propose two model-agnostic representation augmentations that incorporate absolute statistical features
and differentiated series to further improve classification performance.

The remainder of the paper introduces the problem setup, details our methodology for using forecast-
ing models as feature extractors (Section 2), presents the experimental setup (Section 3) and results
(Section 4), and concludes with key findings (Section 5).

Problem Setup: Time Series Classification The TSC task is defined over a dataset D =
{(xi, yi)}Ni=1, where each sample consists of a time series xi and its corresponding class label
yi. A time series xi ∈ RT×V is a sequence of T observations over V variates, and the label yi
belongs to one of K discrete classes. The objective is to learn a model that can accurately predict the
label for a new, unseen time series.

2 Zero-Shot Forecasting Models as Classification Models

We leverage pre-trained time series forecasting models as feature extractors. Instead of training a
classifier on the raw time series xi, we use a pre-trained model E to map xi to a latent representation
zi = E(xi), which is then fed into a simple classifier CL to output the final prediction ŷi = CL(zi).
We refer to zi also as embedding of xi.

We exclusively use a zero-shot protocol for these models, meaning the parameters of the pre-trained
model E are frozen and never fine-tuned. For each TSC dataset, we only train a standard out-of-the-
box classifier CL on top of the embeddings produced by E. This approach allows us to isolate and
evaluate the quality and generalizability of the representations learned by the forecasting models.

Embedding Extraction & Aggregation. Most state-of-the-art forecasting models do not specify a
canonical method for extracting a single, fixed-size embedding for an entire time series. However, as
the majority utilize a transformer(-like)1, block-based architecture, we can extract hidden states at
various points in the network. This presents two key design choices: how to aggregate information
along (1) layer and (2) sequence dimensions. We hypothesize that simply using the output from the
final token of the final layer is suboptimal. First, it is unclear which layer contains the best abstraction
and transferable representation, as deeper layers often specialize to the original pre-training task,
losing generalizability [34, 2]. Second, relying on the last sequence position may neglect important
information contained earlier in the series.

We investigate different aggregation strategies in our ablations. For our main experiments, we apply
mean pooling across the sequence dimension and concatenate these layer-wise representations. This
sequence-pooling strategy also inherently handles datasets with variable-length time series, ensuring
a fixed-size embedding dimension. The ablation study in Appendix C.2 confirms that aggregating
across both dimensions is crucial.

Multivariate Data & Univariate Models. Most top-performing pre-trained forecasting models
are univariate. For multivariate time-series classification, we adopt a proven forecasting technique:
treating each variate independently [28, 6]. We therefore process each of the V variates independently
through the frozen model E to yield V separate embeddings.

The subsequent design choice is how to aggregate these per-variate embeddings into a single repre-
sentation. We hypothesize that pooling discards variate-specific information, while concatenation
preserves it. Accordingly, we concatenate the per-variate embeddings in our main experiments, a
choice empirically confirmed by our ablation studies (Appendix C.2), which show concatenation
consistently outperforms pooling. We apply the same strategy to multivariate models that output
per-variate embeddings.

2.1 Embeddings Augmentations

Absolute Sample Statistics. A common characteristic of pre-trained forecasting models is the use
of instance normalization. While effective for forecasting, this removes all information regarding

1TiRex [6] uses xLSTM [9] instead of a Transformer but still employs a block-based architecture [8]
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Type ZS Univariate Multivariate Overall
No Aug Stat+Diff No Aug Stat+Diff No Aug Stat+Diff

TiRex Dec yes 0.80 0.81 0.74 0.74 0.79 0.80
Chr. Bolt (Base) EncDec yes 0.77 0.79 0.72 0.74 0.76 0.78
Moirai (Large) Enc yes 0.79 0.80 0.70 0.70 0.78 0.78
TimesFM 2.0 Dec yes 0.79 0.79 0.70 0.70 0.77 0.78
TimesFM 1.0 Dec yes 0.74 0.75 0.71 0.72 0.73 0.74
Chronos (Base) EncDec yes 0.71 0.76 0.71 0.72 0.71 0.75
Toto Dec yes 0.71 0.74 0.71 0.70 0.71 0.73

Mantis Enc no 0.79 0.74 0.78
NuTime Enc no 0.67 0.68 0.67
Moment (Large) Enc no 0.63 0.57 0.62
DTW - - 0.73 0.72 0.73

Table 1: Classification accuracy of different models for the univariate, multivariate, and combined
benchmark (Random Forest). “Stat+Diff” shows results with both proposed augmentations applied;
“no Aug” utilizes the pure forecasting model representations. “ZS” indicates models that did not have
access to the benchmarks training data during pre-training.

1234567891011

TiRex3.7752

Moirai (Large)4.4161

Mantis4.4765

TimesFM 2.04.5369

Chr. Bolt (Base)5.1040

TimesFM 1.05.9799
DTW 6.1107
ToTo 7.1376

Chronos (Base) 7.1644
NuTime 7.6745

Moment (Large) 9.6242

Overall (No Aug)
1234567891011

TiRex3.8322

Chr. Bolt (Base)4.2584

Moirai (Large)4.7114

TimesFM 2.04.8322

Mantis4.8523

Chronos (Base)5.8658
TimesFM 1.0 6.3154

DTW 6.7819
ToTo 6.9228

NuTime 7.8523
Moment (Large) 9.7752

Overall (Stat + Diff)

Figure 1: Critical difference plot of the average accuracy ranks for the evaluated models across the
combined benchmark datasets (Random Forest). Left without augmentation; right with augmentations.
Models connected by a bar are not significantly different (Wilcoxon signed-rank test).

the absolute values and scale of the time series. We hypothesize that for many classification tasks,
this information might be an important discriminative signal. To recover it, we propose to augment
the model’s embedding with basic sample statistics. We divide the input time series xi into k
non-overlapping patches (k = 8 in our main experiments). For each patch, we calculate its mean,
standard deviation, minimum, and maximum values. These statistics are then concatenated with
the embedding zi from the model to form the final representation. Using a fixed number of patches
ensures the resulting feature vector has a consistent size.

Time Series Differencing. Time series may contain strong trends that can dominate the signal and
mask more subtle patterns. To isolate these patterns, we propose to employ first-order differencing.
We generate a new, differenced time series by taking the difference between consecutive time steps
(x′

t = xt − xt−1). This transformation, inspired by classical time series analysis, removes the
local trend, making the resulting series more stationary and emphasizing step-to-step changes. The
differenced series is then processed by the same pre-trained model to produce a second embedding,
which is concatenated to the original embedding.

3 Experiments

Our evaluation uses the UCR [15] and UEA [7] archives, comprising 127 univariate and 30 multivari-
ate classification datasets with predefined train/test splits. We excluded 5 datasets with sample lengths
exceeding 2048 and 2 others due to processing problems. We evaluate a set of leading pre-trained
forecasting models, including TiRex [6], Chronos (Bolt) [3], TimesFM [14], and Moirai [33] —
including the newest and previous model generations and different sizes. These are compared against
Moment [20], a “general” pre-trained model, the classification-specific pre-trained models NuTime
[24] and Mantis [17], and Dynamic Time Warping (DTW) [10] as a baseline. For each pre-trained
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model, we extract embeddings and train a Random Forest, a linear layer, and a kNN classifier on top
— and evaluate accuracy. Details on the experiment setup are presented in Appendix B.

4 Results

This section reports results using the best-performing classifier (Random Forest) and the largest
model size for each model. The main results are summarized in Table 1 and Figure 1. Full results for
all classifiers, model sizes, and ablations are available in Appendix C. In the following, we discuss
the individual aspects of our main findings.

Forecasting Models are Effective Zero-Shot Feature Extractors. The best forecasting models
achieve accuracies competitive with or exceeding Mantis, a state-of-the-art model designed for this
classification task. This result is particularly interesting because the forecasting models had no
exposure to the classification benchmarks during their pre-training, unlike Mantis and NuTime, which
were also pre-trained on the training split of the benchmarks. The results are robust across other
classifier (Appendix C.1), metrics (Appendix C.4), and benchmark configuration (Appendix C.5).
This suggests that pre-training towards forecasting tasks might be a viable path for generating
general-purpose time series representations.
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Figure 2: Classification accuracy versus
forecasting performance (CRPS on GiftE-
val) of the evaluated models. The trend (red
line) shows that better forecasting ability
(lower CRPS) relates to higher classifica-
tion accuracy.

Forecasting and Classification Performance Cor-
relate. We observe a positive correlation between
a model’s performance on the GiftEval forecasting
benchmark [1] and its classification accuracy (Figure 2).
The trend has considerable noise, with notable under-
performance from Chronos (potentially due to missing
patch processing) and Toto. However, overall this trend
suggests that the features learned for accurate forecast-
ing are transferable to classification tasks.

Impact of Model Architecture. Results do not point
to a superior architectural paradigm (Encoder, Decoder,
Encoder-Decoder). Both, the top- and low-performing
models, are diverse in that regard. Regarding base ar-
chitecture, TiRex, as the only non-Transformer model,
performs best. If the forecast advantage stems from
its state-tracking capability, as prior work suggests [6],
then this benefit seems to transfer to classification, im-
plying a better general representation.

Efficacy of Augmentations. The proposed augmentations improve the results across most models
— the significance regarding the signed rank test varies between the results. Detailed results including
ablation of the individual augmentations and a qualitative analysis are presented in Appendix C.3.

5 Conclusion

This work demonstrates that pre-trained forecasting models are effective zero-shot feature extractors
for time series classification. We found that representations from strong forecasting models match or
even exceed the performance of specialized classification models — particularly noteworthy as the
forecasting models did not pre-train with benchmark training data, while the classification-specific
models did. This finding, combined with a positive correlation between forecasting and classification
performance, questions the need for task-specific pre-training.

Limitations & Future Work The work focuses on a zero-shot evaluation protocol and does not
include fine-tuning. This choice ensures a fair comparison of the base representations, as optimal
fine-tuning strategies might be highly model-specific. The work also omits a direct comparison to
task-specific and supervised classifiers; however, prior work [17, 24, 20] has already shown that the
pre-trained classification models we evaluate are competitive with these. Future work could probe the
generalizability of these representations on other tasks, such as anomaly detection.
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A Related Work

Pre-trained foundation models have become popular in time series analysis. Early explorations
adapted Large Language Model (LLM) for time series tasks [21], while more recent models typically
only borrow the architecture from LLM’s but pre-train with time series tasks and data. While there is
a recent focus on forecasting [30, 33, 14, 3, 16, 6, 13, 25, 22, 5], other literature has explored models
for a wider range of downstream tasks, including classification: General-purpose models like Moment
[20], GPT4TS, [37], and UniTS [19] address classification alongside other tasks. More specialized
models, like Mantis [17] and NuTime [24] focus specifically on pre-training for classification tasks.
For our analysis, Moment, Mantis, and NuTime are particularly suitable as they allow feature
extraction without task-specific fine-tuning. We note, however, that they are not “zero-shot” on our
evaluated benchmark, as their pre-training corpora include the training split of the benchmark.

Distinct from the generalizable pre-training paradigm, another line of research involves task-specific
unsupervised classification models. These methods are typically trained per-dataset. While some
support limited transfer learning, they do not allow for zero-shot feature extraction with a single,
fixed model. Notable examples include TLoss [18], TS2Vec[35], TF-C [36] and Ti-MAE [23].

Additionally, there is extensive literature on supervised classification models that are mostly not
based on deep learning. These classical methods often rely on ensembles and heuristically engineered
features. [27] and [31] provide a good overview of these methods.
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B Experiment Details

B.1 Benchmark Data

For our evaluation we utilize the UCR [15] (127 univariate datasets) and the UEA [7] (30 multivariate
datasets) classification benchmark datasets. The benchmark covers various types and domains of time
series including for example sensor, audio, motion or health data. The train and test split is predefined
by the benchmarks. We removed datasets with a sample length over 2048, which is the case for 5
datasets. Specifically, these are: MotorImagery, HandOutlines, StandWalkJump, EigenWorms, and
Rock. Further, we removed InsectWingbeat and PLAID as these lead to processing problems across
the majority of models in the classifier training, likely due to their size.

B.2 Pre-trained Models and Implementation Details

We evaluate a suite of prominent pre-trained forecasting models: TiRex [6], ToTo [13], Chronos [3],
Chronos Bolt [4], TimesFM (1.0 and 2.0) [14], and Moirai[33]. When possible (e.g., for TimesFM
and Chronos), we analyze both the newest and the previous generation of the models. This gives a
better insight into how improvements in forecasting translate to gains in classification, i.e., how they
reflect enhancements in the general, underlying representation. We compare these forecasting models
to Moment [20], NuTime [24], and Mantis [17]. Moment is a "general" pre-trained time series models
– NuTime and Mantis are classification-specific pre-trained models. These models support a feature
extraction approach as introduced in Section 2 without fine-tuning. However, they are not really
“zero-shot” as (parts) of the training data of the classification benchmark are utilized in pre-training.
Additionally, we compare to Dynamic Time Warping (DTW) as a baseline. Implementation details
are provided in the following:

• TiRex [6]: We utilize the official pre-trained weights from Hugginface and adapt the original
source code from GitHub to extract hidden layer representations.

• Chronos / Chronos Bolt [3, 4]: For both Chronos and Chronos Bolt, we evaluate the
small and base model size. This model family is unique in providing a dedicated API for
embedding extraction. We utilize this API, which returns a single-layer representation, and
therefore only perform aggregation along the sequence dimension.

• TimesFM [14]:For both versions 1.0 and 2.0, we use the official PyTorch weights from
Hugging Face and modify the source code from GitHub to access hidden states from all
decoder layers.

• Moirai [33]: We evaluate Moirai 1.1 in all model sizes (small, base, and large). We utilize
the official pre-trained weights from Hugginface and adapt the original source code from
GitHub to extract hidden layer representations. While inherently multivariate, Moirai’s
“variate flattening” fails on datasets with a very high number of variates due to memory
constraints. In these cases, we apply the model in a univariate fashion to each variate and
concatenate the resulting embeddings. This is the case for the following datasets:

– Moirai Small: FaceDetection, Heartbeat, MotorImagery, PEMS-SF, SpokenArabicDig-
its

– Moirai Base: FaceDetection, Heartbeat, MotorImagery, PEMS-SF, PhonemeSpectra,
SpokenArabicDigits

– Moirai Large: FaceDetection, FingerMovements, Heartbeat, LSST, MotorImagery,
NATOPS, PEMS-SF, PhonemeSpectra

• Mantis [17]: We follow the official zero-shot feature extraction procedure from their Github
repository, which includes interpolating all time series to a fixed length of 512 before
embedding.

• NuTime [24]: Following the protocol in [17] we use the pre-trained weights provided in
the respective GitHub repository, while utilizing the hyperparameters according to this
configuration file. We use NuTime in zero-shot feature extraction mode, i.e., variates are
embedded independently.

• Moment [20]: We use the official zero-shot feature extraction method as demonstrated in
their GitHub repository and evaluate all size variants (small, base, and large).

• Dynamic Time Warping (DTW): We use the implementation of the aeon library [26].
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B.3 Failure Fallback: DTW

Certain model and dataset combinations result in computational failures (e.g., out-of-memory errors).
To avoid skewing aggregate metrics by either dropping these results or assigning a score of zero, we
adopt a fallback strategy: For any failed run, we substitute the model’s result with the performance of
our DTW baseline on that specific dataset. This approach ensures a complete comparison, mirroring
a practical scenario. Fallbacks were utilized for the following model-dataset combinations:

• TimesFM 1.0: Crop, FaceDetection

• TimesFM 2.0: FaceDetection, PEMS-SF, SpokenArabicDigits

• Moirai (Large): Crop, ElectricDevices, StarLightCurves, PenDigits, SpokenArabicDigits

• Moment (Base & Large): PEMS-SF

B.4 Classifier Training & Hyperparameter

We evaluate three classifiers on the extracted embeddings: Random Forest (as suggested by [17] for
Mantis), a linear model, and kNN as a baseline. This tests the linear and non-linear separability of
the embeddings. Details are provided in the following:

• Random Forest implemented with scikit-learn [29]. Following the protocol from [17], we
use “n_estimators=300”; keeping all other parameters at their default values.

• Linear Model implemented with PyTorch. It consists of a single linear layer trained with
the AdamW optimizer (learning rate 10−4, weight decay 10−2). We use a 20% validation
split from the training data for early stopping (patience of 100), with a maximum of 10,000
epochs.

• kNN implemented with scikit-learn [29]. We use “n_neighbors=1” (1-NN) with the cosine
similarity as distance metric.

B.5 Critical Difference Plots

All critical difference plots in the paper show the average accuracy rank of each method (lower is
better). A horizontal bar connects models with no statistically significant difference in performance.
This significance is determined by a pairwise Wilcoxon signed-rank test with a Holm correction at a
significance level of α = 0.1.
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Type ZS Univariate Multivariate Overall
No Aug Stat+Diff No Aug Stat+Diff No Aug Stat+Diff

TiRex Dec yes 0.80 0.81 0.74 0.74 0.79 0.80
Chr. Bolt (Base) EncDec yes 0.77 0.79 0.72 0.74 0.76 0.78
Chr. Bolt (Small) EncDec yes 0.77 0.79 0.73 0.74 0.76 0.78
Moirai (Large) Enc yes 0.79 0.80 0.70 0.70 0.78 0.78
Moirai (Base) Enc yes 0.79 0.79 0.69 0.71 0.77 0.78
Moirai (Small) Enc yes 0.75 0.77 0.69 0.73 0.74 0.77
TimesFM 2.0 Dec yes 0.79 0.79 0.70 0.70 0.77 0.78
TimesFM 1.0 Dec yes 0.74 0.75 0.71 0.72 0.73 0.74
Chronos (Base) EncDec yes 0.71 0.76 0.71 0.72 0.71 0.75
Chronos (Small) EncDec yes 0.70 0.75 0.70 0.72 0.70 0.75
ToTo Dec yes 0.71 0.74 0.71 0.70 0.71 0.73

Mantis Enc no 0.79 0.74 0.78
NuTime Enc no 0.67 0.68 0.67
Moment (Large) Enc no 0.63 0.57 0.62
Moment (Base) Enc no 0.65 0.57 0.64
Moment (Small) Enc no 0.63 0.56 0.62
DTW (1-NN) - - 0.73 0.72 0.73
DTW (3-NN) - - 0.71 0.71 0.71

Table 2: Classification Accuracy of different models (and sizes) for the univariate, multivariate, and
combined benchmark (Random Forest). “Stat+Diff” shows results with both proposed augmentations
applied; “no Aug” utilizes the pure forecasting model representations. “ZS” indicates models that did
not have access to the benchmarks training data during pre-training.

C Extended Results

This section provides extended results to Section 3. Extending Table 1, Table 2 shows the results for
all evaluated model sizes. In almost all cases, larger models perform better, which aligns with the
performance trend observed in forecasting. A notable exception is Moment, where the base model
outperforms the large version.

The following subsections provide further analysis, including results for different classifiers (Sec-
tion C.1), ablations of the aggregation methods (Section C.2), ablations and analysis of the embedding
augmentation (Section C.3), and robustness checks using a different metric (Section C.4) and a dataset
subset (Section C.5). The main results for each individual dataset are presented in Table 6 - 11.

C.1 Results for different Classifiers

This section complements the main paper’s evaluation by presenting the results for the other two
classifiers: the gradient-based trained linear model and the 1-NN baseline. The results are shown in
Table 3.

The overall performance ranking of the models is largely consistent with the main evaluation, which
uses a Random Forest. While there are minor shifts in relative performance — for example, with the
linear classifier, the results for TiRex and Chronos-Bolt are not significantly different — key insights
from our paper hold. The best forecasting models perform on par with pre-trained classification
models and forecasting performance is correlated with classification accuracy. However, a difference
is that when using the simplest classifier (1-NN), the forecasting models no longer outperform Mantis,
the best pre-trained classification model.

We hypothesize that this discrepancy arises because less powerful classifiers, such as linear models
or kNN, have a limited ability to transform the feature space. The embedding space of a model
pre-trained on classification, like Mantis, might be already better aligned with the classification task.
In contrast, a non-linear model like a Random Forest can better identify and exploit the relevant
discriminative information, which we assume is present in the embeddings from both forecasting and
classification models.
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Linear 1-NN
Univariate Multivariate Overall Univariate Multivariate Overall

TiRex 0.78 0.72 0.77 0.75 0.67 0.74
Chr. Bolt (Base) 0.76 0.73 0.76 0.75 0.68 0.74
Chr. Bolt (Small) 0.76 0.73 0.75 0.75 0.68 0.74
Moirai (Large) 0.79 0.70 0.77 0.77 0.64 0.75
Moirai (Base) 0.78 0.70 0.76 0.76 0.65 0.74
Moirai (Small) 0.75 0.69 0.74 0.72 0.63 0.71
TimesFM 2.0 0.75 0.70 0.74 0.71 0.56 0.69
TimesFM 1.0 0.73 0.69 0.72 0.70 0.65 0.69
Chronos (Base) 0.71 0.72 0.71 0.67 0.66 0.67
Chronos (Small) 0.69 0.70 0.69 0.66 0.66 0.66
ToTo 0.70 0.71 0.70 0.65 0.63 0.65

Mantis 0.77 0.73 0.76 0.77 0.72 0.76
NuTime 0.59 0.63 0.59 0.60 0.61 0.60
Moment (Large) 0.58 0.44 0.55 0.61 0.55 0.60
Moment (Base) 0.58 0.48 0.56 0.56 0.50 0.55
Moment (Small) 0.54 0.47 0.53 0.53 0.48 0.52
DTW (1-NN) 0.73 0.72 0.73 0.73 0.72 0.73
DTW (3-NN) 0.71 0.71 0.71 0.71 0.71 0.71

Table 3: Classification accuracy of different models and classifiers (linear model and 1-NN) for the
univariate, multivariate, and combined benchmark.
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C.2 Ablation Analysis: Aggregation Methods

Sequence & Layer Aggregation We conduct an ablation study of the method to aggregate the
hidden states across both the layer and sequence dimensions. For layer aggregation, we evaluated
four strategies: concatenation of all layer representations, mean pooling, max pooling, and using only
the representation from the last layer. For sequence aggregation, we considered mean pooling, max
pooling, and using the last output. Concatenation is not a viable option for the sequence dimension,
as it would result in variable-length embeddings dependent on the sample length. After the sequence
aggregation and before the layer aggregation we normalize the embeddings as different layers might
operate in different feature spaces. For the Chronos models, which have a predefined method for
embedding extraction, we only ablated the sequence aggregation strategy.

Figures 3-11 present the results. Each figure presents a table with the mean accuracy over univariate,
multivariate, and all datasets, complemented by a critical difference plot of mean ranks to visualize
statistical significance. Across almost all models, the combination of mean pooling over the sequence
dimension and concatenation over the layer dimension is the top-performing strategy. In no case any
other strategy combination performs significantly better.

Uni Multi Comb
Seq Layer

Mean Concat 0.80 0.74 0.79
Mean Mean 0.79 0.73 0.78
Max Concat 0.79 0.73 0.78
Mean Max 0.79 0.72 0.77
Max Mean 0.77 0.73 0.77
Max Max 0.76 0.72 0.75
Last Concat 0.75 0.73 0.75
Mean Last 0.75 0.71 0.75
Last Mean 0.74 0.72 0.74
Last Max 0.73 0.71 0.73
Max Last 0.72 0.70 0.72
Last Last 0.70 0.69 0.70

(a) Average Accuracy

123456789101112

Seq:Mean Layer:Concat 3.4597

Seq:Max Layer:Concat 4.3255

Seq:Mean Layer:Mean 4.7987

Seq:Mean Layer:Max 5.3289

Seq:Last Layer:Concat 5.6141

Seq:Max Layer:Mean 5.7517Seq:Last Layer:Mean 6.9295
Seq:Max Layer:Max 6.9866
Seq:Last Layer:Max 7.6477

Seq:Mean Layer:Last 7.8389
Seq:Max Layer:Last 9.3624
Seq:Last Layer:Last 9.9564

(b) Average Accuracy Rank (Overall benchmark)

Figure 3: Results for TiRex for the layer and sequence aggregation ablation experiments. (a)
Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark datasets.
Sorted by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.

Uni Multi Comb
seq L

Mean Concat 0.79 0.69 0.77
Max Concat 0.78 0.70 0.76
Mean Mean 0.78 0.69 0.76
Max Mean 0.77 0.69 0.76
Mean Max 0.77 0.68 0.76
Last Concat 0.77 0.69 0.76
Mean Last 0.77 0.68 0.75
Last Mean 0.76 0.68 0.75
Max Max 0.76 0.68 0.75
Last Max 0.75 0.67 0.74
Max Last 0.75 0.67 0.73
Last Last 0.73 0.64 0.71

(a) Average Accuracy

123456789101112

Seq:Mean Layer:Concat 4.0537

Seq:Mean Layer:Mean 5.2013

Seq:Max Layer:Concat 5.3322

Seq:Last Layer:Concat 5.7651

Seq:Max Layer:Mean 5.8289

Seq:Mean Layer:Max 6.1040Seq:Last Layer:Mean 6.4060
Seq:Mean Layer:Last 6.6544

Seq:Max Layer:Max 7.1913
Seq:Last Layer:Max 7.7013
Seq:Max Layer:Last 8.2483
Seq:Last Layer:Last 9.5134

(b) Average Accuracy Rank (Overall benchmark)

Figure 4: Results for Moirai 1.1 (Base) for the layer and sequence aggregation ablation experi-
ments. (a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark
datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.
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Uni Multi Comb
Seq Layer

Mean Concat 0.79 0.70 0.77
Max Concat 0.78 0.71 0.77
Last Concat 0.77 0.74 0.77
Max Mean 0.77 0.70 0.76
Mean Mean 0.77 0.69 0.76
Last Mean 0.76 0.73 0.75
Last Max 0.74 0.73 0.74
Mean Max 0.74 0.68 0.73
Max Max 0.73 0.69 0.73
Last Last 0.71 0.69 0.70
Mean Last 0.71 0.68 0.70
Max Last 0.70 0.67 0.70

(a) Average Accuracy

123456789101112

Seq:Last Layer:Concat 4.1275

Seq:Max Layer:Concat 4.1846

Seq:Mean Layer:Concat 4.4329

Seq:Max Layer:Mean 4.8826

Seq:Last Layer:Mean 5.4228

Seq:Mean Layer:Mean 5.8188Seq:Last Layer:Max 6.2181
Seq:Max Layer:Max 7.2685

Seq:Mean Layer:Max 7.6242
Seq:Last Layer:Last 9.0973

Seq:Mean Layer:Last 9.2584
Seq:Max Layer:Last 9.6644

(b) Average Accuracy Rank (Overall benchmark)

Figure 5: Results for TimesFM 2.0 for the layer and sequence aggregation ablation experiments.
(a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark
datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.

Uni Multi Comb
Seq Layer

Mean Concat 0.74 0.71 0.73
Last Concat 0.73 0.72 0.73
Max Concat 0.73 0.69 0.73
Mean Mean 0.73 0.70 0.72
Max Mean 0.73 0.69 0.72
Last Mean 0.72 0.71 0.72
Mean Max 0.72 0.68 0.71
Last Max 0.71 0.69 0.71
Max Max 0.71 0.66 0.71
Mean Last 0.69 0.68 0.69
Last Last 0.69 0.67 0.69
Max Last 0.68 0.66 0.68

(a) Average Accuracy

123456789101112

Seq:Mean Layer:Concat 4.1409

Seq:Last Layer:Concat 4.6376

Seq:Mean Layer:Mean 5.1544

Seq:Max Layer:Concat 5.2752

Seq:Max Layer:Mean 5.7081

Seq:Last Layer:Mean 5.7148Seq:Mean Layer:Max 6.6074
Seq:Last Layer:Max 6.8121
Seq:Max Layer:Max 7.7517
Seq:Last Layer:Last 8.4027

Seq:Mean Layer:Last 8.4597
Seq:Max Layer:Last 9.3356

(b) Average Accuracy Rank (Overall benchmark)

Figure 6: Results for TimesFM 1.0 for the layer and sequence aggregation ablation experiments.
(a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark
datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.

Uni Multi Comb
Seq Layer

Mean Concat 0.71 0.71 0.71
Mean Mean 0.70 0.70 0.70
Max Concat 0.69 0.72 0.69
Last Concat 0.69 0.72 0.69
Mean Max 0.68 0.70 0.68
Max Mean 0.67 0.71 0.68
Last Mean 0.67 0.71 0.67
Mean Last 0.66 0.68 0.66
Last Max 0.65 0.71 0.66
Max Max 0.64 0.68 0.64
Last Last 0.62 0.70 0.64
Max Last 0.62 0.67 0.63

(a) Average Accuracy

123456789101112

Seq:Mean Layer:Concat 3.8423

Seq:Mean Layer:Mean 4.7047

Seq:Last Layer:Concat 4.7215

Seq:Max Layer:Concat 4.8758

Seq:Last Layer:Mean 6.1309

Seq:Max Layer:Mean 6.1611Seq:Mean Layer:Max 6.4161
Seq:Last Layer:Max 7.2752

Seq:Mean Layer:Last 7.6208
Seq:Max Layer:Max 8.4362
Seq:Last Layer:Last 8.7315
Seq:Max Layer:Last 9.0839

(b) Average Accuracy Rank (Overall benchmark)

Figure 7: Results for ToTo for the layer and sequence aggregation ablation experiments. (a)
Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark datasets.
Sorted by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.
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Uni Multi Comb
Seq

Mean 0.77 0.72 0.76
Max 0.76 0.71 0.75
Last 0.74 0.72 0.74

(a) Average Accuracy

123

Seq:Mean 1.6946

Seq:Max 2.0604
Seq:Last 2.2450

(b) Average Accuracy Rank (Overall benchmark)

Figure 8: Results for Chronos Bolt (Base) for the layer and sequence aggregation ablation
experiments. (a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb)
benchmark datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average
accuracy ranks.

Uni Multi Comb
Seq

Mean 0.77 0.73 0.76
Max 0.76 0.73 0.76
Last 0.72 0.71 0.72

(a) Average Accuracy

123

Seq:Mean 1.6745

Seq:Max 1.8154
Seq:Last 2.5101

(b) Average Accuracy Rank (Overall benchmark)

Figure 9: Results for Chronos Bolt (Small) for the layer and sequence aggregation ablation
experiments. (a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb)
benchmark datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average
accuracy ranks.

Uni Multi Comb
Seq

Mean 0.71 0.71 0.71
Max 0.68 0.68 0.68
Last 0.59 0.65 0.60

(a) Average Accuracy

123

Seq:Mean 1.4195

Seq:Max 1.9362
Seq:Last 2.6443

(b) Average Accuracy Rank (Overall benchmark)

Figure 10: Results for Chronos (Base) for the layer and sequence aggregation ablation experiments.
(a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark datasets.
Sorted by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.
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Uni Multi Comb
Seq

Mean 0.70 0.70 0.70
Max 0.67 0.67 0.67
Last 0.60 0.64 0.61

(a) Average Accuracy

123

Seq:Mean 1.5570

Seq:Max 1.9497
Seq:Last 2.4933

(b) Average Accuracy Rank (Overall benchmark)

Figure 11: Results for Chronos (Small) for the layer and sequence aggregation ablation experi-
ments. (a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark
datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.
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Variate aggregation methods We conduct an ablation study of the method to aggregate per-variate
embeddings into a single feature vector for a multivariate time series. This is necessary when applying
a univariate model to each variate independently or when a multivariate model produces distinct
per-variate outputs. We evaluate three strategies: mean pooling, max pooling, and concatenation.
Figures 12-19 present the results. Each figure presents a table with the mean accuracy over univariate,
multivariate, and all datasets, complemented by a critical difference plot of mean ranks to visualize
statistical significance. Concatenation consistently outperforms both pooling methods across all
tested models.

Multi
Var

Concat 0.74
Mean 0.67
Max 0.66

(a) Average Accuracy

123

Variate:Concat 1.1800

Variate:Mean 2.3200
Variate:Max 2.5000

(b) Average Accuracy Rank (Multivariate Benchmark)

Figure 12: Results for TiRex for the variate aggregation ablation experiments. (a) Average accuracy
on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark datasets. Sorted by overall
accuracy. (b) Critical difference diagram of the average accuracy ranks.

Multi
Var

Concat 0.72
Mean 0.66
Max 0.65

(a) Average Accuracy

123

Variate:Concat 1.4000

Variate:Mean 2.1800
Variate:Max 2.4200

(b) Average Accuracy Rank (Multivariate Benchmark)

Figure 13: Results for Chronos Bolt (Base) for the variate aggregation ablation experiments. (a)
Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark datasets.
Sorted by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.

Multi
Var

Concat 0.73
Max 0.66
Mean 0.65

(a) Average Accuracy

123

Variate:Concat 1.3600

Variate:Max 2.2600
Variate:Mean 2.3800

(b) Average Accuracy Rank (Multivariate Benchmark)

Figure 14: Results for Chronos Bolt (Small) for the variate aggregation ablation experiments. (a)
Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark datasets.
Sorted by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.
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Multi
Var

Concat 0.71
Mean 0.65
Max 0.65

(a) Average Accuracy

123

Variate:Concat 1.5200

Variate:Mean 2.1600
Variate:Max 2.3200

(b) Average Accuracy Rank (Multivariate Benchmark)

Figure 15: Results for Chronos (Base) for the variate aggregation ablation experiments. (a)
Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark datasets.
Sorted by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.

Multi
Var

Concat 0.70
Mean 0.64
Max 0.63

(a) Average Accuracy

123

Variate:Concat 1.3000

Variate:Mean 2.2600
Variate:Max 2.4400

(b) Average Accuracy Rank (Multivariate Benchmark)

Figure 16: Results for Chronos (Small) for the variate aggregation ablation experiments. (a)
Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark datasets.
Sorted by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.

Multi
Var

Concat 0.71
Mean 0.65
Max 0.64

(a) Average Accuracy

123

Variate:Concat 1.6600

Variate:Mean 1.9200
Variate:Max 2.4200

(b) Average Accuracy Rank (Multivariate Benchmark)

Figure 17: Results for TimesFM 1.0 for the variate aggregation ablation experiments. (a) Average
accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark datasets. Sorted
by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.

Multi
Var

Concat 0.70
Max 0.67
Mean 0.66

(a) Average Accuracy

123

Variate:Concat 1.4400

Variate:Mean 2.0600
Variate:Max 2.5000

(b) Average Accuracy Rank (Multivariate Benchmark)

Figure 18: Results for TimesFM 2.0 for the variate aggregation ablation experiments. (a) Average
accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark datasets. Sorted
by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.
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Multi
Var

Concat 0.71
Mean 0.68
Max 0.66

(a) Average Accuracy

123

Variate:Concat 1.5600

Variate:Mean 1.9600
Variate:Max 2.4800

(b) Average Accuracy Rank (Multivariate Benchmark)

Figure 19: Results for ToTo for the variate aggregation ablation experiments. (a) Average accuracy
on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark datasets. Sorted by overall
accuracy. (b) Critical difference diagram of the average accuracy ranks.
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C.3 Full Results: Embedding Augmentation

In this section, we provide an ablation study of our proposed embedding augmentations. First, the
impact augmentations, both individually and combined, are analyzed quantitatively for each model.
Then we provide a hyperparameter ablation for the Absolute Sample Statistics Augmentation and a
qualitative analysis of its impact.

Ablation on individual models We conduct an ablation study to evaluate the effectiveness of our
two proposed embedding augmentations. Figures 20-28 present the results. Each figure presents
a table with the mean accuracy over univariate, multivariate, and all datasets, complemented by a
critical difference plot of mean ranks to visualize statistical significance. Both the statistics-based and
the differencing-based augmentations individually improve performance for a majority of the models,
although the statistical significance of these gains varies. The combination of both augmentations
most often yields further improvements, resulting in the best overall performance.

Uni Multi Comb
Diff Stats

True True 0.81 0.74 0.80
True False 0.81 0.73 0.79
False True 0.80 0.73 0.79
False False 0.80 0.74 0.79

(a) Average Accuracy

1234

Diff+Stats2.2383

Diff2.4899Stats 2.4899
None 2.7819

(b) Average Accuracy Rank (Overall benchmark)

Figure 20: Results for TiRex for the embedding augmentation ablation experiments. Diff and Stats
indicate the application of the “differencing” and the “sample statistics” augmentations respectively.
(a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark
datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.

Uni Multi Comb
Diff Stats

True True 0.79 0.74 0.78
True False 0.79 0.72 0.77
False True 0.78 0.74 0.77
False False 0.77 0.72 0.76

(a) Average Accuracy

1234

Diff+Stats1.9396

Stats2.4060Diff 2.5638
None 3.0906

(b) Average Accuracy Rank (Overall benchmark)

Figure 21: Results for Chronos Bolt (Base) for the embedding augmentation ablation experiments.
Diff and Stats indicate the application of the “differencing” and the “sample statistics” augmentations
respectively. (a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb)
benchmark datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average
accuracy ranks.
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Uni Multi Comb
Diff Stats

True True 0.79 0.74 0.78
False True 0.78 0.74 0.77
True False 0.78 0.72 0.77
False False 0.77 0.73 0.76

(a) Average Accuracy

1234

Diff+Stats1.9799

Stats2.3691Diff 2.5470
None 3.1040

(b) Average Accuracy Rank (Overall benchmark)

Figure 22: Results for Chronos Bolt (Small) for the embedding augmentation ablation experiments.
Diff and Stats indicate the application of the “differencing” and the “sample statistics” augmentations
respectively. (a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb)
benchmark datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average
accuracy ranks.

Uni Multi Comb
Diff Stats

True True 0.76 0.72 0.75
False True 0.75 0.73 0.75
True False 0.74 0.71 0.73
False False 0.71 0.71 0.71

(a) Average Accuracy

1234

Diff+Stats1.9027

Stats2.2785Diff 2.6376
None 3.1812

(b) Average Accuracy Rank (Overall benchmark)

Figure 23: Results for Chronos (Base) for the embedding augmentation ablation experiments. Diff
and Stats indicate the application of the “differencing” and the “sample statistics” augmentations
respectively. (a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb)
benchmark datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average
accuracy ranks.

Uni Multi Comb
Diff Stats

True True 0.75 0.72 0.75
False True 0.74 0.73 0.74
True False 0.72 0.71 0.72
False False 0.70 0.70 0.70

(a) Average Accuracy

1234

Diff+Stats1.8020

Stats2.2349Diff 2.6309
None 3.3322

(b) Average Accuracy Rank (Overall benchmark)

Figure 24: Results for Chronos (Small) for the embedding augmentation ablation experiments.
Diff and Stats indicate the application of the “differencing” and the “sample statistics” augmentations
respectively. (a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb)
benchmark datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average
accuracy ranks.
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Uni Multi Comb
Diff Stats

True True 0.79 0.70 0.78
False True 0.79 0.71 0.78
True False 0.79 0.70 0.78
False False 0.79 0.70 0.77

(a) Average Accuracy

1234

Diff+Stats2.3993

Diff2.4832Stats 2.5000
None 2.6174

(b) Average Accuracy Rank (Overall benchmark)

Figure 25: Results for TimesFM 2.0 for the embedding augmentation ablation experiments. Diff
and Stats indicate the application of the “differencing” and the “sample statistics” augmentations
respectively. (a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb)
benchmark datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average
accuracy ranks.

Uni Multi Comb
Diff Stats

True True 0.75 0.72 0.74
False True 0.75 0.70 0.74
True False 0.75 0.70 0.74
False False 0.74 0.71 0.73

(a) Average Accuracy

1234

Stats2.1812

Diff+Stats2.3591Diff 2.6745
None 2.7852

(b) Average Accuracy Rank (Overall benchmark)

Figure 26: Results for TimesFM 1.0 for the embedding augmentation ablation experiments. Diff
and Stats indicate the application of the “differencing” and the “sample statistics” augmentations
respectively. (a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb)
benchmark datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average
accuracy ranks.

Uni Multi Comb
Diff Stats

True True 0.79 0.71 0.78
False True 0.79 0.72 0.78
True False 0.79 0.70 0.78
False False 0.79 0.69 0.77

(a) Average Accuracy

1234

Stats2.2718

Diff+Stats2.3389Diff 2.5638
None 2.8255

(b) Average Accuracy Rank (Overall benchmark)

Figure 27: Results for Moirai 1.1 (Base) for the embedding augmentation ablation experiments.
Diff and Stats indicate the application of the “differencing” and the “sample statistics” augmentations
respectively. (a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb)
benchmark datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average
accuracy ranks.
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Uni Multi Comb
Diff Stats

True True 0.74 0.70 0.73
True False 0.73 0.71 0.73
False True 0.72 0.71 0.72
False False 0.71 0.71 0.71

(a) Average Accuracy

1234

Diff+Stats2.0973

Stats2.4597Diff 2.5537
None 2.8893

(b) Average Accuracy Rank (Overall benchmark)

Figure 28: Results for ToTo for the embedding augmentation ablation experiments. Diff and Stats
indicate the application of the “differencing” and the “sample statistics” augmentations respectively.
(a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark
datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.
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Absolute Sample Statistics Augmentation: Number of Patches The absolute sample statistics
augmentation divides each time series into k non-overlapping patches. For the main experiments,
we used a fixed value of k = 8. To analyze the impact of this choice, we conducted an ablation
study on our best-performing model, TiRex, by evaluating k ∈ {1, 2, 4, 8, 16, 32}. The results are
presented in Figure 29. While the average ranks suggest that a higher number of patches could
marginally improve performance, the average accuracies remain very similar across all settings. This
indicates that the procedure is generally robust to the choice of k, although we note that tuning this
hyperparameter for specific datasets could be advantageous in a practical application.

k Uni Multi Comb

32 0.81 0.73 0.80
16 0.81 0.74 0.80
4 0.81 0.73 0.80
8 0.81 0.74 0.80
2 0.80 0.74 0.79
1 0.81 0.72 0.79

(a) Average Accuracy

123456

k = 322.9530

k = 163.2584

k = 83.4933k = 4 3.5940
k = 2 3.7953
k = 1 3.9060

(b) Average Accuracy Rank (Overall benchmark)

Figure 29: Result of the ablation experiment regarding the number of patches for the absolute sample
statistics augmentation (a) Average accuracy on univariate (Uni), multivariate (Multi), and overall
(Comb) benchmark datasets. Sorted by overall accuracy. (b) Critical difference diagram of the
average accuracy ranks.

Absolute Sample Statistics Augmentation: Qualitative Analysis As discussed in Section 2,
instance normalization removes a signal’s absolute scale information, such as its mean value. To
visually demonstrate this effect and the efficacy of our statistics augmentation, we created a toy
dataset composed of sine waves that differ only by their baseline value [20]. Each series is generated
using the formula yt = sin(5t) + a, where the baseline a is sampled uniquely for each of the 1024
examples. Figure 30 shows three such series.

We then generated embeddings for this dataset using TiRex and Chronos Bolt, once without and once
with our statistics augmentation, and visualized the results using PCA. The projections in Figure 31
illustrate the outcome. Without the augmentation, the embeddings from the forecasting models
(TiRex, Chronos Bolt) form a single, inseparable cluster. In contrast, the augmented embeddings
show a gradient along the first principal component that directly corresponds to the baseline value
a. Notably, the pre-trained classification models also cluster series with similar baselines, i.e.,
incorporate this property in their representation.
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Figure 30: Illustration of three example time series from our synthetic toy dataset. For each series
only the baseline value differs between them.
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Figure 31: 2D PCA projections of embeddings from the baseline-shifted sine wave dataset. The left
column of the top two row shows the original embeddings from each model, while the right column
shows the same embeddings enhanced with our sample statistics augmentation. The bottom row
shows the embeddings of the pre-trained classification models — which also allow for separation in
terms of this property.
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Type ZS Univariate Multivariate Overall
No Aug Stat+Diff No Aug Stat+Diff No Aug Stat+Diff

TiRex Dec yes 0.78 0.78 0.71 0.72 0.77 0.77
Chr. Bolt (Base) EncDec yes 0.75 0.77 0.70 0.72 0.74 0.76
Moirai (Large) Enc yes 0.77 0.78 0.68 0.68 0.76 0.76
TimesFM 2.0 Dec yes 0.76 0.77 0.68 0.68 0.75 0.75
TimesFM 1.0 Dec yes 0.72 0.72 0.68 0.69 0.71 0.72
Chronos (Base) EncDec yes 0.68 0.73 0.69 0.70 0.68 0.73
ToTo Dec yes 0.68 0.71 0.69 0.69 0.68 0.70
Mantis Enc no 0.76 0.72 0.76
NuTime Enc no 0.64 0.66 0.65
Moment (Large) Enc no 0.59 0.55 0.58
DTW - - 0.72 0.71 0.72

Table 4: Balanced Accuracy of different models for the univariate, multivariate, and combined
benchmark with a Random Forest Classifier. “Stat+Diff” shows results with both proposed augmenta-
tions applied; “no Aug” utilizes the pure forecasting model representations. “ZS” indicates models
that did not have access to the benchmark training data during pre-training.

Type ZS Univariate Multivariate Overall
No Aug Stat+Diff No Aug Stat+Diff No Aug Stat+Diff

TiRex Dec yes 0.82 0.83 0.77 0.77 0.81 0.81
Chr. Bolt (Base) EncDec yes 0.81 0.82 0.76 0.77 0.80 0.81
Moirai (Large) Enc yes 0.82 0.82 0.74 0.74 0.80 0.81
TimesFM 2.0 Dec yes 0.81 0.81 0.74 0.73 0.80 0.80
TimesFM 1.0 Dec yes 0.79 0.79 0.75 0.75 0.78 0.79
Chronos (Base) EncDec yes 0.74 0.79 0.74 0.76 0.74 0.78
ToTo Dec yes 0.73 0.76 0.74 0.74 0.73 0.75

Mantis Enc no 0.81 0.78 0.81
NuTime Enc no 0.71 0.71 0.71
Moment (Large) Enc no 0.68 0.60 0.66
DTW - - 0.76 0.76 0.76

Table 5: Classification Accuracy of different models for the univariate, multivariate, and combined
benchmark with a Random Forest Classifier — on the subset of datasets with a maximum length of
512. “Stat+Diff” shows results with both proposed augmentations applied; “no Aug” utilizes the pure
forecasting model representations. “ZS” indicates models that did not have access to the benchmark
training data during pre-training.

C.4 Main Results: Balanced Accuracy

While accuracy is the primary metric in our main evaluation, for consistency with related literature,
we also re-evaluated our main experiments using balanced accuracy to ensure the robustness of our
findings. The results are presented in Table 4. The relative performance rankings of the models
remain highly consistent across both metrics, with slight changes in the multivariate benchmark data,
confirming the robustness of our conclusions.

C.5 Main Results: ≤ 512 length datasets

Several of the evaluated models were pre-trained with a maximum context length of 512, whereas
our full benchmark includes datasets with series up to 2048 in length. To assess the impact of this
context length discrepancy and to further test the robustness of our findings, we re-ran our main
experiments on a subset of the benchmark containing only datasets with a series length of 512 or
less. The results of this analysis are presented in Table 5. The relative performance rankings remain
consistent with our primary results, with slight changes in the multivariate benchmark data — this
confirms the robustness of our conclusions.
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ACSF1 0.85 0.82 0.82 0.88 0.86 0.86 0.83 0.75 0.84
Adiac 0.78 0.79 0.80 0.79 0.79 0.78 0.78 0.79 0.71
ArrowHead 0.78 0.83 0.81 0.78 0.77 0.76 0.73 0.74 0.66
Beef 0.80 0.67 0.73 0.70 0.67 0.60 0.80 0.83 0.60
BeetleFly 0.90 0.90 0.90 0.95 0.95 0.85 0.95 0.85 0.75
BirdChicken 0.90 0.90 0.95 0.90 0.90 0.90 0.80 0.90 0.90
BME 0.99 1.00 1.00 0.99 0.96 0.95 0.95 0.95 0.98
Car 0.80 0.82 0.77 0.78 0.75 0.68 0.82 0.78 0.83
CBF 0.99 1.00 0.97 1.00 1.00 0.96 1.00 0.99 0.96
Chinatown 0.97 0.98 0.99 0.96 0.97 0.95 0.97 0.97 0.97
ChlorineConcentration 0.72 0.71 0.72 0.74 0.75 0.75 0.69 0.69 0.64
CinCECGTorso 0.99 0.85 0.90 0.84 0.83 0.75 0.98 0.96 0.97
Coffee 1.00 0.96 1.00 1.00 0.96 0.96 0.96 1.00 0.96
Computers 0.76 0.72 0.73 0.77 0.76 0.77 0.72 0.70 0.74
CricketX 0.71 0.71 0.69 0.69 0.68 0.62 0.69 0.64 0.62
CricketY 0.74 0.73 0.70 0.69 0.67 0.61 0.75 0.69 0.69
CricketZ 0.72 0.73 0.72 0.74 0.69 0.69 0.69 0.64 0.63
Crop 0.74 0.74 0.74 NaN 0.73 0.73 0.73 NaN 0.71
DiatomSizeReduction 0.86 0.90 0.92 0.87 0.82 0.85 0.81 0.85 0.88
DistalPhalanxOutlineCorrect 0.79 0.77 0.80 0.80 0.80 0.78 0.79 0.78 0.76
DistalPhalanxOutlineAgeGroup 0.76 0.76 0.75 0.78 0.74 0.71 0.75 0.76 0.76
DistalPhalanxTW 0.65 0.66 0.68 0.68 0.72 0.69 0.65 0.66 0.66
Earthquakes 0.75 0.76 0.76 0.72 0.74 0.75 0.74 0.76 0.74
ECG200 0.85 0.85 0.85 0.84 0.86 0.83 0.87 0.86 0.77
ECG5000 0.94 0.94 0.94 0.94 0.94 0.93 0.93 0.94 0.93
ECGFiveDays 0.83 0.86 0.90 0.92 0.84 0.81 0.91 0.75 0.77
ElectricDevices 0.70 0.70 0.69 NaN 0.72 0.70 0.70 0.66 0.74
EOGHorizontalSignal 0.54 0.54 0.56 0.60 0.57 0.48 0.66 0.21 0.36
EOGVerticalSignal 0.42 0.43 0.45 0.42 0.44 0.40 0.46 0.15 0.30
EthanolLevel 0.37 0.44 0.43 0.43 0.42 0.55 0.35 0.57 0.56
FaceAll 0.86 0.71 0.71 0.72 0.78 0.70 0.83 0.85 0.69
FaceFour 0.68 0.76 0.64 0.72 0.68 0.65 0.81 0.74 0.62
FacesUCR 0.81 0.75 0.76 0.76 0.73 0.72 0.73 0.77 0.73
FiftyWords 0.62 0.67 0.69 0.60 0.58 0.53 0.60 0.57 0.64
Fish 0.93 0.85 0.85 0.93 0.88 0.84 0.90 0.90 0.89
FordA 0.95 0.94 0.93 0.93 0.93 0.90 0.94 0.95 0.94
FordB 0.84 0.78 0.80 0.81 0.81 0.78 0.84 0.82 0.77
FreezerRegularTrain 0.93 0.92 0.91 0.97 0.97 0.91 0.88 0.85 0.97
FreezerSmallTrain 0.81 0.85 0.84 0.87 0.84 0.79 0.78 0.69 0.87
GunPoint 0.95 0.94 0.99 0.97 0.97 0.95 0.95 0.88 0.95
GunPointAgeSpan 0.98 0.99 0.98 0.98 0.97 0.97 0.95 0.94 0.98
GunPointMaleVersusFemale 1.00 1.00 1.00 0.99 1.00 0.99 1.00 0.99 0.99
GunPointOldVersusYoung 0.98 1.00 1.00 0.99 0.99 0.99 0.96 0.93 0.99
Ham 0.65 0.71 0.64 0.57 0.61 0.68 0.60 0.55 0.60
Haptics 0.52 0.51 0.51 0.51 0.57 0.49 0.54 0.51 0.51
Herring 0.59 0.67 0.67 0.59 0.59 0.62 0.61 0.53 0.59
HouseTwenty 0.97 0.89 0.93 0.97 0.96 0.94 0.87 0.60 0.72
InlineSkate 0.44 0.54 0.49 0.49 0.44 0.43 0.50 0.37 0.39
InsectEPGRegularTrain 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
InsectEPGSmallTrain 0.93 0.93 0.92 0.96 0.94 0.94 0.90 0.86 0.99

Table 6: Accuracy results of the different models with augmentations on the individual datasets with
a Random Forest classifier. (Part 1/6)
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ACSF1 0.84 0.79 0.79 0.78 0.43 0.55 0.48 0.64 0.59
Adiac 0.72 0.55 0.74 0.70 0.08 0.12 0.08 0.60 0.56
ArrowHead 0.61 0.80 0.73 0.74 0.59 0.50 0.58 0.70 0.71
Beef 0.60 0.70 0.63 0.97 0.43 0.40 0.50 0.63 0.57
BeetleFly 0.75 0.95 0.85 0.70 0.85 0.95 0.90 0.70 0.70
BirdChicken 0.95 0.85 1.00 0.55 0.80 0.85 0.65 0.75 0.60
BME 0.98 0.97 0.92 0.93 0.79 0.81 0.88 0.89 0.85
Car 0.85 0.75 0.83 0.62 0.67 0.58 0.60 0.73 0.55
CBF 0.98 0.99 0.99 0.54 0.90 0.94 0.86 1.00 1.00
Chinatown 0.97 0.82 0.85 0.98 0.77 0.87 0.84 0.97 0.97
ChlorineConcentration 0.62 0.60 0.68 0.76 0.56 0.55 0.55 0.65 0.57
CinCECGTorso 0.95 0.90 0.67 0.58 0.57 0.68 0.68 0.65 0.50
Coffee 0.86 0.93 0.96 1.00 0.89 0.96 0.82 1.00 0.93
Computers 0.71 0.74 0.74 0.71 0.63 0.65 0.66 0.70 0.71
CricketX 0.68 0.59 0.75 0.24 0.59 0.64 0.65 0.75 0.74
CricketY 0.68 0.63 0.73 0.36 0.61 0.60 0.56 0.74 0.70
CricketZ 0.68 0.58 0.79 0.26 0.62 0.64 0.67 0.75 0.74
Crop 0.72 0.69 0.68 0.74 0.50 0.56 0.55 0.68 0.66
DiatomSizeReduction 0.87 0.83 0.87 0.87 0.50 0.50 0.56 0.97 0.93
DistalPhalanxOutlineCorrect 0.78 0.77 0.74 0.78 0.63 0.65 0.62 0.72 0.74
DistalPhalanxOutlineAgeGroup 0.75 0.74 0.79 0.77 0.63 0.67 0.65 0.77 0.73
DistalPhalanxTW 0.66 0.68 0.69 0.71 0.58 0.58 0.56 0.59 0.62
Earthquakes 0.75 0.75 0.75 0.75 0.75 0.74 0.75 0.72 0.74
ECG200 0.81 0.85 0.81 0.80 0.81 0.82 0.82 0.77 0.80
ECG5000 0.93 0.92 0.92 0.93 0.93 0.92 0.93 0.92 0.94
ECGFiveDays 0.82 0.60 0.93 0.76 0.65 0.88 0.74 0.77 0.62
ElectricDevices 0.73 0.68 0.73 0.65 0.59 0.59 0.59 0.60 0.61
EOGHorizontalSignal 0.45 0.49 0.58 0.33 0.07 0.10 0.11 0.44 0.43
EOGVerticalSignal 0.27 0.39 0.47 0.25 0.10 0.10 0.11 0.43 0.44
EthanolLevel 0.37 0.33 0.29 0.60 0.25 0.27 0.25 0.28 0.26
FaceAll 0.71 0.75 0.78 0.78 0.57 0.53 0.48 0.81 0.81
FaceFour 0.56 0.57 0.95 0.62 0.65 0.55 0.57 0.83 0.68
FacesUCR 0.82 0.63 0.83 0.67 0.54 0.48 0.47 0.90 0.88
FiftyWords 0.64 0.52 0.64 0.57 0.48 0.48 0.44 0.69 0.66
Fish 0.85 0.80 0.94 0.78 0.49 0.55 0.42 0.82 0.79
FordA 0.93 0.92 0.86 0.81 0.88 0.90 0.89 0.55 0.58
FordB 0.76 0.82 0.74 0.62 0.73 0.77 0.72 0.62 0.62
FreezerRegularTrain 0.96 0.91 0.94 0.99 0.78 0.78 0.77 0.90 0.88
FreezerSmallTrain 0.88 0.78 0.80 0.96 0.75 0.76 0.76 0.76 0.73
GunPoint 0.93 0.91 0.97 0.95 0.77 0.81 0.79 0.91 0.89
GunPointAgeSpan 0.97 0.91 0.99 0.88 0.88 0.86 0.85 0.98 0.99
GunPointMaleVersusFemale 1.00 0.96 1.00 0.97 0.94 0.95 0.96 0.98 0.97
GunPointOldVersusYoung 0.99 0.89 1.00 1.00 0.86 0.88 0.84 1.00 1.00
Ham 0.66 0.78 0.70 0.73 0.70 0.65 0.63 0.47 0.51
Haptics 0.49 0.50 0.49 0.45 0.40 0.44 0.41 0.38 0.43
Herring 0.67 0.59 0.66 0.59 0.58 0.58 0.59 0.53 0.48
HouseTwenty 0.71 0.97 0.95 0.65 0.55 0.65 0.62 0.84 0.85
InlineSkate 0.38 0.40 0.39 0.25 0.20 0.21 0.20 0.38 0.36
InsectEPGRegularTrain 1.00 1.00 1.00 0.82 0.89 0.92 0.90 1.00 1.00
InsectEPGSmallTrain 0.99 1.00 1.00 0.80 0.81 0.90 0.92 1.00 1.00

Table 7: Accuracy results of the different models with augmentations on the individual datasets with
a Random Forest classifier. (Part 2/6)
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InsectWingbeatSound 0.66 0.62 0.64 0.61 0.61 0.60 0.62 0.63 0.55
ItalyPowerDemand 0.96 0.95 0.95 0.95 0.95 0.96 0.97 0.97 0.92
LargeKitchenAppliances 0.79 0.75 0.72 0.79 0.83 0.75 0.77 0.67 0.76
Lightning2 0.75 0.75 0.72 0.75 0.70 0.67 0.66 0.69 0.70
Lightning7 0.70 0.71 0.77 0.63 0.64 0.63 0.58 0.67 0.67
Mallat 0.94 0.87 0.89 0.90 0.92 0.93 0.84 0.70 0.72
Meat 0.90 0.92 0.93 1.00 0.93 0.92 0.93 0.97 0.88
MedicalImages 0.72 0.72 0.72 0.72 0.71 0.70 0.74 0.75 0.69
MiddlePhalanxOutlineCorrect 0.85 0.84 0.83 0.85 0.86 0.84 0.86 0.87 0.81
MiddlePhalanxOutlineAgeGroup 0.60 0.58 0.58 0.59 0.58 0.59 0.60 0.58 0.56
MiddlePhalanxTW 0.55 0.58 0.53 0.54 0.55 0.56 0.53 0.54 0.55
MixedShapesRegularTrain 0.97 0.95 0.96 0.97 0.97 0.95 0.97 0.94 0.96
MixedShapesSmallTrain 0.94 0.93 0.93 0.94 0.96 0.93 0.95 0.91 0.92
MoteStrain 0.91 0.90 0.91 0.91 0.88 0.82 0.91 0.85 0.93
NonInvasiveFetalECGThorax1 0.92 0.89 0.89 0.91 0.89 0.88 0.90 0.76 0.84
NonInvasiveFetalECGThorax2 0.93 0.91 0.92 0.93 0.91 0.90 0.93 0.81 0.87
OliveOil 0.87 0.87 0.87 0.83 0.90 0.90 0.90 0.90 0.83
OSULeaf 0.96 0.90 0.92 0.95 0.95 0.88 0.96 0.84 0.93
PhalangesOutlinesCorrect 0.83 0.83 0.81 0.84 0.84 0.83 0.84 0.82 0.77
Phoneme 0.39 0.35 0.35 0.39 0.37 0.35 0.37 0.32 0.35
PigAirwayPressure 0.35 0.18 0.14 0.37 0.38 0.33 0.32 0.14 0.15
PigArtPressure 0.91 0.33 0.34 0.87 0.88 0.84 0.81 0.41 0.58
PigCVP 0.82 0.25 0.24 0.75 0.70 0.51 0.68 0.32 0.27
Plane 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PowerCons 0.89 0.88 0.90 0.93 0.91 0.90 0.90 0.91 0.93
ProximalPhalanxOutlineCorrect 0.89 0.85 0.85 0.89 0.89 0.90 0.89 0.87 0.85
ProximalPhalanxOutlineAgeGroup 0.86 0.85 0.87 0.87 0.86 0.84 0.87 0.86 0.85
ProximalPhalanxTW 0.83 0.82 0.82 0.80 0.81 0.82 0.81 0.81 0.80
RefrigerationDevices 0.58 0.57 0.58 0.52 0.53 0.55 0.55 0.51 0.59
ScreenType 0.51 0.49 0.46 0.51 0.51 0.38 0.54 0.48 0.46
SemgHandGenderCh2 0.87 0.90 0.90 0.89 0.89 0.88 0.92 0.68 0.80
SemgHandMovementCh2 0.66 0.67 0.71 0.59 0.58 0.59 0.64 0.39 0.61
SemgHandSubjectCh2 0.81 0.83 0.84 0.80 0.78 0.79 0.80 0.51 0.69
ShapeletSim 0.96 1.00 1.00 0.97 0.98 0.85 0.96 0.96 1.00
ShapesAll 0.86 0.81 0.83 0.85 0.85 0.82 0.85 0.81 0.83
SmallKitchenAppliances 0.82 0.81 0.82 0.83 0.78 0.81 0.83 0.79 0.81
SmoothSubspace 0.93 0.96 0.94 0.97 0.93 0.93 0.91 0.94 0.95
SonyAIBORobotSurface1 0.88 0.80 0.82 0.73 0.71 0.64 0.90 0.84 0.53
SonyAIBORobotSurface2 0.86 0.90 0.86 0.91 0.86 0.85 0.90 0.90 0.89
StarLightCurves 0.98 0.97 0.98 NaN 0.98 0.98 0.98 0.96 0.97
Strawberry 0.96 0.95 0.95 0.95 0.95 0.95 0.96 0.96 0.92
SwedishLeaf 0.94 0.92 0.94 0.96 0.95 0.93 0.95 0.95 0.93
Symbols 0.96 0.95 0.98 0.99 0.98 0.97 0.95 0.94 0.87
SyntheticControl 0.99 0.99 0.98 0.98 0.99 0.97 0.99 0.99 0.99
ToeSegmentation1 0.93 0.88 0.82 0.95 0.95 0.86 0.89 0.88 0.93
ToeSegmentation2 0.92 0.90 0.88 0.86 0.87 0.86 0.87 0.88 0.88
Trace 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
TwoLeadECG 0.96 0.91 0.87 0.94 0.87 0.79 1.00 0.95 0.92
TwoPatterns 0.97 0.94 0.92 0.97 0.93 0.84 0.96 0.94 0.89
UMD 0.94 0.96 0.94 0.96 0.97 0.85 0.90 0.89 0.90

Table 8: Accuracy results of the different models with augmentations on the individual datasets with
a Random Forest classifier. (Part 3/6)
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InsectWingbeatSound 0.56 0.61 0.51 0.62 0.55 0.52 0.48 0.36 0.35
ItalyPowerDemand 0.94 0.96 0.91 0.95 0.89 0.92 0.81 0.95 0.95
LargeKitchenAppliances 0.75 0.72 0.79 0.52 0.71 0.80 0.79 0.79 0.80
Lightning2 0.72 0.59 0.80 0.66 0.66 0.69 0.66 0.87 0.87
Lightning7 0.66 0.58 0.77 0.42 0.60 0.64 0.62 0.73 0.71
Mallat 0.76 0.75 0.90 0.88 0.50 0.55 0.53 0.93 0.93
Meat 0.87 0.87 0.93 0.92 0.40 0.35 0.35 0.93 0.93
MedicalImages 0.69 0.66 0.71 0.59 0.55 0.56 0.54 0.74 0.71
MiddlePhalanxOutlineCorrect 0.81 0.77 0.80 0.81 0.57 0.57 0.57 0.70 0.73
MiddlePhalanxOutlineAgeGroup 0.59 0.62 0.60 0.62 0.48 0.52 0.46 0.50 0.56
MiddlePhalanxTW 0.56 0.56 0.54 0.57 0.46 0.51 0.49 0.51 0.51
MixedShapesRegularTrain 0.95 0.96 0.94 0.89 0.78 0.82 0.80 0.84 0.83
MixedShapesSmallTrain 0.92 0.94 0.90 0.80 0.70 0.77 0.75 0.78 0.75
MoteStrain 0.88 0.88 0.92 0.86 0.85 0.85 0.79 0.83 0.81
NonInvasiveFetalECGThorax1 0.83 0.82 0.61 0.86 0.29 0.46 0.35 0.79 0.79
NonInvasiveFetalECGThorax2 0.87 0.86 0.68 0.90 0.35 0.53 0.42 0.86 0.86
OliveOil 0.83 0.47 0.93 0.90 0.37 0.40 0.43 0.83 0.87
OSULeaf 0.92 0.82 0.86 0.51 0.72 0.74 0.69 0.59 0.58
PhalangesOutlinesCorrect 0.75 0.74 0.77 0.81 0.62 0.64 0.63 0.73 0.76
Phoneme 0.35 0.36 0.33 0.15 0.28 0.28 0.26 0.23 0.21
PigAirwayPressure 0.12 0.22 0.50 0.04 0.05 0.06 0.06 0.18 0.12
PigArtPressure 0.49 0.50 0.91 0.09 0.22 0.37 0.31 0.48 0.36
PigCVP 0.23 0.44 0.77 0.13 0.12 0.25 0.18 0.33 0.23
Plane 0.99 0.98 1.00 0.99 0.91 0.97 0.91 1.00 1.00
PowerCons 0.94 0.94 0.91 0.88 0.82 0.85 0.77 0.92 0.86
ProximalPhalanxOutlineCorrect 0.80 0.80 0.80 0.90 0.69 0.73 0.68 0.78 0.83
ProximalPhalanxOutlineAgeGroup 0.86 0.86 0.85 0.86 0.80 0.80 0.80 0.80 0.81
ProximalPhalanxTW 0.80 0.81 0.78 0.80 0.60 0.67 0.59 0.76 0.77
RefrigerationDevices 0.53 0.58 0.51 0.46 0.51 0.56 0.54 0.46 0.46
ScreenType 0.47 0.43 0.44 0.43 0.39 0.47 0.47 0.40 0.39
SemgHandGenderCh2 0.82 0.83 0.90 0.78 0.66 0.67 0.68 0.92 0.91
SemgHandMovementCh2 0.61 0.52 0.73 0.38 0.24 0.27 0.32 0.78 0.76
SemgHandSubjectCh2 0.72 0.72 0.79 0.56 0.38 0.34 0.32 0.87 0.85
ShapeletSim 1.00 0.86 0.94 0.54 0.84 0.91 0.74 0.65 0.63
ShapesAll 0.84 0.76 0.83 0.71 0.68 0.68 0.64 0.77 0.71
SmallKitchenAppliances 0.82 0.79 0.81 0.78 0.70 0.72 0.74 0.64 0.67
SmoothSubspace 0.96 0.93 0.91 0.98 0.67 0.81 0.71 0.83 0.85
SonyAIBORobotSurface1 0.55 0.66 0.78 0.59 0.50 0.57 0.55 0.73 0.62
SonyAIBORobotSurface2 0.82 0.78 0.87 0.82 0.83 0.84 0.84 0.83 0.80
StarLightCurves 0.97 0.98 0.98 0.97 0.89 0.90 0.88 0.91 0.91
Strawberry 0.93 0.91 0.95 0.95 0.71 0.77 0.67 0.94 0.92
SwedishLeaf 0.92 0.87 0.92 0.90 0.67 0.70 0.65 0.79 0.77
Symbols 0.87 0.91 0.97 0.85 0.88 0.95 0.91 0.95 0.93
SyntheticControl 0.99 0.97 0.98 0.83 0.96 0.89 0.87 0.99 0.98
ToeSegmentation1 0.83 0.78 0.97 0.60 0.90 0.93 0.93 0.77 0.75
ToeSegmentation2 0.65 0.87 0.95 0.58 0.88 0.85 0.88 0.84 0.82
Trace 0.99 0.93 1.00 0.51 0.89 0.99 0.96 1.00 1.00
TwoLeadECG 0.98 0.79 1.00 0.69 0.63 0.70 0.69 0.90 0.85
TwoPatterns 0.80 0.87 0.88 0.57 0.86 0.83 0.76 1.00 1.00
UMD 0.81 0.91 0.97 0.81 0.83 0.88 0.85 0.88 0.85

Table 9: Accuracy results of the different models with augmentations on the individual datasets with
a Random Forest classifier. (Part 4/6)
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UWaveGestureLibraryAll 0.91 0.95 0.95 0.85 0.84 0.84 0.88 0.79 0.89
UWaveGestureLibraryX 0.81 0.80 0.82 0.79 0.78 0.77 0.73 0.70 0.81
UWaveGestureLibraryY 0.75 0.74 0.77 0.73 0.72 0.72 0.66 0.64 0.76
UWaveGestureLibraryZ 0.74 0.75 0.75 0.74 0.74 0.71 0.67 0.64 0.74
Wafer 1.00 1.00 0.99 0.99 0.99 0.99 1.00 1.00 1.00
Wine 0.72 0.78 0.61 0.72 0.70 0.81 0.85 0.76 0.54
WordSynonyms 0.54 0.53 0.58 0.48 0.47 0.45 0.49 0.49 0.52
Worms 0.82 0.68 0.70 0.81 0.83 0.75 0.77 0.69 0.69
WormsTwoClass 0.84 0.82 0.81 0.81 0.81 0.83 0.82 0.75 0.78
Yoga 0.80 0.84 0.85 0.83 0.77 0.80 0.80 0.77 0.82
AllGestureWiimoteX 0.60 0.62 0.61 0.62 0.60 0.54 0.67 0.64 0.53
AllGestureWiimoteY 0.70 0.66 0.70 0.66 0.65 0.62 0.72 0.68 0.57
AllGestureWiimoteZ 0.60 0.61 0.62 0.62 0.59 0.56 0.65 0.63 0.51
GestureMidAirD1 0.74 0.81 0.72 0.75 0.71 0.68 0.61 0.49 0.62
GestureMidAirD2 0.68 0.71 0.69 0.72 0.67 0.65 0.49 0.44 0.63
GestureMidAirD3 0.52 0.50 0.51 0.50 0.48 0.43 0.34 0.28 0.41
GesturePebbleZ1 0.86 0.86 0.86 0.84 0.87 0.87 0.85 0.83 0.76
GesturePebbleZ2 0.86 0.82 0.82 0.87 0.85 0.90 0.80 0.82 0.71
PickupGestureWiimoteZ 0.78 0.76 0.74 0.82 0.70 0.68 0.68 0.62 0.80
ShakeGestureWiimoteZ 0.86 0.88 0.86 0.84 0.82 0.82 0.92 0.90 0.88
DodgerLoopDay 0.47 0.52 0.57 0.49 0.43 0.49 0.48 0.42 0.48
DodgerLoopGame 0.69 0.84 0.76 0.75 0.80 0.70 0.62 0.65 0.70
DodgerLoopWeekend 0.90 0.92 0.94 0.88 0.94 0.90 0.98 0.97 0.97
MelbournePedestrian 0.92 0.93 0.93 0.90 0.90 0.91 0.90 0.90 0.93
ArticularyWordRecognition 0.99 1.00 1.00 0.97 0.99 0.98 0.98 0.98 0.97
AtrialFibrillation 0.27 0.33 0.33 0.07 0.33 0.33 0.07 0.47 0.20
BasicMotions 1.00 1.00 1.00 0.97 0.97 1.00 1.00 0.97 1.00
Cricket 1.00 0.99 1.00 0.96 0.94 0.94 1.00 0.69 0.93
Epilepsy 1.00 1.00 1.00 0.97 0.97 1.00 0.99 0.99 0.99
EthanolConcentration 0.37 0.37 0.37 0.36 0.33 0.47 0.37 0.54 0.54
ERing 0.97 0.96 0.99 0.88 0.93 0.93 0.97 0.93 0.95
FaceDetection 0.63 0.57 0.58 0.57 0.59 0.58 NaN NaN 0.57
FingerMovements 0.48 0.54 0.52 0.56 0.48 0.51 0.52 0.53 0.47
HandMovementDirection 0.32 0.30 0.26 0.19 0.26 0.32 0.22 0.22 0.31
Handwriting 0.22 0.26 0.24 0.22 0.20 0.22 0.26 0.29 0.18
Heartbeat 0.73 0.74 0.76 0.74 0.73 0.75 0.73 0.73 0.73
Libras 0.87 0.88 0.88 0.73 0.73 0.81 0.84 0.84 0.87
LSST 0.59 0.61 0.61 0.60 0.60 0.60 0.58 0.56 0.58
NATOPS 0.81 0.82 0.89 0.86 0.82 0.84 0.80 0.83 0.82
PenDigits 0.97 0.96 0.96 NaN 0.95 0.95 0.97 0.96 0.95
PEMS-SF 1.00 0.95 0.99 0.99 1.00 0.99 NaN 1.00 0.98
PhonemeSpectra 0.26 0.25 0.24 0.27 0.25 0.22 0.27 0.24 0.26
RacketSports 0.83 0.86 0.86 0.80 0.81 0.75 0.84 0.90 0.84
SelfRegulationSCP1 0.84 0.79 0.82 0.75 0.77 0.77 0.82 0.76 0.75
SelfRegulationSCP2 0.57 0.54 0.53 0.56 0.54 0.49 0.50 0.47 0.43
UWaveGestureLibrary 0.88 0.86 0.86 0.81 0.83 0.88 0.68 0.68 0.81
CharacterTrajectories 0.96 0.97 0.98 0.93 0.93 0.96 0.95 0.95 0.96
JapaneseVowels 0.89 0.92 0.94 0.85 0.88 0.93 0.83 0.85 0.93
SpokenArabicDigits 0.96 0.97 0.97 NaN 0.96 0.94 NaN 0.96 0.97

Table 10: Accuracy results of the different models with augmentations on the individual datasets with
a Random Forest classifier. (Part 5/6)
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UWaveGestureLibraryAll 0.90 0.88 0.85 0.88 0.73 0.68 0.66 0.89 0.90
UWaveGestureLibraryX 0.80 0.76 0.77 0.71 0.74 0.72 0.71 0.73 0.74
UWaveGestureLibraryY 0.75 0.68 0.69 0.65 0.65 0.64 0.62 0.63 0.63
UWaveGestureLibraryZ 0.72 0.71 0.73 0.65 0.66 0.67 0.66 0.66 0.67
Wafer 1.00 0.99 0.99 0.99 0.92 0.91 0.90 0.98 0.98
Wine 0.54 0.48 0.80 0.80 0.52 0.56 0.44 0.57 0.57
WordSynonyms 0.54 0.45 0.58 0.44 0.43 0.42 0.41 0.65 0.60
Worms 0.73 0.75 0.65 0.56 0.62 0.64 0.61 0.58 0.39
WormsTwoClass 0.81 0.83 0.79 0.60 0.73 0.77 0.77 0.62 0.55
Yoga 0.84 0.72 0.82 0.77 0.66 0.62 0.62 0.84 0.82
AllGestureWiimoteX 0.52 0.59 0.60 0.29 0.52 0.58 0.59 0.71 0.62
AllGestureWiimoteY 0.50 0.60 0.59 0.30 0.54 0.64 0.61 0.68 0.61
AllGestureWiimoteZ 0.51 0.56 0.63 0.28 0.48 0.56 0.53 0.70 0.64
GestureMidAirD1 0.67 0.58 0.58 0.54 0.66 0.66 0.58 0.45 0.39
GestureMidAirD2 0.65 0.55 0.65 0.47 0.60 0.58 0.63 0.32 0.33
GestureMidAirD3 0.41 0.32 0.33 0.33 0.37 0.39 0.34 0.18 0.15
GesturePebbleZ1 0.73 0.72 0.88 0.65 0.77 0.80 0.79 0.69 0.72
GesturePebbleZ2 0.72 0.66 0.86 0.60 0.77 0.74 0.76 0.67 0.69
PickupGestureWiimoteZ 0.70 0.70 0.88 0.32 0.66 0.64 0.54 0.74 0.68
ShakeGestureWiimoteZ 0.90 0.76 0.86 0.34 0.76 0.80 0.80 0.86 0.90
DodgerLoopDay 0.53 0.48 0.51 0.32 0.38 0.39 0.38 0.45 0.44
DodgerLoopGame 0.63 0.72 0.76 0.58 0.70 0.68 0.69 0.90 0.88
DodgerLoopWeekend 0.94 0.83 0.95 0.89 0.93 0.87 0.90 0.95 0.96
MelbournePedestrian 0.92 0.87 0.91 0.97 0.59 0.68 0.64 0.88 0.88
ArticularyWordRecognition 0.98 0.96 0.99 0.88 0.79 0.80 0.78 0.99 0.98
AtrialFibrillation 0.20 0.07 0.27 0.33 0.27 0.13 0.13 0.20 0.33
BasicMotions 1.00 1.00 1.00 0.85 0.97 0.95 0.95 0.97 0.85
Cricket 0.90 0.99 1.00 0.72 0.46 0.44 0.47 1.00 1.00
Epilepsy 0.99 0.99 1.00 0.88 0.98 0.98 0.98 0.96 0.95
EthanolConcentration 0.47 0.38 0.30 0.53 0.26 0.33 0.25 0.32 0.28
ERing 0.94 0.86 0.93 0.84 0.79 0.86 0.81 0.91 0.93
FaceDetection 0.56 0.58 0.52 0.55 0.52 0.51 0.51 0.53 0.54
FingerMovements 0.51 0.55 0.54 0.56 0.47 0.53 0.54 0.53 0.54
HandMovementDirection 0.28 0.28 0.28 0.26 0.18 0.24 0.24 0.19 0.20
Handwriting 0.17 0.15 0.33 0.13 0.16 0.15 0.12 0.61 0.50
Heartbeat 0.76 0.75 0.79 0.72 0.72 0.70 0.71 0.72 0.73
Libras 0.89 0.84 0.88 0.78 0.44 0.56 0.49 0.87 0.86
LSST 0.55 0.56 0.61 0.43 0.52 0.51 0.49 0.55 0.56
NATOPS 0.82 0.83 0.92 0.72 0.62 0.58 0.54 0.88 0.87
PenDigits 0.95 0.96 0.94 0.96 0.72 0.80 0.77 0.98 0.98
PEMS-SF 0.98 0.83 0.99 0.98 NaN NaN 0.83 0.71 0.53
PhonemeSpectra 0.25 0.20 0.27 0.11 0.19 0.22 0.21 0.15 0.14
RacketSports 0.88 0.82 0.92 0.83 0.58 0.59 0.51 0.80 0.83
SelfRegulationSCP1 0.76 0.82 0.80 0.75 0.69 0.62 0.62 0.77 0.83
SelfRegulationSCP2 0.52 0.52 0.46 0.45 0.50 0.48 0.49 0.54 0.49
UWaveGestureLibrary 0.85 0.83 0.82 0.81 0.62 0.65 0.64 0.90 0.90
CharacterTrajectories 0.97 0.96 0.96 0.95 0.83 0.83 0.81 0.99 0.98
JapaneseVowels 0.94 0.93 0.96 0.95 0.39 0.39 0.32 0.96 0.96
SpokenArabicDigits 0.97 0.95 0.95 0.93 0.81 0.78 0.76 0.97 0.97

Table 11: Accuracy results of the different models with augmentations on the individual datasets with
a Random Forest classifier. (Part 6/6)
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