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Abstract

Recent research on time series foundation models has primarily focused on fore-
casting, leaving it unclear how generalizable their learned representations are. In
this study, we examine whether frozen pre-trained forecasting models can pro-
vide effective representations for classification. To this end, we compare different
representation extraction strategies and introduce two model-agnostic embedding
augmentations. Our experiments show that the best forecasting models achieve
classification accuracy that matches or even surpasses that of state-of-the-art models
pre-trained specifically for classification. Moreover, we observe a positive correla-
tion between forecasting and classification performance. These findings challenge
the assumption that task-specific pre-training is necessary, and suggest that learning
to forecast may provide a powerful route toward constructing general-purpose time
series foundation models.

1 Introduction

In time series forecasting, foundation models are becoming increasingly prominent. They are large
models that are pre-trained on broad data, and therefore have the ability to generalize across unseen
datasets [3| [33} [14} 13} |6]]. New benchmarks with public leaderboards such as GiftEval [1]] and
BOOM [13] have accelerated advances in state-of-the-art methods. Apart from forecasting, Time
Series Classification (TSC) is another key application in time series analysis.

Earlier general-purpose time series models [20, [19] evaluated multiple downstream tasks, but recent
work shows that they have failed to reach state-of-the-art performance in either forecasting or
classification [[17,116]. More recently, the majority of newly introduced foundation models [6, [13} 25|
32, 22]] have been optimized specifically for forecasting, and only few have focused on classification
[L7,[24]. Some argue that pre-training objectives should be aligned with downstream applications, for
example, contrastive objectives for classification or masked reconstruction for imputation [17]. This
perspective suggests that task-specialized pre-training may be necessary for optimal performance,
which is in contrast to language and vision foundation models, where a single pre-trained model often
transfers effectively across many diverse tasks [[11} [12].

This contrast motivates our central research question: How well do representations from pre-
trained forecasting models transfer to classification tasks? To answer this question, we evaluate a
diverse set of forecasting models as frozen feature extractors on TSC benchmarks, analyze key design
choices for representation extraction, and investigate the role of model architectures. Beyond the
direct application to classification, our study aims to provide broader insights into the generalizability
of learned representations, which is a step toward developing true time series foundation models.

Our contributions are as follows: (1) We show that representations from pre-trained forecasting
models yield classification accuracy on par with, and in some cases surpassing state-of-the-art
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models pre-trained explicitly for classification. (2) We analyze design decisions for leveraging
forecasting models in classification, providing practical guidance for future applications. (3) We
propose two model-agnostic representation augmentations that incorporate absolute statistical features
and differentiated series to further improve classification performance.

The remainder of the paper introduces the problem setup, details our methodology for using forecast-
ing models as feature extractors (Section[2)), presents the experimental setup (Section [3)) and results
(Section ), and concludes with key findings (Section|[3).

Problem Setup: Time Series Classification The TSC task is defined over a dataset D =
{(xi,y:)}Y,, where each sample consists of a time series x; and its corresponding class label
y;. A time series x; € RT*V is a sequence of 1" observations over V' variates, and the label y;
belongs to one of K discrete classes. The objective is to learn a model that can accurately predict the
label for a new, unseen time series.

2 Zero-Shot Forecasting Models as Classification Models

We leverage pre-trained time series forecasting models as feature extractors. Instead of training a
classifier on the raw time series x;, we use a pre-trained model F to map x; to a latent representation
z; = E(x;), which is then fed into a simple classifier C, to output the final prediction g; = C},(z;).
We refer to z; also as embedding of x;.

We exclusively use a zero-shot protocol for these models, meaning the parameters of the pre-trained
model E are frozen and never fine-tuned. For each TSC dataset, we only train a standard out-of-the-
box classifier C'y, on top of the embeddings produced by E. This approach allows us to isolate and
evaluate the quality and generalizability of the representations learned by the forecasting models.

Embedding Extraction & Aggregation. Most state-of-the-art forecasting models do not specify a
canonical method for extracting a single, fixed-size embedding for an entire time series. However, as
the majority utilize a transformer(-likeﬂ block-based architecture, we can extract hidden states at
various points in the network. This presents two key design choices: how to aggregate information
along (1) layer and (2) sequence dimensions. We hypothesize that simply using the output from the
final token of the final layer is suboptimal. First, it is unclear which layer contains the best abstraction
and transferable representation, as deeper layers often specialize to the original pre-training task,
losing generalizability [34, 2]. Second, relying on the last sequence position may neglect important
information contained earlier in the series.

We investigate different aggregation strategies in our ablations. For our main experiments, we apply
mean pooling across the sequence dimension and concatenate these layer-wise representations. This
sequence-pooling strategy also inherently handles datasets with variable-length time series, ensuring
a fixed-size embedding dimension. The ablation study in Appendix [C.2]confirms that aggregating
across both dimensions is crucial.

Multivariate Data & Univariate Models. Most top-performing pre-trained forecasting models
are univariate. For multivariate time-series classification, we adopt a proven forecasting technique:
treating each variate independently [28] 16]]. We therefore process each of the V' variates independently
through the frozen model E to yield V separate embeddings.

The subsequent design choice is how to aggregate these per-variate embeddings into a single repre-
sentation. We hypothesize that pooling discards variate-specific information, while concatenation
preserves it. Accordingly, we concatenate the per-variate embeddings in our main experiments, a
choice empirically confirmed by our ablation studies (Appendix [C.2), which show concatenation
consistently outperforms pooling. We apply the same strategy to multivariate models that output
per-variate embeddings.

2.1 Embeddings Augmentations

Absolute Sample Statistics. A common characteristic of pre-trained forecasting models is the use
of instance normalization. While effective for forecasting, this removes all information regarding
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Type A Univariate Multivariate Overall
No Aug Stat+Diff No Aug Stat+Diff No Aug  Stat+Diff

TiRex Dec yes 0.80 0.81 0.74 0.74 0.79 0.80
Chr. Bolt (Base) EncDec yes 0.77 0.79 0.72 0.74 0.76 0.78
Moirai (Large) Enc yes 0.79 0.80 0.70 0.70 0.78 0.78
TimesFM 2.0 Dec yes 0.79 0.79 0.70 0.70 0.77 0.78
TimesFM 1.0 Dec yes 0.74 0.75 0.71 0.72 0.73 0.74
Chronos (Base) EncDec yes 0.71 0.76 0.71 0.72 0.71 0.75
Toto Dec yes 0.71 0.74 0.71 0.70 0.71 0.73
Mantis Enc no 0.79 0.74 0.78
NuTime Enc no 0.67 0.68 0.67
Moment (Large) Enc no 0.63 0.57 0.62
DTW - - 0.73 0.72 0.73

Table 1: Classification accuracy of different models for the univariate, multivariate, and combined
benchmark (Random Forest). “Stat+Diff”” shows results with both proposed augmentations applied;
“no Aug” utilizes the pure forecasting model representations. “ZS” indicates models that did not have
access to the benchmarks training data during pre-training.

Overall (No Aug) Overall (Stat + Diff)
1110 9 8 7 6 5 4 3 2 1 1110 9 8 7 6 5 4 3 2 1
| I I N A P P T I T I P A P P
Moment (Large) 9.624 L 37752 TiRex Moment (Large) 97732 L 38322 TiRex
NuTime 76745 | L 44161 Moirai (Large) NuTime 78235 | L 42584 Chr. Bolt (Base)
Chronos (Base) 71644 | L 44765 Mantis ToTo 6.9228 47118 \oiraj (Large)
ToTo 11376 | L 45369 rimesrm 2.0 prw 67819 48322 fimesFM 2.0
prw 681107 51080 cpr. golt (Base) TimesfM 1.0 —6:3154 48523 \antis
5.9799 TimesFM 1.0 5.8658

Chronos (Base)

Figure 1: Critical difference plot of the average accuracy ranks for the evaluated models across the
combined benchmark datasets (Random Forest). Left without augmentation; right with augmentations.
Models connected by a bar are not significantly different (Wilcoxon signed-rank test).

the absolute values and scale of the time series. We hypothesize that for many classification tasks,
this information might be an important discriminative signal. To recover it, we propose to augment
the model’s embedding with basic sample statistics. We divide the input time series X; into k
non-overlapping patches (k = 8 in our main experiments). For each patch, we calculate its mean,
standard deviation, minimum, and maximum values. These statistics are then concatenated with
the embedding z; from the model to form the final representation. Using a fixed number of patches
ensures the resulting feature vector has a consistent size.

Time Series Differencing. Time series may contain strong trends that can dominate the signal and
mask more subtle patterns. To isolate these patterns, we propose to employ first-order differencing.
We generate a new, differenced time series by taking the difference between consecutive time steps
(x; = x¢ — x¢—1). This transformation, inspired by classical time series analysis, removes the
local trend, making the resulting series more stationary and emphasizing step-to-step changes. The
differenced series is then processed by the same pre-trained model to produce a second embedding,
which is concatenated to the original embedding.

3 Experiments

Our evaluation uses the UCR [[15]] and UEA [7] archives, comprising 127 univariate and 30 multivari-
ate classification datasets with predefined train/test splits. We excluded 5 datasets with sample lengths
exceeding 2048 and 2 others due to processing problems. We evaluate a set of leading pre-trained
forecasting models, including TiRex [6], Chronos (Bolt) [3], TimesFM [14], and Moirai [33] —
including the newest and previous model generations and different sizes. These are compared against
Moment [20], a “general” pre-trained model, the classification-specific pre-trained models NuTime
[24] and Mantis [17], and Dynamic Time Warping (DTW) [[10] as a baseline. For each pre-trained



model, we extract embeddings and train a Random Forest, a linear layer, and a kNN classifier on top
— and evaluate accuracy. Details on the experiment setup are presented in Appendix

4 Results

This section reports results using the best-performing classifier (Random Forest) and the largest
model size for each model. The main results are summarized in Table[I] and Figure|[I] Full results for
all classifiers, model sizes, and ablations are available in Appendix [C| In the following, we discuss
the individual aspects of our main findings.

Forecasting Models are Effective Zero-Shot Feature Extractors. The best forecasting models
achieve accuracies competitive with or exceeding Mantis, a state-of-the-art model designed for this
classification task. This result is particularly interesting because the forecasting models had no
exposure to the classification benchmarks during their pre-training, unlike Mantis and NuTime, which
were also pre-trained on the training split of the benchmarks. The results are robust across other
classifier (Appendix [C.I)), metrics (Appendix [C.4), and benchmark configuration (Appendix [C.5).
This suggests that pre-training towards forecasting tasks might be a viable path for generating
general-purpose time series representations.

Forecasting and Classification Performance Cor-
relate. We observe a positive correlation between
a model’s performance on the GiftEval forecasting
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Impact of Model Architecture. Results do not point Figure 2: Classification accuracy versus
to a superior architectural paradigm (Encoder, Decoder, forecasting performance (CRPS on GiftE-
Encoder-Decoder). Both, the top- and low-performing val) of the evaluated models. The trend (red
models, are diverse in that regard. Regarding base ar- line) shows that better forecasting ability
chitecture, TiRex, as the only non-Transformer model, (lower CRPS) relates to higher classifica-
performs best. If the forecast advantage stems from tion accuracy.

its state-tracking capability, as prior work suggests [6],

then this benefit seems to transfer to classification, im-

plying a better general representation.

Efficacy of Augmentations. The proposed augmentations improve the results across most models
— the significance regarding the signed rank test varies between the results. Detailed results including
ablation of the individual augmentations and a qualitative analysis are presented in Appendix [C.3]

5 Conclusion

This work demonstrates that pre-trained forecasting models are effective zero-shot feature extractors
for time series classification. We found that representations from strong forecasting models match or
even exceed the performance of specialized classification models — particularly noteworthy as the
forecasting models did not pre-train with benchmark training data, while the classification-specific
models did. This finding, combined with a positive correlation between forecasting and classification
performance, questions the need for task-specific pre-training.

Limitations & Future Work The work focuses on a zero-shot evaluation protocol and does not
include fine-tuning. This choice ensures a fair comparison of the base representations, as optimal
fine-tuning strategies might be highly model-specific. The work also omits a direct comparison to
task-specific and supervised classifiers; however, prior work [[17, 24} 20] has already shown that the
pre-trained classification models we evaluate are competitive with these. Future work could probe the
generalizability of these representations on other tasks, such as anomaly detection.
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A Related Work

Pre-trained foundation models have become popular in time series analysis. Early explorations
adapted Large Language Model (LLM) for time series tasks [21]], while more recent models typically
only borrow the architecture from LLM’s but pre-train with time series tasks and data. While there is
a recent focus on forecasting [30] 33} [14] [3] (16} |6}, 13| [5]1, other literature has explored models
for a wider range of downstream tasks, including classification: General-purpose models like Moment
[20], GPTA4TS, [37]], and UniTS [19] address classification alongside other tasks. More specialized
models, like Mantis and NuTime [24]] focus specifically on pre-training for classification tasks.
For our analysis, Moment, Mantis, and NuTime are particularly suitable as they allow feature
extraction without task-specific fine-tuning. We note, however, that they are not “zero-shot” on our
evaluated benchmark, as their pre-training corpora include the training split of the benchmark.

Distinct from the generalizable pre-training paradigm, another line of research involves task-specific
unsupervised classification models. These methods are typically trained per-dataset. While some
support limited transfer learning, they do not allow for zero-shot feature extraction with a single,
fixed model. Notable examples include TLoss [18]], TS2Vec[33]], TF-C [36] and Ti-MAE [23]].

Additionally, there is extensive literature on supervised classification models that are mostly not
based on deep learning. These classical methods often rely on ensembles and heuristically engineered
features. and provide a good overview of these methods.



B Experiment Details

B.1 Benchmark Data

For our evaluation we utilize the UCR [[15] (127 univariate datasets) and the UEA [7]] (30 multivariate
datasets) classification benchmark datasets. The benchmark covers various types and domains of time
series including for example sensor, audio, motion or health data. The train and test split is predefined
by the benchmarks. We removed datasets with a sample length over 2048, which is the case for 5
datasets. Specifically, these are: Motorlmagery, HandOutlines, StandWalkJump, EigenWorms, and
Rock. Further, we removed InsectWingbeat and PLAID as these lead to processing problems across
the majority of models in the classifier training, likely due to their size.

B.2 Pre-trained Models and Implementation Details

We evaluate a suite of prominent pre-trained forecasting models: TiRex [6], ToTo [[13], Chronos [3]],
Chronos Bolt [4], TimesFM (1.0 and 2.0) [14], and Moirai[33]]. When possible (e.g., for TimesFM
and Chronos), we analyze both the newest and the previous generation of the models. This gives a
better insight into how improvements in forecasting translate to gains in classification, i.e., how they
reflect enhancements in the general, underlying representation. We compare these forecasting models
to Moment [20], NuTime [24], and Mantis [17]. Moment is a "general" pre-trained time series models
— NuTime and Mantis are classification-specific pre-trained models. These models support a feature
extraction approach as introduced in Section 2] without fine-tuning. However, they are not really
“zero-shot” as (parts) of the training data of the classification benchmark are utilized in pre-training.
Additionally, we compare to Dynamic Time Warping (DTW) as a baseline. Implementation details
are provided in the following:

* TiRex [[6]: We utilize the official pre-trained weights from [Hugginface and adapt the original
source code from GitHub to extract hidden layer representations.

Chronos / Chronos Bolt [3| 4]: For both Chronos and Chronos Bolt, we evaluate the
small and base model size. This model family is unique in providing a dedicated API for
embedding extraction. We utilize this API, which returns a single-layer representation, and
therefore only perform aggregation along the sequence dimension.

TimesFM [14]:For both versions 1.0 and 2.0, we use the official PyTorch weights from
Hugging Face and modify the source code from |GitHub) to access hidden states from all
decoder layers.

Moirai [33]]: We evaluate Moirai 1.1 in all model sizes (small, base, and large). We utilize
the official pre-trained weights from Hugginface and adapt the original source code from
GitHub to extract hidden layer representations. While inherently multivariate, Moirai’s
“variate flattening” fails on datasets with a very high number of variates due to memory
constraints. In these cases, we apply the model in a univariate fashion to each variate and
concatenate the resulting embeddings. This is the case for the following datasets:
— Moirai Small: FaceDetection, Heartbeat, Motorlmagery, PEMS-SF, SpokenArabicDig-
its
— Moirai Base: FaceDetection, Heartbeat, MotorImagery, PEMS-SF, PhonemeSpectra,
SpokenArabicDigits
— Moirai Large: FaceDetection, FingerMovements, Heartbeat, LSST, MotorImagery,
NATOPS, PEMS-SF, PhonemeSpectra
Mantis [17]: We follow the official zero-shot feature extraction procedure from their Github!
repository, which includes interpolating all time series to a fixed length of 512 before
embedding.

NuTime [24]: Following the protocol in [17] we use the pre-trained weights provided in
the respective |GitHub repository, while utilizing the hyperparameters according to this
configuration file. We use NuTime in zero-shot feature extraction mode, i.e., variates are
embedded independently.

Moment [20]: We use the official zero-shot feature extraction method as demonstrated in
their GitHub repository and evaluate all size variants (small, base, and large).

Dynamic Time Warping (DTW): We use the implementation of the acon library [26].


https://huggingface.co/NX-AI/TiRex
https://github.com/NX-AI/tirex
https://github.com/google-research/timesfm/tree/master/notebooks
https://github.com/SalesforceAIResearch/uni2ts
https://github.com/vfeofanov/mantis/blob/main/getting_started/single_channel_extract_feats.ipynb
https://github.com/vfeofanov/mantis/blob/main/getting_started/single_channel_extract_feats.ipynb
https://github.com/chenguolin/NuTime
https://github.com/chenguolin/NuTime/blob/main/configs/demo_ft_epilepsy.json
https://github.com/chenguolin/NuTime/blob/main/configs/demo_ft_epilepsy.json
https://github.com/moment-timeseries-foundation-model/moment/blob/main/tutorials/representation_learning.ipynb

B.3 Failure Fallback: DTW

Certain model and dataset combinations result in computational failures (e.g., out-of-memory errors).
To avoid skewing aggregate metrics by either dropping these results or assigning a score of zero, we
adopt a fallback strategy: For any failed run, we substitute the model’s result with the performance of
our DTW baseline on that specific dataset. This approach ensures a complete comparison, mirroring
a practical scenario. Fallbacks were utilized for the following model-dataset combinations:

e TimesFM 1.0: Crop, FaceDetection

e TimesFM 2.0: FaceDetection, PEMS-SF, SpokenArabicDigits

* Moirai (Large): Crop, ElectricDevices, StarLightCurves, PenDigits, SpokenArabicDigits
* Moment (Base & Large): PEMS-SF

B.4 Classifier Training & Hyperparameter

We evaluate three classifiers on the extracted embeddings: Random Forest (as suggested by [[17] for
Mantis), a linear model, and kNN as a baseline. This tests the linear and non-linear separability of
the embeddings. Details are provided in the following:

* Random Forest implemented with scikit-learn [29]. Following the protocol from [[17], we
use “n_estimators=300""; keeping all other parameters at their default values.

* Linear Model implemented with PyTorch. It consists of a single linear layer trained with
the AdamW optimizer (learning rate 10~%, weight decay 10~2). We use a 20% validation
split from the training data for early stopping (patience of 100), with a maximum of 10,000
epochs.

* kNN implemented with scikit-learn [29]. We use “n_neighbors=1" (1-NN) with the cosine
similarity as distance metric.

B.5 Critical Difference Plots

All critical difference plots in the paper show the average accuracy rank of each method (lower is
better). A horizontal bar connects models with no statistically significant difference in performance.
This significance is determined by a pairwise Wilcoxon signed-rank test with a Holm correction at a
significance level of o = 0.1.



Type A Univariate Multivariate Overall
No Aug Stat+Diff No Aug Stat+Diff No Aug Stat+Diff

TiRex Dec yes 0.80 0.81 0.74 0.74 0.79 0.80
Chr. Bolt (Base) EncDec yes 0.77 0.79 0.72 0.74 0.76 0.78
Chr. Bolt (Small) EncDec yes 0.77 0.79 0.73 0.74 0.76 0.78
Moirai (Large) Enc yes 0.79 0.80 0.70 0.70 0.78 0.78
Moirai (Base) Enc yes 0.79 0.79 0.69 0.71 0.77 0.78
Moirai (Small) Enc yes 0.75 0.77 0.69 0.73 0.74 0.77
TimesFM 2.0 Dec yes 0.79 0.79 0.70 0.70 0.77 0.78
TimesFM 1.0 Dec yes 0.74 0.75 0.71 0.72 0.73 0.74
Chronos (Base) EncDec yes 0.71 0.76 0.71 0.72 0.71 0.75
Chronos (Small)  EncDec yes 0.70 0.75 0.70 0.72 0.70 0.75
ToTo Dec yes 0.71 0.74 0.71 0.70 0.71 0.73
Mantis Enc no 0.79 0.74 0.78
NuTime Enc no 0.67 0.68 0.67
Moment (Large) Enc no 0.63 0.57 0.62
Moment (Base) Enc no 0.65 0.57 0.64
Moment (Small) Enc no 0.63 0.56 0.62
DTW (1-NN) - - 0.73 0.72 0.73
DTW (3-NN) - - 0.71 0.71 0.71

Table 2: Classification Accuracy of different models (and sizes) for the univariate, multivariate, and
combined benchmark (Random Forest). “Stat+Diff”” shows results with both proposed augmentations
applied; “no Aug” utilizes the pure forecasting model representations. “ZS” indicates models that did
not have access to the benchmarks training data during pre-training.

C Extended Results

This section provides extended results to Section [3] Extending Table [I] Table 2] shows the results for
all evaluated model sizes. In almost all cases, larger models perform better, which aligns with the
performance trend observed in forecasting. A notable exception is Moment, where the base model
outperforms the large version.

The following subsections provide further analysis, including results for different classifiers (Sec-
tion|C.T)), ablations of the aggregation methods (Section|C.2)), ablations and analysis of the embedding
augmentation (Section|C.3)), and robustness checks using a different metric (Section[C.4) and a dataset
subset (Section[C.3). The main results for each individual dataset are presented in Table [6]- [T1]

C.1 Results for different Classifiers

This section complements the main paper’s evaluation by presenting the results for the other two
classifiers: the gradient-based trained linear model and the 1-NN baseline. The results are shown in
Table

The overall performance ranking of the models is largely consistent with the main evaluation, which
uses a Random Forest. While there are minor shifts in relative performance — for example, with the
linear classifier, the results for TiRex and Chronos-Bolt are not significantly different — key insights
from our paper hold. The best forecasting models perform on par with pre-trained classification
models and forecasting performance is correlated with classification accuracy. However, a difference
is that when using the simplest classifier (1-NN), the forecasting models no longer outperform Mantis,
the best pre-trained classification model.

We hypothesize that this discrepancy arises because less powerful classifiers, such as linear models
or kNN, have a limited ability to transform the feature space. The embedding space of a model
pre-trained on classification, like Mantis, might be already better aligned with the classification task.
In contrast, a non-linear model like a Random Forest can better identify and exploit the relevant
discriminative information, which we assume is present in the embeddings from both forecasting and
classification models.
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Linear 1-NN
Univariate Multivariate Overall Univariate Multivariate Overall

TiRex 0.78 0.72 0.77 0.75 0.67 0.74
Chr. Bolt (Base) 0.76 0.73 0.76 0.75 0.68 0.74
Chr. Bolt (Small) 0.76 0.73 0.75 0.75 0.68 0.74
Moirai (Large) 0.79 0.70 0.77 0.77 0.64 0.75
Moirai (Base) 0.78 0.70 0.76 0.76 0.65 0.74
Moirai (Small) 0.75 0.69 0.74 0.72 0.63 0.71
TimesFM 2.0 0.75 0.70 0.74 0.71 0.56 0.69
TimesFM 1.0 0.73 0.69 0.72 0.70 0.65 0.69
Chronos (Base) 0.71 0.72 0.71 0.67 0.66 0.67
Chronos (Small) 0.69 0.70 0.69 0.66 0.66 0.66
ToTo 0.70 0.71 0.70 0.65 0.63 0.65
Mantis 0.77 0.73 0.76 0.77 0.72 0.76
NuTime 0.59 0.63 0.59 0.60 0.61 0.60
Moment (Large) 0.58 0.44 0.55 0.61 0.55 0.60
Moment (Base) 0.58 0.48 0.56 0.56 0.50 0.55
Moment (Small) 0.54 0.47 0.53 0.53 0.48 0.52
DTW (1-NN) 0.73 0.72 0.73 0.73 0.72 0.73
DTW (3-NN) 0.71 0.71 0.71 0.71 0.71 0.71

Table 3: Classification accuracy of different models and classifiers (linear model and 1-NN) for the
univariate, multivariate, and combined benchmark.
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C.2 Ablation Analysis: Aggregation Methods

Sequence & Layer Aggregation We conduct an ablation study of the method to aggregate the
hidden states across both the layer and sequence dimensions. For layer aggregation, we evaluated
four strategies: concatenation of all layer representations, mean pooling, max pooling, and using only
the representation from the last layer. For sequence aggregation, we considered mean pooling, max
pooling, and using the last output. Concatenation is not a viable option for the sequence dimension,
as it would result in variable-length embeddings dependent on the sample length. After the sequence
aggregation and before the layer aggregation we normalize the embeddings as different layers might
operate in different feature spaces. For the Chronos models, which have a predefined method for
embedding extraction, we only ablated the sequence aggregation strategy.

Figures 3|{T1] present the results. Each figure presents a table with the mean accuracy over univariate,
multivariate, and all datasets, complemented by a critical difference plot of mean ranks to visualize
statistical significance. Across almost all models, the combination of mean pooling over the sequence
dimension and concatenation over the layer dimension is the top-performing strategy. In no case any
other strategy combination performs significantly better.

Uni Multi Comb
Seq Layer

Mean Concat 0.80 0.74 0.79

Mean Mean 0.79 0.73 0.78

Max Concat 0.79 0.73 0.78

Mean Max 079 072 077 00,0

Max  Mean 077 073 077 N
Max Max 0.76 0.72 0.75
Last Concat  0.75 0.73 0.75 50560 Sa597
Seq:Last Layer:Last ———— L——=—=—""— Seq:Mean Layer:Concat

Mean LaSt 075 071 075 SeZ:Max Laier:Last 9.3624 L 43255 Se::Max Lay:r:Concat
LaSt Mean 074 072 074 Seq:Mean Layer:Last 7.8389 4.7987 Seq:Mean Layer:Mean
Last Max 0.73 0.71 0.73 Seq:Last Layer:Max 7.6477 5.3289 Seq:Mean Layer:Max
Max Last 072 070 072 Seq:Max Layer:Max 6.9866 5.6141 Seq:Last Layer:Concat
LaSt LaSt 0 70 O 69 0 70 Seq:Last Layer:Mean 6.9295 5.7517 Seq:Max Layer:Mean

(a) Average Accuracy (b) Average Accuracy Rank (Overall benchmark)

Figure 3: Results for TiRex for the layer and sequence aggregation ablation experiments. (a)
Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark datasets.
Sorted by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.

Uni Multi Comb
seq L

Mean Concat 0.79 0.69 0.77
Max Concat  0.78 0.70 0.76
Mean Mean 0.78 0.69 0.76
Max Mean 077 069 076 AR RN

2 1
i

Mean Max 077 068 076 In

Last Concat  0.77 0.69 0.76 LFT]

Mean Last 0.77 0.68 0.75 T

LaSt Mean 0 76 0 68 0 75 Seq:Last Layer:Last _9.5134 | L 40537 Seq:Mean Layer:Concat
: : : Seq:Max Layer:Last 82483 5.2013 Seq:Mean Layer:Mean

Max Max 076 068 075 Seq:Last Layer:Max 7.7013 5.3322 Seq:Max Layer:Concat

Last Max 0.75 067 0.74 Seq:Max Layer:Max 7.1913 5.7651 Seq:Last Layer:Concat

q 1 Layer:Last 6.6544 5.8289 Seq:Max Layer:Mean
I]?/I‘aas): izz: 8;; 82‘7‘. 8;? Seq:Last Lay:r:Mean 6.4060 6.1040 Seq:Mean L);yer:Max
(a) Average Accuracy (b) Average Accuracy Rank (Overall benchmark)

Figure 4: Results for Moirai 1.1 (Base) for the layer and sequence aggregation ablation experi-
ments. (a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark
datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.
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Uni Multi Comb
Seq Layer
Mean Concat 0.79 0.70 0.77
Max Concat 0.78 0.71 0.77
Last Concat  0.77 0.74 0.77
Max Mean 0.77 0.70 0.76
Mean Mean 0.77 0.69 0.76
Last Mean 0.76 0.73 0.75
Last Max 0.74 0.73 0.74
Mean Max 0.74 0.68 0.73
Max Max 0.73 0.69 0.73
Last Last 0.71 0.69 0.70
Mean Last 0.71 0.68 0.70
Max Last 0.70 0.67 0.70

(a) Average Accuracy

121110 9 8 7 6 5 4 3 2 1
| IS I IS I P
Seq:Max Layer:Last 9.6644 4.1275 Seq:Last Layer:Concat
Seq:Mean Layer:Last 9.2584 4.1846 Seq:Max Layer:Concat
Seq:Last Layer:Last 9.0973 4.4329 Seq:Mean Layer:Concat
Seq:Mean Layer:Max 7.6242 4.8826 Seq:Max Layer:Mean
Seq:Max Layer:Max 7.2685 5.4228 Seq:Last Layer:Mean
6.2181 5.8188

Seq:Last Layer:Max Seq:Mean Layer:Mean

(b) Average Accuracy Rank (Overall benchmark)

Figure 5: Results for TimesFM 2.0 for the layer and sequence aggregation ablation experiments.
(a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark
datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.

Uni Multi Comb
Seq Layer
Mean Concat 0.74 0.71 0.73
Last Concat  0.73 0.72 0.73
Max Concat 0.73 0.69 0.73
Mean Mean 0.73 0.70 0.72
Max Mean 0.73 0.69 0.72
Last Mean 0.72 0.71 0.72
Mean Max 0.72 0.68 0.71
Last Max 0.71 0.69 0.71
Max Max 0.71 0.66 0.71
Mean Last 0.69 0.68 0.69
Last Last 0.69 0.67 0.69
Max Last 0.68 0.66 0.68

(a) Average Accuracy

121110 9 8 7 6 5 4 3 2 1
Lodladlalylalalslalalala]
Seq:Max Layer:Last _9:3356 | 4.1409 Seq:Mean Layer:Concat
Seq:Mean Layer:Last 8.4597 4.6376 Seq:Last Layer:Concat
Seq:Last Layer:Last 8.4027 5.1544 Seq:Mean Layer:Mean
Seq:Max Layer:Max 7.7517 5.2752 Seq:Max Layer:Concat
Seq:Last Layer:Max 6:8121 5.7081 Seq:Max Layer:Mean
6.6074 5.7148

Seq:Mean Layer:Max Seq:Last Layer:Mean

(b) Average Accuracy Rank (Overall benchmark)

Figure 6: Results for TimesFM 1.0 for the layer and sequence aggregation ablation experiments.
(a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark
datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.

Uni Multi Comb
Seq Layer
Mean Concat 0.71 0.71 0.71
Mean Mean 0.70 0.70 0.70
Max Concat  0.69 0.72 0.69
Last Concat 0.69 0.72 0.69
Mean Max 0.68 0.70 0.68
Max Mean 0.67 0.71 0.68
Last Mean 0.67 0.71 0.67
Mean Last 0.66 0.68 0.66
Last Max 0.65 0.71 0.66
Max Max 0.64 0.68 0.64
Last Last 0.62 0.70 0.64
Max Last 0.62 0.67 0.63

(a) Average Accuracy

121110 9 8 7 6 5 4 3 2 1
| IS I I I T A
Seq:Max Layer:Last _9.0839 | L 3.8423 Seq:Mean Layer:Concat
Seq:Last Layer:Last 87315 | 4.7047 Seq:Mean Layer:Mean
Seq:Max Layer:Max 8.4362 4.7215 Seq:Last Layer:Concat
Seq:Mean Layer:Last 7.6208 4.8758 Seq:Max Layer:Concat
Seq:Last Layer:Max 7.2752 6.1309 Seq:Last Layer:Mean
6.4161 6.1611

Seq:Mean Layer:Max Seq:Max Layer:Mean

(b) Average Accuracy Rank (Overall benchmark)

Figure 7: Results for ToTo for the layer and sequence aggregation ablation experiments. (a)
Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark datasets.
Sorted by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.
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Uni Multi Comb

Seq
Mean 077 072 0.76 Seqilast —22430 | L 1.6946  geq:mean
Max 076 071  0.75 20602 seq:max
Last 0.74 0.72 0.74

(a) Average Accuracy (b) Average Accuracy Rank (Overall benchmark)

Figure 8: Results for Chronos Bolt (Base) for the layer and sequence aggregation ablation
experiments. (a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb)
benchmark datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average
accuracy ranks.

3 2 1
| ] ] |
Uni Multi Comb
Seq
Mean 077 073 076 Seqilast —2:310L L L6745 seqmean
Max 076 0.73  0.76 L 18154 geqmax
Last 0.72 0.71 0.72
(a) Average Accuracy (b) Average Accuracy Rank (Overall benchmark)

Figure 9: Results for Chronos Bolt (Small) for the layer and sequence aggregation ablation
experiments. (a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb)
benchmark datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average
accuracy ranks.

3 2 1
| ] ] ] |
Uni Multi  Comb
Seq
Mean 071 071 071 Seqilast —2:0443] 14195 seqmean
Max  0.68 0.68  0.68 1.9362  seq:Max
Last 0.59 0.65 0.60
(a) Average Accuracy (b) Average Accuracy Rank (Overall benchmark)

Figure 10: Results for Chronos (Base) for the layer and sequence aggregation ablation experiments.
(a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark datasets.
Sorted by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.
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Uni Multi Comb
Seq
Mean 0.70 0.70 0.70
Max 0.67 0.67 0.67
Last 0.60 0.64 0.61

(a) Average Accuracy

Seq:Last

2.4933

1.5570
1.9497

Seq:Mean
Seq:Max

(b) Average Accuracy Rank (Overall benchmark)

Figure 11: Results for Chronos (Small) for the layer and sequence aggregation ablation experi-
ments. (a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark
datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.
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Variate aggregation methods We conduct an ablation study of the method to aggregate per-variate
embeddings into a single feature vector for a multivariate time series. This is necessary when applying
a univariate model to each variate independently or when a multivariate model produces distinct
per-variate outputs. We evaluate three strategies: mean pooling, max pooling, and concatenation.
Figures [I2}{T9| present the results. Each figure presents a table with the mean accuracy over univariate,
multivariate, and all datasets, complemented by a critical difference plot of mean ranks to visualize
statistical significance. Concatenation consistently outperforms both pooling methods across all
tested models.

3 2 1
l | 1 |
Multi
Var
Concat 0.74 Variate:Max _2:5000 | 11800 Variate:Concat
Mean 0.67 2:3200 Variate:Mean
Max 0.66
(a) Average Accuracy (b) Average Accuracy Rank (Multivariate Benchmark)

Figure 12: Results for TiRex for the variate aggregation ablation experiments. (a) Average accuracy
on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark datasets. Sorted by overall
accuracy. (b) Critical difference diagram of the average accuracy ranks.

3 2 1
| ] ] ] ]
Multi
Var
Concat 0.72 Variate:Max —2:4200 | 14000 \;piate:Concat
Mean 0.66 2.1800 Variate:Mean
Max 0.65
(a) Average Accuracy (b) Average Accuracy Rank (Multivariate Benchmark)

Figure 13: Results for Chronos Bolt (Base) for the variate aggregation ablation experiments. (a)
Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark datasets.
Sorted by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.

3 2 1
| ] ] ] ]
Multi T
Var
Concat 0.73 Variate:Mean —2.3800 | |_1.3600 Variate:Concat
Max 0.66 2:2600 Variate:Max
Mean 0.65
(a) Average Accuracy (b) Average Accuracy Rank (Multivariate Benchmark)

Figure 14: Results for Chronos Bolt (Small) for the variate aggregation ablation experiments. (a)
Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark datasets.
Sorted by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.
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Var
Concat 0.71 Variate:Max 23200 | L 15200 Variate:Concat
Mean 0.65 2.1600 Variate:Mean
Max 0.65
(a) Average Accuracy (b) Average Accuracy Rank (Multivariate Benchmark)

Figure 15: Results for Chronos (Base) for the variate aggregation ablation experiments. (a)
Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark datasets.
Sorted by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.

3 2 1
| ] ] ] ]
Multi T
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Concat 0.70 Variate:Max _2.4400 | [ 1.3000 Variate:Concat

Mean 0.64 2.2600 Variate:Mean

Max 0.63

(a) Average Accuracy (b) Average Accuracy Rank (Multivariate Benchmark)

Figure 16: Results for Chronos (Small) for the variate aggregation ablation experiments. (a)
Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark datasets.
Sorted by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.
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| ] ] ] ]
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(a) Average Accuracy (b) Average Accuracy Rank (Multivariate Benchmark)

Figure 17: Results for TimesFM 1.0 for the variate aggregation ablation experiments. (a) Average
accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark datasets. Sorted
by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.
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| ] 1 ]
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(a) Average Accuracy (b) Average Accuracy Rank (Multivariate Benchmark)

Figure 18: Results for TimesFM 2.0 for the variate aggregation ablation experiments. (a) Average
accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark datasets. Sorted
by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.
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Figure 19: Results for ToTo for the variate aggregation ablation experiments. (a) Average accuracy
on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark datasets. Sorted by overall
accuracy. (b) Critical difference diagram of the average accuracy ranks.

18



C.3 Full Results: Embedding Augmentation

In this section, we provide an ablation study of our proposed embedding augmentations. First, the
impact augmentations, both individually and combined, are analyzed quantitatively for each model.
Then we provide a hyperparameter ablation for the Absolute Sample Statistics Augmentation and a
qualitative analysis of its impact.

Ablation on individual models We conduct an ablation study to evaluate the effectiveness of our
two proposed embedding augmentations. Figures 20}28] present the results. Each figure presents
a table with the mean accuracy over univariate, multivariate, and all datasets, complemented by a
critical difference plot of mean ranks to visualize statistical significance. Both the statistics-based and
the differencing-based augmentations individually improve performance for a majority of the models,
although the statistical significance of these gains varies. The combination of both augmentations
most often yields further improvements, resulting in the best overall performance.

4 3 2 1
| ] ] ] ] |
Uni Multi Comb
Diff Stats
True True 081 074 080  None —2:7819 22383 piffystats
True  False 0.81 0.73 0.79 Stats —2:4899 2.4899 i
False True 0.80 0.73 0.79
False False 0.80 0.74 0.79
(a) Average Accuracy (b) Average Accuracy Rank (Overall benchmark)

Figure 20: Results for TiRex for the embedding augmentation ablation experiments. Diff and Stats
indicate the application of the “differencing” and the “sample statistics” augmentations respectively.
(a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark
datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.
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| ] ] ] ] ] |
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True False 079 072  0.77 Diff —2:5638 24060 gpats
False True 0.78 0.74 0.77
False False 0.77 0.72 0.76
(a) Average Accuracy (b) Average Accuracy Rank (Overall benchmark)

Figure 21: Results for Chronos Bolt (Base) for the embedding augmentation ablation experiments.
Diff and Stats indicate the application of the “differencing” and the “sample statistics” augmentations
respectively. (a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb)
benchmark datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average
accuracy ranks.
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Figure 22: Results for Chronos Bolt (Small) for the embedding augmentation ablation experiments.
Diff and Stats indicate the application of the “differencing” and the “sample statistics” augmentations
respectively. (a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb)
benchmark datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average
accuracy ranks.
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Figure 23: Results for Chronos (Base) for the embedding augmentation ablation experiments. Diff
and Stats indicate the application of the “differencing” and the “sample statistics” augmentations
respectively. (a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb)
benchmark datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average
accuracy ranks.
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Figure 24: Results for Chronoes (Small) for the embedding augmentation ablation experiments.
Diff and Stats indicate the application of the “differencing” and the “sample statistics” augmentations
respectively. (a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb)
benchmark datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average
accuracy ranks.
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Figure 25: Results for TimesFM 2.0 for the embedding augmentation ablation experiments. Diff
and Stats indicate the application of the “differencing” and the “sample statistics” augmentations
respectively. (a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb)
benchmark datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average
accuracy ranks.
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Figure 26: Results for TimesFM 1.0 for the embedding augmentation ablation experiments. Diff
and Stats indicate the application of the “differencing” and the “sample statistics” augmentations
respectively. (a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb)
benchmark datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average
accuracy ranks.
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Figure 27: Results for Moirai 1.1 (Base) for the embedding augmentation ablation experiments.
Diff and Stats indicate the application of the “differencing” and the “sample statistics” augmentations
respectively. (a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb)
benchmark datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average
accuracy ranks.
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Figure 28: Results for ToTo for the embedding augmentation ablation experiments. Diff and Stats
indicate the application of the “differencing” and the “sample statistics” augmentations respectively.
(a) Average accuracy on univariate (Uni), multivariate (Multi), and overall (Comb) benchmark
datasets. Sorted by overall accuracy. (b) Critical difference diagram of the average accuracy ranks.
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Absolute Sample Statistics Augmentation: Number of Patches The absolute sample statistics
augmentation divides each time series into k£ non-overlapping patches. For the main experiments,
we used a fixed value of k£ = 8. To analyze the impact of this choice, we conducted an ablation
study on our best-performing model, TiRex, by evaluating k € {1,2,4,8,16,32}. The results are
presented in Figure 29] While the average ranks suggest that a higher number of patches could
marginally improve performance, the average accuracies remain very similar across all settings. This
indicates that the procedure is generally robust to the choice of k, although we note that tuning this
hyperparameter for specific datasets could be advantageous in a practical application.

6 5 4 3 2 1
L 1 5 1 'R |
k Uni Multi Comb T 1]
32 0.81 0.73 0.80
16 081 074  0.80 k=1 22060 29530 3
4 081 073 080 k=2 37953 3.2584 \-16
8 0.81 0.74 0.80 k=4 _3:5940 3.4933 | _g
2 0.80 0.74 0.79
1 0.81 0.72 0.79
(a) Average Accuracy (b) Average Accuracy Rank (Overall benchmark)

Figure 29: Result of the ablation experiment regarding the number of patches for the absolute sample
statistics augmentation (a) Average accuracy on univariate (Uni), multivariate (Multi), and overall
(Comb) benchmark datasets. Sorted by overall accuracy. (b) Critical difference diagram of the
average accuracy ranks.

Absolute Sample Statistics Augmentation: Qualitative Analysis As discussed in Section
instance normalization removes a signal’s absolute scale information, such as its mean value. To
visually demonstrate this effect and the efficacy of our statistics augmentation, we created a toy
dataset composed of sine waves that differ only by their baseline value [20]. Each series is generated
using the formula y; = sin(5¢) + a, where the baseline a is sampled uniquely for each of the 1024
examples. Figure [30]shows three such series.

We then generated embeddings for this dataset using TiRex and Chronos Bolt, once without and once
with our statistics augmentation, and visualized the results using PCA. The projections in Figure
illustrate the outcome. Without the augmentation, the embeddings from the forecasting models
(TiRex, Chronos Bolt) form a single, inseparable cluster. In contrast, the augmented embeddings
show a gradient along the first principal component that directly corresponds to the baseline value
a. Notably, the pre-trained classification models also cluster series with similar baselines, i.e.,
incorporate this property in their representation.
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Figure 30: Illustration of three example time series from our synthetic toy dataset. For each series
only the baseline value differs between them.
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Figure 31: 2D PCA projections of embeddings from the baseline-shifted sine wave dataset. The left
column of the top two row shows the original embeddings from each model, while the right column
shows the same embeddings enhanced with our sample statistics augmentation. The bottom row
shows the embeddings of the pre-trained classification models — which also allow for separation in
terms of this property.
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Type A Univariate Multivariate Overall
No Aug Stat+Diff No Aug Stat+Diff No Aug  Stat+Diff

TiRex Dec yes 0.78 0.78 0.71 0.72 0.77 0.77
Chr. Bolt (Base) EncDec yes 0.75 0.77 0.70 0.72 0.74 0.76
Moirai (Large) Enc yes 0.77 0.78 0.68 0.68 0.76 0.76
TimesFM 2.0 Dec yes 0.76 0.77 0.68 0.68 0.75 0.75
TimesFM 1.0 Dec yes 0.72 0.72 0.68 0.69 0.71 0.72
Chronos (Base) EncDec  yes 0.68 0.73 0.69 0.70 0.68 0.73
ToTo Dec yes 0.68 0.71 0.69 0.69 0.68 0.70
Mantis Enc no 0.76 0.72 0.76
NuTime Enc no 0.64 0.66 0.65
Moment (Large) Enc no 0.59 0.55 0.58
DTW - - 0.72 0.71 0.72

Table 4: Balanced Accuracy of different models for the univariate, multivariate, and combined
benchmark with a Random Forest Classifier. “Stat+Diff”” shows results with both proposed augmenta-
tions applied; “no Aug” utilizes the pure forecasting model representations. “ZS” indicates models
that did not have access to the benchmark training data during pre-training.

Type 7S Univariate Multivariate Overall
No Aug  Stat+Diff No Aug Stat+Diff No Aug  Stat+Diff
TiRex Dec yes 0.82 0.83 0.77 0.77 0.81 0.81
Chr. Bolt (Base) EncDec yes 0.81 0.82 0.76 0.77 0.80 0.81
Moirai (Large) Enc yes 0.82 0.82 0.74 0.74 0.80 0.81
TimesFM 2.0 Dec yes 0.81 0.81 0.74 0.73 0.80 0.80
TimesFM 1.0 Dec yes 0.79 0.79 0.75 0.75 0.78 0.79
Chronos (Base) EncDec  yes 0.74 0.79 0.74 0.76 0.74 0.78
ToTo Dec yes 0.73 0.76 0.74 0.74 0.73 0.75
Mantis Enc no 0.81 0.78 0.81
NuTime Enc no 0.71 0.71 0.71
Moment (Large) Enc no 0.68 0.60 0.66
DTW - - 0.76 0.76 0.76

Table 5: Classification Accuracy of different models for the univariate, multivariate, and combined
benchmark with a Random Forest Classifier — on the subset of datasets with a maximum length of
512. “Stat+Diff” shows results with both proposed augmentations applied; “no Aug” utilizes the pure
forecasting model representations. “ZS” indicates models that did not have access to the benchmark
training data during pre-training.

C.4 Main Results: Balanced Accuracy

While accuracy is the primary metric in our main evaluation, for consistency with related literature,
we also re-evaluated our main experiments using balanced accuracy to ensure the robustness of our
findings. The results are presented in Table [d The relative performance rankings of the models
remain highly consistent across both metrics, with slight changes in the multivariate benchmark data,
confirming the robustness of our conclusions.

C.5 Main Results: < 512 length datasets

Several of the evaluated models were pre-trained with a maximum context length of 512, whereas
our full benchmark includes datasets with series up to 2048 in length. To assess the impact of this
context length discrepancy and to further test the robustness of our findings, we re-ran our main
experiments on a subset of the benchmark containing only datasets with a series length of 512 or
less. The results of this analysis are presented in Table[5] The relative performance rankings remain
consistent with our primary results, with slight changes in the multivariate benchmark data — this
confirms the robustness of our conclusions.
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ACSF1 085 0.82 082 088 08 08 0.83 075 0.84
Adiac 078 0.79 080 079 079 078 0.78 0.79 0.71
ArrowHead 078 0.83 081 078 077 076 0.73 0.74 0.66
Beef 080 0.67 073 070 067 060 0.80 083 0.60
BeetleFly 090 090 090 095 095 085 095 085 0.75
BirdChicken 090 090 095 090 090 090 0.80 090 0.90
BME 099 1.00 1.00 099 096 095 095 095 098
Car 080 0.82 077 078 075 068 0.82 0.78 0.83
CBF 099 1.00 097 1.00 1.00 096 1.00 099 0.96
Chinatown 097 098 099 096 097 095 097 097 0.97
ChlorineConcentration 072 071 072 074 075 075 0.69 069 0.64
CinCECGTorso 099 0.85 090 0.84 083 075 098 096 0.97
Coffee 1.00 096 1.00 1.00 096 096 096 1.00 0.96
Computers 076 0.72 073 077 076 077 072 070 0.74
CricketX 071 071 069 0.69 068 062 0.69 064 0.62
CricketY 074 0.73 070 0.69 067 061 075 0.69 0.69
CricketZ 072 073 072 074 069 0.69 0.69 0.64 0.63
Crop 074 074 074 NaN 073 073 0.73 NaN 0.71
DiatomSizeReduction 086 090 092 0.87 082 085 0.81 085 0.88

DistalPhalanxOutlineCorrect 079 0.77 080 080 080 078 079 0.78 0.76
DistalPhalanxOutlineAgeGroup 0.76 0.76 0.75 0.78 0.74 0.71 0.75 0.76 0.76

DistalPhalanxTW 0.65 0.66 0.68 0.68 0.72 0.69 0.65 0.66 0.66
Earthquakes 075 076 0.76 0.72 0.74 0.75 0.74 0.76 0.74
ECG200 0.85 0.85 085 084 086 0.83 0.87 086 0.77
ECG5000 094 094 094 094 094 093 093 094 093
ECGFiveDays 083 0.86 090 092 084 081 091 075 0.77
ElectricDevices 070 0.70 0.69 NaN 072 0.70 0.70 0.66 0.74
EOGHorizontalSignal 0.54 054 056 0.60 0.57 048 0.66 021 0.36
EOG VerticalSignal 042 043 045 042 044 040 046 0.15 0.30
EthanolLevel 0.37 044 043 043 042 055 035 057 0.56
FaceAll 0.86 0.71 071 072 0.78 0.70 0.83 0.85 0.69
FaceFour 0.68 0.76 0.64 0.72 0.68 0.65 0.81 074 0.62
FacesUCR 0.81 075 076 0.76 0.73 0.72 0.73 0.77 0.73
FiftyWords 0.62 0.67 069 0.60 058 053 0.60 057 0.64
Fish 093 085 085 093 088 0.84 090 090 0.89
FordA 095 094 093 093 093 090 094 095 094
FordB 0.84 0.78 0.80 0.81 0.81 078 0.84 082 0.77
FreezerRegularTrain 093 092 091 097 097 091 088 085 097
FreezerSmallTrain 0.81 0.85 0.84 087 084 079 0.78 0.69 0.87
GunPoint 095 094 099 097 097 095 095 088 095
GunPointAgeSpan 098 099 098 098 097 097 095 094 098
GunPointMale VersusFemale 1.00 1.00 1.00 099 1.00 099 1.00 0.99 0.99
GunPointOld Versus Young 098 1.00 1.00 099 099 099 096 093 0.99
Ham 0.65 0.71 0.64 057 061 068 0.60 055 0.60
Haptics 0.52 051 051 051 057 049 054 051 051
Herring 0.59 0.67 0.67 059 059 062 0.61 053 0.59
HouseTwenty 097 0.89 093 097 096 094 0.87 060 0.72
InlineSkate 044 054 049 049 044 043 050 037 0.39
InsectEPGRegularTrain 099 1.00 100 1.00 1.00 1.00 1.00 099 1.00
InsectEPGSmallTrain 093 093 092 09 094 094 090 086 0.99

Table 6: Accuracy results of the different models with augmentations on the individual datasets with
a Random Forest classifier. (Part 1/6)
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ACSF1 084 0.79 079 078 043 0,55 048 0.64 0.59
Adiac 072 055 074 070 0.08 0.12 0.08 0.60 0.56
ArrowHead 061 0.80 073 074 059 050 058 070 0.71
Beef 0.60 0.70 063 097 043 040 050 0.63 0.57
BeetleFly 075 095 085 070 085 095 090 0.70 0.70
BirdChicken 095 085 100 055 080 085 065 075 0.60
BME 098 097 092 093 0.79 0.81 088 0.89 0.85
Car 085 0.75 083 062 0.67 058 060 073 0.55
CBF 098 099 099 054 090 094 086 1.00 1.00
Chinatown 097 0.82 085 098 0.77 0.87 084 097 097
ChlorineConcentration 062 0.60 068 076 056 055 055 065 0.57
CinCECGTorso 095 090 067 058 057 068 068 0.65 0.50
Coffee 08 093 096 1.00 089 096 082 1.00 0.93
Computers 071 0.74 074 071 063 0.65 066 070 0.71
CricketX 068 059 075 024 059 064 065 075 0.74
CricketY 068 0.63 073 036 061 060 056 074 0.70
CricketZ 068 058 079 026 062 064 067 075 0.74
Crop 072 0.69 068 074 050 056 055 0.68 0.66
DiatomSizeReduction 087 0.83 087 087 050 050 056 097 0.93

DistalPhalanxOutlineCorrect 078 0.77 074 0.78 0.63 065 0.62 072 0.74
DistalPhalanxOutlineAgeGroup 0.75 0.74 0.79 0.77 0.63 0.67 0.65 0.77 0.73

DistalPhalanxTW 066 0.68 069 071 058 058 056 059 0.62
Earthquakes 075 075 075 075 0.75 074 075 0.72 0.74
ECG200 081 0.85 081 080 081 0.82 082 077 0.80
ECG5000 093 092 092 093 093 092 093 092 094
ECGFiveDays 082 0.60 093 076 0.65 088 074 077 0.62
ElectricDevices 073 0.68 073 0.65 059 059 059 060 0.61
EOGHorizontalSignal 045 049 058 033 0.07 0.10 0.11 044 043
EOG VerticalSignal 027 039 047 025 0.10 0.10 0.11 043 044
EthanolLevel 037 033 029 060 025 027 025 028 0.26
FaceAll 071 0.75 078 0.78 0.57 053 048 0.81 0.81
FaceFour 056 0.57 095 062 0.65 055 057 083 0.68
FacesUCR 082 0.63 083 067 054 048 047 090 0.88
FiftyWords 0.64 052 064 057 048 048 044 0.69 0.66
Fish 085 0.80 094 078 049 055 042 082 0.79
FordA 093 092 086 081 088 090 089 055 0.58
FordB 076 0.82 074 062 073 077 072 0.62 0.62
FreezerRegularTrain 096 091 094 099 078 078 077 090 0.88
FreezerSmallTrain 088 0.78 080 096 0.75 076 076 0.76 0.73
GunPoint 093 091 097 095 077 081 079 091 0.89
GunPointAgeSpan 097 091 099 088 0.88 0.86 085 098 0.99
GunPointMale VersusFemale 1.00 096 1.00 097 094 095 096 098 097
GunPointOld Versus Young 099 0.89 100 100 0.86 0.8 084 1.00 1.00
Ham 066 0.78 070 0.73 0.70 0.65 063 047 0.51
Haptics 049 050 049 045 040 044 041 038 043
Herring 067 059 066 059 058 058 059 053 048
HouseTwenty 071 097 095 065 055 065 062 084 0.85
InlineSkate 038 040 039 025 020 021 020 038 0.36
InsectEPGRegularTrain 1.00 1.00 1.00 0.82 0.89 092 090 1.00 1.00
InsectEPGSmallTrain 099 1.00 100 0.80 0.81 090 092 1.00 1.00

Table 7: Accuracy results of the different models with augmentations on the individual datasets with
a Random Forest classifier. (Part 2/6)
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InsectWingbeatSound 0.66 062 064 061 061 060 062 063 0.55
ItalyPowerDemand 096 095 095 095 095 096 097 097 092
LargeKitchenAppliances 079 075 072 079 083 075 0.77 0.67 0.76
Lightning2 075 075 072 075 070 0.67 0.66 0.69 0.70
Lightning7 070 0.71 0.77 063 064 0.63 0.58 0.67 0.67
Mallat 094 0.87 089 09 092 093 084 070 0.72
Meat 090 092 093 1.00 093 092 093 097 0.88
Medicallmages 072 072 072 072 071 0.70 0.74 0.75 0.69
MiddlePhalanxOutlineCorrect 085 0.84 083 085 08 0.84 086 0.87 0.81
MiddlePhalanxOutlineAgeGroup 060 0.58 058 059 058 0.59 060 0.58 0.56
MiddlePhalanxTW 055 058 053 054 055 056 053 054 055
MixedShapesRegularTrain 097 095 09 097 097 095 097 094 096
MixedShapesSmallTrain 094 093 093 094 09 093 095 091 092
MoteStrain 091 090 091 091 088 0.82 091 0.85 093
NonlnvasiveFetal ECGThorax 1 092 0.89 089 091 08 0.88 090 0.76 0.84
NonlInvasiveFetal ECGThorax2 093 091 092 093 091 090 093 081 0.87
OliveOil 087 0.87 087 083 090 090 09 090 0.83
OSULeaf 096 090 092 095 095 088 096 0.84 093
PhalangesOutlinesCorrect 0.83 083 081 084 084 083 084 082 0.77
Phoneme 039 035 035 039 037 035 037 032 035
PigAirwayPressure 035 0.18 0.14 037 038 033 032 0.14 0.15
PigArtPressure 091 033 034 087 088 0.84 0.81 041 0.58
PigCVP 082 025 024 075 070 051 068 032 0.27
Plane 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PowerCons 089 0.88 090 093 091 090 09 091 0.93

ProximalPhalanxOutlineCorrect 089 085 085 089 0.8 090 0.89 0.87 0.85
ProximalPhalanxOutlineAgeGroup 0.86 0.85 0.87 087 0.86 0.84 0.87 0.86 0.85

ProximalPhalanxTW 083 0.82 082 080 081 0.82 081 0.81 0.80
RefrigerationDevices 058 057 058 052 053 055 055 051 059
ScreenType 051 049 046 051 051 038 054 048 046
SemgHandGenderCh2 087 090 09 089 089 0.88 092 0.68 0.80
SemgHandMovementCh2 066 0.67 071 059 058 059 0.64 039 0.61
SemgHandSubjectCh2 081 0.83 084 080 078 0.79 080 0.51 0.69
ShapeletSim 096 1.00 1.00 097 098 0.85 096 096 1.00
ShapesAll 08 081 083 08 08 082 085 0.8l 0.83
SmallKitchenAppliances 082 0.81 082 083 078 0.81 0.83 0.79 0.81
SmoothSubspace 093 096 094 097 093 093 091 094 095
SonyAIBORobotSurfacel 0.88 0.80 0.82 073 071 0.64 090 0.84 0.53
SonyAIBORobotSurface2 086 090 086 091 08 0.85 090 090 0.89
StarLightCurves 098 097 098 NaN 098 098 098 096 097
Strawberry 096 095 095 095 095 095 096 096 092
SwedishLeaf 094 092 094 09 095 093 095 095 093
Symbols 096 095 098 099 098 097 095 094 0.87
SyntheticControl 099 099 098 098 099 097 099 099 0.9
ToeSegmentation1 093 088 082 095 095 0.86 089 0.88 0.93
ToeSegmentation2 092 090 088 086 0.87 086 0.87 0.88 0.88
Trace 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
TwoLeadECG 096 091 087 094 087 0.79 1.00 095 092
TwoPatterns 097 094 092 097 093 0.84 096 094 0.89
UMD 094 096 094 09 097 0.85 090 0.89 0.90

Table 8: Accuracy results of the different models with augmentations on the individual datasets with
a Random Forest classifier. (Part 3/6)
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InsectWingbeatSound 056 0.61 051 0.62 055 052 048 036 0.35
ItalyPowerDemand 094 096 091 095 089 092 081 095 0.95
LargeKitchenAppliances 075 072 079 052 071 080 0.79 0.79 0.80
Lightning2 072 059 080 0.66 066 069 066 087 0.87
Lightning7 066 058 077 042 060 064 062 073 0.71
Mallat 076 0.75 090 0.88 050 055 053 093 0.93
Meat 0.87 0.87 093 092 040 035 035 093 0.93
Medicallmages 069 0.66 071 059 055 056 054 074 0.71
MiddlePhalanxOutlineCorrect 081 0.77 080 0.81 057 057 057 070 0.73
MiddlePhalanxOutline AgeGroup 059 0.62 060 062 048 052 046 050 0.56
MiddlePhalanxTW 056 0.56 054 057 046 051 049 051 051
MixedShapesRegularTrain 095 096 094 089 078 082 080 0.84 0.83
MixedShapesSmallTrain 092 094 09 080 070 077 075 0.78 0.75
MoteStrain 088 0.88 092 086 085 085 0.79 083 0.8I
NonlInvasiveFetal ECGThorax 1 0.83 082 061 08 029 046 035 079 0.79
NonlnvasiveFetal ECGThorax2 087 0.86 068 090 035 053 042 086 0.86
OliveOil 083 047 093 090 037 040 043 0.83 0.87
OSULeaf 092 082 08 051 072 074 0.69 059 0.58
PhalangesOutlinesCorrect 0.75 0.74 0.77 081 062 064 063 073 0.76
Phoneme 035 036 033 015 028 028 026 023 021
PigAirwayPressure 0.12 022 050 0.04 005 006 006 0.18 0.12
PigArtPressure 049 050 091 0.09 022 037 031 048 036
PigCVP 023 044 077 013 0.12 025 0.18 033 0.23
Plane 099 098 1.00 099 091 097 091 1.00 1.00
PowerCons 094 094 091 088 082 08 077 092 0.86

ProximalPhalanxOutlineCorrect 0.80 0.80 080 090 069 073 068 078 0.83
ProximalPhalanxOutlineAgeGroup 0.86 0.86 0.85 086 080 0.80 0.80 0.80 0.81

ProximalPhalanxTW 080 0.81 078 0.80 0.60 067 059 076 0.77
RefrigerationDevices 0.53 058 051 046 051 056 054 046 046
ScreenType 047 043 044 043 039 047 047 040 0.39
SemgHandGenderCh2 0.82 0.83 090 078 066 067 068 092 091
SemgHandMovementCh2 061 052 073 038 024 027 032 078 0.76
SemgHandSubjectCh2 072 072 079 056 038 034 032 087 0.85
ShapeletSim 1.00 0.86 094 054 0.84 091 074 065 0.63
ShapesAll 084 0.76 083 0.71 0.68 068 0.64 077 0.71
SmallKitchenAppliances 082 0.79 081 078 070 0.72 074 0.64 0.67
SmoothSubspace 096 093 091 098 067 081 071 083 0.85
SonyAIBORobotSurfacel 055 0.66 078 0.59 050 057 055 073 0.62
SonyAIBORobotSurface2 082 0.78 087 0.82 083 084 0.84 083 0.80
StarLightCurves 097 098 098 097 089 090 0.88 091 091
Strawberry 093 091 095 095 071 077 0.67 094 092
SwedishLeaf 092 0.87 092 090 067 070 065 079 0.77
Symbols 087 091 097 085 088 095 091 095 0.93
SyntheticControl 099 097 098 0.83 09 0.89 0.87 099 0.98
ToeSegmentation1 083 0.78 097 0.60 090 093 093 077 0.75
ToeSegmentation2 065 087 095 058 088 085 088 0.84 0.82
Trace 099 093 1.00 051 089 099 096 1.00 1.00
TwoLeadECG 098 0.79 1.00 0.69 063 070 0.69 090 0.85
TwoPatterns 0.80 0.87 088 057 086 083 0.76 1.00 1.00
UMD 0.81 091 097 081 083 088 0.85 0.88 0.85

Table 9: Accuracy results of the different models with augmentations on the individual datasets with
a Random Forest classifier. (Part 4/6)
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UWaveGestureLibrary All 091 095 095 08 084 084 088 0.79 0.89
UWaveGestureLibraryX 0.81 0.80 082 079 078 077 073 0.70 0.81
UWaveGestureLibraryY 075 074 077 073 072 072 0.66 0.64 0.76
UWaveGestureLibraryZ 0.74 075 075 074 0.74 0.71 067 0.64 0.74
Wafer 1.00 1.00 099 099 099 099 1.00 1.00 1.00
Wine 072 0.78 0.61 072 070 0.81 085 0.76 0.54
WordSynonyms 054 053 058 048 047 045 049 049 052
Worms 082 0.68 070 081 083 075 0.77 0.69 0.69
WormsTwoClass 084 082 081 081 08l 083 0.82 075 0.78
Yoga 080 0.84 08 083 077 080 0.80 077 0.82
AllGestureWiimoteX 060 0.62 061 062 060 054 0.67 064 0.53
AllGestureWiimoteY 0.70 0.66 0.70 066 0.65 0.62 072 0.68 0.57
AllGestureWiimoteZ 0.60 0.61 0.62 062 059 056 065 0.63 0.51
GestureMidAirD1 074 081 072 075 071 0.68 0.61 049 0.62
GestureMidAirD2 068 071 0.69 072 0.67 0.65 049 044 0.63
GestureMidAirD3 052 050 051 050 048 043 034 028 041
GesturePebbleZ1 0.86 0.86 0.86 084 0.87 0.87 085 0.83 0.76
GesturePebbleZ2 08 0.82 082 087 08 090 0.80 082 0.71
PickupGestureWiimoteZ 078 0.76 074 082 0.70 0.68 0.68 0.62 0.80
ShakeGestureWiimoteZ 08 0.88 08 084 082 082 092 090 0.88
DodgerLoopDay 047 052 057 049 043 049 048 042 048
DodgerLoopGame 0.69 084 076 0.75 080 0.70 062 0.65 0.70
DodgerLoopWeekend 090 092 094 088 094 090 098 097 097
MelbournePedestrian 092 093 093 09 090 091 090 090 0.93
ArticularyWordRecognition 099 1.00 1.00 097 099 098 098 098 0.97
AtrialFibrillation 027 033 033 007 033 033 0.07 047 0.20
BasicMotions 1.00 1.00 1.00 097 097 100 1.00 097 1.00
Cricket 1.00 099 1.00 096 094 094 1.00 0.69 0.93
Epilepsy 1.00 1.00 1.00 097 097 1.00 099 0.99 0.99
EthanolConcentration 0.37 037 037 036 033 047 037 054 054
ERing 097 096 099 088 093 093 097 093 0.95
FaceDetection 0.63 0.57 058 057 059 058 NaN NaN 0.57
FingerMovements 048 054 052 056 048 051 052 053 047
HandMovementDirection 032 030 026 0.19 026 032 022 022 031
Handwriting 022 026 024 022 020 022 026 029 0.18
Heartbeat 073 074 076 074 073 075 073 073 0.73
Libras 0.87 0.88 0.88 073 073 0.81 084 0.84 0.87
LSST 059 0.61 061 060 060 0.60 0.58 0.56 0.58
NATOPS 0.81 0.82 0.89 086 0.82 0.84 080 0.83 0.82
PenDigits 097 096 096 NaN 095 095 097 096 0.95
PEMS-SF 1.00 095 099 099 1.00 099 NaN 1.00 0.98
PhonemeSpectra 026 025 024 027 025 022 027 024 0.26
RacketSports 0.83 0.86 0.86 080 0.81 0.75 084 090 0.84
SelfRegulationSCP1 084 079 082 075 077 077 082 076 0.75
SelfRegulationSCP2 0.57 054 053 056 054 049 050 047 043
UWaveGestureLibrary 088 0.86 08 081 083 088 0.68 068 0.81
CharacterTrajectories 096 097 098 093 093 09 095 095 0.96
Japanese Vowels 0.89 092 094 08 088 093 083 0.85 093
SpokenArabicDigits 096 097 097 NaN 096 094 NaN 096 0097

Table 10: Accuracy results of the different models with augmentations on the individual datasets with
a Random Forest classifier. (Part 5/6)
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UWaveGestureLibraryX 0.80 076 0.77 071 074 072 071 073 0.74
UWaveGestureLibrary Y 075 0.68 0.69 065 065 064 062 0.63 0.63
UWaveGestureLibraryZ 072 071 0.73 0.65 066 0.67 066 066 0.67
Wafer 1.00 099 099 099 092 091 090 098 098
Wine 054 048 0.80 0.80 052 056 044 057 057
WordSynonyms 054 045 058 044 043 042 041 0.65 0.60
Worms 073 075 0.65 056 062 064 061 058 039
WormsTwoClass 081 0.83 079 060 073 077 077 062 055
Yoga 0.84 072 0.82 0.77 066 062 062 084 0.82
AllGestureWiimoteX 052 059 060 029 052 058 059 071 062
AllGestureWiimoteY 050 0.60 059 030 054 064 061 0.68 0.61
AllGestureWiimoteZ 051 056 063 028 048 056 053 070 0.64
GestureMidAirD1 0.67 058 058 054 066 066 058 045 039
GestureMidAirD2 065 055 065 047 060 058 063 032 033
GestureMidAirD3 041 032 033 033 037 039 034 018 0.15
GesturePebbleZ1 073 072 088 0.65 077 080 079 0.69 0.72
GesturePebbleZ?2 072 0.66 086 060 077 074 0.76 0.67 0.69
PickupGestureWiimoteZ 070 0.70 088 032 066 064 054 074 0.68
ShakeGestureWiimoteZ 090 076 086 034 076 080 0.80 0.86 0.90
DodgerLoopDay 053 048 051 032 038 039 038 045 044
DodgerLoopGame 063 072 076 058 070 0.68 0.69 090 0.88
DodgerLoopWeekend 094 0.83 095 0.8 093 087 090 095 096
MelbournePedestrian 092 0.87 091 097 059 068 0.64 088 0.88
ArticularyWordRecognition 098 096 099 0.88 079 080 0.78 099 0098
AtrialFibrillation 020 0.07 027 033 027 013 0.13 020 033
BasicMotions 1.00 1.00 1.00 0.85 097 095 095 097 0.85
Cricket 090 099 1.00 072 046 044 047 1.00 1.00
Epilepsy 099 099 1.00 0.88 098 098 098 096 0095
EthanolConcentration 047 038 030 053 026 033 025 032 028
ERing 094 086 093 084 079 086 081 091 093
FaceDetection 056 058 052 055 052 051 051 053 054
FingerMovements 051 055 054 056 047 053 054 053 054
HandMovementDirection 028 028 028 026 018 024 024 0.19 020
Handwriting 0.17 0.15 033 0.13 016 0.15 0.12 061 050
Heartbeat 076 075 079 072 072 070 071 072 0.73
Libras 089 0.84 088 078 044 056 049 087 0.86
LSST 055 056 061 043 052 051 049 055 056
NATOPS 082 0.83 092 072 062 058 054 088 0.87
PenDigits 095 096 094 09 072 080 0.77 098 098
PEMS-SF 098 0.83 099 098 NaN NaN 083 0.71 053
PhonemeSpectra 025 020 027 0.11 0.19 022 021 0.15 0.14
RacketSports 0.88 0.82 092 0.83 058 059 051 080 0.83
SelfRegulationSCP1 076 082 080 075 069 062 062 077 0.83
SelfRegulationSCP2 052 052 046 045 050 048 049 054 049
UWaveGestureLibrary 085 0.83 082 081 062 065 0.64 09 090
CharacterTrajectories 097 096 096 095 0.83 083 081 099 098
Japanese Vowels 094 093 09 095 039 039 032 09 096
SpokenArabicDigits 097 095 095 093 081 078 076 097 097

Table 11: Accuracy results of the different models with augmentations on the individual datasets with
a Random Forest classifier. (Part 6/6)
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