

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ALIGNDRIVE: ALIGNED LATERAL-LONGITUDINAL PLANNING FOR END-TO-END AUTONOMOUS DRIVING

Anonymous authors

Paper under double-blind review

ABSTRACT

End-to-end autonomous driving has rapidly progressed, enabling joint perception and planning in complex environments. In the planning stage, state-of-the-art (SOTA) end-to-end autonomous driving models decouple planning into parallel lateral and longitudinal predictions. While effective, this parallel design can lead to i) coordination failures between the planned path and speed, and ii) underutilization of the drive path as a prior for longitudinal planning, thus redundantly encoding static information. To address this, we propose a novel cascaded framework that explicitly conditions longitudinal planning on the drive path, enabling coordinated and collision-aware lateral and longitudinal planning. Specifically, we introduce a path-conditioned formulation that explicitly incorporates the drive path into longitudinal planning. Building on this, the model predicts longitudinal displacements along the drive path rather than full 2D trajectory waypoints. This design simplifies longitudinal reasoning and more tightly couples it with lateral planning. Additionally, we introduce a planning-oriented data augmentation strategy that simulates rare safety-critical events, such as vehicle cut-ins, by adding agents and relabeling longitudinal targets to avoid collision. Evaluated on the challenging Bench2Drive benchmark, our method sets a new SOTA, achieving a driving score of 89.07 and a success rate of 73.18%, demonstrating significantly improved coordination and safety. Visualizations are provided at this webpage.¹.

1 INTRODUCTION

End-to-end (E2E) autonomous driving has made rapid progress in recent years, achieving increasingly sophisticated perception-planning capabilities (Sun et al., 2024; Guo et al., 2025; Jia et al., 2025; Song et al., 2025). Since UniAD (Hu et al., 2023), end-to-end approaches have commonly relied on explicit BEV feature maps in conjunction with query-based architectures to bridge perception and planning (Hu et al., 2023; Weng et al., 2024). More recent works have started to bypass BEV features, directly mapping sensor inputs to planned trajectories or intermediate latent representations (Jia et al., 2025; Sun et al., 2024). Within this line, several studies have shown that disentangling lateral and longitudinal planning at the planning stage can be particularly beneficial (Jaeger et al., 2023; Renz et al., 2024). In this paradigm, lateral planning predicts the drive path—waypoints sampled at fixed spatial intervals—as the target for steering, while longitudinal planning predicts the trajectory—waypoints sampled at fixed temporal intervals—as the target for speed control.

Among these, one of the most recent works, HiP-AD (Tang et al., 2025) achieves multi-modal prediction by initializing multiple paired drive path and trajectory queries, with each query in the pair decoded by an independent head. While this design delivers strong results, we argue that planning the drive path and trajectory through two independent branches introduces two key drawbacks: (i) **splitting planning into two independent branches makes it difficult to enforce kinematic consistency between the outputs. For example, as shown in the top-right of Fig 1(b), a lateral path requiring a sharp turn and a longitudinal trajectory demanding high speed are not constrained to be mutually consistent during training, potentially leading to inconsistent predictions that challenge downstream execution.** This happens because the longitudinal branch does not explicitly leverage the drive path as a prior, leading to misaligned lateral and longitudinal decisions; (ii) the trajectory prediction relies on static scene elements such as road geometry and lane structure, which are already captured by the drive path. Re-encoding these cues in the longitudinal branch is redundant and limits the model’s focus on dynamic interactions, which are critical for safe and effective longitudinal planning.

¹A copy of videos has been included in the supplementary materials

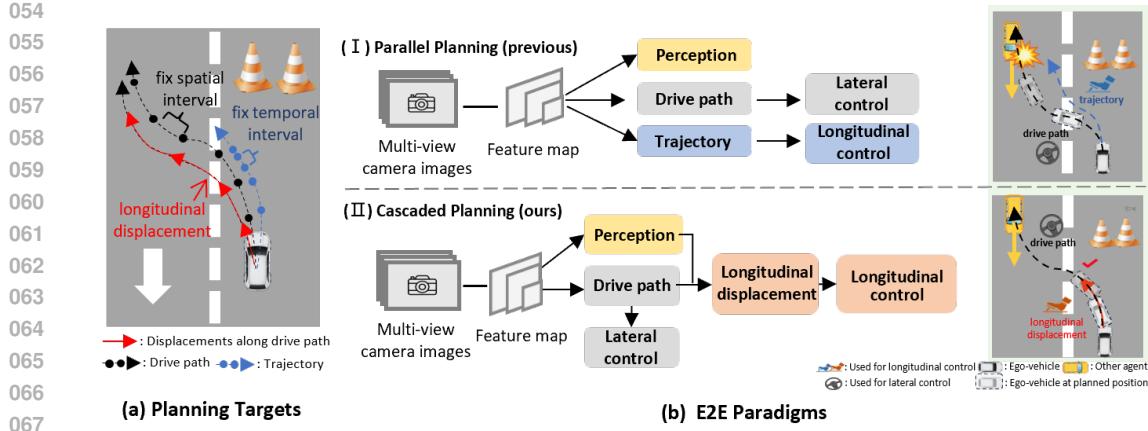


Figure 1: (a) Drive path (black), trajectory (blue), and longitudinal displacement (red). Path waypoints are sampled spatially, trajectory waypoints temporally, and displacements represent traveled distance along the path at fixed time intervals. (b) Comparison of E2E paradigms. **Parallel planning** predicts the drive path and longitudinal trajectory independently, which can lead to potential coordination inconsistencies. In the example on the right, the independently predicted longitudinal trajectory is collision-free by itself, but applying its speed along a separately predicted lateral path could cause a collision. In contrast, our cascaded paradigm first predicts the drive path and then regresses path-conditioned longitudinal displacements. With the path prior, the model identifies the potential conflict and outputs shorter displacements, yielding to avoid collision. Perception inputs are omitted for clarity.

To address these limitations, we propose a new cascaded paradigm that establishes a tight coupling between lateral and longitudinal planning via an anchor-based regression framework, where longitudinal planning is conditioned on the lateral drive path. Building on this foundation, we further simplify the task by predicting longitudinal displacements along the drive path instead of full 2D trajectory waypoints, while still providing effective targets for longitudinal control, as illustrated in Fig. 1(a). This formulation naturally couples lateral and longitudinal planning: the drive path provides a stable geometric prior, while longitudinal reasoning is simplified to predicting displacement conditioned on dynamic agents. By decoupling lateral geometry from longitudinal reasoning, the framework allows the model to focus on dynamic interactions and improves collision-aware planning, as shown in Fig. 1(b).

This cascaded formulation also unlocks a highly effective, planning-oriented data augmentation strategy. Since our longitudinal plan consists of simple displacement values along a fixed path, we can realistically simulate safety-critical events like vehicle cut-ins—which are rare in real-world logs—by programmatically shortening the displacement distances in response to inserted agents, without altering the lateral path. This targeted data augmentation exposes the planner to a rich set of critical scenarios, substantially improving its collision avoidance capabilities.

Building on these insights, we develop an E2E driving framework AlignDrive that conditions longitudinal planning on the drive path and leverages this formulation to enable effective data augmentation, with code and models to be publicly released. Overall, our contributions are threefold:

- We propose a novel cascaded planning paradigm where longitudinal planning is explicitly conditioned on a predicted lateral drive path. This method establishes a tight coupling between the two tasks, using the path as geometric priors for subsequent longitudinal planning.
- Based on this paradigm, we reformulate the longitudinal planning task as a simpler 1D displacement prediction problem along the drive path. This allows the model to focus its capacity on crucial dynamic interactions rather than redundantly encoding static geometry.
- We introduce an effective, planning-oriented data augmentation strategy. By programmatically modifying only the 1D displacement labels in response to inserted agents, we can generate diverse and realistic safety-critical training scenarios that are rare in logged data.

Our experiments conducted on the popular closed-loop simulator benchmark Bench2Drive (Jia et al., 2024) demonstrate that AlignDrive outperforms state-of-the-art driving techniques.

108

2 RELATED WORK

109

2.1 END-TO-END AUTONOMOUS DRIVING

111 End-to-end autonomous driving methods (Wang et al., 2025; Tang et al., 2025; Gao et al., 2025;
 112 Sun et al., 2024; Hu et al., 2023; Jiang et al., 2023; Xing et al., 2025) have rapidly advanced in
 113 recent years, with trajectory planning playing a central role in predicting the ego vehicle’s future
 114 states. One line of work, exemplified by SparseDrive (Sun et al., 2024; Song et al., 2025), directly
 115 predicts trajectories in an end-to-end manner. While effective in nominal scenarios, this joint predic-
 116 tion paradigm often struggles to achieve accurate lateral and longitudinal planning simultaneously.
 117 TF++ (Jaeger et al., 2023) predicts the drive path and instantaneous vehicle speed in parallel, with
 118 speed treated as a classification task. However, the coarse discretization of velocity limits planning
 119 accuracy. More recent approaches, including HiP-AD (Tang et al., 2025) and Carllava (Renz et al.,
 120 2024), instead decouple path and trajectory prediction. HiP-AD employs independent heads, while
 121 Carllava, built on a LLaVA-like architecture (Liu et al., 2023), generates the drive path and trajec-
 122 tory sequentially as output tokens. However, these methods still rely on predicting full waypoints
 123 rather than explicit longitudinal displacements, limiting precise alignment between lateral and lon-
 124 gitudinal planning in challenging scenarios such as sharp turns or dynamic interactions. In contrast,
 125 we propose a cascaded, anchor-based formulation that first predicts the drive path and then fore-
 126 casts a sequence of future longitudinal displacements along it. Our approach regresses offsets from
 127 predefined anchors using a two-stage design with dedicated modules for path and displacement pre-
 128 diction, rather than jointly generating them as tokens. This naturally enforces lateral-longitudinal
 129 consistency, simplifies reasoning about dynamic interactions, and improves path-following safety.

130

2.2 DATA AUGMENTATION

131 Data augmentation is widely employed in multiple fields (Zhang et al., 2022; Qiu et al., 2025; Wu
 132 et al., 2023; Lin et al., 2022). In autonomous driving, it is commonly applied to augment image
 133 data through techniques such as cropping, flipping, and color jittering (Sun et al., 2024), which
 134 improve the model’s ability to generalize across varying visual conditions and strengthen percep-
 135 tion robustness. Pluto (Cheng et al., 2024) employs agent drop and insertion as data augmentation
 136 strategies to generate both positive and negative scene samples. These augmented samples are uti-
 137 lized in a contrastive learning framework to enhance the model’s scene representation capabilities.
 138 However, these augmentations primarily affect perception and influence planning only indirectly.
 139 TF++ (Jaeger et al., 2023) introduced an auxiliary camera in the simulation environment, which is
 140 randomly repositioned at each time step to increase data diversity. This approach relies on additional
 141 simulator equipment and focuses primarily on lateral recovery, providing limited guidance for lon-
 142 gitudinal planning or dynamic interaction reasoning. In contrast, our planning-oriented augmentation
 143 is directly coupled with longitudinal planning, operating on the perceived agents and adjusting lon-
 144 gitudinal displacements. This forces the model to focus explicitly on dynamic agent interactions,
 145 enabling path-consistent and collision-aware planning in rare, safety-critical scenarios.

146

3 METHOD

147

3.1 OVERVIEW

148 Figure 2 provides an overview of AlignDrive, which consists of three main components. The **Drive**
 149 **Path Predictor** refines queries via cross-attention with image features (Lin et al., 2022), producing
 150 representations of the drive path, map, and dynamic agents. The **Planning-oriented Data Augmen-**
 151 **tation** module decodes agent queries into bounding boxes, re-encodes them as structured features,
 152 and enables insertion of synthetic agents with relabeled longitudinal displacements for consistent
 153 supervision. The **Longitudinal Planning** module then predicts displacements along the drive path
 154 from enriched queries, ensuring spatial consistency and collision awareness. This design preserves
 155 end-to-end training while supporting robust planning. We discuss components below.

156

3.2 DRIVE PATH PREDICTOR

157 Let us denote multi-scale features from V camera views as $\{\mathbf{f}_i\}_{i=1}^V$. Based on training data, we clus-
 158 ter ground-truth annotations to obtain anchors, which differ by task modality: bounding boxes for
 159 agents, and typical polylines for map elements and drive paths. We denote them as $\mathbf{A}_a \in \mathbb{R}^{N_a \times D_a}$,
 160 $\mathbf{A}_m \in \mathbb{R}^{N_m \times D_m}$, and $\mathbf{A}_d \in \mathbb{R}^{N_d \times D_d}$, where D_a, D_m, D_d are the dimensions of each type. Based
 161 on these anchors, we initialize three sets of task queries: agent queries $\mathbf{Q}_a \in \mathbb{R}^{N_a \times C}$, map queries
 $\mathbf{Q}_m \in \mathbb{R}^{N_m \times C}$, and drive path queries $\mathbf{Q}_d \in \mathbb{R}^{N_d \times C}$, where C is the feature dimension. The

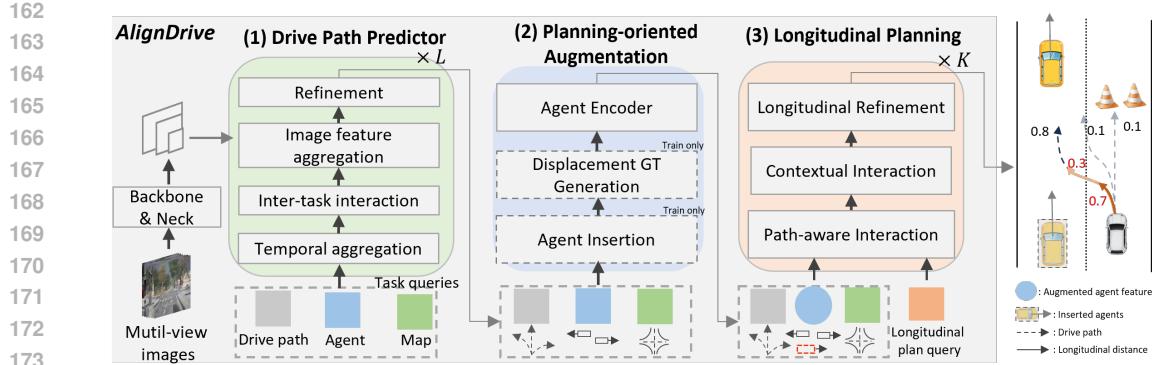


Figure 2: Overview of the proposed AlignDrive system, which consists of three components. The Drive Path Predictor refines queries through cross-attention with image features to encode the drive path, maps, and agents. The Planning-oriented Data Augmentation enriches scenarios by inserting additional agents and relabeling longitudinal displacements. Finally, the Longitudinal Planning Module predicts forward displacements along the drive path; combined with the path, these displacements yield the final trajectory that is both collision-aware and spatially consistent. **On the right side of the figure, the black numbers denote the scores of predicted drive paths, while the red numbers represent the scores of the corresponding longitudinal planning for each drive path.**

Drive Path Predictor consists of L stacked blocks, within which queries interact with image features, historical information, and each other. Through these interactions, the corresponding anchors are iteratively refined across blocks, yielding progressively updated estimates.

Temporal Aggregation. To incorporate historical information, each query interacts with retained queries from previous frames via a top- k strategy:

$$\mathbf{Q}_d \leftarrow \text{Cross-attention} \left(\mathbf{Q} = \mathbf{Q}_d, \mathbf{K} = \mathbf{Q}_d^{t-T_p:t-1}, \mathbf{V} = \mathbf{Q}_d^{t-T_p:t-1} \right), \quad (1)$$

where \mathbf{Q}_d is the current drive path queries, and $\mathbf{Q}_d^{t-T_p:t-1}$ are historical ones. Map queries \mathbf{Q}_m and agent queries \mathbf{Q}_a are updated similarly.

Inter-Task Interaction. We enable interactions among drive path, agent, and map queries through cross-attention, allowing path queries to be contextually aware of agents and maps, and constraining agent behaviors with map information.

$$\begin{aligned} \mathbf{Q}_d &\leftarrow \text{Cross-attention} \left(\mathbf{Q} = \mathbf{Q}_d, \mathbf{K} = [\mathbf{Q}_a \| \mathbf{Q}_m], \mathbf{V} = [\mathbf{Q}_a \| \mathbf{Q}_m] \right), \\ \mathbf{Q}_a &\leftarrow \text{Cross-attention} \left(\mathbf{Q} = \mathbf{Q}_a, \mathbf{K} = \mathbf{Q}_m, \mathbf{V} = \mathbf{Q}_m \right), \end{aligned} \quad (2)$$

where $[\cdot \| \cdot]$ denotes concatenation along the token dimension.

Image feature aggregation. To fuse image features, anchors are projected onto multi-view images, and their sampled features are aggregated via deformable attention. For drive path queries:

$$\mathbf{Q}_d \leftarrow \text{DA} \left(\mathbf{Q} = \mathbf{Q}_d, \mathbf{K} = \mathcal{P}(\mathbf{A}_d, \{\mathbf{F}_i\}_{i=1}^V), \mathbf{V} = \mathcal{P}(\mathbf{A}_d, \{\mathbf{F}_i\}_{i=1}^V) \right), \quad (3)$$

where DA is deformable attention and $\mathcal{P}(\cdot)$ denotes projection and sampling. Map queries \mathbf{Q}_m and agent queries \mathbf{Q}_a are enhanced in the same way using their anchors $\mathbf{A}_m, \mathbf{A}_a$.

Refinement. The model iteratively refines its predictions across the L blocks. In the refinement stage of each block, for a given anchor \mathbf{A}_d , we first generate a feature embedding using a task-specific encoder, $MLP_{enc}(\mathbf{A}_d)$. This embedding is fused with the corresponding query \mathbf{Q}_d and fed into an MLP to predict a corrective offset, $\Delta \mathbf{Y}_d$. The anchor is then updated by applying this offset. This process allows the model to progressively improve its estimate from a coarse anchor to a precise prediction.

$$\Delta \mathbf{Y}_d = \text{MLP} (\mathbf{Q}_d + \text{MLP}_{enc}(\mathbf{A}_d)), \quad \mathbf{A}_d \leftarrow \mathbf{A}_d + \Delta \mathbf{Y}_d, \quad (4)$$

where $\Delta \mathbf{Y}_d \in \mathbb{R}^{N_d \times D_d}$ is the predicted offset for each drive path anchor, and $D_d = P \times 2$ corresponds to P future waypoints. The refined waypoints are obtained as $\hat{\mathbf{Y}}_d = \mathbf{A}_d$ after iteratively updating the anchors through all L blocks. A separate MLP head is applied to the drive path query

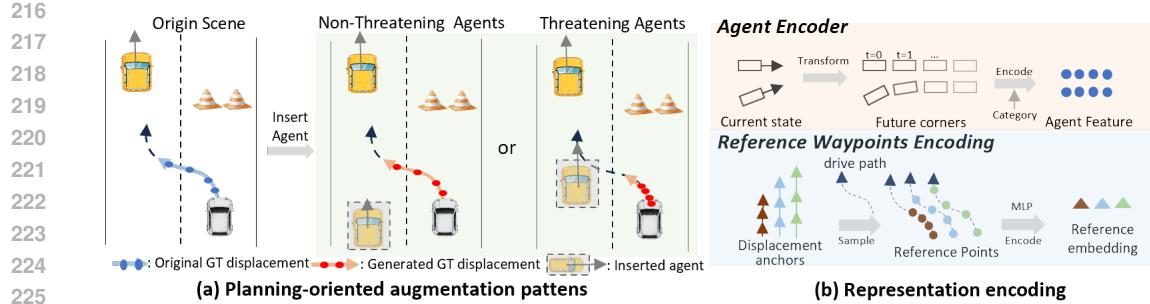


Figure 3: (a) Planning-oriented augmentation patterns. Non-threatening agents are inserted at a distance with unchanged GT displacements, while threatening agents are placed nearby and cause adaptive shortening of GT displacements. (b) Representation encoding. Inserted agents are projected into future positions, transformed to corner representations, and encoded via a Fourier encoder (top). Reference points are sampled by displacement anchors and encoded with MLPs. For clarity, although multiple drive paths are predicted in practice, only one representative path is illustrated here. (bottom)

to predict confidence scores $\mathbf{S}_d \in \mathbb{R}^{N_d \times 1}$ for candidate drive paths. Map anchors are refined in the same iterative manner using \mathbf{Q}_m and \mathbf{A}_m .

For agents, static attributes (e.g., position, size, orientation) are predicted using an MLP applied to the queries combined with anchor features, while dynamic motion is predicted directly from queries without anchor-based refinement:

$$\hat{\mathbf{Y}}_a^{state} = \text{MLP}_{state}(\mathbf{Q}_a + E(\mathbf{A}_a)), \quad \hat{\mathbf{Y}}_a^{motion} = \text{MLP}_{motion}(\mathbf{Q}_a), \quad (5)$$

where $\hat{\mathbf{Y}}_a^{state} \in \mathbb{R}^{N_a \times S}$ contains S attributes for each agent, and $\hat{\mathbf{Y}}_a^{motion} \in \mathbb{R}^{N_a \times T \times 2}$ contains the predicted future trajectories.

3.3 PLANNING-ORIENTED DATA AUGMENTATION

To enrich interactive scenarios, we insert a virtual agent into the detected agents with probability α .

Agent Insertion. The virtual agent is initialized with a randomly sampled state \mathbf{X}_{vir} and a target point \mathbf{P}^* , selected on the ego vehicle’s ground-truth drive path \mathbf{Y}_d^{GT} . Together, they determine the virtual agent’s future motion. As illustrated in Fig. 3(a), the virtual agent randomly adopts one of two velocity patterns: gradually approaching from afar, making it a low-risk and safe maneuver, or approaching faster and closer, potentially colliding with the ego vehicle. To maintain the total number of agents, the original agent with the lowest confidence is removed, and the virtual agent is inserted in its place. The resulting augmented set of agent states and motions are denoted as $\hat{\mathbf{Y}}^{state}$ and $\hat{\mathbf{Y}}^{motion}$, ensuring exposure to challenging interactions while preserving scene consistency.

Displacement Ground-truth Generation. The ground-truth displacement label is defined as a sequence $\mathbf{Y}_d^{\text{GT}} \in \mathbb{R}^{T \times 1}$, representing T future longitudinal displacements of the ego vehicle along the drive path, each measured over a fixed temporal interval. When a virtual agent is inserted that would collide with the ego vehicle, we first determine the maximum total displacement D_{safe} the ego vehicle can travel over the T steps without causing a collision. Given the original total displacement $D_{\text{orig}} = \sum_{t=1}^T \mathbf{Y}_d^{\text{GT}}[t]$, we compute a safe scaling factor $\beta = D_{\text{safe}}/D_{\text{orig}}$ and uniformly scale the original sequence: $\hat{\mathbf{Y}}_d^{\text{GT}} = \beta \cdot \mathbf{Y}_d^{\text{GT}}$. This procedure ensures that the displacement at each step is consistently reduced to avoid collisions, while maintaining a dynamically plausible motion profile.

Agent Encode. After augmentation, agents are represented using both their states and motions, denoted as $\hat{\mathbf{Y}}^{state}$ and $\hat{\mathbf{Y}}^{motion}$. These variables are converted into a unified corner-based representation:

$$\mathbf{C}_a = f_{\text{corner}}(\hat{\mathbf{Y}}^{state}, \hat{\mathbf{Y}}^{motion}), \quad \mathbf{C}_a \in \mathbb{R}^{N_a \times (T+1) \times 8}, \quad (6)$$

where $f_{\text{corner}}(\cdot)$ converts each agent’s bounding box state and future trajectory into the coordinates of its four corners across all time steps, as illustrated in the top of Fig. 3(b). To construct agent features, we separately process geometry and category information. The corner representation \mathbf{C}_a is first mapped using Fourier encoder Φ and passed through $\text{MLP}_{\text{corner}}$ (Mildenhall et al., 2021), while the agent category (extracted from $\hat{\mathbf{Y}}^{state}$) is mapped with Φ and processed through $\text{MLP}_{\text{category}}$. Their outputs are then summed to form the unified agent embedding:

$$\mathbf{E}_a^{0:T} = \text{MLP}_{\text{corner}}(\Phi(\mathbf{C}_a)) + \text{MLP}_{\text{category}}(\Phi(\text{category})), \quad \mathbf{E}_a^{0:T} \in \mathbb{R}^{N_a \times (T+1) \times C}. \quad (7)$$

270 Here, $\mathbf{E}_a^t \in \mathbb{R}^{N_a \times C}$ denotes the features of all agents at time step t , providing a temporally consistent,
 271 category-aware representation. The detailed process can be found in the appendix.

272 **3.4 LONGITUDINAL PLANNING MODULE**

273 The longitudinal planning module predicts a sequence of ego vehicle’s future displacements along
 274 the drive path at fixed time intervals. It is implemented as K stacked blocks, where queries interact
 275 with agent and path features and are progressively refined. We formulate this as an *anchor-based*
 276 *offset regression* task: for each candidate path, M anchors are defined, each representing a sequence
 277 of longitudinal displacements for the current step and T future steps, yielding $M \times (T + 1)$ learnable
 278 queries. These queries are responsible for predicting offsets relative to their anchors, thereby
 279 coupling the drive path geometry with agent interactions and enabling precise longitudinal planning.

280 $\mathbf{A}_l^{0:T} \in \mathbb{R}^{N_d \times M \times (T+1) \times 1}, \quad \mathbf{Q}_l^{0:T} \in \mathbb{R}^{N_d \times M \times (T+1) \times C}, \quad (8)$

281 where the superscript $0 : T$ denotes the stacked sequence of time steps, covering from the current
 282 step ($t = 0$) to T future steps. Here, $\mathbf{A}_l^{0:T}$ are the anchor displacements and $\mathbf{Q}_l^{0:T}$ their learnable
 283 queries. The final displacements are obtained by adding predicted offsets to the anchors.

284 **Path-aware Interaction.** Each longitudinal planning query is enhanced with reference waypoints
 285 sampled along the predicted drive path $\hat{\mathbf{Y}}_d$ at anchor displacements $\mathbf{A}_l^{0:T}$. Let sampled points \mathbf{P}_l be

286 $\mathbf{P}_l = \text{Interp}(\hat{\mathbf{Y}}_d, \mathbf{A}_l^{0:T}), \quad \mathbf{P}_l \in \mathbb{R}^{N_d \times M \times (T+1) \times 2}, \quad (9)$

287 where $\text{Interp}(\cdot)$ denotes linear interpolation along the path according to cumulative anchor displacements.
 288 The points for each anchor are encoded jointly into a feature vector, as shown in Fig. 3(b)
 289 (bottom):

290 $\mathbf{F}_l = \text{MLP}(\mathbf{P}_l), \quad \mathbf{F}_l \in \mathbb{R}^{N_d \times M \times C}. \quad (10)$

291 Then, this feature is broadcasted across the $T+1$ time steps and added to the longitudinal query for
 292 cross-attention with the drive path queries \mathbf{Q}_d :

293 $\mathbf{Q}_l^{0:T} \leftarrow \text{CrossAttn}(\mathbf{Q} = \mathbf{Q}_l^{0:T} + \mathbf{F}_l, \mathbf{K} = \mathbf{Q}_d, \mathbf{V} = \mathbf{Q}_d). \quad (11)$

294 In this way, each longitudinal planning query incorporates both the geometry of the drive path and
 295 its anchor-based temporal reference.

296 **Contextual Interaction.** At each time step t , longitudinal planning queries interact with dynamic
 297 agents via cross-attention on the encoded agent features to capture agent-specific context:

298 $\mathbf{Q}_l^t \leftarrow \text{CrossAttn}(\mathbf{Q} = \mathbf{Q}_l^t, \mathbf{K} = \mathbf{E}_a^t, \mathbf{V} = \mathbf{E}_a^t), \quad t = 0, \dots, T. \quad (12)$

299 The updated queries attend to map queries via cross-attention, incorporating static cues such as stop
 300 lines for longitudinal planning:

301 $\mathbf{Q}_l^{0:T} \leftarrow \text{CrossAttn}(\mathbf{Q} = \mathbf{Q}_l^{0:T}, \mathbf{K} = \mathbf{Q}_m, \mathbf{V} = \mathbf{Q}_m). \quad (13)$

302 Finally, a temporal positional encoding is added to the queries, and causal self-attention is applied
 303 along the temporal dimension to enforce consistency:

304 $\mathbf{Q}_l^{0:T} \leftarrow \text{CausalSelfAttn}(\mathbf{Q}_l^{0:T} + \text{PE}^{0:T}). \quad (14)$

305 **Longitudinal Refinement.** After obtaining the updated longitudinal queries $\mathbf{Q}_l^{0:T}$ from path-aware
 306 and contextual interactions, we enhance them using path-aligned reference points \mathbf{P}_l , providing
 307 spatial grounding for predicting offsets relative to the anchors. Specifically, the reference points \mathbf{P}_l
 308 are encoded by an encoder MLP_{ref} and fused with the queries to predict offsets:

309 $\Delta \mathbf{Y}_l = \text{MLP}(\mathbf{Q}_l^{0:T} + \text{MLP}_{ref}(\mathbf{P}_l)), \quad \Delta \mathbf{Y}_l \in \mathbb{R}^{N_d \times M \times (T+1) \times 1}. \quad (15)$

310 The final longitudinal displacements are obtained by adding offsets to the anchors:

311 $\hat{\mathbf{Y}}_l = \mathbf{A}_l^{0:T} + \Delta \mathbf{Y}_l, \quad \hat{\mathbf{Y}}_l \in \mathbb{R}^{N_d \times M \times (T+1) \times 1}. \quad (16)$

312 An auxiliary MLP head is applied to the average of $\mathbf{Q}_l^{0:T}$ over the $T + 1$ time steps to predict a
 313 confidence score $\mathbf{S}_l \in \mathbb{R}^{N_d \times M \times 1}$ for candidate selection.

314 Our model outputs N_d candidate drive paths $\hat{\mathbf{Y}}_d$ and, for each drive path, M candidate longitudinal
 315 displacement sequences $\hat{\mathbf{Y}}_l$. A hierarchical selection strategy (Sun et al., 2024) chooses the
 316 candidate based on confidence scores \mathbf{S}_l and \mathbf{S}_d . The selected planning is then tracked using PID
 317 controllers. Full implementation details are provided in the appendix B.

324
 325 Table 1: **Closed-loop results of planning in Bench2Drive.** * denotes expert feature distillation. **Bold**
 326 and underlined numbers indicate the best performance within different expert groups.

Method	Driving Score (↑)	Success Rate (%) (↑)	Driving Efficiency (↑)	Comfort (↑)
Expert: PDM-Lite (Beßwenger, 2024)				
SimLingo (Ren et al., 2025)	<u>86.02</u>	<u>67.27</u>	<u>259.23</u>	<u>33.67</u>
Expert: Think2Drive (Li et al., 2024a)				
UniAD-Base (Hu et al., 2023)	45.81	16.36	129.21	43.58
VAD (Jiang et al., 2023)	42.35	15.00	157.94	46.01
SparseDrive (Sun et al., 2024)	44.54	16.71	170.21	48.63
GenAD (Zheng et al., 2024)	44.81	15.90	-	-
DiFSD (Su et al., 2024)	52.02	21.00	178.30	-
DriveTransformer (Jia et al., 2025)	63.46	35.01	100.64	20.78
Hydra-NeXt (Li et al., 2025)	73.86	50.00	197.76	20.68
HiP-AD (Tang et al., 2025)	86.77	69.09	203.12	19.36
TCP-traj* (Wu et al., 2022)	59.90	30.00	76.54	18.08
ThinkTwice* (Jia et al., 2023b)	62.44	31.23	69.33	16.22
DriveAdapter* (Jia et al., 2023a)	64.22	33.08	70.22	16.01
AlignDrive(Ours)	89.07	73.18	212.07	16.86

341 3.5 LOSS FUNCTION

342 For planning tasks, we adopt a winner-takes-all strategy to determine which predictions are supervised. The winner is defined as the prediction whose corresponding anchor has the minimum L_2 343 distance from the ground truth. Other losses, including online mapping, agent detection, motion 344 forecasting, and auxiliary tasks, follow (Sun et al., 2024). The total loss is the weighted sum of all 345 components. Details are described in the appendix.

$$346 \mathcal{L} = \lambda_{\text{map}} \mathcal{L}_{\text{map}} + \lambda_{\text{det}} \mathcal{L}_{\text{det}} + \lambda_{\text{motion}} \mathcal{L}_{\text{motion}} + \lambda_{\text{drivepath}} \mathcal{L}_{\text{drivepath}} + \lambda_{\text{plan}} \mathcal{L}_{\text{plan}} + \lambda_{\text{aux}} \mathcal{L}_{\text{aux}}. \quad (17)$$

350 4 EXPERIMENTS

351 4.1 DATASET AND METRICS

352 **Dataset.** We utilize the Bench2Drive (Jia et al., 2024) benchmark for comprehensive evaluation of 353 our model. This dataset consists of 1000 short video clips uniformly sampled from 44 interactive 354 scenarios in CARLA v2 (Dosovitskiy et al., 2017). Following the official split, we use 950 clips for 355 training and 50 for validation. Closed-loop performance is assessed on 220 standardized test routes 356 to ensure a fair and reproducible comparison. **To further assess open-loop performance in the real 357 world, we also conduct experiments on the nuScenes dataset (Caesar et al., 2020), which consists of 358 1000 real-world driving scenes split into 700 for training, 150 for validation, and 150 for testing.** 359

360 **Metrics.** We report the official metrics: Driving Score (DS), Success Rate (SR), Driving Efficiency 361 (DE), and Comfort. In addition, we introduce a Collision Rate metric, defined as the proportion 362 of scenarios involving collisions with dynamic vehicles, to specifically assess the model’s capability 363 in handling interactive environments. **For open-loop evaluation, we adopt the standard metrics 364 commonly used in prior work (Jiang et al., 2023), namely L2 distance and collision rate.** 365

366 4.2 IMPLEMENTATION DETAILS

367 The model employs 900 agent queries, 100 map queries, 6 drive path queries, and 5 longitudinal 368 queries. The supervision signal for the drive path is derived from the ego vehicle’s ground truth 369 trajectory, sampled at 2-meter intervals. For longitudinal planning, the ground truth is defined as 370 the displacements traveled along the trajectory at a 5Hz sampling rate. The longitudinal planning 371 module employs five constant displacement anchors along the drive path, positioned at 0.25, 1.7, 372 4.0, 6.0, and 8.5 meters ahead of the current vehicle position. These anchors serve as reference 373 points for predicting future longitudinal displacements. In practice, we set $\alpha = 0.1$, meaning that a 374 virtual agent is inserted in 10% of training samples. Additional details are provided in the appendix. 375

376 4.3 MAIN RESULTS

377 As shown in Table 1, our method achieves strong overall performance, with a Driving Score of 378 89.07 and a Success Rate of 73.18%, along with the highest Efficiency of 212.07. The Comfort 379

378 Table 2: Multi-Ability Results in Bench2Drive.* denotes expert feature distillation.
379

380 Method	Ability (%) ↑					
	381 Mean	Merging	Overtaking	Emergency Brake	Give Way	Traffic Sign
382 UniAD-Base (Hu et al., 2023)	15.55	14.10	17.78	21.67	10.00	14.21
383 VAD (Jiang et al., 2023)	18.07	8.11	24.44	18.64	20.00	19.15
384 DriveTransformer-Large (Jia et al., 2025)	38.60	17.57	35.00	48.36	40.00	52.10
385 HiP-AD (Tang et al., 2025)	65.98	50.00	84.44	83.33	40.00	72.10
386 TCP-traj* (Wu et al., 2022)	34.92	12.50	22.73	52.72	40.00	46.63
387 ThinkTwice* (Jia et al., 2023b)	37.48	13.72	22.93	52.99	50.00	47.78
388 DriveAdapter* (Jia et al., 2023a)	38.33	14.55	22.61	54.04	50.00	50.45
389 AlignDrive	70.06	75.00	75.56	75.00	50.00	74.74

390 Table 3: Open-loop planning evaluation results on the nuScenes validation dataset.
391

392 Method	L2 (m) ↓				Collision (%) ↓			
	393 1s	2s	3s	Avg.	394 1s	2s	3s	Avg.
395 VAD-Base (Jiang et al., 2023)	0.41	0.70	1.05	0.72	0.03	0.19	0.43	0.21
396 GenAD (Zheng et al., 2024)	0.28	0.49	0.78	0.52	0.08	0.14	0.34	0.19
397 SparseDrive-S (Sun et al., 2024)	0.29	0.58	0.96	0.61	0.01	0.05	0.18	0.08
398 DriveTransformer-Large (Jia et al., 2025)	0.16	0.30	0.55	0.33	0.01	0.06	0.15	0.07
399 HiP-AD (Tang et al., 2025)	0.28	0.53	0.87	0.56	0.01	0.05	0.15	0.07
400 AlignDrive	0.38	0.73	1.23	0.78	0.01	0.04	0.14	0.06

401 score is 16.86. This is due to challenging scenarios, such as pedestrian crossings and vehicle cut-
402 ins, which occasionally require abrupt braking or steering. Therefore, comparisons of Comfort are
403 most meaningful among methods with similar Success Rates, as such maneuvers are necessary to
404 ensure safe and successful navigation.

405 We report the open-loop results in Table 3. Our method achieves the lowest collision rate, indicating
406 stronger capability in handling dynamic interactions. Although the L2 distance is not the best, this
407 is influenced by our data augmentation strategy, where inserting additional agents and adjusting the
408 corresponding ground-truth trajectory can introduce discrepancies under an L2-based metric, while
409 other approaches are more directly aligned with such supervision. Prior work has also noted that
410 open-loop metrics may not fully reflect planning quality due to issues like distribution shift and
411 causal confusion (Zhai et al., 2023; Li et al., 2024b; Dauner et al., 2023). Consistent with this, our
412 method achieves SOTA performance in the closed-loop CARLA evaluation, which offers a more
413 faithful measure of real-world driving behavior.

414 We also report the multi-ability scores in Table 2. Our model achieves the highest overall perfor-
415 mance, with a significantly superior average score. Most notably, it reaches a Merging score of 75
416 far surpassing the previous best of 50. Since merging scenarios involve challenging interactions
417 such as consecutive lane changes and cut-ins, the improvement highlights our model’s enhanced
418 capability in handling dynamic interactions and avoiding collisions, directly validating our claim.

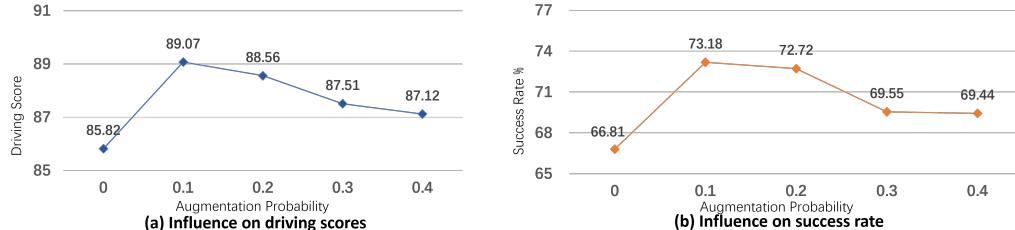
419 In addition to planning ability, we evaluate inference efficiency in Table 4. Our method achieves
420 the best Driving Score and Success Rate while maintaining lower latency than DriveTransformer
421 and VAD. By reducing number of stacked blocks, we further develop AlignDrive-Small, which is
422 smaller and faster than HiP-AD yet still delivers superior performance, striking a better balance
423 between accuracy and efficiency.

424 Table 4: Comparison of inference efficiency and driving performance. AlignDrive-Small is a
425 lightweight variant with fewer decoder layers. Experiments are conducted on an RTX 3090 GPU.
426

427 Method	428 Parameters	429 Latency	430 Driving Score	431 Success Rate (%)
VAD-Base (Jiang et al., 2023)	-	224.3 ms	42.35	15.00
DriveTransformer-Large (Jia et al., 2025)	646 M	221.7 ms	63.46	35.01
HiP-AD (Tang et al., 2025)	97.4 M	138.9 ms	86.77	69.09
AlignDrive	117.2 M	177.5 ms	89.07	73.18
AlignDrive-Small	83.7 M	124.5 ms	87.45	71.82

432 Table 5: **Ablation study on AlignDrive components.** LP: uses lateral path prediction to condition
 433 longitudinal planning; DP: formulates longitudinal planning as displacement regression along the
 434 drive path; DA: applies planning-oriented data augmentation

Variant	LP	DP	DA	Driving Score ↑	Success Rate (%)↑	Collision Rate (%)↓
A				83.21	63.18	22.7
B	✓			84.85	65.45	19.5
C	✓	✓		85.82	66.81	16.3
D	✓		✓	86.54	68.92	15.7
E	✓	✓	✓	89.07	73.18	11.4



440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 Figure 4: Effect of planning-oriented data augmentation on planning performance. All augmented variants ($p = 0.1, 0.2, 0.3, 0.4$) outperform the no-augmentation baseline.

4.4 ABLATION STUDY

In this section, we perform ablation studies to verify the effectiveness of the key components proposed in AlignDrive, directly corresponding to our contributions.

Independent vs Path-Conditioned Longitudinal Planning. We compare Variant A, which predicts lateral drive path and longitudinal trajectories in parallel following prior SOTA methods (Tang et al., 2025), with Variant C, our proposed approach that predicts longitudinal displacements along the drive path. This cascaded, path-conditioned design couples lateral and longitudinal planning, resulting in more consistent and effective planning. As shown in Tab. 5, Variant C achieves a higher overall driving score and increases the Success Rate from 63.18% to 66.81%, demonstrating the effectiveness of path-conditioned longitudinal planning. In addition, Variant C reduces the Collision Rate from 22.7% to 16.3%, a 28.2% relative reduction. This improvement supports our claim that allowing longitudinal planning condition on the drive path ensure the model to better focus on dynamic interactions, improving collision avoidance in complex scenarios.

Displacement vs Waypoint Prediction. We also evaluate Variant B, which predicts trajectory waypoints conditioned on the drive path at discrete future time steps, rather than predicting longitudinal displacements. Although both variants leverage the drive path as a lateral prior, displacements are more directly associated with dynamic interactions, whereas trajectory waypoints embed additional lateral variations that may dilute this focus. Tab. 5 shows that Variant C achieves higher Success Rate and lower Collision Rate, demonstrating that our displacement regression along the drive path is not only conceptually simpler but also empirically superior.

Planning-Oriented Data Augmentation. We evaluate the effectiveness of our planning-oriented data augmentation, which inserts synthetic traffic participants and adjusts longitudinal labels while keeping lateral paths unchanged. Variant C without augmentation is compared to Variant E with augmentation. As shown in Tab. 5, augmentation improves overall Driving Score from 85.82 to 89.07 and increases the Success Rate, demonstrating the effectiveness of our strategy. In addition, it reduces the Collision Rate from 16.3% to 11.4%, highlighting that augmentation helps the model better handle dynamic agents and improve safety.

Fig. 4 further illustrates the impact of augmentation across different scenarios, showing that performance slightly declines when the augmentation probability exceeds 0.1, as excessive augmentation may encourage overly conservative driving. Overall, all augmented variants substantially outperform the no-augmentation baseline, demonstrating the benefit of our strategy.

Displacement Formulation Better Fits Augmentation. We investigate how planning-oriented data augmentation interacts with different longitudinal representations. As shown in Tab. 5, applying augmentation to waypoint-based planning (Variant D) improves the Driving Score from 84.85 to 86.54 (+1.69), Success Rate from 65.45% to 68.92% (+3.47), and reduces Collision Rate from 19.5% to 15.7% (-3.8). In contrast, augmentation paired with displacement-based planning (Variant E) boosts

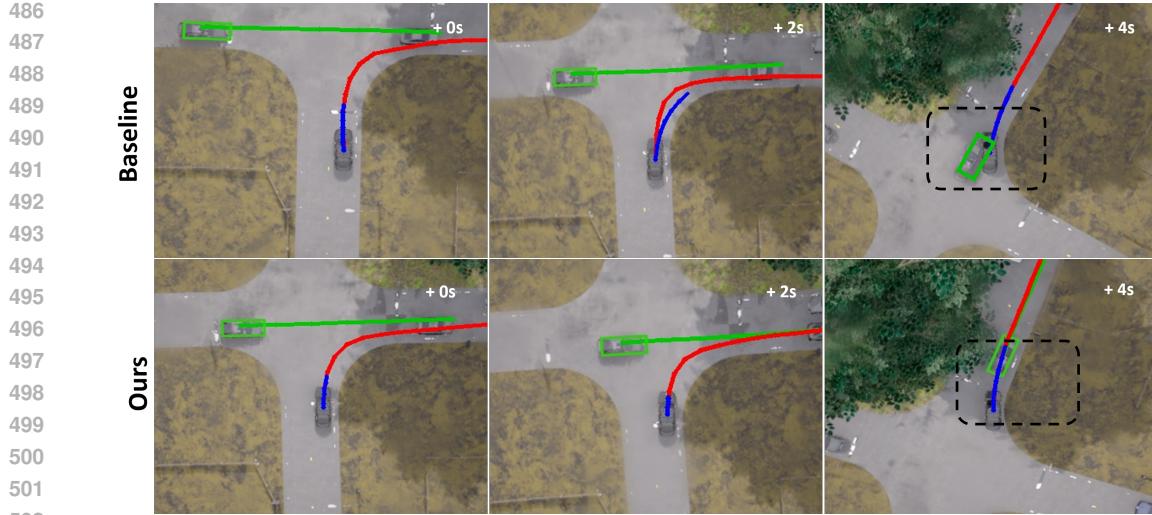


Figure 5: Red points are predicted drive paths, while blue points show longitudinal planning outputs (trajectory waypoints for the baseline, displacement sequences for ours). Relevant vehicles are highlighted in **green**. The baseline collides with cross-traffic, while our method avoids it.

the Driving Score from 85.82 to 89.07 (+3.25), Success Rate from 66.81% to 73.18% (+6.37), and lowers Collision Rate from 16.3% to 11.4% (-4.9). These results indicate that longitudinal displacement formulation better leverages augmentation, yielding larger gains in safety-critical scenarios.

4.5 QUALITATIVE RESULTS

To better illustrate the effectiveness of our design, we compare our model with the baseline, which predicts drive path and trajectory independently (Variant A in Tab. 5). As shown in Fig. 5, we present a multi-vehicle interaction at an intersection where the ego vehicle must turn right while yielding to cross-traffic. In the first row, the baseline fails to react to the incoming vehicle (highlighted in purple), leading to conflict and eventual collision. In contrast, our model correctly anticipates the cross-traffic, waits until it passes, and then executes the turn safely. We provide more visualisation in the supplementary material.

5 CONCLUSION

We propose AlignDrive, a novel cascaded planning paradigm in which longitudinal planning is explicitly conditioned on predicted drive paths. This paradigm tightly couples lateral and longitudinal reasoning by using the path geometry as a prior for longitudinal planning. Building on this, we reformulate longitudinal planning as 1D displacement prediction along the drive path, allowing the model to focus on dynamic interactions rather than redundantly encoding static geometry. Leveraging this formulation, we introduce a planning-oriented data augmentation strategy that generates diverse, safety-critical training scenarios. Extensive evaluations show that AlignDrive achieves state-of-the-art performance, with ablation studies confirming the contribution of each component.

527
528
529
530
531
532
533
534
535
536
537
538
539

540 REPRODUCIBILITY STATEMENT
541

542 To ensure the reproducibility of the results presented in this paper, we provide detailed descriptions
543 of our methods and experimental setup within the main text and appendix. In addition, the sup-
544 plementary material includes detailed results of closed-loop evaluations for all scenarios, and the
545 appendix provides results from multiple simulation runs.

546
547 REFERENCES
548

549 Jens Beißwenger. Pdm-lite: A rule-based planner for carla leaderboard 2.0. *Univ. Tübingen*, 2024.

550

551 Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
552 Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
553 autonomous driving. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
554 recognition*, pp. 11621–11631, 2020.

555

556 Jie Cheng, Yingbing Chen, and Qifeng Chen. Pluto: Pushing the limit of imitation learning-based
557 planning for autonomous driving. *arXiv preprint arXiv:2404.14327*, 2024.

558

559 Daniel Dauner, Marcel Hallgarten, Andreas Geiger, and Kashyap Chitta. Parting with miscon-
560 ceptions about learning-based vehicle motion planning. In *Conference on Robot Learning*, pp.
1268–1281. PMLR, 2023.

561

562 Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla: An
563 open urban driving simulator. In *Conference on robot learning*, pp. 1–16. PMLR, 2017.

564

565 Hao Gao, Shaoyu Chen, Bo Jiang, Bencheng Liao, Yang Shi, Xiaoyang Guo, Yuechuan Pu, Haoran
566 Yin, Xiangyu Li, Xinbang Zhang, et al. Rad: Training an end-to-end driving policy via large-scale
567 3dgs-based reinforcement learning. *arXiv preprint arXiv:2502.13144*, 2025.

568

569 Ke Guo, Haochen Liu, Xiaojun Wu, Jia Pan, and Chen Lv. ipad: Iterative proposal-centric end-to-
570 end autonomous driving. *arXiv preprint arXiv:2505.15111*, 2025.

571

572 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
573 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
770–778, 2016.

574

575 Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou Zhu, Siqi Chai, Senyao Du,
576 Tianwei Lin, Wenhui Wang, et al. Planning-oriented autonomous driving. In *Proceedings of the
577 IEEE/CVF conference on computer vision and pattern recognition*, pp. 17853–17862, 2023.

578

579 Bernhard Jaeger, Kashyap Chitta, and Andreas Geiger. Hidden biases of end-to-end driving models.
In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 8240–8249,
2023.

580

581 Xiaosong Jia, Yulu Gao, Li Chen, Junchi Yan, Patrick Langechuan Liu, and Hongyang Li.
582 Driveadapter: Breaking the coupling barrier of perception and planning in end-to-end autonomous
583 driving. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
7953–7963, 2023a.

584

585 Xiaosong Jia, Penghao Wu, Li Chen, Jiangwei Xie, Conghui He, Junchi Yan, and Hongyang Li.
586 Think twice before driving: Towards scalable decoders for end-to-end autonomous driving. In
587 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
21983–21994, 2023b.

588

589 Xiaosong Jia, Zhenjie Yang, Qifeng Li, Zhiyuan Zhang, and Junchi Yan. Bench2drive: Towards
590 multi-ability benchmarking of closed-loop end-to-end autonomous driving. *Advances in Neural
591 Information Processing Systems*, 37:819–844, 2024.

592

593 Xiaosong Jia, Junqi You, Zhiyuan Zhang, and Junchi Yan. Drivetransformer: Unified transformer
for scalable end-to-end autonomous driving. *arXiv preprint arXiv:2503.07656*, 2025.

594 Bo Jiang, Shaoyu Chen, Qing Xu, Bencheng Liao, Jiajie Chen, Helong Zhou, Qian Zhang, Wenyu
 595 Liu, Chang Huang, and Xinggang Wang. Vad: Vectorized scene representation for efficient au-
 596 tonomous driving. In *Proceedings of the IEEE/CVF International Conference on Computer Vi-
 597 sion*, pp. 8340–8350, 2023.

598 Qifeng Li, Xaosong Jia, Shaobo Wang, and Junchi Yan. Think2drive: Efficient reinforcement
 599 learning by thinking with latent world model for autonomous driving (in carla-v2). In *European
 600 Conference on Computer Vision*, pp. 142–158. Springer, 2024a.

601 Zhenxin Li, Shihao Wang, Shiyi Lan, Zhiding Yu, Zuxuan Wu, and Jose M Alvarez. Hydra-next:
 602 Robust closed-loop driving with open-loop training. *arXiv preprint arXiv:2503.12030*, 2025.

603 Zhiqi Li, Zhiding Yu, Shiyi Lan, Jiahua Li, Jan Kautz, Tong Lu, and Jose M Alvarez. Is ego status
 604 all you need for open-loop end-to-end autonomous driving? In *Proceedings of the IEEE/CVF
 605 Conference on Computer Vision and Pattern Recognition*, pp. 14864–14873, 2024b.

606 Xuewu Lin, Tianwei Lin, Zixiang Pei, Lichao Huang, and Zhizhong Su. Sparse4d: Multi-view 3d
 607 object detection with sparse spatial-temporal fusion. *arXiv preprint arXiv:2211.10581*, 2022.

608 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances
 609 in neural information processing systems*, 36:34892–34916, 2023.

610 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
 611 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications
 612 of the ACM*, 65(1):99–106, 2021.

613 Congpei Qiu, Yanhao Wu, Wei Ke, Xiuxiu Bai, and Tong Zhang. Refining clip’s spatial awareness:
 614 A visual-centric perspective. *arXiv preprint arXiv:2504.02328*, 2025.

615 Katrin Renz, Long Chen, Ana-Maria Marcu, Jan Hünermann, Benoit Hanotte, Alice Karnsund,
 616 Jamie Shotton, Elahe Arani, and Oleg Sinavski. Carllava: Vision language models for camera-
 617 only closed-loop driving. *arXiv preprint arXiv:2406.10165*, 2024.

618 Katrin Renz, Long Chen, Elahe Arani, and Oleg Sinavski. Simlingo: Vision-only closed-loop au-
 619 tonomous driving with language-action alignment. In *Proceedings of the Computer Vision and
 620 Pattern Recognition Conference*, pp. 11993–12003, 2025.

621 Ziying Song, Caiyan Jia, Lin Liu, Hongyu Pan, Yongchang Zhang, Junming Wang, Xingyu Zhang,
 622 Shaoqing Xu, Lei Yang, and Yadan Luo. Don’t shake the wheel: Momentum-aware planning in
 623 end-to-end autonomous driving. In *Proceedings of the Computer Vision and Pattern Recognition
 624 Conference*, pp. 22432–22441, 2025.

625 Haisheng Su, Wei Wu, and Junchi Yan. Difsd: Ego-centric fully sparse paradigm with uncer-
 626 tainty denoising and iterative refinement for efficient end-to-end self-driving. *arXiv preprint
 627 arXiv:2409.09777*, 2024.

628 Wenchao Sun, Xuewu Lin, Yining Shi, Chuang Zhang, Haoran Wu, and Sifa Zheng.
 629 Sparsedrive: End-to-end autonomous driving via sparse scene representation. *arXiv preprint
 630 arXiv:2405.19620*, 2024.

631 Yingqi Tang, Zhuoran Xu, Zhaotie Meng, and Erkang Cheng. Hip-ad: Hierarchical and multi-
 632 granularity planning with deformable attention for autonomous driving in a single decoder. *arXiv
 633 preprint arXiv:2503.08612*, 2025.

634 Tao Wang, Cong Zhang, Xinguang Qu, Kun Li, Weiwei Liu, and Chang Huang. Diffad: A unified
 635 diffusion modeling approach for autonomous driving. *arXiv preprint arXiv:2503.12170*, 2025.

636 Xinshuo Weng, Boris Ivanovic, Yan Wang, Yue Wang, and Marco Pavone. Para-drive: Parallelized
 637 architecture for real-time autonomous driving. In *Proceedings of the IEEE/CVF Conference on
 638 Computer Vision and Pattern Recognition*, pp. 15449–15458, 2024.

639 Penghao Wu, Xaosong Jia, Li Chen, Junchi Yan, Hongyang Li, and Yu Qiao. Trajectory-guided
 640 control prediction for end-to-end autonomous driving: A simple yet strong baseline. *Advances in
 641 Neural Information Processing Systems*, 35:6119–6132, 2022.

648 Yanhao Wu, Tong Zhang, Wei Ke, Sabine Süsstrunk, and Mathieu Salzmann. Spatiotemporal self-
649 supervised learning for point clouds in the wild. In *Proceedings of the IEEE/CVF Conference on*
650 *Computer Vision and Pattern Recognition*, pp. 5251–5260, 2023.

651

652 Zebin Xing, Xingyu Zhang, Yang Hu, Bo Jiang, Tong He, Qian Zhang, Xiaoxiao Long, and Wei
653 Yin. Goalflow: Goal-driven flow matching for multimodal trajectories generation in end-to-end
654 autonomous driving. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
655 pp. 1602–1611, 2025.

656

657 Jiang-Tian Zhai, Ze Feng, Jinhao Du, Yongqiang Mao, Jiang-Jiang Liu, Zichang Tan, Yifu Zhang,
658 Xiaoqing Ye, and Jingdong Wang. Rethinking the open-loop evaluation of end-to-end autonomous
659 driving in nuscenes. *arXiv preprint arXiv:2305.10430*, 2023.

660

661 Tong Zhang, Congpei Qiu, Wei Ke, Sabine Süsstrunk, and Mathieu Salzmann. Leverage your
662 local and global representations: A new self-supervised learning strategy. In *Proceedings of*
663 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 16580–16589, 2022.

664

665 Wenzhao Zheng, Ruiqi Song, Xianda Guo, Chenming Zhang, and Long Chen. Genad: Genera-
666 tive end-to-end autonomous driving. In *European Conference on Computer Vision*, pp. 87–104.
667 Springer, 2024.

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **SUPPLEMENTARY MATERIAL**
703704 We include the following supplementary content:
705706

- 707 Additional visualization demos: a set of videos demonstrating the effectiveness of our
708 method (see the included `index.html` file).
- 709 Original simulation results in the CarlaV2 simulator: detailed scores for each scenario (see
710 `AlignDrive_Meraged_Bench2drive_Results.json`).

711 **APPENDIX**
712713

- 714 Additional experiments, including further ablation studies.
- 715 Detailed model designs, with full training parameters and algorithmic specifications.

716 **A USE OF LARGE LANGUAGE MODELS FOR MANUSCRIPT PREPARATION.**
717718 We employed a large language model (LLM) solely to assist in language refinement and writing
719 clarity. The LLM was **not** used for any experimental design, data analysis, or model development,
720 and all technical content, results, and conclusions originate entirely from the authors.
721722 **B IMPLEMENTATION DETAILS**
723724 **B.1 TRAINING DETAILS**
725726 During training, the Longitudinal Planning module is initially frozen while the Drive Path predictor
727 is trained for 12 epochs. The Longitudinal Planning module is then unfrozen, and the entire system
728 is trained jointly, with the full training process spanning 36 epochs. Training is conducted on 32
729 NVIDIA RTX 4090 GPUs with a total batch size of 256. We use the AdamW optimizer with weight
730 decay and set the initial learning rate to 1×10^{-4} . Planning-oriented data augmentation is introduced
731 after 24 epochs to enrich interactive scenarios with virtual agents.
732733 Our model predicts the next $T = 15$ drive path waypoints $\{\hat{\mathbf{Y}}_d^t\}_{t=1}^T$ at 2-meter intervals and longi-
734 tudinal displacements $\{\hat{\mathbf{Y}}_l^t\}_{t=1}^T$ at 5 Hz. Supervision is applied using a weighted L1 loss:
735

736
$$\mathcal{L}_{\text{drivepath}} = \sum_{t=1}^T w_t^{\text{DP}} \|\hat{\mathbf{Y}}_d^t - \mathbf{Y}_d^t\|_1, \quad (18)$$

737
$$\mathcal{L}_{\text{plan}} = \sum_{t=1}^T w_t^{\text{long}} |\hat{\mathbf{Y}}_l^t - \mathbf{Y}_l^t|, \quad (19)$$

738 where the weights assign higher importance to more critical predictions. For the Drive Path way-
739 points, closer points receive larger weights: $w_t^{\text{DP}} = 1.0$ for $t = 1-5$, 0.6 for $t = 6-11$, and 0.4
740 for $t = 12-15$. A similar time-based weighting w_t^{long} is applied to longitudinal displacements. This
741 design encourages the model to prioritize predictions that are most critical for immediate planning
742 and safe driving.
743744 The weights for each component of the training objective are set as follows: $\lambda_{\text{map}} = 1$, $\lambda_{\text{det}} = 1$,
745 $\lambda_{\text{motion}} = 1$, $\lambda_{\text{drivepath}} = 2$, $\lambda_{\text{plan}} = 2$, and $\lambda_{\text{aux}} = 1$.
746747 **B.2 MODEL ARCHITECTURE**
748749 We implement our model using a ResNet-50 backbone (He et al., 2016) with an input image size of
750 640×352 . Target waypoints and high-level commands are encoded into plan queries via an MLP.
751 During training, noise is injected into the target waypoints and commands with a certain probability
752 to improve robustness. In the standard version of our model, we employ $L = 6$ layers in the Drive
753 Path Predictor and $K = 6$ layers in the Longitudinal Planning module. For the AlignDrive-Small
754 variant, we use $L = 4$ and $K = 3$.
755

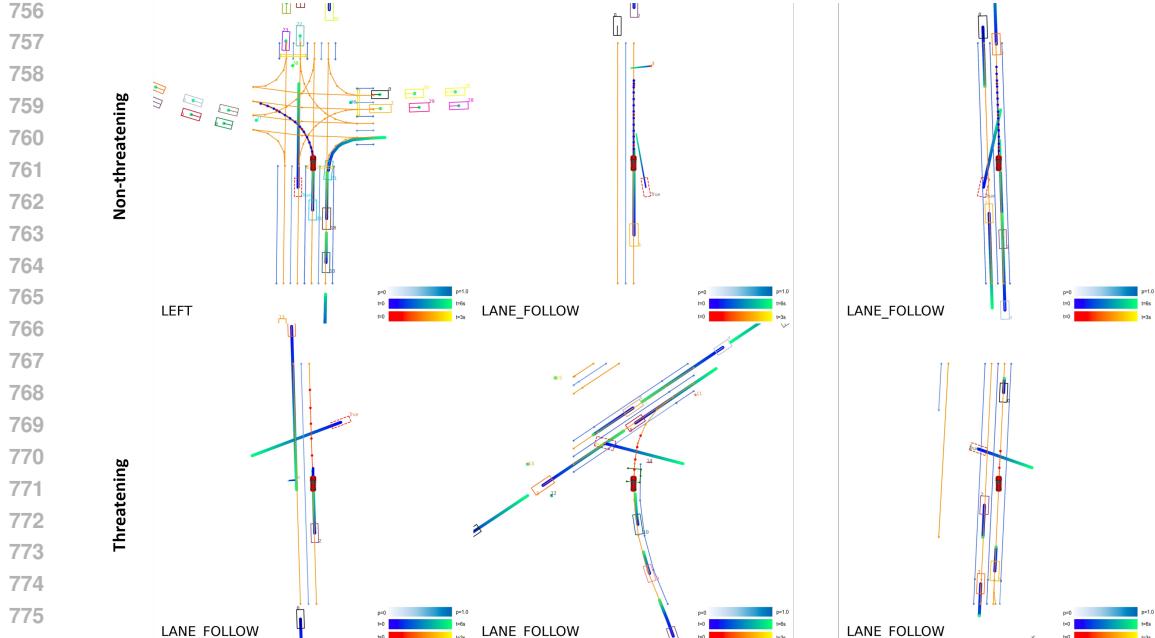


Figure 6: Visualization of planning-oriented data augmentation. The top row shows non-threatening agents, while the bottom row shows threatening agents. Inserted synthetic agents are indicated with dashed boxes. Red points denote the ego vehicle’s original trajectory, and blue lines represent the adjusted longitudinal displacements after augmentation.

B.3 PLANNING-ORIENTED DATA AUGMENTATION

Agent Insertion. Our planning-oriented data augmentation begins with the insertion of synthetic agents (see Algorithm 1). For each training frame, we first compute the ego vehicle’s displacement over the next 3 seconds. If this displacement is below a predefined threshold δ , indicating that the ego vehicle is effectively stationary or moving very slowly, no augmentation is performed for that frame (line 10 of Algorithm 1).

For frames satisfying the displacement criterion, synthetic agents are inserted via a two-step process: selecting an initial position and generating a trajectory. The initial position depends on the agent type: threatening agents are sampled near the ego vehicle, while non-threatening agents are sampled from a distant range. Trajectories are determined by three parameters: the starting position \mathbf{p}_{start} , a waypoint \mathbf{w} along the ego vehicle’s future drive path, and the arrival time $t_{arrival}$ at the waypoint. Assuming constant velocity, the agent’s position at each timestep is computed along the straight-line path connecting the start and waypoint. For threatening agents, the arrival time is chosen to potentially induce a collision, whereas non-threatening agents have arrival times that avoid interference. This formulation allows continuous modeling of interactions between the ego vehicle and synthetic agents.

Displacement Ground-truth Generation. With the synthetic agent trajectory inserted, we adjust the ego vehicle’s longitudinal ground-truth displacements to ensure safety (see Algorithm 2). Specifically, we measure the distance between the ego’s predicted positions and the agent at each future timestep within 3 seconds. The last point that satisfies the minimum safety distance is chosen as the new terminal point. We then compute a scaling factor as the ratio between the ego’s travel distance to the adjusted terminal point and the distance to the original terminal point. This factor is used to proportionally shrink the longitudinal displacements between consecutive waypoints, preserving trajectory smoothness while guaranteeing collision-free behavior. The effectiveness of this relabeling procedure is demonstrated in our ablation results (see Table 5).

Figure 6 illustrates our planning-oriented data augmentation. The top row presents non-threatening agents, while the bottom row shows threatening agents. Inserted synthetic agents are highlighted with dashed boxes. Red points indicate the ego vehicle’s original trajectory, and blue lines show the adjusted longitudinal displacements after augmentation.

810 **Algorithm 1** Planning-Oriented Agent Insertion

```

811 1: Input:
812 2:    $\mathbf{Y}_{ego}^{Traj}$ : Ego vehicle future trajectory
813 3:    $\mathbf{Y}_{ego}^{DriveiPath}$ : Ego vehicle future trajectory
814 4:    $\delta$ : Displacement threshold
815 5:    $\alpha$ : Insertion probability
816 6: Output:
817 7:    $\hat{\mathbf{Y}}_a^{motion}$ : Synthetic agent trajectories
818 8: for each training frame do
819 9:    $D \leftarrow \text{ComputeEgoDisplacement}(\mathbf{Y}_{ego}^{future}, 3s)$ 
820 10:  if  $D < \delta$  then
821 11:    continue
822 12:  end if
823 13:  if  $\text{Random}(0, 1) \leq \alpha$  then
824 14:     $agentRole \leftarrow \text{SelectAgentRole}()$ 
825 15:    if  $agentRole = \text{threatening}$  then
826 16:       $\mathbf{p}_{start} \leftarrow \text{SampleNearPosition}(\mathbf{Y}_{ego}^{Traj})$ 
827 17:    else
828 18:       $\mathbf{p}_{start} \leftarrow \text{SampleFarPosition}()$ 
829 19:    end if
830 20:     $\mathbf{w} \leftarrow \text{SelectWaypoint}(\mathbf{Y}_{ego}^{DriveiPath})$ 
831 21:     $t_{arrival} \leftarrow \text{SampleArrivalTime}()$ 
832 22:     $\hat{\mathbf{Y}}_a^{motion} \leftarrow \text{GenerateTrajectory}(\mathbf{p}_{start}, \mathbf{w}, t_{arrival})$ 
833 23:  end if
834 24: end for

```

835 **Algorithm 2** Displacement Ground-truth Generation

```

836 1: Input: Ego future trajectory  $\mathbf{Y}_{ego}^{future}$ , synthetic agent trajectory  $\hat{\mathbf{Y}}_a$ , minimum safe distance
837 2:    $d_{safe}$ 
838 2: Output: Adjusted ego trajectory  $\mathbf{Y}_{ego}^{adjusted}$ 
839 3: Determine all future timesteps where ego is at least  $d_{safe}$  away from the inserted agent
840 4: Let  $t_{new}$  be the last safe timestep
841 5: Set  $P_{new}$  as the ego position at  $t_{new}$  (new 3s terminal point)
842 6: Compute scaling factor  $s = (\text{distance from start to } P_{new}) / (\text{distance from start to original}$ 
843 7: for each consecutive pair of ego future trajectory points do
844 8:   Scale the longitudinal displacement between the points by  $s$ 
845 9: end for
846 10:  $\mathbf{Y}_{ego}^{adjusted} \leftarrow \text{updated ego trajectory with scaled displacements}$ 

```

849
850 It is worth noting that our agent insertion relies on minimal rule-based constraints and does not
851 explicitly use road information. As a result, the trajectories of inserted agents may violate road
852 rules. However, this does not negatively impact the longitudinal planning module, which primarily
853 learns to reason about potential interactions with dynamic objects rather than strict road compliance.
854 During training, further constraining inserted agents according to road elements represents a natural
855 extension and a promising direction for future exploration.

856 **B.4 AUXILIARY TASKS**

857 We employ two primary auxiliary tasks to improve model learning. The first is ego-status prediction.
858 Specifically, an MLP is used to predict the current ego-status of the vehicle from the plan queries,
859 and supervision is applied using an L2 loss. The second task is inspired by the multi-granularity
860 waypoint prediction used in HiP-AD (Tang et al., 2025). In the Drive Path Predictor, we introduce
861 three additional types of queries that interact with the perceived environment in parallel with the
862 drive path query. An Align-fusion strategy (Tang et al., 2025) is then applied, followed by sep-
863

864
 865
 866
 867
 868
 869
 arate heads to predict: (i) spatial waypoints at 5-meter intervals, (ii) temporal waypoints at 5Hz, and (iii) temporal waypoints at 2Hz. Each prediction is supervised independently. These auxiliary predictions are used only during training and do not participate in inference.

870 B.5 SELECTION AND CONTROL

871
 872
 873
 874
 875
 876
 877
 878
Selection The framework produces N_d candidate drive paths and, for each drive path, M longitudinal displacement sequences, representing $N_d \times M$ multimodal predictions that capture both lateral and longitudinal variations. First, the drive path with the highest confidence score \mathbf{S}_d predicted by the Drive Path Predictor is selected, along with its corresponding longitudinal displacement candidates $\hat{\mathbf{Y}}_1' \in \mathbb{R}^{M \times (T+1) \times 1}$. These candidates are further scored \mathbf{S}_l , penalizing those that would lead to collisions with predicted motions of other agents, following SparseDrive (Sun et al., 2024). The candidate with the highest adjusted score is then chosen as the final output for downstream control. Importantly, we apply the same strategy to all variants to ensure a fair comparison in ablation studies.

879
 880
 881
 882
 883
Control. The selected candidates are executed using two independent PID controllers: one for steering and one for speed. The steering controller computes the desired heading based on the selected drive path, while the speed controller computes the desired velocity from the longitudinal displacements. Control signals for the vehicle—throttle, brake, and steering angle—are then calculated based on the difference between the desired and the current vehicle states.

884
 885
 886
 887
 Table 6: Ablation on longitudinal planning (LP), agent query decoding–re-encoding (RE), and planning-oriented data augmentation (DA). Decouple: no LP; LP + Original: LP with original agent queries; LP + Reencode: LP with decoded–re-encoded queries; Full (AlignDrive): LP + Reencode + DA.

Method	LP	RE	DA	Driving Score \uparrow	Success Rate (%) \uparrow	Collision Rate (%) \downarrow
Decouple				83.21	63.18	22.7
LP + Original	✓			87.47	68.18	15.4
LP + Reencode	✓	✓		85.82	66.81	16.3
Full (AlignDrive)	✓	✓	✓	89.07	73.18	11.4

894 C MORE EXPERIMENTS

895
 896
Effect of Re-encoding Agent Queries. Our planning-oriented augmentation requires agent queries to be decoded into bounding boxes and then re-encoded as structured features, which enables the insertion of synthetic agents. This design differs from directly attending to the original agent queries in the longitudinal planning (LP) module, and could potentially affect performance. To further disentangle these factors, we compare four variants: (i) **Decouple**, which excludes LP and predicts lateral and longitudinal trajectories independently; (ii) **No-Reencode**, which introduces LP but directly attends to original agent queries without decoding and re-encoding; (iii) **Reencode**, which uses LP with decoded–re-encoded agent features but without augmentation; and (iv) **Full** (AlignDrive), which combines LP, re-encoding, and planning-oriented augmentation.

900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 As shown in Tab. 6, introducing LP (No-Reencode) already improves Driving Score and Success Rate over Decouple, demonstrating that conditioning longitudinal planning on the drive path is effective. Comparing No-Reencode and Reencode reveals a trade-off: directly using original agent queries yields stronger immediate interactions with dynamic agents, but re-encoding is necessary to support augmentation. With augmentation enabled, the Full model achieves the best overall performance, reducing collision rate most significantly, which confirms that data augmentation and displacement-based LP complement each other in improving robustness, particularly in safety-critical scenarios.

914
 915
 916
 917
Experimental Reproducibility. Due to the inherent stochasticity in the CARLA closed-loop simulator, the results of a single run may slightly. To provide a more comprehensive and reliable reference, we report multiple simulation runs of our base model and compute their average performance in Tab 7. Despite these fluctuations, all runs consistently achieve state-of-the-art results, demon-

918
919
920
921 Table 7: Multiple simulation runs of AlignDrive on Bench2Drive benchmarks. Driving Score, Suc-
922 cess Rate, Driving Efficiency, and Comfort are reported for each run along with the average.
923
924
925

Run	Driving Score ↑	Success Rate (%) ↑	Driving Efficiency ↑	Comfort ↑
Run 1	89.07	73.18	212.07	16.86
Run 2	87.80	71.36	207.85	15.25
Run 3	88.05	70.00	210.08	17.10
Average	88.30	71.50	210.00	16.40

926
927 strating the robustness of our approach. This protocol ensures that the reported performance is
928 representative and not an artifact of random variations in the simulation environment.
929

930 D VISULIZATION

931
932 To further demonstrate the effectiveness of our model, we consider a scenario where a pedestrian
933 suddenly emerges onto the road. We compare the baseline model, which predicts drive path and
934 trajectory independently (Variant A in Table 5), with our approach. The baseline fails to react
935 properly, resulting in a severe safety incident Fig. 7(a), whereas our method promptly responds to the
936 pedestrian and successfully avoids the accident Fig. 7(b). More visualization video demonstrations
937 can be found in the attached folder.
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

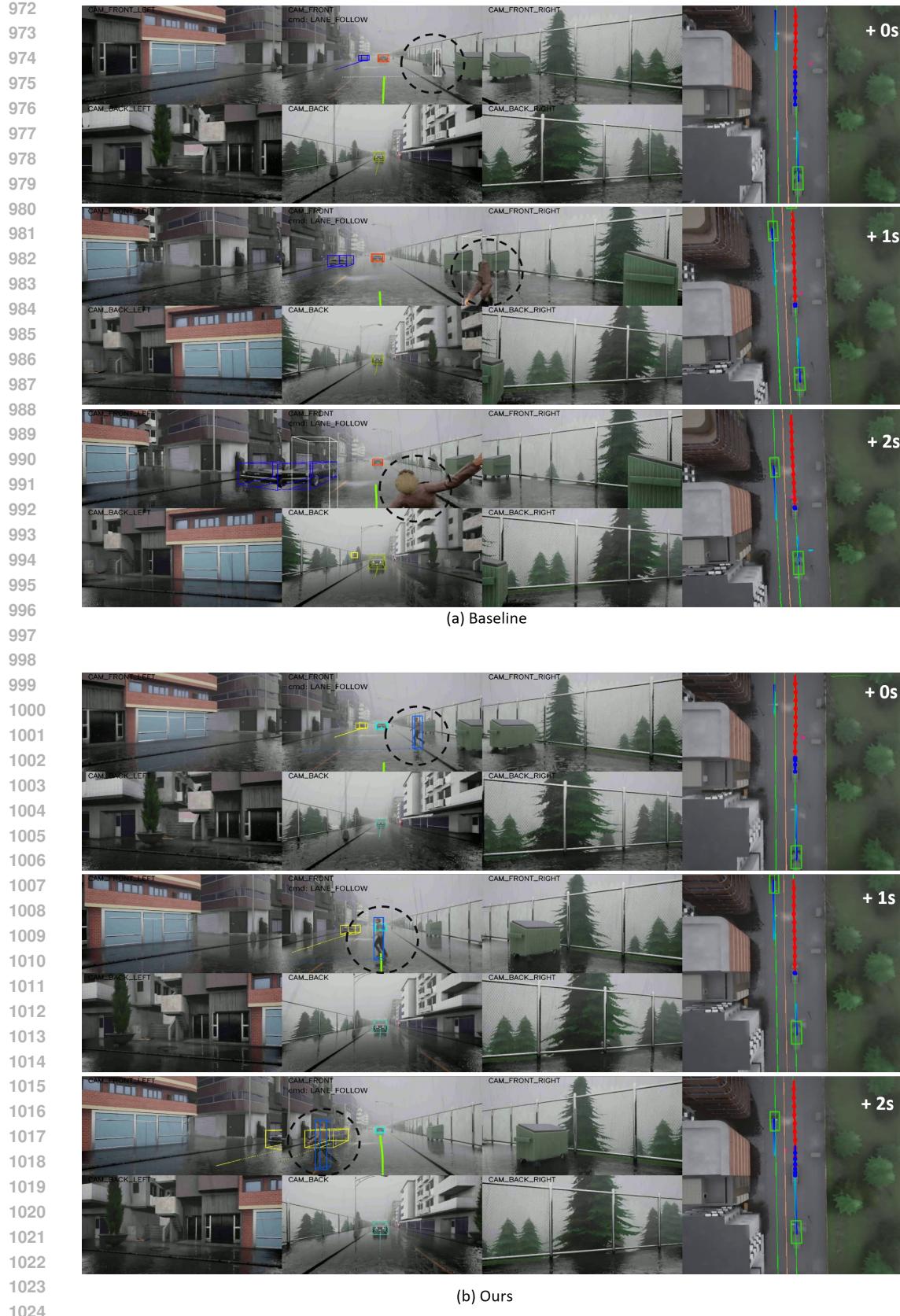


Figure 7: Comparison of Baseline (a) and Ours (b) in a pedestrian cut-in scenario. The baseline model fails to avoid the pedestrian, resulting in a collision, whereas our method promptly reacts and avoids the accident. The pedestrian is highlighted with a black dashed circle.