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ABSTRACT

End-to-end autonomous driving has rapidly progressed, enabling joint perception
and planning in complex environments. In the planning stage, state-of-the-art
(SOTA) end-to-end autonomous driving models decouple planning into parallel
lateral and longitudinal predictions. While effective, this parallel design can lead
to i) coordination failures between the planned path and speed, and ii) underuti-
lization of the drive path as a prior for longitudinal planning, thus redundantly
encoding static information. To address this, we propose a novel cascaded frame-
work that explicitly conditions longitudinal planning on the drive path, enabling
coordinated and collision-aware lateral and longitudinal planning. Specifically,
we introduce a path-conditioned formulation that explicitly incorporates the drive
path into longitudinal planning. Building on this, the model predicts longitudinal
displacements along the drive path rather than full 2D trajectory waypoints. This
design simplifies longitudinal reasoning and more tightly couples it with lateral
planning. Additionally, we introduce a planning-oriented data augmentation strat-
egy that simulates rare safety-critical events, such as vehicle cut-ins, by adding
agents and relabeling longitudinal targets to avoid collision. Evaluated on the
challenging Bench2Drive benchmark, our method sets a new SOTA, achieving a
driving score of 89.07 and a success rate of 73.18%, demonstrating significantly
improved coordination and safety. Visualizations are provided at this webpage.1.

1 INTRODUCTION

End-to-end (E2E) autonomous driving has made rapid progress in recent years, achieving increas-
ingly sophisticated perception-planning capabilities (Sun et al., 2024; Guo et al., 2025; Jia et al.,
2025; Song et al., 2025). Since UniAD (Hu et al., 2023), end-to-end approaches have commonly
relied on explicit BEV feature maps in conjunction with query-based architectures to bridge percep-
tion and planning (Hu et al., 2023; Weng et al., 2024). More recent works have started to bypass
BEV features, directly mapping sensor inputs to planned trajectories or intermediate latent repre-
sentations (Jia et al., 2025; Sun et al., 2024). Within this line, several studies have shown that disen-
tangling lateral and longitudinal planning at the planning stage can be particularly beneficial (Jaeger
et al., 2023; Renz et al., 2024). In this paradigm, lateral planning predicts the drive path—waypoints
sampled at fixed spatial intervals—as the target for steering, while longitudinal planning predicts the
trajectory—waypoints sampled at fixed temporal intervals—as the target for speed control.

Among these, one of the most recent works, HiP-AD (Tang et al., 2025) achieves multi-modal
prediction by initializing multiple paired drive path and trajectory queries, with each query in the pair
decoded by an independent head. While this design delivers strong results, we argue that planning
the drive path and trajectory through two independent branches introduces two key drawbacks: (i)
splitting planning into two independent branches makes it difficult to enforce kinematic consistency
between the outputs. For example, as shown in the top-right of Fig 1(b), a lateral path requiring a
sharp turn and a longitudinal trajectory demanding high speed are not constrained to be mutually
consistent during training, potentially leading to inconsistent predictions that challenge downstream
execution. This happens because the longitudinal branch does not explicitly leverage the drive path
as a prior, leading to misaligned lateral and longitudinal decisions; (ii) the trajectory prediction relies
on static scene elements such as road geometry and lane structure, which are already captured by the
drive path. Re-encoding these cues in the longitudinal branch is redundant and limits the model’s
focus on dynamic interactions, which are critical for safe and effective longitudinal planning.

1A copy of videos has been included in the supplementary materials
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Figure 1: (a) Drive path (black), trajectory (blue), and longitudinal displacement (red). Path way-
points are sampled spatially, trajectory waypoints temporally, and displacements represent traveled
distance along the path at fixed time intervals. (b) Comparison of E2E paradigms. Parallel plan-
ning predicts the drive path and longitudinal trajectory independently, which can lead to potential
coordination inconsistencies. In the example on the right, the independently predicted longitudinal
trajectory is collision-free by itself, but applying its speed along a separately predicted lateral path
could cause a collision. In contrast, our cascaded paradigm first predicts the drive path and then
regresses path-conditioned longitudinal displacements. With the path prior, the model identifies the
potential conflict and outputs shorter displacements, yielding to avoid collision. Perception inputs
are omitted for clarity.

To address these limitations, we propose a new cascaded paradigm that establishes a tight coupling
between lateral and longitudinal planning via an anchor-based regression framework, where longi-
tudinal planning is conditioned on the lateral drive path. Building on this foundation, we further
simplify the task by predicting longitudinal displacements along the drive path instead of full 2D
trajectory waypoints, while still providing effective targets for longitudinal control, as illustrated in
Fig. 1(a). This formulation naturally couples lateral and longitudinal planning: the drive path pro-
vides a stable geometric prior, while longitudinal reasoning is simplified to predicting displacement
conditioned on dynamic agents. By decoupling lateral geometry from longitudinal reasoning, the
framework allows the model to focus on dynamic interactions and improves collision-aware plan-
ning, as shown in Fig. 1(b).

This cascaded formulation also unlocks a highly effective, planning-oriented data augmentation
strategy. Since our longitudinal plan consists of simple displacement values along a fixed path, we
can realistically simulate safety-critical events like vehicle cut-ins—which are rare in real-world
logs—by programmatically shortening the displacement distances in response to inserted agents,
without altering the lateral path. This targeted data augmentation exposes the planner to a rich set of
critical scenarios, substantially improving its collision avoidance capabilities.

Building on these insights, we develop an E2E driving framework AlignDrive that conditions lon-
gitudinal planning on the drive path and leverages this formulation to enable effective data aug-
mentation, with code and models to be publicly released. Overall, our contributions are threefold:

• We propose a novel cascaded planning paradigm where longitudinal planning is explicitly
conditioned on a predicted lateral drive path. This method establishes a tight coupling be-
tween the two tasks, using the path as geometric priors for subsequent longitudinal planning.

• Based on this paradigm, we reformulate the longitudinal planning task as a simpler 1D dis-
placement prediction problem along the drive path. This allows the model to focus its capac-
ity on crucial dynamic interactions rather than redundantly encoding static geometry.

• We introduce an effective, planning-oriented data augmentation strategy. By programmat-
ically modifying only the 1D displacement labels in response to inserted agents, we can
generate diverse and realistic safety-critical training scenarios that are rare in logged data.

Our experiments conducted on the popular closed-loop simulator benchmark Bench2Drive (Jia et al.,
2024) demonstrate that AlignDrive outperforms state-of-the-art driving techniques.
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2 RELATED WORK

2.1 END-TO-END AUTONOMOUS DRIVING

End-to-end autonomous driving methods (Wang et al., 2025; Tang et al., 2025; Gao et al., 2025;
Sun et al., 2024; Hu et al., 2023; Jiang et al., 2023; Xing et al., 2025) have rapidly advanced in
recent years, with trajectory planning playing a central role in predicting the ego vehicle’s future
states. One line of work, exemplified by SparseDrive (Sun et al., 2024; Song et al., 2025), directly
predicts trajectories in an end-to-end manner. While effective in nominal scenarios, this joint predic-
tion paradigm often struggles to achieve accurate lateral and longitudinal plannning simultaneously.
TF++ (Jaeger et al., 2023) predicts the drive path and instantaneous vehicle speed in parallel, with
speed treated as a classification task. However, the coarse discretization of velocity limits planning
accuracy. More recent approaches, including HiP-AD (Tang et al., 2025) and Carllava (Renz et al.,
2024), instead decouple path and trajectory prediction. HiP-AD employs independent heads, while
Carllava, built on a LLaVA-like architecture (Liu et al., 2023), generates the drive path and trajec-
tory sequentially as output tokens. However, these methods still rely on predicting full waypoints
rather than explicit longitudinal displacements, limiting precise alignment between lateral and lon-
gitudinal planning in challenging scenarios such as sharp turns or dynamic interactions. In contrast,
we propose a cascaded, anchor-based formulation that first predicts the drive path and then fore-
casts a sequence of future longitudinal displacements along it. Our approach regresses offsets from
predefined anchors using a two-stage design with dedicated modules for path and displacement pre-
diction, rather than jointly generating them as tokens. This naturally enforces lateral–longitudinal
consistency, simplifies reasoning about dynamic interactions, and improves path-following safety.

2.2 DATA AUGMENTATION

Data augmentation is widely employed in multiple fields (Zhang et al., 2022; Qiu et al., 2025; Wu
et al., 2023; Lin et al., 2022). In autonomous driving, it is commonly applied to augment image
data through techniques such as cropping, flipping, and color jittering (Sun et al., 2024), which
improve the model’s ability to generalize across varying visual conditions and strengthen percep-
tion robustness. Pluto (Cheng et al., 2024) employs agent drop and insertion as data augmentation
strategies to generate both positive and negative scene samples. These augmented samples are uti-
lized in a contrastive learning framework to enhance the model’s scene representation capabilities.
However, these augmentations primarily affect perception and influence planning only indirectly.
TF++ (Jaeger et al., 2023) introduced an auxiliary camera in the simulation environment, which is
randomly repositioned at each time step to increase data diversity. This approach relies on additional
simulator equipment and focuses primarily on lateral recovery, providing limited guidance for longi-
tudinal planning or dynamic interaction reasoning. In contrast, our planning-oriented augmentation
is directly coupled with longitudinal planning, operating on the percepted agents and adjusting lon-
gitudinal displacements. This forces the model to focus explicitly on dynamic agent interactions,
enabling path-consistent and collision-aware planning in rare, safety-critical scenarios.

3 METHOD

3.1 OVERVIEW

Figure 2 provides an overview of AlignDrive, which consists of three main components. The Drive
Path Predictor refines queries via cross-attention with image features (Lin et al., 2022), producing
representations of the drive path, map, and dynamic agents. The Planning-oriented Data Augmen-
tation module decodes agent queries into bounding boxes, re-encodes them as structured features,
and enables insertion of synthetic agents with relabeled longitudinal displacements for consistent
supervision. The Longitudinal Planning module then predicts displacements along the drive path
from enriched queries, ensuring spatial consistency and collision awareness. This design preserves
end-to-end training while supporting robust planning. We discuss components below.

3.2 DRIVE PATH PREDICTOR

Let us denote multi-scale features from V camera views as {fi}Vi=1. Based on training data, we clus-
ter ground-truth annotations to obtain anchors, which differ by task modality: bounding boxes for
agents, and typical polylines for map elements and drive paths. We denote them as Aa ∈ RNa×Da ,
Am ∈ RNm×Dm , and Ad ∈ RNd×Dd , where Da, Dm, Dd are the dimensions of each type. Based
on these anchors, we initialize three sets of task queries: agent queries Qa ∈ RNa×C , map queries
Qm ∈ RNm×C , and drive path queries Qd ∈ RNd×C , where C is the feature dimension. The
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Figure 2: Overview of the proposed AlignDrive system, which consists of three components. The
Drive Path Predictor refines queries through cross-attention with image features to encode the drive
path, maps, and agents. The Planning-oriented Data Augmentation enriches scenarios by insert-
ing additional agents and relabeling longitudinal displacements. Finally, the Longitudinal Planning
Module predicts forward displacements along the drive path; combined with the path, these dis-
placements yield the final trajectory that is both collision-aware and spatially consistent. On the
right side of the figure, the black numbers denote the scores of predicted drive paths, while the red
numbers represent the scores of the corresponding longitudinal planning for each drive path.

Drive Path Predictor consists of L stacked blocks, within which queries interact with image fea-
tures, historical information, and each other. Through these interactions, the corresponding anchors
are iteratively refined across blocks, yielding progressively updated estimates.

Temporal Aggregation. To incorporate historical information, each query interacts with retained
queries from previous frames via a top-k strategy:

Qd ←− Cross-attention
(
Q = Qd,K = Q

t−Tp:t−1
d ,V = Q

t−Tp:t−1
d

)
, (1)

where Qd is the current drive path queries, and Q
t−Tp:t−1
d are historical ones. Map queries Qm and

agent queries Qa are updated similarly.

Inter-Task Interaction. We enable interactions among drive path, agent, and map queries through
cross-attention, allowing path queries to be contextually aware of agents and maps, and constraining
agent behaviors with map information.

Qd ←− Cross-attention (Q = Qd,K = [Qa∥Qm],V = [Qa∥Qm]) ,

Qa ←− Cross-attention (Q = Qa,K = Qm,V = Qm) ,
(2)

where [·∥·] denotes concatenation along the token dimension.
Image feature aggregation. To fuse image features, anchors are projected onto multi-view images,
and their sampled features are aggregated via deformable attention. For drive path queries:

Qd ←− DA
(
Q = Qd,K = P(Ad, {Fi}Vi=1),V = P(Ad, {Fi}Vi=1)

)
, (3)

where DA is deformable attention and P(·) denotes projection and sampling. Map queries Qm and
agent queries Qa are enhanced in the same way using their anchors Am,Aa.

Refinement. The model iteratively refines its predictions across the L blocks. In the refinement
stage of each block, for a given anchor Ad, we first generate a feature embedding using a task-
specific encoder, MLPenc(Ad). This embedding is fused with the corresponding query Qd and
fed into an MLP to predict a corrective offset, ∆Yd. The anchor is then updated by applying this
offset. This process allows the model to progressively improve its estimate from a coarse anchor to
a precise prediction.

∆Yd = MLP (Qd + MLPenc(Ad)) , Ad ← Ad +∆Yd, (4)

where ∆Yd ∈ RNd×Dd is the predicted offset for each drive path anchor, and Dd = P × 2 cor-
responds to P future waypoints. The refined waypoints are obtained as Ŷd = Ad after iteratively
updating the anchors through all L blocks. A separate MLP head is applied to the drive path query
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Figure 3: (a) Planning-oriented augmentation. Non-threatening agents are inserted at a distance with
unchanged GT displacements, while threatening agents are placed nearby and cause adaptive short-
ening of GT displacements. (b) Representation encoding. Inserted agents are projected into future
positions, transformed to corner representations, and encoded via a Fourier encoder (top). Reference
points are sampled by displacement anchors and encoded with MLPs. For clarity, although multiple
drive paths are predicted in practice, only one representative path is illustrated here. (bottom)

to predict confidence scores Sd ∈ RNd×1 for candidate drive paths. Map anchors are refined in the
same iterative manner using Qm and Am.

For agents, static attributes (e.g., position, size, orientation) are predicted using an MLP applied to
the queries combined with anchor features, while dynamic motion is predicted directly from queries
without anchor-based refinement:

Ŷstate
a = MLPstate (Qa + E(Aa)) , Ŷmotion

a = MLPmotion (Qa) , (5)

where Ŷstate
a ∈ RNa×S contains S attributes for each agent, and Ŷmotion

a ∈ RNa×T×2 contains
the predicted future trajectories.

3.3 PLANNING-ORIENTED DATA AUGMENTATION

To enrich interactive scenarios, we insert a virtual agent into the detected agents with probability α.

Agent Insertion. The virtual agent is initialized with a randomly sampled state Xvir and a target
point P∗, selected on the ego vehicle’s ground-truth drive path YGT

d . Together, they determine the
virtual agent’s future motion. As illustrated in Fig. 3(a), the virtual agent randomly adopts one of
two velocity patterns: gradually approaching from afar, making it a low-risk and safe maneuver,
or approaching faster and closer, potentially colliding with the ego vehicle. To maintain the total
number of agents, the original agent with the lowest confidence is removed, and the virtual agent is
inserted in its place. The resulting augmented set of agent states and motions are denoted as Ỹstate

and Ỹmotion, ensuring exposure to challenging interactions while preserving scene consistency.

Displacement Ground-truth Generation. The ground-truth displacement label is defined as a
sequence YGT

d ∈ RT×1, representing T future longitudinal displacements of the ego vehicle along
the drive path, each measured over a fixed temporal interval. When a virtual agent is inserted that
would collide with the ego vehicle, we first determine the maximum total displacement Dsafe the ego
vehicle can travel over the T steps without causing a collision. Given the original total displacement
Dorig =

∑T
t=1 Y

GT
d [t], we compute a safe scaling factor β = Dsafe/Dorig and uniformly scale the

original sequence: ỸGT
d = β · YGT

d . This procedure ensures that the displacement at each step is
consistently reduced to avoid collisions, while maintaining a dynamically plausible motion profile.

Agent Encode. After augmentation, agents are represented using both their states and motions, de-
noted as Ỹstate and Ỹmotion. These variables are converted into a unified corner-based representation:

Ca = fcorner(Ỹ
state, Ỹmotion), Ca ∈ RNa×(T+1)×8, (6)

where fcorner(·) converts each agent’s bounding box state and future trajectory into the coordinates
of its four corners across all time steps, as illustrated in the top of Fig. 3(b). To construct agent
features, we separately process geometry and category information. The corner representation Ca is
first mapped using Fourier encoder Φ and passed through MLPcorner (Mildenhall et al., 2021), while
the agent category (extracted from Ỹstate) is mapped with Φ and processed through MLPcategory.
Their outputs are then summed to form the unified agent embedding:

E0:T
a = MLPcorner(Φ(Ca)) + MLPcategory(Φ(category)) , E0:T

a ∈ RNa×(T+1)×C . (7)
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Here, Et
a ∈ RNa×C denotes the features of all agents at time step t, providing a temporally consis-

tent, category-aware representation. The detailed process can be found in the appendix.

3.4 LONGITUDINAL PLANNING MODULE

The longitudinal planning module predicts a sequence of ego vehicle’s future displacements along
the drive path at fixed time intervals. It is implemented as K stacked blocks, where queries interact
with agent and path features and are progressively refined. We formulate this as an anchor-based
offset regression task: for each candidate path, M anchors are defined, each representing a sequence
of longitudinal displacements for the current step and T future steps, yielding M × (T + 1) learn-
able queries. These queries are responsible for predicting offsets relative to their anchors, thereby
coupling the drive path geometry with agent interactions and enabling precise longitudinal planning.

A0:T
l ∈ RNd×M×(T+1)×1, Q0:T

l ∈ RNd×M×(T+1)×C , (8)
where the superscript 0 : T denotes the stacked sequence of time steps, covering from the current
step (t = 0) to T future steps. Here, A0:T

l are the anchor displacements and Q0:T
l their learnable

queries. The final displacements are obtained by adding predicted offsets to the anchors.

Path-aware Interaction. Each longitudinal planning query is enhanced with reference waypoints
sampled along the predicted drive path Ŷd at anchor displacements A0:T

l . Let sampled points Pl be

Pl = Interp(Ŷd,A
0:T
l ), Pl ∈ RNd×M×(T+1)×2, (9)

where Interp(·) denotes linear interpolation along the path according to cumulative anchor displace-
ments. The points for each anchor are encoded jointly into a feature vector, as shown in Fig. 3(b)
(bottom):

Fl = MLP(Pl), Fl ∈ RNd×M×C . (10)
Then, this feature is broadcasted across the T+1 time steps and added to the longitudinal query for
cross-attention with the drive path queries Qd:

Q0:T
l ← CrossAttn(Q = Q0:T

l + Fl,K = Qd,V = Qd). (11)
In this way, each longitudinal planning query incorporates both the geometry of the drive path and
its anchor-based temporal reference.

Contextual Interaction. At each time step t, longitudinal planning queries interact with dynamic
agents via cross-attention on the encoded agent features to capture agent-specific context:

Qt
l ← CrossAttn

(
Q = Qt

l , K = Et
a, V = Et

a

)
, t = 0, . . . , T. (12)

The updated queries attend to map queries via cross-attention, incorporating static cues such as stop
lines for longitudinal planning:

Q0:T
l ← CrossAttn

(
Q = Q0:T

l , K = Qm, V = Qm

)
. (13)

Finally, a temporal positional encoding is added to the queries, and causal self-attention is applied
along the temporal dimension to enforce consistency:

Q0:T
l ← CausalSelfAttn

(
Q0:T

l + PE0:T
)
. (14)

Longitudinal Refinement. After obtaining the updated longitudinal queries Q0:T
l from path-aware

and contextual interactions, we enhance them using path-aligned reference points Pl, providing
spatial grounding for predicting offsets relative to the anchors. Specifically, the reference points Pl

are encoded by an encoder MLPref and fused with the queries to predict offsets:

∆Yl = MLP
(
Q0:T

l + MLPref (Pl)
)
, ∆Yl ∈ RNd×M×(T+1)×1. (15)

The final longitudinal displacements are obtained by adding offsets to the anchors:

Ŷl = A0:T
l +∆Yl, Ŷl ∈ RNd×M×(T+1)×1. (16)

An auxiliary MLP head is applied to the average of Q0:T
l over the T + 1 time steps to predict a

confidence score Sl ∈ RNd×M×1 for candidate selection.

Our model outputs Nd candidate drive paths Ŷd and, for each drive path, M candidate longitu-
dinal displacement sequences Ŷl. A hierarchical selection strategy (Sun et al., 2024) chooses the
candidate based on confidence scores Sl and Sd. The selected planning is then tracked using PID
controllers. Full implementation details are provided in the appendix B.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Closed-loop results of planning in Bench2Drive. * denotes expert feature distillation. Bold
and underlined numbers indicate the best performance within different expert groups.

Method Driving Score (↑) Success Rate (%) (↑) Driving Efficiency (↑) Comfort (↑)

Expert: PDM-Lite (Beißwenger, 2024)

SimLingo (Renz et al., 2025) 86.02 67.27 259.23 33.67

Expert: Think2Drive (Li et al., 2024a)

UniAD-Base (Hu et al., 2023) 45.81 16.36 129.21 43.58
VAD (Jiang et al., 2023) 42.35 15.00 157.94 46.01
SparseDrive (Sun et al., 2024) 44.54 16.71 170.21 48.63
GenAD (Zheng et al., 2024) 44.81 15.90 - -
DiFSD (Su et al., 2024) 52.02 21.00 178.30 -
DriveTransformer (Jia et al., 2025) 63.46 35.01 100.64 20.78
Hydra-NeXt (Li et al., 2025) 73.86 50.00 197.76 20.68
HiP-AD (Tang et al., 2025) 86.77 69.09 203.12 19.36

TCP-traj* (Wu et al., 2022) 59.90 30.00 76.54 18.08
ThinkTwice* (Jia et al., 2023b) 62.44 31.23 69.33 16.22
DriveAdapter* (Jia et al., 2023a) 64.22 33.08 70.22 16.01

AlignDrive(Ours) 89.07 73.18 212.07 16.86

3.5 LOSS FUNCTION

For planning tasks, we adopt a winner-takes-all strategy to determine which predictions are super-
vised. The winner is defined as the prediction whose corresponding anchor has the minimum L2

distance from the ground truth. Other losses, including online mapping, agent detection, motion
forecasting, and auxiliary tasks, follow (Sun et al., 2024). The total loss is the weighted sum of all
components. Details are described in the appendix.

L = λmapLmap + λdetLdet + λmotionLmotion + λdrivepathLdrivepath + λplanLplan + λauxLaux. (17)

4 EXPERIMENTS

4.1 DATASET AND METRICS

Dataset. We utilize the Bench2Drive (Jia et al., 2024) benchmark for comprehensive evaluation of
our model. This dataset consists of 1000 short video clips uniformly sampled from 44 interactive
scenarios in CARLA v2 (Dosovitskiy et al., 2017). Following the official split, we use 950 clips for
training and 50 for validation. Closed-loop performance is assessed on 220 standardized test routes
to ensure a fair and reproducible comparison. To further assess open-loop performance in the real
world, we also conduct experiments on the nuScenes dataset (Caesar et al., 2020), which consists of
1000 real-world driving scenes split into 700 for training, 150 for validation, and 150 for testing.

Metrics. We report the official metrics: Driving Score (DS), Success Rate (SR), Driving Efficiency
(DE), and Comfort. In addition, we introduce a Collision Rate metric, defined as the proportion
of scenarios involving collisions with dynamic vehicles, to specifically assess the model’s capabil-
ity in handling interactive environments. For open-loop evaluation, we adopt the standard metrics
commonly used in prior work (Jiang et al., 2023), namely L2 distance and collision rate.

4.2 IMPLEMENTATION DETAILS

The model employs 900 agent queries, 100 map queries, 6 drive path queries, and 5 longitudinal
queries. The supervision signal for the drive path is derived from the ego vehicle’s ground truth
trajectory, sampled at 2-meter intervals. For longitudinal planning, the ground truth is defined as
the displacements traveled along the trajectory at a 5Hz sampling rate. The longitudinal planning
module employs five constant displacement anchors along the drive path, positioned at 0.25, 1.7,
4.0, 6.0, and 8.5 meters ahead of the current vehicle position. These anchors serve as reference
points for predicting future longitudinal displacements. In practice, we set α = 0.1, meaning that a
virtual agent is inserted in 10% of training samples. Additional details are provided in the appendix.

4.3 MAIN RESULTS

As shown in Table 1, our method achieves strong overall performance, with a Driving Score of
89.07 and a Success Rate of 73.18%, along with the highest Efficiency of 212.07. The Comfort
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Table 2: Multi-Ability Results in Bench2Drive.* denotes expert feature distillation.

Method Ability (%) ↑
Mean Merging Overtaking Emergency Brake Give Way Traffic Sign

UniAD-Base (Hu et al., 2023) 15.55 14.10 17.78 21.67 10.00 14.21
VAD (Jiang et al., 2023) 18.07 8.11 24.44 18.64 20.00 19.15
DriveTransformer-Large (Jia et al., 2025) 38.60 17.57 35.00 48.36 40.00 52.10
HiP-AD (Tang et al., 2025) 65.98 50.00 84.44 83.33 40.00 72.10

TCP-traj* (Wu et al., 2022) 34.92 12.50 22.73 52.72 40.00 46.63
ThinkTwice* (Jia et al., 2023b) 37.48 13.72 22.93 52.99 50.00 47.78
DriveAdapter* (Jia et al., 2023a) 38.33 14.55 22.61 54.04 50.00 50.45

AlignDrive 70.06 75.00 75.56 75.00 50.00 74.74

Table 3: Open-loop planning evaluation results on the nuScenes validation dataset.

Method L2 (m) ↓ Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

VAD-Base (Jiang et al., 2023) 0.41 0.70 1.05 0.72 0.03 0.19 0.43 0.21
GenAD (Zheng et al., 2024) 0.28 0.49 0.78 0.52 0.08 0.14 0.34 0.19
SparseDrive-S (Sun et al., 2024) 0.29 0.58 0.96 0.61 0.01 0.05 0.18 0.08
DriveTransformer-Large (Jia et al., 2025) 0.16 0.30 0.55 0.33 0.01 0.06 0.15 0.07
HiP-AD (Tang et al., 2025) 0.28 0.53 0.87 0.56 0.01 0.05 0.15 0.07

AlignDrive 0.38 0.73 1.23 0.78 0.01 0.04 0.14 0.06

score is 16.86. This is due to challenging scenarios, such as pedestrian crossings and vehicle cut-
ins, which occasionally require abrupt braking or steering. Therefore, comparisons of Comfort are
most meaningful among methods with similar Success Rates, as such maneuvers are necessary to
ensure safe and successful navigation.

We report the open-loop results in Table 3. Our method achieves the lowest collision rate, indicating
stronger capability in handling dynamic interactions. Although the L2 distance is not the best, this
is influenced by our data augmentation strategy, where inserting additional agents and adjusting the
corresponding ground-truth trajectory can introduce discrepancies under an L2-based metric, while
other approaches are more directly aligned with such supervision. Prior work has also noted that
open-loop metrics may not fully reflect planning quality due to issues like distribution shift and
causal confusion (Zhai et al., 2023; Li et al., 2024b; Dauner et al., 2023). Consistent with this, our
method achieves SOTA performance in the closed-loop CARLA evaluation, which offers a more
faithful measure of real-world driving behavior.

We also report the multi-ability scores in Table 2. Our model achieves the highest overall perfor-
mance, with a significantly superior average score. Most notably, it reaches a Merging score of 75
far surpassing the previous best of 50. Since merging scenarios involve challenging interactions
such as consecutive lane changes and cut-ins, the improvement highlights our model’s enhanced
capability in handling dynamic interactions and avoiding collisions, directly validating our claim.

In addition to planning ability, we evaluate inference efficiency in Table 4. Our method achieves
the best Driving Score and Success Rate while maintaining lower latency than DriveTransformer
and VAD. By reducing number of stakced blocks, we further develop AlignDrive-Small, which is
smaller and faster than HiP-AD yet still delivers superior performance, striking a better balance
between accuracy and efficiency.

Table 4: Comparison of inference efficiency and driving performance. AlignDrive-Small is a
lightweight variant with fewer decoder layers. Experiments are conducted on an RTX 3090 GPU.

Method Parameters Latency Driving Score Success Rate (%)

VAD-Base (Jiang et al., 2023) - 224.3 ms 42.35 15.00
DriveTransformer-Large (Jia et al., 2025) 646 M 221.7 ms 63.46 35.01
HiP-AD (Tang et al., 2025) 97.4 M 138.9 ms 86.77 69.09

AlignDrive 117.2 M 177.5 ms 89.07 73.18
AlignDrive-Small 83.7 M 124.5 ms 87.45 71.82
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Table 5: Ablation study on AlignDrive components. LP: uses lateral path prediction to condition
longitudinal planning; DP: formulates longitudinal planning as displacement regression along the
drive path; DA: applies planning-oriented data augmentation

Variant LP DP DA Driving Score ↑ Success Rate (%)↑ Collision Rate (%) ↓
A 83.21 63.18 22.7
B ✓ 84.85 65.45 19.5
C ✓ ✓ 85.82 66.81 16.3
D ✓ ✓ 86.54 68.92 15.7
E ✓ ✓ ✓ 89.07 73.18 11.4

Figure 4: Effect of planning-oriented data augmentation on planning performance. All augmented
variants (p = 0.1, 0.2, 0.3, 0.4) outperform the no-augmentation baseline.

4.4 ABLATION STUDY

In this section, we perform ablation studies to verify the effectiveness of the key components pro-
posed in AlignDrive, directly corresponding to our contributions.

Independent vs Path-Conditioned Longitudinal Planning. We compare Variant A, which pre-
dicts lateral drive path and longitudinal trajectories in parallel following prior SOTA methods (Tang
et al., 2025), with Variant C, our proposed approach that predicts longitudinal displacements along
the drive path. This cascaded, path-conditioned design couples lateral and longitudinal planning,
resulting in more consistent and effective planning. As shown in Tab. 5, Variant C achieves a higher
overall driving score and increases the Success Rate from 63.18% to 66.81%, demonstrating the
effectiveness of path-conditioned longitudinal planning. In addition, Variant C reduces the Collision
Rate from 22.7% to 16.3%, a 28.2% relative reduction. This improvement supports our claim that
allow longitudinal planning condition on the drive path ensure the model to better focus on dynamic
interactions, improving collision avoidance in complex scenarios.

Displacement vs Waypoint Prediction. We also evaluate Variant B, which predicts trajectory way-
points conditioned on the drive path at discrete future time steps, rather than predicting longitudinal
displacements. Although both variants leverage the drive path as a lateral prior, displacements are
more directly associated with dynamic interactions, whereas trajectory waypoints embed additional
lateral variations that may dilute this focus. Tab. 5 shows that Variant C achieves higher Success
Rate and lower Collision Rate, demonstrating that our displacement regression along the drive path
is not only conceptually simpler but also empirically superior.

Planning-Oriented Data Augmentation. We evaluate the effectiveness of our planning-oriented
data augmentation, which inserts synthetic traffic participants and adjusts longitudinal labels while
keeping lateral paths unchanged. Variant C without augmentation is compared to Variant E with
augmentation. As shown in Tab. 5, augmentation improves overall Driving Score from 85.82 to
89.07 and increases the Success Rate, demonstrating the effectiveness of our strategy. In addition,
it reduces the Collision Rate from 16.3% to 11.4%, highlighting that augmentation helps the model
better handle dynamic agents and improve safety.

Fig. 4 further illustrates the impact of augmentation across different scenarios, showing that perfor-
mance slightly declines when the augmentation probability exceeds 0.1, as excessive augmentation
may encourage overly conservative driving. Overall, all augmented variants substantially outper-
form the no-augmentation baseline, demonstrating the benefit of our strategy.

Displacement Formulation Better Fits Augmentation. We investigate how planning-oriented data
augmentation interacts with different longitudinal representations. As shown in Tab. 5, applying aug-
mentation to waypoint-based planning (Variant D) improves the Driving Score from 84.85 to 86.54
(+1.69), Success Rate from 65.45% to 68.92% (+3.47), and reduces Collision Rate from 19.5% to
15.7% (-3.8). In contrast, augmentation paired with displacement-based planning (Variant E) boosts
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Figure 5: Red points are predicted drive paths, while blue points show longitudinal planning outputs
(trajectory waypoints for the baseline, displacement squences for ours). Relevant vehicles are high-
lighted in green. The baseline collides with cross-traffic, while our method avoids it.

the Driving Score from 85.82 to 89.07 (+3.25), Success Rate from 66.81% to 73.18% (+6.37), and
lowers Collision Rate from 16.3% to 11.4% (-4.9). These results indicate that longitudinal displace-
ment formulation better leverages augmentation, yielding larger gains in safety-critical scenarios.

4.5 QUALITATIVE RESULTS

To better illustrate the effectiveness of our design, we compare our model with the baseline, which
predicts drive path and trajectory independently (Variant A in Tab. 5). As shown in Fig. 5, we present
a multi-vehicle interaction at an intersection where the ego vehicle must turn right while yielding
to cross-traffic. In the first row, the baseline fails to react to the incoming vehicle (highlighted in
purple), leading to conflict and eventual collision. In contrast, our model correctly anticipates the
cross-traffic, waits until it passes, and then executes the turn safely. We provide more visulisation in
the supplementary material.

5 CONCLUSION

We propose AlignDrive, a novel cascaded planning paradigm in which longitudinal planning is ex-
plicitly conditioned on predicted drive paths. This paradigm tightly couples lateral and longitudinal
reasoning by using the path geometry as a prior for longitudinal planning. Building on this, we refor-
mulate longitudinal planning as 1D displacement prediction along the drive path, allowing the model
to focus on dynamic interactions rather than redundantly encoding static geometry. Leveraging this
formulation, we introduce a planning-oriented data augmentation strategy that generates diverse,
safety-critical training scenarios. Extensive evaluations show that AlignDrive achieves state-of-the-
art performance, with ablation studies confirming the contribution of each component.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of the results presented in this paper, we provide detailed descriptions
of our methods and experimental setup within the main text and appendix. In addition, the sup-
plementary material includes detailed results of closed-loop evaluations for all scenarios, and the
appendix provides results from multiple simulation runs.
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SUPPLEMENTARY MATERIAL

We include the following supplementary content:

• Additional visualization demos: a set of videos demonstrating the effectiveness of our
method (see the included index.html file).

• Original simulation results in the CarlaV2 simulator: detailed scores for each scenario (see
AlignDrive_Meraged_Bench2drive_Results.json).

APPENDIX

• Additional experiments, including further ablation studies.
• Detailed model designs, with full training parameters and algorithmic specifications.

A USE OF LARGE LANGUAGE MODELS FOR MANUSCRIPT PREPARATION.

We employed a large language model (LLM) solely to assist in language refinement and writing
clarity. The LLM was not used for any experimental design, data analysis, or model development,
and all technical content, results, and conclusions originate entirely from the authors.

B IMPLEMENTATION DETAILS

B.1 TRAINING DETAILS

During training, the Longitudinal Planning module is initially frozen while the Drive Path predictor
is trained for 12 epochs. The Longitudinal Planning module is then unfrozen, and the entire system
is trained jointly, with the full training process spanning 36 epochs. Training is conducted on 32
NVIDIA RTX 4090 GPUs with a total batch size of 256. We use the AdamW optimizer with weight
decay and set the initial learning rate to 1×10−4. Planning-oriented data augmentation is introduced
after 24 epochs to enrich interactive scenarios with virtual agents.

Our model predicts the next T = 15 drive path waypoints {Ŷt
d}Tt=1 at 2-meter intervals and longi-

tudinal displacements {Ŷt
l}Tt=1 at 5 Hz. Supervision is applied using a weighted L1 loss:

Ldrivepath =

T∑
t=1

wDP
t ∥Ŷt

d −Yt
d∥1, (18)

Lplan =

T∑
t=1

wlong
t |Ŷt

l −Yt
l |, (19)

where the weights assign higher importance to more critical predictions. For the Drive Path way-
points, closer points receive larger weights: wDP

t = 1.0 for t = 1−5, 0.6 for t = 6−11, and 0.4

for t = 12−15. A similar time-based weighting wlong
t is applied to longitudinal displacements. This

design encourages the model to prioritize predictions that are most critical for immediate planning
and safe driving.

The weights for each component of the training objective are set as follows: λmap = 1, λdet = 1,
λmotion = 1, λdrivepath = 2, λplan = 2, and λaux = 1.

B.2 MODEL ARCHITECTURE

We implement our model using a ResNet-50 backbone (He et al., 2016) with an input image size of
640 × 352. Target waypoints and high-level commands are encoded into plan queries via an MLP.
During training, noise is injected into the target waypoints and commands with a certain probability
to improve robustness. In the standard version of our model, we employ L = 6 layers in the Drive
Path Predictor and K = 6 layers in the Longitudinal Planning module. For the AlignDrive-Small
variant, we use L = 4 and K = 3.
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Figure 6: Visualization of planning-oriented data augmentation. The top row shows non-threatening
agents, while the bottom row shows threatening agents. Inserted synthetic agents are indicated with
dashed boxes. Red points denote the ego vehicle’s original trajectory, and blue lines represent the
adjusted longitudinal displacements after augmentation.

B.3 PLANNING-ORITEND DATA AUGMENTATION

Agent Insertion. Our planning-oriented data augmentation begins with the insertion of synthetic
agents (see Algorithm 1). For each training frame, we first compute the ego vehicle’s displacement
over the next 3 seconds. If this displacement is below a predefined threshold δ, indicating that the
ego vehicle is effectively stationary or moving very slowly, no augmentation is performed for that
frame (line 10 of Algorithm 1).

For frames satisfying the displacement criterion, synthetic agents are inserted via a two-step pro-
cess: selecting an initial position and generating a trajectory. The initial position depends on the
agent type: threatening agents are sampled near the ego vehicle, while non-threatening agents are
sampled from a distant range. Trajectories are determined by three parameters: the starting position
pstart, a waypoint w along the ego vehicle’s future drive path, and the arrival time tarrival at the
waypoint. Assuming constant velocity, the agent’s position at each timestep is computed along the
straight-line path connecting the start and waypoint. For threatening agents, the arrival time is cho-
sen to potentially induce a collision, whereas non-threatening agents have arrival times that avoid
interference. This formulation allows continuous modeling of interactions between the ego vehicle
and synthetic agents.

Displacement Ground-truth Generation. With the synthetic agent trajectory inserted, we ad-
just the ego vehicle’s longitudinal ground-truth displacements to ensure safety (see Algorithm 2).
Specifically, we measure the distance between the ego’s predicted positions and the agent at each
future timestep within 3 seconds. The last point that satisfies the minimum safety distance is chosen
as the new terminal point. We then compute a scaling factor as the ratio between the ego’s travel
distance to the adjusted terminal point and the distance to the original terminal point. This factor is
used to proportionally shrink the longitudinal displacements between consecutive waypoints, pre-
serving trajectory smoothness while guaranteeing collision-free behavior. The effectiveness of this
relabeling procedure is demonstrated in our ablation results (see Table 5).

Figure 6 illustrates our planning-oriented data augmentation. The top row presents non-threatening
agents, while the bottom row shows threatening agents. Inserted synthetic agents are highlighted
with dashed boxes. Red points indicate the ego vehicle’s original trajectory, and blue lines show the
adjusted longitudinal displacements after augmentation.
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Algorithm 1 Planning-Oriented Agent Insertion

1: Input:
2: YTraj

ego : Ego vehicle future trajectory
3: YDrveiPath

ego : Ego vehicle future trajectory
4: δ: Displacement threshold
5: α: Insertion probability
6: Output:
7: Ŷmotion

a : Synthetic agent trajectories
8: for each training frame do
9: D ← ComputeEgoDisplacement(Yfuture

ego , 3s)
10: if D < δ then
11: continue
12: end if
13: if Random(0, 1) ≤ α then
14: agentRole← SelectAgentRole()
15: if agentRole = threatening then
16: pstart ← SampleNearPosition(YTraj

ego )
17: else
18: pstart ← SampleFarPosition()
19: end if
20: w← SelectWaypoint(YDrveiPath

ego )
21: tarrival ← SampleArrivalTime()
22: Ŷmotion

a ← GenerateTrajectory(pstart,w, tarrival)
23: end if
24: end for

Algorithm 2 Displacement Ground-truth Generation

1: Input: Ego future trajectory Yfuture
ego , synthetic agent trajectory Ŷa, minimum safe distance

dsafe
2: Output: Adjusted ego trajectory Yadjusted

ego
3: Determine all future timesteps where ego is at least dsafe away from the inserted agent
4: Let tnew be the last safe timestep
5: Set Pnew as the ego position at tnew (new 3s terminal point)
6: Compute scaling factor s = (distance from start to Pnew) / (distance from start to original

terminal point)
7: for each consecutive pair of ego future trajectory points do
8: Scale the longitudinal displacement between the points by s
9: end for

10: Yadjusted
ego ← updated ego trajectory with scaled displacements

It is worth noting that our agent insertion relies on minimal rule-based constraints and does not
explicitly use road information. As a result, the trajectories of inserted agents may violate road
rules. However, this does not negatively impact the longitudinal planning module, which primarily
learns to reason about potential interactions with dynamic objects rather than strict road compliance.
During training, further constraining inserted agents according to road elements represents a natural
extension and a promising direction for future exploration.

B.4 AUXILIARY TASKS

We employ two primary auxiliary tasks to improve model learning. The first is ego-status prediction.
Specifically, an MLP is used to predict the current ego-status of the vehicle from the plan queries,
and supervision is applied using an L2 loss. The second task is inspired by the multi-granularity
waypoint prediction used in HiP-AD (Tang et al., 2025). In the Drive Path Predictor, we introduce
three additional types of queries that interact with the perceived environment in parallel with the
drive path query. An Align-fusion strategy (Tang et al., 2025) is then applied, followed by sep-
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arate heads to predict: (i) spatial waypoints at 5-meter intervals, (ii) temporal waypoints at 5Hz,
and (iii) temporal waypoints at 2Hz. Each prediction is supervised independently. These auxiliary
predictions are used only during training and do not participate in inference.

B.5 SELECTION AND CONTROL

Selection The framework produces Nd candidate drive paths and, for each drive path, M longitudi-
nal displacement sequences, representing Nd ×M multimodal predictions that capture both lateral
and longitudinal variations. First, the drive path with the highest confidence score Sd predicted by
the Drive Path Predictor is selected, along with its corresponding longitudinal displacement candi-
dates Ŷl

′
∈ RM×(T+1)×1. These candidates are further scored Sl, penalizing those that would lead

to collisions with predicted motions of other agents, following SparseDrive (Sun et al., 2024). The
candidate with the highest adjusted score is then chosen as the final output for downstream con-
trol. Importantly, we apply the same strategy to all variants to ensure a fair comparison in ablation
studies.

Control. The selected candidates are executed using two independent PID controllers: one for steer-
ing and one for speed. The steering controller computes the desired heading based on the selected
drive path, while the speed controller computes the desired velocity from the longitudinal displace-
ments. Control signals for the vehicle—throttle, brake, and steering angle—are then calculated
based on the difference between the desired and the current vehicle states.

Table 6: Ablation on longitudinal planning (LP), agent query decoding–re-encoding (RE), and
planning-oriented data augmentation (DA). Decouple: no LP; LP + Original: LP with original agent
queries; LP + Reencode: LP with decoded–re-encoded queries; Full (AlignDrive): LP + Reencode
+ DA.

Method LP RE DA Driving Score ↑ Success Rate (%) ↑ Collision Rate (%) ↓
Decouple 83.21 63.18 22.7
LP + Original ✓ 87.47 68.18 15.4
LP + Reencode ✓ ✓ 85.82 66.81 16.3
Full (AlignDrive) ✓ ✓ ✓ 89.07 73.18 11.4

C MORE EXPERIMENTS

Effect of Re-encoding Agent Queries. Our planning-oriented augmentation requires agent
queries to be decoded into bounding boxes and then re-encoded as structured features, which en-
ables the insertion of synthetic agents. This design differs from directly attending to the original
agent queries in the longitudinal planning (LP) module, and could potentially affect performance.
To futher disentangle these factors, we compare four variants: (i) Decouple, which excludes LP
and predicts lateral and longitudinal trajectories independently; (ii) No-Reencode, which introduces
LP but directly attends to original agent queries without decoding and re-encoding; (iii) Reencode,
which uses LP with decoded–re-encoded agent features but without augmentation; and (iv) Full
(AlignDrive), which combines LP, re-encoding, and planning-oriented augmentation.

As shown in Tab. 6, introducing LP (No-Reencode) already improves Driving Score and Success
Rate over Decouple, demonstrating that conditioning longitudinal planning on the drive path is ef-
fective. Comparing No-Reencode and Reencode reveals a trade-off: directly using original agent
queries yields stronger immediate interactions with dynamic agents, but re-encoding is necessary
to support augmentation. With augmentation enabled, the Full model achieves the best overall per-
formance, reducing collision rate most significantly, which confirms that data augmentation and
displacement-based LP complement each other in improving robustness, particularly in safety-
critical scenarios.

Experimental Reproducibility. Due to the inherent stochasticity in the CARLA closed-loop sim-
ulator, the results of a single run may slightly. To provide a more comprehensive and reliable refer-
ence, we report multiple simulation runs of our base model and compute their average performance
in Tab 7. Despite these fluctuations, all runs consistently achieve state-of-the-art results, demon-
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Table 7: Multiple simulation runs of AlignDrive on Bench2Drive benchmarks. Driving Score, Suc-
cess Rate, Driving Efficiency, and Comfort are reported for each run along with the average.

Run Driving Score ↑ Success Rate (%) ↑ Driving Efficiency ↑ Comfort ↑
Run 1 89.07 73.18 212.07 16.86
Run 2 87.80 71.36 207.85 15.25
Run 3 88.05 70.00 210.08 17.10

Average 88.30 71.50 210.00 16.40

strating the robustness of our approach. This protocol ensures that the reported performance is
representative and not an artifact of random variations in the simulation environment.

D VISULIZATION

To further demonstrate the effectiveness of our model, we consider a scenario where a pedestrian
suddenly emerges onto the road. We compare the baseline model, which predicts drive path and
trajectory independently (Variant A in Table 5), with our approach. The baseline fails to react
properly, resulting in a severe safety incident Fig. 7(a), whereas our method promptly responds to the
pedestrian and successfully avoids the accident Fig. 7(b). More visulization video demonstrations
can be found in the attached folder.
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Figure 7: Comparison of Baseline (a) and Ours (b) in a pedestrian cut-in scenario. The baseline
model fails to avoid the pedestrian, resulting in a collision, whereas our method promptly reacts and
avoids the accident. The pedestrian is highlighted with a black dashed circle.
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