Discovering ordinary differential equations that
govern time-series

Soren Becker * Michal Klein *T  Alexander Neitz ¥ Giambattista Parascandolo
Helmholtz AI, Munich Apple DeepMind OpenAl
Niki Kilbertus

Helmholtz Al, Munich &
Technical University of Munich

Abstract

Natural laws are often described through differential equations yet finding a dif-
ferential equation that describes the governing law underlying observed data is a
challenging and still mostly manual task. In this paper we make a step towards the
automation of this process: we propose a transformer-based sequence-to-sequence
model that recovers scalar autonomous ordinary differential equations (ODEs) in
symbolic form from time-series data of a single observed solution of the ODE.
Our method is efficiently scalable: after one-time pretraining on a large set of
ODEs, we can infer the governing laws of a new observed solution in a few for-
ward passes of the model. Then we show that our model performs better or on par
with existing methods in various test cases in terms of accurate symbolic recovery
of the ODE, especially for more complex expressions.

1 Introduction

Science is commonly described as the “discovery of natural laws through experimentation and ob-
servation”. Researchers in the natural sciences increasingly turn to machine learning (ML) to aid the
discovery of natural laws from observational data alone, which is often abundantly available, hoping
to bypass expensive and cumbersome targeted experimentation. While there may be fundamental
limitations to what can be extracted from observations alone, recent successes of ML in the entire
range of natural sciences provide ample reason for excitement. In this work, we focus on ordinary
differential equations, a ubiquitous description of dynamical natural laws in physics, chemistry, and
systems biology. For a first order ODE ¢ := 9y/ot = f(y, t), we call f (which uniquely defines the
ODE) the underlying dynamical law. Informally, our goal is then to infer f in symbolic form given
discrete time-series observations of a single solution {y; := y(¢;)}?_, of the underlying ODE.

Contrary to “black-box-techniques” such as Neural Ordinary Differential Equations (NODE) [4]
that aim at inferring a possible f as an arguably opaque neural network, we focus specifically on
symbolic regression. From the perspective of the sciences, a law of nature is useful insofar as it is
more broadly applicable than to merely describe a single observation. In particular, the reason to
learn a dynamical law in the first place is to dissect and understand it as well as to make predictions
about situations that differ from the observed one. From this perspective, a symbolic representa-
tion of the law (in our case the function f) has several advantages over block-box representations:
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Figure 1: An overview illustration of the data generation (top) and training pipeline (bottom). Our
dataset stores solutions in numerical (non-binarized) form on the entire regular solution time grid.

they are compact and directly interpretable, they are amenable to analytic analysis, they allow for
meaningful changes and thus enable assessment of interventions and counterfactuals.

In this work we present NSODE, a sequence-to-sequence transformer that maps observed trajecto-
ries, i.e., numeric sequences of the form {(¢;, y;) }1_,, directly to symbolic equations as strings, e.g.,
"y**2+1.64*cos (y) ", which is the prediction for f. This example directly highlights the benefit
of symbolic representations in that the y? and cos(y) terms tell us something about the fundamental
dynamics of the observed system; the constant 1.64 will have semantic meaning in a given context
and we can, for example, make predictions about settings in which this constant takes a different
value.

2 Background and Related Work

While NODE [4] (with a large body of follow up work) is perhaps the most prominent method to
learn ODEs from data in black-box form, we focus on various works that infer governing laws in
symbolic form. Classically, symbolic regression aims at regular functional relationships (mapping
(z, f(x)) pairs to f instead of mapping trajectories (¢,y(t)) to the governing ODE § = f(y,t))
and has been approached by heuristics-based search, most prominently via genetic programming
[10]. Genetic programming randomly evolves a population of prospective mathematical expressions
over many iterations and mimics natural selection by keeping only the best contenders across iter-
ations, where superiority is measured by user-defined and problem-specific fitness functions. More
recently, symbolic regression has been approached with machine learning methods which exploit
gradient information to optimize within the space of (finite) compositions of pre-defined basis func-
tions. Brunton et al. [3]] use linear regression to identify a (sparse) linear combination of basis
functions that yields the best fit for the observed data, while other approaches use neural networks
with a diverse set of activation functions [[18] [13]]. All these techniques deploy strong sparsity-
promoting regularizers and fit a separate model for each observed trajectory.

Alternatively, one can train a model to directly output the symbolic expressions. Supervised learn-
ing with gradient-based optimization for this approach is challenged by the formulation of a dif-
ferentiable loss that measures the fit between the predicted symbolic expression and the observed
data. Thus, prior work resorted to reinforcement learning or evolutionary algorithms [[], [3]]
for gradient-free optimization. Furthermore, inspired by common properties of known natural laws,
Udrescu et al. devise a hybrid approach that combines a gradient-free heuristic search with neu-
ral network-based optimization. This approach has been extended to work with dynamical systems
by Weilbach et al. [27]].



The closest works to ours use pre-trained, attention-based sequence-to-sequence models for sym-
bolic regression of functional relationships [2l 23| 18| 124]. They exploit the fact that symbolic ex-
pressions for (multi-variate) scalar functions can be both generated and evaluated on random inputs
cheaply, resulting in essentially unlimited training data. Large data including ground-truth expres-
sions in symbolic form allow for a differentiable cross-entropy loss based directly on the symbols of
the expression, instead of the numerical proximity between evaluations of the predicted and true ex-
pression. While the cross-entropy loss works well for operators and symbols (e.g. +,exp,sin,x,y),
a naive implementation is inefficient for numerical constants, e.g., 1.452. Previous works therefore
resort to one of two strategies: 1) represent all constants with a special <const> token when train-
ing the sequence-to-sequence model and predict only the presence of a constant. Actual values are
then inferred in a second, subsequent parameter estimation step where the structure of an expression
is held fixed and only constants are optimized. This second optimization procedure comes with
substantial computational cost as constants have to be fit per inferred expression. In particular, we
highlight that it does not transfer to inferring ODEs as it would require to first solve the predicted

ODE y = f(y) to obtain predicted {g;}?_, values that can be compared to the set of observations
{y;}_,. While differentiable ODE solvers exist, optimizing constants this way is prohibitively ex-
pensive and typically highly unstable. 2) A second popular strategy consists in rounding constants
within the range of interest so that they can be represented with a finite number of tokens. This
second strategy avoids a subsequent optimization step and enjoys clever encoding schemes with im-
proved token efficiency yet represents values with an inherent loss in precision. As an alternative,
we develop a representation based on a “two-hot” encoding which avoids subsequent optimization
steps as well as rounding.

3 Method

Problem setting. Given observations {(¢;,y;)}7, of a trajectory y : [t1,¢,] — R that is a solution
of the ODE § = f(y), we aim to recover the function f in symbolic form—in our case as a string.
In this work, we focus on time-invariant (or autonomous) ODEs (i.e., f(y,t) = f(y)). Such settings
are a good starting point for investigation as they are commonly studied and can be thought of as
“evolving on their own” without external driving forces or controls, i.e., once an initial condition
is fixed the absolute time does not directly influence the evolution. We explicitly assume that the
observed system actually evolves according to an ODE in canonical form ¢ = f(y) such that f can
be expressed in closed form using the mathematical operators seen during training (see Section[3.1)).
In this paper we restrict ourselves to the rich class of non-linear, scalar, first-order, autonomous
ODE:s but we discuss extensions of NSODE to higher-order systems of coupled non-autonomous
ODE: in Appendix [A]

3.1 Data Generation

Sampling symbolic expressions.  To exploit large-scale supervised pretraining we generate a
dataset of ~63M ODEs in symbolic form along with numerical solutions for randomly sampled
initial values. Since we assume ODEs to be in canonical form ¢ = f(y), generating an ODE is
equivalent to generating a symbolic expression f(y). We follow Lample and Charton [12], who
sample such an expression f(y) as a unary-binary tree, where each internal node corresponds to an
operator and each leaf node corresponds to a constant or variable. The algorithm consists of two
phases: (1) A unary-binary tree is sampled uniformly from the distribution of unary-binary trees
with up to k£ € N internal nodes, which crucially does not overrepresent small trees corresponding
to short expressions. Here the maximum number of internal nodes K is a hyperparameter of the
algorithm. (2) The sampled tree is “decorated”, that is, each binary internal node is assigned a
binary operator, each unary internal node is assigned a unary operator, and each leaf is assigned a
variable or constant. Hence, we have to specify a distribution over the NVy;, binary operators, one
over the Ny, unary operators, a probability psym € (0, 1) to decide between symbols and constants,
as well as a distribution p. over constants. For constants we distinguish explicitly between sampling
an integer or a real value. Together with K, these choices uniquely determine a distribution over
equations f and are described in detail in Appendix |B| Figure |1 depicts an overview of the data
generation procedure.

The pre-order traversal of a sampled tree results in the symbolic expression for f in prefix notation.
After conversion to infix notation, we simplify each expression using the computer algebra system



SymPy [[16]], and filter out constant equations f(y) = c as well as expressions that contain operators
or symbols that were not part of the original distribution. We call the structure modulo the value
of the constants of such an expression a skeleton. Any skeleton containing at least one binary
operator or constant can be represented by different unary-binary trees. Vice versa many of the
generated trees will be simplified to the same skeleton. To ensure diversity and to mitigate potential
dataset bias towards particular expressions, we discard duplicates on the skeleton level. To further
cheaply increase the variability of ODEs we sample N ot unique sets of constants per skeleton.
When sampling constants we take care not to modify the canonical expression by adhering to the
rules listed in Appendix We provide summary statistics on operator frequencies and expression
complexities for the generated dataset in Appendix |[C} Here, complexity refers to overall count of
symbols (e.g., y, or constants) as well as operators in an expression, a simple yet common measure
in the symbolic regression literature.

Computing numerical solutions. We obtain numerical solutions for all ODEs via SciPy’s interface
[25] to the LSODA software package [[7] with both relative and absolute tolerances set to 10~7. We
solve each equation on a fixed time interval ¢ € [0, T and store solutions on a regular grid of Ngyia
points. For each ODE, we sample up to Nj, initial values y(0) = yo uniformly from (yi'™, y5>¥) |
While LSODA attempts to select an appropriate solver, numerical solutions still cannot be trusted
in all cases. Therefore, we check the validity of solutions via the following quality control check:
we use 9th order central finite differences to approximate the temporal derivative of the solution
trajectory (on the same temporal grid as the proposed solution), denoted by ¢4, and filter out any
solution for which ||t — 9||cc > €, Where we use € = 1.

3.2 Model Design Choices

NSODE consists of an encoder-decoder transformer with architecture choices listed in Ap-
pendix We provide a visual overview in Figure

Representing input trajectories. A key difficulty in feeding numerical solutions {y;}?_; as input
is that their range may differ greatly both within a single solution as well as across ODEs. For
example, the linear ODE y = ¢ - y for a constant ¢ is solved by an exponential y(t) = yo exp(ct)
for initial value y(0) = yo, which may span many orders of magnitude on a fixed time interval. To
prevent numerical errors and vanishing or exploding gradients caused by the large range of values,
we assume each representable 64-bit float value is a token and use its IEEE-754 encoding as the
token representation [2]]. We thus convert all pairs (¢;, y;) to their IEEE-754 64 bit representations,
channel them through a linear embedding layer before feeding them to the encoder.

Representing symbolic expressions. The target sequence (i.e., the string for the symbolic expres-
sion of f) is tokenized on the symbol-level. We distinguish two cases: (1) Operators and variables:
for each operator and variable we include a unique token in the vocabulary. (2) Numerical con-
stants: constants may come from both discrete (integers) as well as continuous distributions, as for
example in y**2+1.64*cos (y). Hence, it is unfeasible to include individual tokens “for each con-
stant”. Naively tokenizing on the digit level, i.e., representing real values literally as the sequence of
characters (e.g., "1.64"), not only significantly expands the length of target sequences and thus the
computational cost, but also requires a variable number of prediction steps for every single constant.

Instead, we take inspiration from Schrittwieser et al. [[19]] and encode constants in a two-hot fashion.
We fix a finite homogeneous grid on the real numbers z; < x5 < ... < z,, for some m € N,
which we add as tokens to the vocabulary. The grid range (1, ,,) and number of grid points m are
hyperparameters that can be set in accordance to the problems of interest. Our choices are described

in Appendix

For any constant c¢ in the target sequence we then find i € {1,...,m — 1} such that z;; < ¢ < @; 41
and encode c as a distribution supported on x;, z; 11 with weights «, 8 such that ax; + fz;41 = c.
That is, the target in the cross-entropy loss for a constant token is not a strict one-hot encoding, but
a distribution supported on two (neighboring) vocabulary tokens resulting in a lossless encoding of
continuous values in [z1, Z,]. This two-hot representation can be used directly in the cross-entropy
loss function.

*Due to a timeout per ODE, fewer solutions may remain in cases when the numerical solver fails repeatedly.



Decoding constants. When decoding a predicted sequence, we check at each prediction step
whether the argmax of the logits corresponds to one of the m constant tokens {x1,..., &} If
not, we proceed by conventional one-hot decoding to obtain predicted operators and variables. If
instead the argmax corresponds to, for example, x;, we also pick its largest-logit neighbor (x;_1
or T;41; suppose x;+1), renormalize their probabilities by applying a softmax to all logits and use
the resulting two probability estimates as weights «, 5. Constants are then ultimately decoded as
ax; + frip.

3.3 Evaluation and Metrics

Sampling solutions. To infer a symbolic expression for the governing ODE of a new observed
solution trajectory {(¢;,v;)}" ;. all the typical policies such as greedy, sampling, or beam search
are available. In our evaluation, we use beam search with 1536 beams and report top-k results with
k ranging from 1 to 1536.

Metrics. We evaluate model performance both numerically and symbolically. For numerical eval-
uation we follow Biggio et al. [2]: suppose the ground truth ODE is given by y = f(y) with

(numerical) solution y(t) and the predicted ODE is given by § = f(y). To compute numerical
accuracy we first evaluate f and f on Ny points in the interval [min(y(¢)), max(y(¢))] (i.e., the
interval traced out by the observed solution), which yields function evaluations gt = {yi}f\f{a‘ and
pred = {g;}¥ev*'. We then assess whether numpy . allclos returns True as well as whether the

coefficient of determination R? > 0.999E] Numerical evaluations capture how closely the predicted
function approximates the ground truth function within the interval [min(y(t)), max(y(t))].

However, a key motivation for symbolic regression is to uncover a symbolic mathematical expres-
sion that governs the observations. Testing for symbolic equivalence between ground truth expres-

sion f(y) and a predicted expression f(y) is unsuitable in the presence of real-valued constants
as even minor deviations between true and predicted constants render the equivalence false. In-

stead, we regard the predicted expression f(y) to be symbolically correct if f(y) and f(y) can be

made equivalent by modifying only the values of constants in the predicted expression f(y). This is
implemented using SymPy’s match function. In order not to alter the structure of the predicted ex-
pression, we constrain modifications of constants such that all constants remain non-zero and retain
their original sign. This definition is thus primarily concerned with the structure of an expression,
rather than precise numerical agreement. Once the structure is known, the inference problem be-
comes conventional parameter estimation. We report percentages of samples in a given test set that
satisfies any individual metric (numerical and symbolic), as well as percentages satisfying symbolic
and numerical metrics simultaneously.

4 Experiments

4.1 Benchmark Datasets

We construct several test sets to evaluate model performance and generalization in different settings.

* testset-iv: Our first test set assesses generalization within initial values not seen during training.
It consists of 5793 ODEs picked uniformly at random from our generated dataset but re-sampled
initial values. We also employ the following constraints via rejection sampling: (a) All skeletons
in testset-iv are unique. (b) As the number of unique skeletons increases with the number of
operators, we allow at most 2000 examples per number of operators (with substantially fewer
unique skeletons existing for few operators).

* testset-constants: Our second test set assesses generalization within unseen initial values and
constants. It consists of 2720 ODEs picked uniformly at random from our dataset (ensuring unique
skeletons and at most 1000 examples per number of operators as above), but re-sampled intial
values and constants.

Snumpy . allclose returns True if abs(a - b) <= (atol + rtol * abs(b)) holds element-wise for

elements a and b from the two input arrays. We use atol=1e-10 and rtol=0.05; a corresponds to predictions,
b corresponds to ground truth.
SFor observations y; and predictions §j; we have R = 1 — (32, (v — 9:)%)/ (X, (vi — 9)?).



testset-skeletons: In principle, we can train NSODE on all possible expressions (using only the
specified operators and number ranges) up to a specified number of operators. However, even
with the millions examples in our dataset, we have by far not exhausted the huge space of possible
skeletons (especially for larger numbers of operators). Hence, our third test set contains 100 novel
random ODEs with skeletons that were never seen during training.

testset-iv-163: This is a subset of testset-iv motivated by the fact that most symbolic regression
models we want to compare to require a separate optimization for every individual example, which
was computationally infeasible for our testset-iv. For a fair comparison, we therefore subsampled
up to 10 ODEs per complexity uniformly at random, yielding 163 examples.

testset-textbook: To assess how NSODE performs on “real problems”, we manually curated 12
scalar, non-linear ODEs from Wikipedia pages, physics textbooks, and lecture note from univer-
sity courses on ODEs. These equations are listed in Table [/|in Appendix [D| We note that they
are all extremely simple compared to the expressions in our generated dataset in that they are
ultimately mostly low order polynomials, some of which with one fractional exponent.

testset-classic: To validate our approach on existing datasets we turn to benchmarks in the classic
symbolic regression literature (inferring just the functional relationship between input-ouput pairs)
and simply interpret functions as ODEs. In particular we include all scalar function listed in the
overview in [[15] which includes equations from many different benchmarks [9} [10} [11} 22} [26]].
For example, we interpret the function f(y) = y* + y? + y from Uy et al. [22] as an autonomous
ODE y(t) = f(y(t)) = y(t)® + y(t)? + y, which we solve numerically for a randomly sampled
initial value as described before.

4.2 Baselines

We compare our method to recent popular baselines from the literature (see Section [2). We briefly
describe them including some limitations here and defer all details to Appendix[E] First, no baseline
is suited directly to infer dynamical laws, but only to infer functional relationships. Therefore, all
baselines fit a separate regression function mapping y(t) — ¢(t) per individual ODE, using the
coefficient of determination R? as optimization objective. Since derivatives @(t) are typically not
observed, we approximate them via finite differences using PySindy [6]]. Hence, all these methods
crucially rely on regularly sampled and noise-free observations, whereas our approach can easily be
extended to take those into account (see Appendix [A).

Sindy [3]]: Sindy builds a (sparse) linear combination of a fixed set of (non-linear) basis functions.
The resulting Lasso regression is efficient, but suffers from limited expressiveness. In particular,
Sindy cannot easly represent nested functions or non-integer powers as all non-linear expressions
have to be added explicitly to the set of basis functions. We cross-validate Sindy over a fairly
extensive hyperparameter grid of 800 different combinations for each individual trajectory.
GPIE] (genetic programming): GPL(earn) maintains a population of programs each representing
a mathematical expression. The programs are mutated for several generations to heuristically op-
timize a user defined fitness function. While not originally developed for ODEs, we can apply
GPLearn on our datasets by leveraging the finite difference approximation. We use a popula-
tion size of 1000 and report the best performance across all final programs. Compared to sindy,
GPLearn is more expressive yet substantially slower to fit.

AlFeynman [20, 21]: AlFeynman is a physics-inspired approach to symbolic regression that
exploits the insight that many famous equations in natural sciences exhibit well-understood func-
tional properties such as symmetries, compositionality, or smoothness. AlFeynman implements
a neural network based heuristic search that tests for such properties in order to identify a sym-
bolic expression that fits the data. For every test sample AIFeynman computes a pareto front of
solutions that trade off complexity versus accuracy. We report the best performance across all
functions on the pareto front. Notably, AIFeynman performs quite an exhaustive search procedure
such that running it even on a single equation took on the order of tens of minutes.

4.3 Results

Model Performance. Figure E] shows NSODE’s performance on our testset-iv, testset-constants,
and testset-skeletons according to our numerical and symbolic metrics as well as combined skeleton

7gplearn .readthedocs.io/
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Figure 2: Numerical and symbolic performance evaluation on testset-iv.

recovery and allclose as we vary k in the top-k considered candidates of the beam search. Invest-
ing sufficient test-time-compute (i.e., considering many candidates) continuously improves perfor-
mance. While we capped k at 1536 due to memory limitations, we did not observe a stagnation
of the roughly logarithmic scaling of all performance metrics with k. This cannot be attributed to
“exhaustion effects”, where one may assume that all possible ODEs will eventually be among the
candidates, because (a) the space of possible skeletons grows much faster than exponentially, and
(b) the numerical metrics are extremely sensitive also to the predicted constant values in continuous
domains.

As one may expect, performance decreases as we move from only new initial conditions, to also
sampling new constants, to finally sampling entirely unseen skeletons. On testset-iv with k¥ = 1536
we achieve about 50% skeleton recovery and still successfully recover more than a third skeletons
of testset-skeletons with similar numbers for allclose. The fact that the combined metric (symbolic
+ numerical) is only about half of that indicates that numerical and symbolic fit are indeed two
separate measures, none of which need to imply the other. Hence, a thorough evaluation of both is
crucial to understand model performance in symbolic regression tasks.

Table 1: Comparing NSODE to the baselines. Results are average percentages across dataset.
GPLearn often generates extremely long expressions which take SymPy up to half a minute to parse
during evaluation. We denote this extra time in gray.

Dataset Metric NSODE Sindy GPLearn AlFeynman
skel-recov 374 3.7 2.5 14.1
R? > 0.999 24.5 31.9 3.7 49.7

iv-163 allclose 423 25.8 14.7 55.8
skel-recov & R? > 0.999 15.3 3.1 1.8 13.5
skel-recov & allclose 15.3 3.1 1.8 13.5
runtime [s] 54 0.4 29 +22 1203.6
skel-recov 41.7 33.3 8.3 91.7
R? > 0.999 16.7 50 0.0 75

textbook allclose 25 58.3 8.3 75
skel-recov & R2 > 0.999 33.3 41.7 0 66.7
skel-recov & allclose 8.3 333 1.8 66.7
runtime [s] 6 1 23 +22 1267.1

Comparison to baselines. In Table [I|we compare NSODE to all baselines using & = 1536 in our
beam search; full results on all datasets can be found in Appendix [F] We also include the average
wallclock runtime per expression for each of the datasets.

First, we note that on our subsampled testset-iv-163, NSODE outperforms competing approaches in
terms of skeleton recovery by a wide margin and also performs best in terms of joint skeleton recov-
ery and numerical measures, which is a strong indication of actually having recovered the governing
ODE accurately. By spending over 200x more time on its exhaustive heuristic search, AIFeynman
manages to outperform NSODE in terms of numerical accuracy (R? and allclose). Figure hows
the number of skeletons recovered by each method given the complexity of equations, results for
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Figure 3: Correctly recovered skeletons by each method on testset-iv-163 per complexity. AlFeyn-
man and Sindy are mostly able to recover some of the low complexity skeletons, while NSODE
performs much better also on higher complexities. GPLearn fails to recover most skeletons.

other datasets can be found in Appendix |§| While AIFeynman and Sindy recover some of the
low complexity expressions, NSODE is the only method to also recover some of the more complex
skeletons.

On testset-textbook, AIFeynman outperforms all other methods on numerical and symbolic metrics.
This can be understood with regard to the dataset where 8/12 expressions are polynomials with
the remaining 4/12 expressions having a polynomial skeleton with fractional or negative exponents.
These expressions are particularly favorable for the heuristics implemented by AIFeynman which
explicitly attempt to fit a polynomial to the data. However, even on these simple examples AlFeyn-
man takes over 200x longer than our method, which in turn clearly outperforms Sindy and GPLearn
in terms of skeleton recovery.

5 Conclusion

We have developed a flexible and scalable method to infer ordinary differential equations ¢ = f(y)
from a single observed solution trajectory. Our method follows the successful paradigm of large-
scale pretraining of attention-based sequence-to-sequence models on essentially unlimited amounts
of simulated data, where the inputs are the observed solution {(¢;,y;)}?_; and the output is a sym-
bolic expression for f as a string. Once trained, our method is orders of magnitude more efficient
than similarly expressive existing symbolic regression techniques that require a separate optimiza-
tion for each instance and achieves strong performance in terms of skeleton recovery especially for
complex expressions on various benchmarks.
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A Possible extensions

While we have focused exclusively on the huge class of scalar, autonomous, first-order ODEs, we
believe that our approach can scale also to non-autonomous, higher-order, systems of ODEs.

Non-autonomous equations. Since our model is provided with time ¢ as inputs, it is capable of
learning functions f(y,t) depending on y and ¢ explicitly. Hence, extending our approach to non-
autonomous ODEs is simply a matter of adding a symbol for ¢ in our data generation.

Irregular samples and noise. Due to the separate data generation and training phase, it is straight
forward to train NSODE on corrupted input sequences, where we could for example add observation
noise (need not be additive) to the {y;}"_; or randomly drop some of the observations on the reg-
ular observation grid to simulate irregularly sampled observations. We expect these models to still
perform well and in particular much better than the baselines, since their targets are approximated
derivatives, which are highly sensitive to noise and irregular samples.

Systems of equations. For a system of K first-order ODEs, the data generation requires two
updates: first, we have to generate K equations ( fx) ke{1,...,K}» one for each component. In addition,
each of those functions can depend not only on y (and ¢ in the non-autonomous case), but K different
components {y(k)}ke{17.__, k}- This is easily achieved by allowing for K tokens y®) in the data
generation. We can then simply augment the input sequence to the transformer to contain not only
(t,y) as for the scalar case, but (t,y"), y) ... yF)) for a system of K variables. Finally, we have
decide on a way to set the target for the transformer, i.e., how to represent the system of equations
in symbolic form as a single sequence. A straight forward way to achieve this is to introduce a
special delimitation character, e.g., " |" to separate the different components. Note that the order
in which to predict the K equations is dictated by the order in which they are stacked for the input
sequence, hence this information is in principle available to the model. For example, in the case
of a two-dimensional system, where y = (y"),y(?)) € R?, we could have the model perform the
following mapping
(et D)y = -1, 4y Py P acos(8) | sin(pPy @)

where the separator | delimits the two components of f(y, t) corresponding to ¢ and ¢®.

Higher-order equations. It is well known that any higher order (system of) ODEs can be reduced
to a first-order system of ODEs. Specifically, a d-th order system of K variables can be reduced
to an equivalent first-order system of d - K variables. Hence, one can handle higher-order systems
analogously as before with multiple separator tokens. One obstacle in this case is that when only
observations of y(t) are given, one first needs to obtain observed derivatives to reduce a higher-
order system to a first-order system. These would in turn have to be estimated from data, which
suffers from the same challenges we have mentioned previously (instability under noise and irregular
samples).

Finally, when we want to have a single model deal with higher-order equations of unknown order,
or systems with differing numbers of variables, it remains on open question how to have the model
automatically adjust to the potentially vastly differing input dimensions or how to automatically
detect the order of an ODE.

B Implementation Details

B.1 Rules to Resample Constants

As described in Section [3.1] we generate ODEs as unary-binary trees, convert them into infix nota-
tion and parse them into a canonical form using sympy. From each skeleton we then create up to 25
ODE:s by sampling different values for the constants. When resampling constants we want to ensure
that we do not accidentally modify the skeleton as this would additionally burden our model with
resolving potential ambiguities in the grammar of ODE expressions. Furthermore, we do not want
to reintroduce duplicate samples on the skeleton level after carefully filtering them out previously.
We therefore introduce the following sampling rules for constants:

1. Do not sample constants of value 0.
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2. When the original constant in the skeleton is negative, sample a negative constant, other-
wise sample a positive constant.

Avoid base of 1 in power operations as 1% = 1.

1

Avoid exponent of 1 and -1 in power operations as x! = x and 271 = 1/x.

Avoid coefficients of value 1 and-l1as1-x =z and -1 -0 = —x

AN

Avoid divisions by 1 and -l asz/1 =z andz/ — 1 = —x

B.2 Data generation

As discussed in the main text, the choices of the maximum number of internal nodes per tree K,
the choice and distribution over Vy,;;, binary operators, the choice and distribution over Ny, unary
operators, the probability with which to decorate a leaf with a symbol pgyr, (versus a constant with
1 — psym), and the distribution p. over constants uniquely determine the training distribution over
ODE:s f. These choices can be viewed as flexible and semantically interpretable tuning knobs to
choose a prior over ODEs. For example, it may be known in a given context, that the system follows
a “simple” law (small K') and does not contain exponential rates of change (do not include exp in
the unary operators), and so on. The choice of the maximum number of operators per tree, how
to sample the operators, and how to fill in the leaf nodes define the training distribution, providing
us with flexible and semantically meaningful tuning knobs to choose a prior over ODE systems for
our model. We summarize our choices in Tables 2] to ] where U denotes the uniform distribution.
Whenever a leaf node is decorated with a constant, the distribution over constants is determined
by first determining whether to use an integer or a real value with equal probablity. In case of an
integer, we sample it from p;,t, and in case of a real-valued constant we sample it from p,ea1 Shown
in Table @ Finally, when it comes to the numerical solutions of the sampled ODEs, we fixed the
parameters in Table 5] for our experiments.

We highlight that there is no such thing as “a natural distribution over equations” when it comes to
ODE:s. Hence, ad-hoc choices have to be made in one way or another. However, it is important to
note that neither our chosen range of integers nor the range of real values for constants are in any way
restrictive as they can be achieved by appropriate rescaling. In particular, the model itself represents
these constant values merely be non-numeric tokens and interpolates between those anchor tokens
(our two-hot encoding) to represent continuous values. Hence, the model is entirely agnostic to the

Table 2: Parameter settings for the data generation.

Pal'ametef K Nbin Nuna Psym DPint Dreal
value 5 5 5 05 U({-10,...,10}\ {0}) U((~10,10))

Table 3: Binary operators with their relative sampling frequencies

operator + — : + pow
probability 0.2 0.2 0.2 0.2 0.2

Table 4: Unary operators with their relative sampling frequencies. The last column denotes the

unary minus as in e.g. f(y) = —y. We do not explicitly sample this operator but keep it after
simplification.

operator sin cos exp va log —

probability 0.2 0.2 0.2 0.2 0.2 0

Table 5: Parameters for numerical solutions of sampled ODEs.

parameter Neonst N; T Nagrid (yin, ymax)
value 25 25 4 1024 (=5,5)
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Table 6: Overview of our model architecture.

Encoder Decoder
architecture BigBird' BigBird
layers 6 6
heads 16 16
embed. dim. 512 512
forward dim. 2048 2048
activation gelu gelu
vocab. size - 43
position enc. learned learned
parameters 23.3M 23.3M

TWe chose the BigBird [28] implementation with full attention available in Hugging Face.

actual numerical range spanned by these fixed grid tokens, but the relative accuracy in recovering
interpolated values will be constant and thus scale with the absolute chosen range. Therefore, scaling
Dint and prea1 by essentially any power of 10 does not affect our findings. Similarly, the chosen range
of initial values (y&™, y%) is non-restrictive as one could simply scale each observed trajectory

to have its starting value lie within this range.

B.3 Model

Architectural choices. We use an encoder-decoder transformer and list our architectural choices
in Table [6] For the two-hot representation of symbolic constants as described in Section 3.2] we
choose an equidistant grid —10 = 21 < x5 < ... < x,,, = 10 withm = 21.

While not relevant for our dataset (as we check for convergence of the ODE solvers), we remark that
the input-encoding via IEEE-754 binary representations also graciously represents special values
such as nan or inf without causing errors. Those are thus valid inputs that may still provide useful
training signal, e.g., “the solution of the ODE of interest goes to inf quickly”.

Training details. Our model is trained on 4 Nvidia A100 GPUs for 18 epochs after which we
evaluate the best model based on the validation loss. We choose a batchsize of 600 samples and use
a linear learning rate warm-up over 10,000 optimization step after which we keep the learning rate
constant at 10~%. During training we use teacher forcing to guide sequential predictions. Teacher
forcing is straightforward to implement for one-hot encoded tokens (operators, symbols) which are
simply passed through a learnable embedding layer before their embedded representations are fed to
the decoder. In contrast, two-hot encoded tokens (constants) can not be passed through an embed-
ding layer directly. For a generic constant in the target sequence represented as ax; + 5x;41, we thus
instead provide the linear combination of the two embeddings o embed (x;) + [ embed(x;+1) as
decoder input. We represent symbolic input to the model in prefix format which relieves the model
from correctly predicting opening and closing parentheses.

Evaluation. We use N, = 100 for the evaluation of our numerical metrics.

C Dataset statistics

We provide an overview over the complexity distribution and the absolute frequency of all operators
(after simplification) for all datasets in Figure 4] We can see that our self-generated dataset covers
by far the larges complexity whereas both complexities and operator diversity are much lower for
equations in the classic and textbook ODEs.
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Figure 4: Distribution of complexity and operators for all datasets. Complexity is defined as the
number of symbols, constants and operators in an expression.
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Table 7: Equations of the textbook dataset.

Name Equation f(x) simplified Yo
autonomous Riccati 0.6-y>+2-y+0.1 0.6-y>+2-y+0.1 —0.2
autonomous Stuart-Landau —2.2/2- 43 +131-y —1.1-y3+131-y 0.1
autonomous Bernoulli —1.3-y+2.1-y%2 —1.3-y+2.1-y*2 0.6
compound interest 0.1y 0.1y 9
Newton’s law of cooling —0.1-(y—3) 0.3-01-y 9
Logistic equation 0.23-y-(1—y) 0.23 - (y — y?) 9
Logistic equation 0.23-y-(1-0.33-9)—0.5 0.23-y—0.76 - 3% — 0.5 9

with harvesting
Logistic equation

2
with harvesting 2 2-y-(1-9/3) =05 2-y—0.66-y°—0.5 0.7
05. .8 — .

Solow-Swan ‘7;1;50.5()0'9 8- (3+25) 729405 —55.y 0.1
Tank draining —v2-9.81-(2/9% /Yy —0.21 40 1
Draining water —(0.52/4) - /2 9.81- 15

through a funnel (sinl/cos1)? .y~ 15 —0.67/y 3
velocity of a body 981 0.9 /8.2 010y — 981 o1

thrown vertically upwards

D Textbook equations dataset

Table[7]list the equations we collected from wikipedia, textbooks and lecture notes together with the
initial values that we solved them for. We can also see that almost all of these equations simplify to
low-order polynomials.

E Baselines

We here describe more detail on the optimization of the baseline comparison models.

Sindy. We use the implementation available in PySindy [6]] and instantiate the basis functions with
polynomials up to degree 10 as well as all unary operators listed in Table 4 When fitting sindy
to data we often encountered numerical issues especially when using high-degree polynomial or
the exponential function. To attenuate such issues we set the highest degree of the polynomials per
sample to the highest degree present in the ground truth. Secondly, when numerical issues are caused
by a particular basis function, we discard this basis function for the current sample and restart the
fitting process. We run a separate full grid search for every ODE over the following hyper-parameters
and respective values (these all include the default values):

* optimizer-threshold (np.logspace(-5, 0, 10)): Minimum magnitude for a coefficient in the
weight vector to not be zeroed out.

* optimizer-alpha ([0.001, 0.0025, 0.005, 0.01,0.025,0.05, 0.1, 0.2]): L2 regularizer on parameters.
* finite differences order ([2, 3, 5, 7, 9]): Order of finite difference approximation.

* maximum number of optimization iterations ([20, 100]): Maximum number of optimization steps.

For every ODE, sindy is fit using solution trajectory in the initial interval [0, 2] and validated on the
interval (2, 4]. The grid search thus results in a ranking of models with different hyper-parameter
configurations. Instead of evaluating only the performance of the best model, we report top-k perfor-
mance across the ranked hyper parameter configurations. Sindy is computationally highly efficient
yet limited in its expressiveness, in particular it can not represent nested functions or non-integer
powers.

GPLearn. We instantiate GPLearn with a constant range of (—10, 10) and all binary operators
listed in Table [3] and all unary operators listed Table [4] except for the exponential function which
caused numerical issues. We keep the default hyper-parameters but run a grid search across the
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parsimony coefficient ({0.0005, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, "auto"}) which trades of fitness
versus program length. We choose R? as fitness function.

AlFeynman. We use the AlFeynman implementation from https://github.com/SJ001/
ATI-Feynman and run the algorithm with the following (default) hyper-parameters:

* Brute force try time: 60 seconds

* Number of epochs for the training : 500

e Operator set: 14

* Maximum degree of polynomial tried by the polynomial fit routine: 4

F Detailed results

We provide a comprehensive summary of performances of all models on all datasets in Table [§]
Additionally, Figures [5]to [§ show the number of correctly recovered skeletons by each method per
complexity.

Table 8: Detailed performance results for all methods on all (applicable) datasets.

Dataset Metric NSODE Sindy GPLearn AlFeynman
skel-recov 52.0 - - -
R? > 0.999 28.6 - - -
testset-iv allclose 50.6 - - -
skel-recov & R2 > 0.999 17 - - -
skel-recov & allclose 22.6 - - -
runtime [s] 5.3 - - -
skel-recov 45.6 - - -
R2 > 0.999 21.7 - - -
testset-constant allclose 447 - - -
skel-recov & R? > 0.999 9.8 - - -
skel-recov & allclose 16.1 - - -
runtime [s] 53 - - -
skel-recov 19 - - -
R? > 0.999 12 - - -
testset-skel allclose 33 - - -
skel-recov & R? > 0.999 1 - - -
skel-recov & allclose 2 - - -
runtime [s] 53 - - -
skel-recov 374 3.7 2.5 14.1
R? > 0.999 24.5 31.9 3.7 49.7
testset-iv-163 allclose 42.3 25.8 14.7 55.8
skel-recov & R2 > 0.999 15.3 3.1 1.8 13.5
skel-recov & allclose 15.3 3.1 1.8 13.5
runtime [s] 54 04 29 +22 1203.6
skel-recov 11.5 0 3.8 46.2
R2 > 0.999 57.7 57.7 23.1 88.5
classic allclose 80.8 57.7 30.8 88.5
skel-recov & R? > 0.999 0 0 7.7 46.2
skel-recov & allclose 0 0 7.7 46.2
runtime [s] 52 0.6 23 +22 1291.6
skel-recov 41.7 333 8.3 91.7
R? > 0.999 16.7 50 0.0 75
textbook allclose 25 58.3 8.3 75
skel-recov & R? > 0.999 33.3 41.7 0 66.7
skel-recov & allclose 8.3 333 1.8 66.7
runtime [s] 6 1 23 +22 1267.1
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Figure 5: Correctly recovered skeletons by each method on the classic benchmark dataset per com-
plexity.
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Figure 6: Correctly recovered skeletons by each method on the textbook dataset per complexity.
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Figure 7: Correctly recovered skeletons by each method on testset-iv-163 per complexity.
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Figure 8: Correctly recovered skeletons by NSODE on testset-iv, testset-constants, and testset-
skeletons.
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