
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STRUCTZIP: COMPRESSING LARGE-SCALE STRUC-
TURED PROMPTS TO ONE TOKEN VIA LEARNING NAT-
URAL LANGUAGE DESCRIPTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tool use has become a central capability in large language model (LLM)-based
agents, enabling them to interact with external environments through structured
APIs. However, effective tool use typically requires including a large number of
tool descriptions, often with complex schemas, in the context for each inference.
This static and structured portion of the prompt grows linearly with the num-
ber of tools and poses a significant challenge to inference efficiency. Although
prior work has explored prompt compression for long contexts, most approaches
focus on unstructured text and are not optimized for the compression of struc-
tured prompts. To bridge this gap, we introduce StructZip, a novel framework
that transforms large structured prompts into parametric memory, which can be
elicited by a single token. Our approach first ”unzips” the structured prompt into
a set of semantically equivalent question-answer (QA) pairs. By fine-tuning the
LLM on these QA pairs, StructZip encodes the information into the model’s pa-
rameters, making it accessible through a designated special token at inference
time. We evaluate our method on three representative tasks: table-based ques-
tion answering, tool-use, and closed-set text classification. Experimental results
demonstrate that StructZip can compress prompts of millions of tokens into a sin-
gle one while maintaining performance nearly on par with using the full, uncom-
pressed prompts, offering a practical solution for efficient structured data handling
in LLMs.

1 INTRODUCTION

The advent of large language models (LLMs) has significantly advanced the capabilities of AI
agents, enabling them to tackle increasingly complex tasks by reasoning, planning, and interacting
with external environments. However, a critical challenge hindering their broader application is the
processing of extensive structured data, such as detailed tool descriptions, large tables, or complex
classification taxonomies. The naive approach of concatenating this data directly into the prompt is
often infeasible. For instance, a comprehensive set of API documentation can easily exceed thou-
sands of tokens, leading to prohibitive inference costs and latency, and frequently surpassing the
context length limitations of even the most advanced models.

To address the challenges posed by long prompts, prior research has explored various strategies.
Some approaches focus on architectural modifications to better handle extended contexts Kitaev
et al. (2020); Zhou et al. (2021). Others investigate prompt compression, where methods like LLM-
Lingua Jiang et al. (2023a) and 500xCompressor Li et al. (2024) have demonstrated success in
compressing unstructured textual prompts. However, these techniques are fundamentally ill-suited
for structured data. The high information density and rigid syntax of formats like JSON mean they
possess minimal redundancy. Unlike natural language, altering or omitting even a single token can
corrupt the data’s integrity, leading to catastrophic parsing failures or silent reasoning errors dur-
ing inference. This leaves a critical research gap: an effective compression method for structured
prompts that preserves their semantic and structural integrity.

To bridge this gap, we introduce StructZip, a novel method that compresses large structured
prompts into a single token. Inspired by prior work on knowledge representation Dong et al. (2017);

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Answers

Answers

General Questions

Key-Value Questions

Attribute Questions

Answers

Mixed Corpus

General SFT

Corpus

SFT

Query

Structured Prompts

Structured Information Decoding Description-based Knowledge Encoding

Query< Compressed token >

Elicit

LLMs

Original Input Text Compressed Input Text

Learning Special Token

Figure 1: Overview of the StructZip framework. A structured prompt is first ”unzipped” into se-
mantically equivalent Q-A pairs (Structured Information Decoding). These pairs are then mixed
with generic SFT data to fine-tune the LLM (Description-based Knowledge Encoding). At infer-
ence time, the embedded knowledge can be elicited by a single compressed token.

Zhu et al. (2019); Lewis et al. (2019); Min et al. (2024), our core idea is to create a set of natural
language question-answer (QA) pairs that are semantically equivalent to the original structured data.
Instead of embedding the bulky data directly, we fine-tune the LLM on these QA pairs. This training
process encodes the explicit, structured information into the model’s parametric memory Du et al.
(2025); Wu et al. (2025b). A designated compressed token, trained alongside this process, serves
as a compact key. During inference, this single token is used to elicit the embedded knowledge,
allowing the model to reason over the complete information as if it were fully present in the context.

To validate our approach, we conduct extensive experiments on three representative tasks: table-
based question answering, tool-use, and closed-set text classification. Our results demonstrate that
StructZip achieves extreme compression ratios, i.e., reducing prompts of millions of tokens to a
single one, while maintaining performance nearly on par with using the full, uncompressed prompts.
It significantly outperforms existing compression baselines in structured data scenarios, highlighting
its effectiveness and practical value for developing more efficient and scalable LLM-based agents.

2 PROBLEM DEFINITION

We formally define the problem of Large Structured Prompt Compression (LSPC). This problem
addresses a class of prompts characterized by three key properties. First, they are extremely long,
often exceeding the context window limits of large language models (LLMs). Even when they fit,
their length leads to prohibitive inference costs and high latency. Second, the information is highly
dense with minimal redundancy, meaning conventional lossy compression techniques would cause
substantial information loss. Third, they are highly formatted with a rigid structure (e.g., JSON
schemas, tables), where even minor alterations can corrupt their integrity and lead to reasoning
failures. The objective of LSPC is to enable LLMs to process these prompts while preserving their
informational content, without incurring token costs at inference time.

The LSPC problem formulation is highly general, encompassing various tasks that rely on structured
data. In this work, we demonstrate the broad applicability of our approach by focusing on three rep-
resentative and challenging tasks: Table-based Question Answering, which involves compressing
large, detailed tables for querying; Tool-Use, for compressing extensive API documentation for
agentic systems; and Closed-set Text Classification, which requires compressing a large set of
class labels and their detailed descriptions. These tasks represent common yet difficult scenarios
where structured prompts are essential, and we believe the LSPC framework can be extended to an
even wider range of future applications involving structured data.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 METHOD

To address the LSPC problem, we introduce StructZip, a novel framework that transforms large
structured prompts into parametric memory Du et al. (2025); Wu et al. (2025b) within an LLM
which can be elicited by a single token. This is achieved through a two-stage decoding-and-encoding
process. As illustrated in Figure 1, the structured prompt is first ”unzipped” into a set of natural lan-
guage question-answer (QA) pairs, which could maintain all the information of the original struc-
tured prompt. The core intuition driving this design, is that natural language descriptions can serve
as a faithful and comprehensive proxy for complex structured data. These QA pairs are then used to
fine-tune the model, encoding the information into its parameters. A designated compressed token,
trained alongside this process, acts as the key to access this newly formed memory in the inference
stage.

3.1 STRUCTURED INFORMATION DECODING

The first stage of StructZip, Structured Information Decoding, is responsible for ”unzipping” the
dense, structured prompt into a comprehensive set of natural language question-answer (QA) pairs.
This process is designed to be fully reversible, ensuring that the complete semantic and structural
information of the original data is preserved. To achieve this, we generate a diverse range of QA
pairs that probe the structured data from multiple perspectives. For example, when compressing a
text classification system, we generate the following QA pairs:

– General Questions, which query for the entirety of the structured data to provide a holistic
view.

1 {
2 "prompt": "What is <|data|>?",
3 "answer": "{{ output the entire system }}"
4 }
5 {
6 "prompt": "Based on <|data|>, output all category names.",
7 "answer": "{{ output the entire system }}"
8 }

– Key-Value Questions, which target specific content points.

1 {
2 "prompt": "is the label A in the <|data|>?",
3 "answer": "Yes"
4 }

– Attribute Questions, which inquire about metadata and properties of the structure, such as
quantity and qualitative descriptions.

1 {
2 "prompt": "How many categories are there in total in the <|

data|>?",
3 "answer": "263"
4 }
5

6 {
7 "prompt": "How many subcategories are there in category D

based the <|data|>?",
8 "answer": "3"
9 }

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

This decoding strategy is universally applicable across different data formats: it translates table
rows into factual statements, API function signatures into capability descriptions, and classification
taxonomies into hierarchical queries. Within the questions, a placeholder token (e.g., <|data|>) is
used to conceptually refer to the structured prompt being described.

3.2 DESCRIPTION-BASED KNOWLEDGE ENCODING

The second stage, Description-based Knowledge Encoding, embeds the knowledge from the de-
coded QA pairs into the LLM’s parameters. To achieve this while preserving the model’s general
capabilities, we create a new training corpus by mixing our generated QA pairs with an existing,
general-purpose Supervised Fine-Tuning (SFT) dataset such as the SFT dataset used in LlaMa-
3 Grattafiori et al. (2024). The model is then fine-tuned on this composite dataset using a standard
SFT procedure. This process trains the model to associate the compressed token (using special
token like <|data|>) with the complete information of the original structured prompt, effectively
compiling the explicit, lengthy data into a compact, implicit parametric memory.

Inference Consequently, the entire structured prompt can be substituted with this single com-
pressed token during inference. This single compressed token allows the model to elicit the stored
knowledge with zero additional token overhead while response to the queries.

4 EXPERIMENTS

This paper discusses the compression of structured or semi-structured prompts. To the best of my
knowledge, this issue has not been explored in previous work, and there are no directly comparable
benchmarks. We selected three typical scenarios: table-based question answering, tool invocation,
and text classification. We adapted the relevant benchmarks by modifying the prompts, but this
adaptation does not affect the fairness of the evaluation.

4.1 DATASETS

4.1.1 TEXT CLASSIFICATION

TNEWS 1 is a traditional text classification task. The dataset consists of Chinese news articles
published by TouTiao before May 2018, with a total of 73,360 titles. Each title is labeled with one
of 15 news categories (such as finance, technology, sports, etc.), and the task is to predict which
category the title belongs to. The data is in Chinese language and is stored in a JSON file format
containing 73,360 entries.

English Dolly 2.0 Conover et al. (2023) databricks-dolly-15k is a corpus of more than 15,000
records generated by thousands of Databricks employees to enable large language models to exhibit
the magical interactivity of ChatGPT. Databricks employees were invited to create prompt/response
pairs in each of eight different instruction categories, including the seven outlined in the InstructGPT
paper Ouyang et al. (2022), as well as an open-ended free-form category. The contributors were
instructed to avoid using information from any source on the web except for Wikipedia (for particular
subsets of instruction categories), and were explicitly instructed to avoid using generative AI in
formulating instructions or responses. Examples of each behavior were provided to motivate the
types of questions and instructions appropriate to each category.

Chinese FireflyConover et al. (2023) We have collected 23 common Chinese datasets. For each
task, several instruction templates were manually written to ensure the high quality and richness of
the data, totaling 1.15 million entries. To make it comparable to the English dataset, we randomly
sampled 15k data points from it.

Setting We performed the same preprocessing on each dataset before training. First, we collect
labels for the current dataset. After collecting the labels, each label is annotated to form a classi-
fication system. Ultimately, this classification system will be concatenated with each question as a

1https://github.com/fatecbf/toutiao-text-classfication-dataset/

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Method Acc Context Input Output Ratio Ini-lat.(ms) Lat.(ms)
Chinese Text Classification

TNEWS
GPT4o 0.722 514 606 / 1x

LongLLMLingua 0.606 321 414 38.42 1.6x
AutoCompressors 0.554 102 195 67.22 5x

Gist 0.656 128 221 55 4x
500xCompressor 0.702 128 221 46 4x

/

w/o 0.905 514 606 2 1x 70.13 118.74StructZip
(Qwen2.5-7B) w/ 0.903 107 275 2 4.8x 60.22 109.04

Firefly
GPT4o 0.850 5062 5219.90 / 1x

LongLLMLingua 0.652 3164 3321 180.4 1.6x
AutoCompressors 0.664 1012 1170 220.3 5x

Gist 0.723 1265 1423 145.1 4x
500xCompressor 0.824 1265 1423 148.9 4x

/

w/o 0.890 5062 5219 124.2 1x 429.8 6252.61StructZip
(Qwen2.5-7B) w/ 0.887 335 570 121.6 15.1x 62.38 5547.76

English Text Classification
Dolly 2.0

GPT4o 0.714 682 824 / 1x
LongLLMLingua 0.432 426 569 77.1 1.6x
AutoCompressors 0.501 136 279 89.3 5x

Gist 0.608 170 312 67.2 4x
500xCompressor 0.668 170 312 32.4 4x

/

w/o 0.753 682 824 3.6 1x 76.78 230.55StructZip
(Llama3.1-8B) w 0.754 222 367 3.6 3.1x 76.36 230.00

Table Question Answering
TabelBench

GPT4o 0.743 885♣ 1168 / 1x
LongLLMLingua 0.332 553 836 66.1 1.6x
AutoCompressors 0.271 177 460 78,3 5x

Gist 0.504 221 504 63.2 4x
500xCompressor 0.607 221 504 60.6 4x

/

w/o 0.655 885♣ 1168 52.3 1x 147.59 2511.17StructZip
(Qwen2.5-7B) w 0.649 68 65 51.8 13.1x 61.26 2335.44

Tool Invocation
XLAM

GPT4o 0.983 1346 / 1x
LongLLMLingua 0.412 2155 349.4 1.6x
AutoCompressors 0.322 6734 325.3 5x

Gist 0.378 5387 450.3 4x
500xCompressor 0.456 5387 308.2 4x

/

w/o 0.982

3M♠

1346 217.6 1x 94.83 13239.97StructZip
(Llama3.1-8B) w 0.945 225 329 214.7 13.3kx 81.66 13189.27

Table 1: Here are our experimental results across three different tasks. ”w/o” indicates the absence
of compression methods, meaning the context is directly concatenated with the instruction. ”w/”
refers to the use of the compression methods discussed in this paper. For GPT-4o, due to the in-
ability to train, all results pertain to prompts without any compression method applied. The length
metrics provided represent average lengths. It is particularly notable that in tool invocation scenar-
ios, there are over 30,000 tool descriptions, which far exceed the model’s length capacity, making
direct concatenation impossible. Therefore, both GPT-4o and ”w/o” conditions involve direct con-
catenation of the 20 actual tool descriptions, representing the ideal situation.

prompt. For example, for the ”text summarization” label, the annotation would be: ”Summarize the
text into a short paragraph that captures the main points of the entire text.” Detailed annotations are
listed in the appendix, and the full system will be open-sourced.

4.1.2 TABLE QUESTION ANSWERING

TableBench Wu et al. (2025a) TableBench is a comprehensive benchmark designed to evaluate
large language models’ (LLMs) capabilities in table question answering (TableQA) across 18 fields
within four major categories: fact-checking, numerical reasoning, data analysis, and visualization.
It comprises 886 test samples that challenge LLMs with complex reasoning tasks involving tab-
ular data. Additionally, TableBench introduces TableLLM, a model trained on the TableInstruct
dataset, which achieves performance comparable to GPT-3.5. Extensive experiments indicate that

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0.2k 0.5k 1k 2k 5k
Length

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Ac
c

w/
w/o

(a) The effect of compression on prompt length and
complexity on XLAM dataset.

1 3 5 10 20
Number of Tokens

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pe
rf

or
m

an
ce

0.903
0.923

0.913
0.933 0.930

0.887

0.857
0.874

0.888
0.868

0.754
0.734

0.768 0.774 0.780

0.649 0.651 0.658
0.669

0.660

0.945
0.956 0.962

0.971 0.979

TNEWS
Firefly
Dolly2
TableBench
XLAM

(b) The results of using different numbers of com-
pressed tokens on different tasks.

Figure 2: Left: prompt length and complexity vs. compression; Right: number of compressed
tokens vs. performance.

both open-source and proprietary LLMs have significant room for improvement in handling real-
world TableQA scenarios, with even advanced models like GPT-4 achieving only modest scores
compared to human performance.

Setting During the training phase, we constructed table description corpora for all the tables used
in the test set using the method outlined in Section 2.1. Due to limited training resources, we
randomly selected 300,000 samples from TableInstruct and mixed them with the table description
corpora as the fine-tuning dataset. During the testing phase, we followed the approach described in
the paper for evaluation, but when concatenating tables, we referred to the descriptions used in the
classification tasks.

4.1.3 TOOLS INOVCATION

xlam-function-calling-60k Liu et al. (2024b) dataset is a collection designed to facilitate research
in code generation and function calling tasks. It contains 60,000 examples of function call pat-
terns, where each example pairs a natural language description with the corresponding function
call in programming languages. The dataset aims to support the training and evaluation of models
that translate natural language into executable code, particularly focusing on how well models can
understand and generate function calls based on given instructions. The diverse set of examples en-
ables the development of more robust code generation tools and benchmarks for evaluating language
models’ performance in programming tasks.

4.2 BASELINES

This paper addresses the issue of structured compression, a topic that has not been specifically
discussed in previous work. We selected LongLLMlinguaJiang et al. (2023a), AutoCompres-
sorsChevalier et al. (2023), GistMu et al. (2023), and 500xCompressorLi et al. (2024), which repre-
sent both hardware and software compression methods related to prompt compression. Additionally,
we used an uncompressed setting as a control for comparison experiments.

4.3 MAIN RESULTS

Table1 presents evaluation results across five datasets spanning three representative tasks. We report
standard performance metrics including accuracy, context length, total input and output lengths,
compression ratio, first-token latency, and total latency. Overall, our method consistently outper-
forms existing compression techniques across all tasks. Notably, the performance of our compressed
inputs is on par with, and in some classification cases even surpasses, the results of uncompressed
inference with GPT-4o.

For text classification, both in Chinese and English settings, we observe that models fine-tuned on
compressed inputs yield better accuracy than zero-shot predictions from GPT-4o. This improvement
stems from the fine-tuned model’s better alignment with class semantics and decision boundaries.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Furthermore, the accuracy drop due to compression remains minimal—within 0.6%—demonstrating
the effectiveness of our method. On the Firefly dataset, despite the label prompt reaching 5.2k tokens
and being compressed into a single token (achieving a 15× compression ratio), our method incurs
only a 0.3% performance degradation while achieving a 6.9× inference speedup—an impressive
result.

In the table-based QA task, evaluated on TableBench, which contains multi-table inputs, we report
average metrics due to varying input complexity. GPT-4o achieves the highest accuracy, with our
compressed version trailing by only 0.6%. This slight degradation is attributable to the limitations
of Qwen2.5-7B in tabular reasoning and the inherent difficulty of compressing sparse table fields—a
key challenge that renders existing compression baselines ineffective in this setting.

For tool-use scenarios, we evaluate on the xLAM dataset, which involves over 30k tools with de-
scriptions totaling more than 3 million tokens. Such context lengths far exceed the model’s input ca-
pacity, necessitating retrieval-based selection of the top-10 relevant tools, while ensuring the correct
tool is included. Results show that non-compressed GPT-4o and LLaMA3.1-8B perform compara-
bly. Our compressed method trails by 3.7% in accuracy. This gap is largely due to retrieval errors
introduced during compression; assuming an optimistic 96% retrieval accuracy, the upper-bound
performance would be 94.2%, which closely matches our compressed result. Notably, our method
supports compression to as few as 13.3k tokens with strong performance. Latency measurements
are based on VLLM-optimized benchmarking, providing a reliable view of relative speedups.

Compared with other compression baselines, our method achieves significantly superior perfor-
mance—especially in large-tool scenarios. Hard compression methods such as LongLLMingua
suffer from format degradation, leading to poor inference results despite high compression ratios.
Among soft compression baselines, AutoCompressors, Gist, and 500xCompressor show moderate
performance gains; however, AutoCompressors disrupt structural integrity due to recursive segmen-
tation, and Gist/500xCompressor, relying solely on SFT-derived embeddings, incur information loss.
In contrast, our approach fully reconstructs the original input during QA pair construction, ensuring
minimal information loss. In the xLAM setting, where over 30k tools must be encoded, none of the
baselines can incorporate all tool descriptions in a single input, resulting in severely degraded per-
formance. Our method, by traversing and integrating all tool descriptions during QA construction,
successfully preserves complete semantic content and maintains high performance.

5 DISCUSSION

5.1 HOW PROMPT LENGTH AND COMPLEXITY AFFECT THE COMPRESSION EFFECT

Our method is theoretically capable of handling prompts of arbitrary length, but does the compres-
sion effect vary with different prompt lengths? We observed this issue on the XLAM dataset. The
XLAM dataset contains over 30,000 tool descriptions, with a total length exceeding 300,000 tokens.
To study the impact of prompt length, the experimental setup was as follows:

1. A random tool category was selected to ensure the concatenated prompt length was under
8k. In this case, during the non-compressed test, all tool descriptions were concatenated
before the query.

2. When the prompt length exceeded 8k, only the retrieved tool descriptions were concate-
nated in the non-compressed scenario.

From the results shown in Figure2a, we can observe three distinct segments:

• In the 0-0.5k range, compression and non-compression results were essentially the same.

• In the 1k-5k range, compression and non-compression results were also similar, but slightly
worse than in the 0-0.5k range.

• For lengths greater than 5k, both compression and non-compression results declined as the
length increased. This is understandable: longer prompts require the model to select the
correct tools, which is a more demanding task. As the prompt length increases, the noise
in the context also increases, and this noise reduces the performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

For prompts longer than 8k, the compression effect was significantly better than non-compression.
This is because non-compression depends on the accuracy of retrieval, as shown in Figure2a. When
using ground truth, the performance can reach 98%, which demonstrates the critical impact of noise.

5.2 THE MORE THE BETTER?

Intuitively, the more tokens used for compressed representation, the larger the representational space
and the better the performance. To verify this hypothesis, we experimented with using 1 to 20 tokens
for representation across different tasks, and the final results are shown in Figure2b. We can observe
that overall, as the number of tokens increases from 1 to 10, almost all tasks show an upward trend.
However, further increasing the number of tokens does not lead to a significant improvement in
performance. We can conclude that more tokens for compressed representation are not necessarily
better; using just a few or even a single token is generally sufficient to meet the task requirements.

5.3 CAN UNSTRUCTURED PROMPT SCENARIOS BE USED

Table 2: Our method’s performance in un-
structured prompt tasks (selecting single-
document relevant tasks in Longbench)

Methods SingleDoc Summm. FewShot

Retrival-based Methods

BM25 0.301 0.212 0.195
SBERT 0.338 0.259 0.235
OpenAI 0.343 0.247 0.324
LongLLMLingua γk 0.378 0.269 0.663

Compression-based Methods

Selective-Context 0.162 0.244 0.157
LLMLingua 0.224 0.245 0.612
LongLLMLingua 0.399 0.274 0.698

Original Prompt 0.397 0.265 0.670
Zero-shot 0.156 0.156 0.407

LDPC(our’s) 0.393 0.270 0.668

Although at the beginning of this paper we stated
that our method focuses on structured prompts, the-
oretically, our method can handle prompts of any
form. We selected three single-document-related
tasks from Longbench to verify the effectiveness of
our method when using documents as prompts. The
experimental results are shown in Table 2. We com-
pared two types of document tasks: retrieval-related
methods and compression-related methods, follow-
ing the experimental setup in Jiang et al. (2024).
From Table 2, we can see that our method performs
comparably to the current best prompt compres-
sion method (Jiang et al., 2024) and the original
prompt. In the settings for Summa. and FewShot
self-learning, our method even outperforms them,
possibly because the compressed long documents
have better denoising effects, enabling better learn-
ing of attention in the latent space with shorter con-
texts.

5.4 IS PARALLEL CORPUS NEEDED, AND SHOULD ALL CONTENT BE COVERED

Table 3: Ablation experiments on parallel cor-
pora and coverage.

Acc

Firefly 0.887
w/o all convered 0.863

w/o parrallel 0.851

TabelBench 0.655
w/o all convered 0.644

w/o parrallel 0.626

In the methods section, we detail how to use nat-
ural language to describe the prompts we aim to
compress, primarily organizing them in a QA for-
mat. There are two issues we need to discuss in
detail here: firstly, when constructing QA pairs for
the same query, whether it is necessary to simul-
taneously construct parallel corpora for both com-
pressed and non-compressed prompts; secondly,
whether the QA pairs need to cover all the con-
tent in the prompt. To find the answers, we con-
ducted experiments on Firefly and TableBench. For
instance, to verify coverage, in the context of table
QA, ’w/o all covered’ indicates constructing QA pairs for each row of the table, and on this basis,
’w/o parallel’ indicates not using parallel corpora. Table 3 shows the results, from which we can
see that coverage positively impacts the results—the more comprehensive the coverage, the more
sufficient the representation, and the better the performance. Parallel corpora are also crucial; if we
remove the parallel corpora, the performance drops significantly because parallel corpora further
align the space representation of the compressed tokens and the original prompts

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6 RELATED WORK

Based on Information Entropy Empirical studies have shown that the performance of LLMs di-
minishes with less effective information in a prompt (Bai et al., 2024). Furthermore, the placement
of relevant information within a prompt significantly influences performance (Wu et al., 2022). Ac-
cording to Liu et al. (2024a), LLMs struggle more with comprehending information located in the
middle of a prompt than with information at the edges.

Retrieval Based Sparse Retrieval Methods Methods like BM25 determine the relevance between
queries and documents based on n-gram information. Dense Retrieval Methods These methods
assess relevance in latent space using embedding models (Reimers, 2019; Xiao et al., 2024; Günther
et al., 2023) and reranker models (Xiao et al., 2024). Recently, Jiang et al. (2023b) introduced an
unsupervised dense retrieval method that leverages traditional compression algorithms like gzip and
k-nearest neighbors.

Based on Compression Hard prompt compression involves directly modifying natural language
prompts to eliminate redundancy. Techniques include token pruning and merging, which require
model fine-tuning or intermediate inference signals and have been primarily explored with BERT-
scale models (Goyal et al., 2020; Kim & Cho, 2020; Modarressi et al., 2022; Bolya et al., 2022).
Filtering-based approaches such as SelectiveContext estimate token importance using information
entropy and remove less informative tokens (Li et al., 2023). Paraphrasing methods like Nano-
Capsulator rephrase prompts to shorter yet semantically equivalent versions (Chuang et al., 2024).
In contrast, soft prompt compression encodes prompts into continuous vectors. Representative soft
prompt tuning methods, including GIST (Mu et al., 2024), AutoCompressor (Chevalier et al., 2023),
and ICAE (Ge et al., 2023), require fine-tuning the LLM parameters, which suits domain-specific
settings but is not directly applicable to black-box LLMs.

7 CONCLUSION

This paper proposes a prompt compression method based on language description to address the
issue of high inference costs associated with structured prompts of arbitrary length. Compared to
other compression methods, it achieves extreme compression while maintaining comparable perfor-
mance, and the implementation is simple and straightforward.

ETHICS STATEMENT

All data used in the experiments were obtained from publicly available sources or datasets with
proper licenses. Our work does not involve any human subjects or animal experiments. We ac-
knowledge the potential societal impacts of deploying language models, particularly in areas such
as misinformation, bias, and fairness. We have made efforts to minimize these risks by carefully cu-
rating the datasets and ensuring that the methods are designed to avoid reinforcing harmful biases.

REFERENCES

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilin-
gual, multitask benchmark for long context understanding. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 3119–3137, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.172. URL
https://aclanthology.org/2024.acl-long.172/.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your vit but faster. arXiv preprint arXiv:2210.09461, 2022.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models to
compress contexts. arXiv preprint arXiv:2305.14788, 2023.

9

https://aclanthology.org/2024.acl-long.172/

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Yu-Neng Chuang, Tianwei Xing, Chia-Yuan Chang, Zirui Liu, Xun Chen, and Xia Hu. Learning to
compress prompt in natural language formats. arXiv preprint arXiv:2402.18700, 2024.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick
Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world’s first truly
open instruction-tuned llm, 2023. URL https://www.databricks.com/blog/2023/04/12/
dolly-first-open-commercially-viable-instruction-tuned-llm.

Li Dong, Jonathan Mallinson, Siva Reddy, and Mirella Lapata. Learning to paraphrase for question
answering. arXiv preprint arXiv:1708.06022, 2017.

Yiming Du, Wenyu Huang, Danna Zheng, Zhaowei Wang, Sebastien Montella, Mirella Lapata,
Kam-Fai Wong, and Jeff Z Pan. Rethinking memory in ai: Taxonomy, operations, topics, and
future directions. arXiv preprint arXiv:2505.00675, 2025.

Tao Ge, Jing Hu, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder for
context compression in a large language model. arXiv preprint arXiv:2307.06945, 2023.

Saurabh Goyal, Anamitra Roy Choudhury, Saurabh Raje, Venkatesan Chakaravarthy, Yogish Sab-
harwal, and Ashish Verma. Power-bert: Accelerating bert inference via progressive word-vector
elimination. In International Conference on Machine Learning, pp. 3690–3699. PMLR, 2020.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Michael Günther, Jackmin Ong, Isabelle Mohr, Alaeddine Abdessalem, Tanguy Abel, Moham-
mad Kalim Akram, Susana Guzman, Georgios Mastrapas, Saba Sturua, Bo Wang, et al. Jina
embeddings 2: 8192-token general-purpose text embeddings for long documents. arXiv preprint
arXiv:2310.19923, 2023.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Llmlingua: Compressing
prompts for accelerated inference of large language models. arXiv preprint arXiv:2310.05736,
2023a.

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili
Qiu. LongLLMLingua: Accelerating and enhancing LLMs in long context scenarios via prompt
compression. In Annual Meeting of the Association for Computational Linguistics, 2024.

Zhiying Jiang, Matthew Yang, Mikhail Tsirlin, Raphael Tang, Yiqin Dai, and Jimmy Lin. “low-
resource” text classification: A parameter-free classification method with compressors. In Find-
ings of the Association for Computational Linguistics: ACL 2023, pp. 6810–6828, 2023b.

Gyuwan Kim and Kyunghyun Cho. Length-adaptive transformer: Train once with length drop, use
anytime with search. arXiv preprint arXiv:2010.07003, 2020.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Patrick Lewis, Ludovic Denoyer, and Sebastian Riedel. Unsupervised question answering by cloze
translation. arXiv preprint arXiv:1906.04980, 2019.

Yucheng Li, Bo Dong, Chenghua Lin, and Frank Guerin. Compressing context to enhance inference
efficiency of large language models. arXiv preprint arXiv:2310.06201, 2023.

Zongqian Li, Yixuan Su, and Nigel Collier. 500xcompressor: Generalized prompt compression for
large language models. arXiv preprint arXiv:2408.03094, 2024.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024a.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran
Yao, Zhiwei Liu, Yihao Feng, et al. Apigen: Automated pipeline for generating verifiable and
diverse function-calling datasets. arXiv preprint arXiv:2406.18518, 2024b.

10

https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dehai Min, Nan Hu, Rihui Jin, Nuo Lin, Jiaoyan Chen, Yongrui Chen, Yu Li, Guilin Qi, Yun Li,
Nijun Li, et al. Exploring the impact of table-to-text methods on augmenting llm-based question
answering with domain hybrid data. arXiv preprint arXiv:2402.12869, 2024.

Ali Modarressi, Hosein Mohebbi, and Mohammad Taher Pilehvar. Adapler: Speeding up inference
by adaptive length reduction. arXiv preprint arXiv:2203.08991, 2022.

Jesse Mu, Xiang Li, and Noah Goodman. Learning to compress prompts with gist tokens. Advances
in Neural Information Processing Systems, 36:19327–19352, 2023.

Jesse Mu, Xiang Li, and Noah Goodman. Learning to compress prompts with gist tokens. Advances
in Neural Information Processing Systems, 36, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

N Reimers. Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint
arXiv:1908.10084, 2019.

Xianjie Wu, Jian Yang, Linzheng Chai, Ge Zhang, Jiaheng Liu, Xeron Du, Di Liang, Daixin Shu,
Xianfu Cheng, Tianzhen Sun, et al. Tablebench: A comprehensive and complex benchmark
for table question answering. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 25497–25506, 2025a.

Yaxiong Wu, Sheng Liang, Chen Zhang, Yichao Wang, Yongyue Zhang, Huifeng Guo, Ruiming
Tang, and Yong Liu. From human memory to ai memory: A survey on memory mechanisms in
the era of llms. arXiv preprint arXiv:2504.15965, 2025b.

Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Lingpeng Kong. Self-adaptive in-context learning:
An information compression perspective for in-context example selection and ordering. arXiv
preprint arXiv:2212.10375, 2022.

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-pack:
Packed resources for general chinese embeddings. In Proceedings of the 47th international ACM
SIGIR conference on research and development in information retrieval, pp. 641–649, 2024.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

Haichao Zhu, Li Dong, Furu Wei, Wenhui Wang, Bing Qin, and Ting Liu. Learning to ask unan-
swerable questions for machine reading comprehension. arXiv preprint arXiv:1906.06045, 2019.

11

	Introduction
	Problem Definition
	Method
	Structured Information Decoding
	Description-based Knowledge Encoding

	Experiments
	Datasets
	Text Classification
	Table Question Answering
	Tools Inovcation

	Baselines
	Main Results

	Discussion
	How prompt length and complexity affect the compression effect
	The more the better?
	Can unstructured prompt scenarios be used
	Is parallel corpus needed, and should all content be covered

	Related Work
	Conclusion

