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Abstract

While auxiliary information has become a key001
to enhancing Large Language Models (LLMs),002
relatively little is known about how LLMs003
merge these contexts, specifically contexts gen-004
erated by LLMs and those retrieved from ex-005
ternal sources. To investigate this, we formu-006
late a systematic framework to identify whether007
LLMs’ responses, derived from the integra-008
tion of generated and retrieved contexts, are009
attributed to either generated or retrieved con-010
texts. To easily trace the origin of the response,011
we construct datasets with conflicting contexts,012
i.e., each question is paired with both generated013
and retrieved contexts, yet only one of them014
contains the correct answer. Our experiments015
reveal a significant bias in several LLMs (GPT-016
4/3.5 and Llama2) to favor generated contexts,017
even when they provide incorrect information.018
We further identify two key factors contributing019
to this bias: i) contexts generated by LLMs typ-020
ically show greater similarity to the questions,021
increasing their likelihood of being selected;022
ii) the segmentation process used in retrieved023
contexts disrupts their completeness, thereby024
hindering their full utilization in LLMs. Our025
analysis enhances the understanding of how026
LLMs merge diverse contexts, offering valu-027
able insights for advancing current augmenta-028
tion methods for LLMs1029

1 Introduction030

Recent advancements in augmenting Large Lan-031

guage Models (LLMs) with auxiliary information032

have significantly revolutionized their efficacy in033

knowledge-intensive tasks (Chang et al., 2023;034

Ram et al., 2023). In this evolving field, exist-035

ing works can be broadly categorized into two036

groups based on information sources: generation-037

augmented and retrieval-augmented approaches.038

To effectively harness the internal knowledge of039

LLMs, generation-augmented approaches (Liu040

1Code released at https://anonymous.4open.science/r/7BB7/.
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Figure 1: Blue bars show the success number on the
NQ test set with only retrieved contexts, while orange
bars depict the decline in success for the same questions
when generated contexts are additionally incorporated.

et al., 2022; Sun et al., 2023), e.g., GenRead (Yu 041

et al., 2022), instruct LLMs to initially generate 042

a background context tailored to the given ques- 043

tion, which is then employed as the basis for pro- 044

ducing the final answer. In contrast, retrieval- 045

augmented approaches (Lewis et al., 2020; Ram 046

et al., 2023) adopt an alternative strategy by incor- 047

porating relevant passages from external corpora, 048

e.g., Wikipedia, as context, thereby notably enhanc- 049

ing LLMs’ capability to address challenges like 050

knowledge updates (Jang et al., 2022) and long-tail 051

knowledge (Kandpal et al., 2023). 052

Building on the foundations laid by generation- 053

augmented and retrieval-augmented methods, re- 054

cent hybrid approaches have attempted to integrate 055

them to further improve performance in tasks like 056

Question Answering (QA) (Yu et al., 2022; Mallen 057

et al., 2023). These hybrid approaches face a signif- 058

icant challenge: conflicts between diverse sources 059

can impede the effectiveness of information integra- 060

tion (Zhang et al., 2023). While recent works have 061

investigated conflicts within contexts from a sin- 062

gle source, either only retrieved (Chen et al., 2022) 063

or generated (Xie et al., 2023), it remains unclear 064

how LLMs resolve conflicts between generated and 065

retrieved contexts. This study, therefore, aims to 066

investigate the underlying mechanisms by which 067
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LLMs process the two types of contexts, especially068

when they contain conflicting information.069

Our investigation was driven by a striking ob-070

servation: in certain cases, models relying solely071

on retrieval contexts succeeded, whereas, counter-072

intuitively, hybrid approaches failed, as depicted073

in Figure 1. To uncover the underlying reasons,074

we proposed a systematic framework to dissect the075

process by which LLMs merge generated and re-076

trieved contexts. We curated tailored datasets in077

which each question is accompanied by a pair of078

generated and retrieved contexts. These contexts079

are deliberately designed to be inconsistent, with080

only one containing the correct answer to its corre-081

sponding question. These datasets provide a solid082

foundation for determining whether LLMs utilize083

retrieved or generated context to produce responses084

in QA tasks.085

In this paper, we conducted a series of controlled086

experiments using our uniquely designed datasets087

to empirically study this question, focusing on sev-088

eral state-of-the-art closed (GPT-3.5/4) and open089

(Llama2-7b/13b) LLMs. Surprisingly, our findings090

reveal a pronounced bias in LLMs to favor gener-091

ated contexts, even when the generated contexts092

offer incorrect information while the retrieval con-093

texts hold the correct answers. Furthermore, this094

bias persists regardless of whether the generated095

text was produced internally or by other LLMs096

(§4.2). These findings highlight a critical challenge097

for existing LLMs in effectively merging internal098

parametric knowledge (i.e., generated contexts) and099

external information (i.e., retrieved contexts), un-100

der increasingly common non-tunable settings, e.g.,101

those involving black-box APIs like GPT-4.102

Furthermore, extensive controlled experiments103

are conducted to investigate the underlying causes104

of the bias and provide the following insights:105

(i) confirmation bias (Xie et al., 2023) is not a key106

factor (§5.1): LLMs maintain a significant pref-107

erence for generated contexts when they contain108

information inconsistent with LLMs’ parametric109

knowledge. (ii) text similarity is a significant factor110

(§5.2): compared to retrieved contexts, generated111

contexts typically exhibit a higher degree of similar-112

ity to the questions, even when they contain incor-113

rect information. The samples with a larger similar-114

ity gap between generated and retrieved contexts115

exhibit a more pronounced bias. These findings em-116

phasize the need for caution with LLM-generated117

contexts, to avoid being misled by highly relevant118

but inaccurate information. (iii) semantic complete-119

ness matters (§5.3): LLMs tend to favor contexts 120

with semantic integrity. The segmentation process 121

used in retrieved contexts may disrupt their com- 122

pleteness, thereby hindering their full utilization in 123

LLMs. 124

This work preliminarily explores the growing 125

challenge of LLMs utilizing contexts from diverse 126

sources, especially in light of the increasing preva- 127

lence of LLM-generated content on the internet, 128

which may contain potential misinformation (Pan 129

et al., 2023). Furthermore, our findings offer 130

valuable guidance for enhancing existing retrieval- 131

augmented methods, such as optimizing passage 132

segmentation in retrieval systems. Our main contri- 133

butions can be summarized as: 134

• We uncover a critical bias in existing LLMs, 135

where they heavily rely on generated contexts re- 136

gardless of correctness, indicating an insufficient 137

use of diverse information sources. 138

• To facilitate controlled experiments, we develop 139

a specialized framework for constructing tailored 140

datasets and excluding confounding factors, e.g., 141

input order and context length. 142

• Our extensive analyses have identified two key 143

factors, i.e., text similarity and semantic com- 144

pleteness, in the context utilization of LLMs. 145

Moreover, we reveal that the confirmation bias 146

(Xie et al., 2023) cannot account for the bias in 147

this paper. 148

2 Background & Study Formulation 149

In this section, we briefly review three categories 150

of LLMs augmented with auxiliary information 151

for QA tasks: retrieval-augmented, generation- 152

augmented, and hybrid approaches. Additionally, 153

we introduce the framework of our investigation. 154

2.1 Background 155

Figure 2 presents high-level abstract frameworks 156

for three typical types of QA systems, each cen- 157

tered around an LLM as the reader component, and 158

potentially incorporating additional components 159

like a retriever, generator, or a blend of both, tai- 160

lored to the specific methodology. 161

Retrieval-Augmented Approach. As shown in Fig- 162

ure 2a, for a given question q in a set of questions 163

Q, these approaches (Guu et al., 2020; Lewis et al., 164

2020; Ram et al., 2023; Gao et al., 2023) initially 165

use a retrieval model γ to select the top k rele- 166

vant documents Dγ
k=γk(q,C)={dγ1 , . . . , dγk} from 167

a corpus C={d1, . . . , d|C|}. Then, a reader (often 168
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Figure 2: The frameworks of retrieval-augmented approach, generation-augmented approach, and hybrid approach.
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Figure 3: The task to study LLMs’ merging mechanisms
by tracing the sources of the answers.

LLM) ϕ employs these documents Dγ
k to generate169

an answer aγϕ, expressed as aγϕ = ϕ(q,Dγ
k).170

Generation-Augmented Approach. In contrast, as171

illustrated in Figure 2b, these works (Yu et al.,172

2022; Sun et al., 2023; Liu et al., 2022) involve173

an LLM as a generator ϱ to produce k tailored174

background contexts Dϱ
k=ϱk(q)={dϱ1, . . . , dϱk} for175

a give question q, thereby enhancing the utilization176

of the LLM’s internal knowledge. These LLM-177

generated contexts Dϱ
k form the input for reader ϕ178

to produce the final answer: aϱϕ = ϕ(q,Dϱ
k).179

Hybrid Approach, as depicted in Figure 2c, com-180

bines retrieved and generated contexts to enhance181

performance (Yu et al., 2022; Abdallah and Jatowt,182

2023), as aϕ = ϕ(q,Dγ
k , D

ϱ
k). These hybrid ap-183

proaches face a significant challenge: conflicts be-184

tween diverse sources can impede the effectiveness185

of information integration (Zhang et al., 2023).186

Knowledge Conflicts within Contexts. These stud-187

ies mainly focus on conflicts within a single type188

of input contexts, either only retrieved (Chen et al.,189

2022) or generated (Xie et al., 2023), leaving un-190

derexplored how LLMs resolve conflicts between191

diverse contexts. A systematic review of related192

works is provided in Appendix A.1.193

2.2 Answer Tracing Task194

Departing from previous research, our study in-195

vestigates the mechanisms by which LLMs merge196

contexts from diverse sources in hybrid approaches.197

As illustrated in Figure 3, we design a task to as-198

certain whether an answer aϕ originates from gen- 199

erated contexts Dϱ
k or retrieved contexts Dγ

k . For 200

a more controlled and simpler analysis, we limit 201

the context to a single instance from each source, 202

i.e., k=1 and aϕ=ϕ(q, dγ1 , d
ϱ
1). Then, by compar- 203

ing the answer aϕ with the answers derived from 204

the retrieved context aγϕ and the generated context 205

aϱϕ, we can determine its source, thereby analyzing 206

the merging mechanism of LLMs. 207

We specifically focus on non-tunable, i.e. zero- 208

shot setting, LLMs acting as the reader and gener- 209

ator, reflecting prevalent real-world use cases like 210

ChatGPT. This direction is motivated by the high 211

cost and limited accessibility of fine-tuning, which 212

makes the direct use of non-tunable LLMs popular. 213

Additionally, given the extensive use of LLMs, any 214

bias or issue in their merging mechanisms could 215

lead to serious consequences. 216

3 Experimental Setup 217

To facilitate our investigation into how LLMs 218

merge generated and retrieved contexts, this sec- 219

tion elaborates on the construction of our context- 220

conflicting datasets and the evaluation metric. 221

3.1 Context-Conflicting Datasets 222

As depicted in Figure 4, in our dataset Dcc, each 223

sample x is a quintet (q, dγ1 , d
ϱ
1, a

γ
ϕ, a

ϱ
ϕ), where dγ1 224

is the context returned by retriever γ for question 225

q, dϱ1 represents the context generated by LLM ϱ, 226

aγϕ and aϱϕ are the candidate answers provided by 227

the reader ϕ, each based solely on the respective 228

contexts dγ1 and dϱ1. To guarantee that our dataset 229

is suitable for controlled experiments aimed at in- 230

vestigating the merging mechanisms of LLMs, it 231

should adhere to specific criteria: 232

• Traceability: aγϕ and aϱϕ should be supported by 233

their corresponding contexts, dγ1 and dϱ1. 234

• Exclusivity: Only one of the contexts, dγ1 or dϱ1, 235

3
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Figure 4: The framework of constructing context-conflicting datasets .

provides the correct answer, i.e., either aγϕ or aϱϕ236

matches the gold answer of question q.237

Such constraints establish a solid basis to identify238

which context, generated or retrieved, is selected239

by LLMs to produce answers in hybrid approaches.240

We utilize the dev and test sets of two open-241

domain QA benchmark datasets with golden an-242

swers, i.e., NaturalQuestions (NQ) (Kwiatkowski243

et al., 2019) and TriviaQA (TQA) (Joshi et al.,244

2017), to assemble our experimental datasets. The245

overall pipeline for dataset construction is depicted246

in Figure 4, with detailed steps outlined as follows:247

Context Preparation. Figure 4 Step 1 illustrates248

the process of preparing contexts for each question.249

For retrieved contexts, it is obtained from the top-1250

ranked passage from Wikipedia using Contriever251

(Izacard et al., 2021), a powerful off-the-shelf re-252

trieval model that is extensively employed in var-253

ious retrieval-augmented generation systems (Shi254

et al., 2023; Ram et al., 2023).255

For generated context, we follow the GenRead256

(Yu et al., 2022), instructing the generator, e.g.,257

LLM like GPT-4, to generate a background docu-258

ment based on the question. All LLMs in this pa-259

per, unless otherwise noted, have a temperature set-260

ting of zero to ensure result reproducibility. How-261

ever, this method often yields contexts much longer262

(>250 words) than the retrieved contexts (typically263

truncated to ∼100 words (Karpukhin et al., 2020;264

Izacard et al., 2021)). The discrepancy in length265

could potentially affect the merging mechanisms266

of LLMs (Xie et al., 2023). To exclude this dis-267

turbance, we regulate the length of the generated268

context by incorporating length constraint in the269

prompt, resulting in an average length discrepancy270

below 3%. All subsequent experiments, unless oth-271

erwise specified, employ this method to eliminate272

the impact of length variations. More details can273

be found in Appendix A.2.274

Sample Filtering for Traceability. With each ques- 275

tion paired with a single context (either generated 276

or retrieved) established in the initial stage, the 277

reader generates the corresponding candidate an- 278

swer, as shown in Step 2 of Figure 4. To unravel the 279

mechanisms of LLMs in context merging, it is es- 280

sential to ensure the traceability, i.e., the output an- 281

swer is derived from the input context, rather than 282

the intrinsic parametric knowledge of the LLMs. 283

To achieve this, we only keep samples in which 284

both the generated and retrieved contexts exactly 285

include their respective generated answers, exem- 286

plified by aγϕ∈d
γ
1 , where ∈ denotes dγ1 contains the 287

substring aγϕ. This practice is grounded in the find- 288

ings of (Chen et al., 2022; Xie et al., 2023), which 289

demonstrate that in the presence of external con- 290

text, LLMs tend to rely on external context rather 291

than their intrinsic parametric knowledge. 292

Building Context-Conflicting Dataset. Having ob- 293

tained answers for each type of context, we are 294

now positioned to construct our context-conflicting 295

(CC) datasets, as depicted in Step 3 of Figure 4. 296

Initially, We employ the exact match metric (Yu 297

et al., 2022) to evaluate the correctness of candi- 298

date answers derived from contexts, considering an 299

answer correct if its normalized form matches any 300

of the golden answers. Subsequently, the context- 301

conflicting datasets are composed of samples for 302

which only one of the two types of contexts, either 303

generated or retrieved, yields the correct answer, 304

thereby ensuring the exclusivity. Notably, each 305

dataset comprises two distinct subsets: AIG, con- 306

sisting of samples with correct answers only in the 307

generated context; and AIR comprising samples 308

with correct answers only in the retrieved context. 309

3.2 Statistics of Datasets 310

For each reader-generator pair, we respectively con- 311

struct context-conflicting datasets from test and dev 312
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Generator
&Reader

NQ (12367) TQA (20150)

NQ-AIG NQ-AIR TQA-AIG TQA-AIR

GPT-4 1120 763 1712 681
GPT-3.5 1337 857 2389 1042
Llama2-13b 1441 1336 2982 2091
Llama2-7b 1423 1381 3064 2604

Avg. Prop. 10.8% 8.8% 12.6% 8.0%

Table 1: Dataset statistics across LLMs, “Avg. Prop.”
shows average proportions of subsets to original
datasets.

sets of NQ and TQA: NQ-CC (NQ-AIG + NQ-313

AIR) and TQA-CC (TQA-AIG + TQA-AIR).314

We initially adopt a typical and simple setting315

in which a singular LLM serves as both the gen-316

erator and reader. Table 1 provides statistics for317

the constructed subsets corresponding to various318

LLMs, including GPT-4 (gpt-4-0613), GPT-3.5319

(gpt-3.5-turbo-0613), Llama2-7b/13b (Llama-2-320

7b/13b-chat (Touvron et al., 2023)). The statistics321

show that the context-conflicting subsets form a322

substantial part of the datasets, underscoring the323

need to investigate how LLMs integrate these dis-324

tinct contexts. Notably, GPT-4 has fewer con-325

flicting instances than other LLMs, because of its326

higher efficacy in answering questions using either327

solely retrieved or generated contexts.328

Section 4.2 also explores a more complex sce-329

nario in which the generator and reader are distinct330

LLMs and show the statistics in Appendix A.3.331

3.3 Evaluation Metric332

Besides datasets, we also develop metrics to study333

how LLMs merge generated and retrieved contexts334

in hybrid approaches. Specifically, the selection of335

LLMs towards either generated or retrieved context336

can be measured by the proportion of answers that337

exactly match the answer produced solely by the338

corresponding context, denoted as339

ρgen=avg(em(aϕ, a
ϱ
ϕ)), ρret = avg(em(aϕ, a

γ
ϕ))340

where em(a, b) returns 1 if a exactly match b, and341

0 otherwise. The proportion of instances where342

aϕ does not match either aϱϕ or aγϕ is negligible to343

the conclusion in this work, as demonstrated in344

Table 14. To facilitate a simple and efficient experi-345

ment, we define a synthesized metric as follows:346

DiffGR =
ρgen − ρret

ρgen + ρret
(1)347

The metric DiffGR, ranging from [−1, 1], quanti-348

fies the extent of LLMs’ tendency to rely on gener-349

ated contexts over retrieved contexts. Using AIR as350

an example, where all correct answers come from351

retrieved contexts, an ideal DiffGR value should352

Generator
&Reader

NQ-CC TQA-CC

NQ-AIG NQ-AIR TQA-AIG TQA-AIR

GPT-4 91.34 17.69 94.57 19.09
GPT-3.5 91.85 14.94 94.14 18.52
Llama2-13b 90.22 18.64 92.12 20.28
Llama2-7b 70.77 21.51 81.17 22.16

Table 2: The Exact Match (EM) scores (%) of hybrid ap-
proaches on corresponding context-conflicting datasets.

be −1, i.e., LLMs should always rely on generated 353

contexts. 354

4 How LLMs Merge Contexts? 355

This section conducts experiments on the devel- 356

oped datasets to investigate the merging mechanism 357

of the LLMs in hybrid approaches in two settings. 358

We first consider a typical setting where the gen- 359

erator and reader share a single LLM, to explore 360

how LLMs merge retrieved and self-generated con- 361

texts (§4.1). Then, we extend our experiments to 362

more flexible combinations of generator and reader 363

(§4.2) to investigate their effects. 364

4.1 LLMs Prefer Self-Generated Contexts 365

Our preliminary experiments, in which a single 366

LLM serves both as generator and reader, are de- 367

signed to explore how LLMs integrate information 368

from retrieved and self-generated contexts. The 369

LLMs under evaluation are tasked with answering 370

questions using both types of contexts on their cor- 371

responding context-conflicting subsets. In all exper- 372

iments, we employ a randomized input sequence of 373

contexts to mitigate the influence of order, which 374

is further discussed in Appendix A.4. 375

We begin our analysis by examining LLMs’ QA 376

performance on context-conflicting datasets to re- 377

veal how well can LLMs utilize both types of con- 378

texts. Table 2 presents the Exact Match scores (Yu 379

et al., 2022) across various LLMs. Surprisingly, 380

LLMs demonstrate significantly low performance 381

(≤ 22.16%) on AIR subsets, despite the fact that 382

the retrieved context alone consistently yields the 383

correct answer on these subsets. In contrast, LLMs 384

exhibit strong performance on AIG subsets (most 385

near 90%). Overall, all LLMs exhibit a significant 386

performance gap between AIR and AIG datasets, 387

with a pronounced decline in performance when 388

the correct answers come from retrieved contexts. 389

To further reveal LLMs’ behavior underlying the 390

QA performance, we trace the source contexts of 391

LLMs’ answers using the proposed DiffGR met- 392

ric. An ideal LLM should always rely on retrieved 393

contexts on AIR subsets (DiffGR = −1), and al- 394
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Figure 5: The DiffGR of LLMs on their corresponding
context-conflicting datasets.
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Figure 6: DiffGR with different (reader, generator) pairs
on their corresponding NQ-AIR datasets.

ways rely on generated contexts on AIG subsets395

(DiffGR = 1). Contrary to expectations, Figure396

5 illustrates that LLMs fail to identify the correct397

information and consistently tend to rely on gener-398

ated contexts on both AIG and AIR subsets. This399

result indicates a pronounced bias in LLMs to fa-400

vor generated contexts, even when they provide401

incorrect information. This bias leads to the insuf-402

ficient utilization of retrieved contexts mentioned403

above and highlights a critical challenge for ex-404

isting LLMs in effectively merging generated and405

retrieved contexts. As the bias on AIR subsets has406

a more direct impact on the performance, the fol-407

lowing experiments and analysis will focus on the408

biases on these subsets to conserve space. Results409

on the AIG subsets can be found in Appendix A.5.410

4.2 LLMs Broadly Prefer Generated Contexts411

The above experiments reveal the bias in LLMs to412

favor the self-generated context. Consequently, an413

intriguing question emerges: Do they also exhibit414

a similar bias towards contexts generated by other415

LLMs? To investigate this question, this section416

extends the experiments to more flexible combi-417

nations of generators and readers. This setting is418

also of practical significance, as recent works have419

explored the decoupling of generators and readers420

to achieve modularization of knowledge (Luo et al., 421

2023; Feng et al., 2023). 422

We construct context-conflicting datasets for 423

each (generator, reader) pair respectively, as de- 424

tailed in Appendix A.3. Based on these datasets, 425

we then compute DiffGR metric to examine bi- 426

ases across various (generator, reader) pairs, as 427

shown in Figure 6, and observe two notable in- 428

sights: (i) LLMs also biased towards contexts 429

generated by other LLMs. This suggests that 430

such bias in LLMs is widespread and not limited 431

to self-generated contexts. (ii) LLMs usually ex- 432

hibit a stronger bias to contexts generated by 433

themselves. The sole exception is Llama2-7b, 434

which shows the strongest bias when paired with 435

Llama2-13b as its generator. This phenomenon 436

likely results from their highly similar model struc- 437

tures and training processes (Touvron et al., 2023). 438

5 Why LLMs Prefer Generated Contexts 439

In this section, we investigate why LLMs prefer 440

generated contexts rather than retrieved contexts, 441

from several perspectives: confirmation bias in 442

§5.1, context similarity to the question in §5.2, and 443

context completeness in §5.3. 444

5.1 Effect of Confirmation Bias 445

Recently, Xie et al. (2023) identified a confirmation 446

bias in LLMs, wherein they exhibit a preference 447

for contexts consistent with their parametric knowl- 448

edge (also known as parametric memory) when 449

faced with two conflicting generated contexts. In 450

our experiments discussed in Section 4.1, which 451

involve a single LLM serving both as reader and 452

generator, it is natural to assume that the generated 453

contexts align with the LLM’s parametric knowl- 454

edge. This assumption leads to a key question: 455

Does the confirmation bias lead to the observed 456

preference for generated contexts in this work? 457

To investigate the effect of confirmation bias, 458

we designed controlled experiments that disrupt 459

the consistency between generated contexts and 460

LLMs’ parametric knowledge. Overall, we en- 461

force LLMs to make up a counter-memory context 462

dϱ
′

1 , which supports a same-type yet different an- 463

swer compared to the original generated context. 464

Then, we replace the generated context dϱ1 with 465

the counter-memory context dϱ
′

1 and recalculate 466

DiffGR to assess shifts in preference after exclud- 467

ing confirmation bias, as detailed in Appendix A.6. 468

Table 3 reveals that LLMs maintain a significant 469
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Context pair
NQ-AIR TQA-AIR

GPT-3.5 Llama2-13b GPT-3.5 Llama2-13b

Gen vs. Ret 0.7561 0.6747 0.7058 0.6575
Ctr vs. Ret 0.7342 0.6468 0.8010 0.6596

Table 3: DiffGR of different input context pairs. “Gen”,
“Ret” and “Ctr” respectively represent generated con-
texts, retrieved contexts, and counter-memory contexts.

bias to generated contexts when they are inconsis-470

tent with LLMs’ parametric knowledge, indicating471

that confirmation bias does not play a major role in472

the observed bias. This finding does not negate the473

presence of confirmation bias, since other factors474

distinguishing generated from retrieved contexts475

might exert a more significant influence, potentially476

overshadowing the effects of confirmation bias.477

Notably, GPT-3.5 even shows a stronger bias478

towards counter-memory contexts on TQA-AIR,479

a phenomenon also observed in (Xie et al., 2023).480

This is likely attributed to the higher similarity of481

counter-memory contexts generated by GPT-3.5,482

on both our dataset and the ConflictQA datasets of483

Xie et al. (2023), as discussed in Appendix A.6.2.484

5.2 Effect of Text Similarity485

The text similarity between a context and a ques-486

tion can reflect the degree of their relevance. To487

investigate the potential effect of the similarity, we488

employ Jaccard similarity and BERTScore (Zhang489

et al., 2020) to analyze the contexts on the con-490

structed context-conflicting datasets with the reader491

and generator sharing a single LLM. Figure 7492

shows that generated contexts exhibit a signifi-493

cantly higher similarity to the question on AIR494

subsets, despite the fact that generated contexts495

are incorrect on these subsets. This similarity dis-496

crepancy between generated and retrieved contexts497

persists whether assessed by term-based overlap498

(average 0.37 vs. 0.18 on TQA-AIR) or semantic499

similarity (0.90 vs. 0.86).500

To further clarify the influence of the observed
similarity discrepancies, we rank the samples ac-
cording to the similarity gap ∆sim between gen-
erated and retrieved contexts. Then, we divide the
dataset into n (n = 5 here2) slices with an equal
number of samples.

∆sim =
sim(q, dϱ)− sim(q, dγ)

sim(q, dϱ) + sim(q, dγ)

Here, sim(q, dϱ) is the similarity between gener-501

ated context and question, and sim(q, dγ) is for502

retrieved context. Figure 8 illustrates the relation-503

2Similar results and observations are found with other n.
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Figure 7: Context-question similarity distribution of
generated and retrieved contexts on the union of AIR
subsets for different LLMs. Distribution on AIG subsets
is presented in Appendix A.7, with similar results.
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Figure 8: The DiffGR in slices with different average
∆sim. Results for other LLMs are in Appendix A.7.

ship between the average ∆sim within each slice 504

and the corresponding DiffGR. From the results, 505

we observe a general trend that LLMs exhibit an 506

increased bias to generated contexts on slices 507

with a larger average similarity gap, which indi- 508

cates that text similarity is a significant factor in the 509

preference for generated contexts. These findings 510

suggest that generated contexts should be applied 511

with greater caution to mitigate the influence of 512

highly relevant but misleading information. 513

To facilitate understanding why the similarity 514

affects LLMs’ preference, we include some exam- 515

ples in Appendix A.7.4. From these cases, we 516

observe that contexts with higher similarity often 517

support candidate answers more straightforwardly, 518

for instance, by mirroring the phrasing used in the 519

questions. Conversely, the contexts with low simi- 520

larity introduce more challenges, often necessitat- 521

ing an understanding of synonyms and even some 522

inferences. 523
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Context Length
Completeness Similarity

Semantic Sentence Jaccard BERTScore

Retrieved 107.4 ✘ ✘ 0.114 0.801

Nature 109.7 ✔ ✔ 0.202 0.879
Trunc. 107.4 ✘ ✘ 0.196 0.877
S-Trunc. 105.9 ✘ ✔ 0.193 0.876

Table 4: Average length and similarity of contexts with
different completeness (details in Appendix A.2.2).

Context Pair
NQ-AIR TQA-AIR

GPT-3.5 Llama2-13b GPT-3.5 Llama2-13b

Nature vs. Ret 0.6562 0.5987 0.6101 0.5799
Trunc. vs. Ret 0.2536 0.0958 0.3581 0.2042

S-Trunc. vs. Ret 0.2394 0.1071 0.3302 0.1958

Table 5: DiffGR with different completeness in gener-
ated context. “Nature”, “Trunc.” and “S-Trunc.” rep-
resent three types of generated contexts with different
completeness. “Ret” means retrieved contexts.

5.3 Effect of Context Completeness524

In all the above experiments, there is a key differ-525

ence between generated and retrieved contexts that526

may affect the context preference: semantic and527

sentence completeness. Concretely, current re-528

trieval systems typically employ fixed-length trun-529

cation to divide a complete article into multiple530

passages, which serve as the fundamental units531

for retrieval tasks (Karpukhin et al., 2020; Wang532

et al., 2019; Zhu et al., 2021). This truncation of-533

ten results in retrieved contexts with incomplete534

semantic meaning, as well as sentences that are cut535

off at beginnings or endings. In contrast, generated536

contexts in the above experiments are naturally pro-537

duced by LLMs (Nature), resulting in enhanced538

semantic and sentence completeness.539

To investigate the potential effects of complete-540

ness on the observed bias, we conduct controlled541

experiments that vary the semantic and sentence542

completeness of generated contexts3using the fol-543

lowing methods: (a) Truncation (Trunc.) elim-544

inates the length constraints from the generation545

prompt of Section 3, allowing LLMs to generate ex-546

tended contexts. These generated contexts are then547

truncated to match the length of retrieved contexts,548

thereby simulating both semantic and sentence in-549

completeness of retrieved contexts. (b) Sentence550

Truncation (S-Trunc.): Based on the method (a),551

we truncate generated contexts only at the end of552

a sentence to preserve the sentence completeness,553

while simulating the semantic incompleteness.554

Table 4 demonstrates that three types of gen-555

3We also attempted to control the completeness of retrieved
contexts, but it was challenging to isolate it from confounding
factors like length. This aspect is left for future work.

erated contexts have similar average lengths and 556

similarities. This suggests that the influences of 557

similarity and length are mitigated, thereby high- 558

lighting the principal disparities in semantic con- 559

tent and sentence completeness. 560

We evaluate LLMs’ preference between gen- 561

erated versus retrieval context, varying the com- 562

pleteness of generated context, following the same 563

pipeline in Section 4.1. Table 5 presents the 564

DiffGR with different semantic and sentence com- 565

pleteness in generated contexts. A comparison be- 566

tween “Trunc.” and “S-Trunc.” reveals that sen- 567

tence completeness does not significantly affect 568

LLMs’ preference for generated contexts. In con- 569

trast, comparing “Nature” and “S-Trunc.”, we find 570

a significant increase in bias towards generated 571

contexts, when they are semantically more com- 572

plete. These findings indicate that LLMs tend 573

to favor contexts with enhanced semantic com- 574

pleteness, underscoring the necessity to investigate 575

improved passage segmentation methods that main- 576

tain semantic completeness for current retrieval- 577

augmented LMs. 578

6 Conclusion and Future work 579

In this study, we propose a framework to investi- 580

gate the underlying mechanisms by which LLMs 581

merge retrieved and generated contexts. Our re- 582

sults reveal a pronounced bias towards generated 583

contexts in several LLMs (GPT 3.5/4 and Llama2- 584

7b/13b). We further identify two key factors that 585

may contribute to this bias: higher similarity be- 586

tween generated contexts and questions, and the 587

semantic incompleteness of retrieved contexts. 588

Our insights highlight the critical need for ad- 589

vanced integration methods that can validate and 590

leverage information from both sources, moving be- 591

yond the current overreliance on generated contexts. 592

Additionally, we find that LLMs display significant 593

sensitivity to the semantic completeness of input 594

contexts. This sensitivity necessitates improved 595

passage segmentation strategies in current retrieval- 596

augmented systems, thereby ensuring the preser- 597

vation of intended meaning and the maximization 598

of utility. Finally, addressing the challenges posed 599

by highly relevant yet incorrect information gen- 600

erated by LLMs is an important direction for fu- 601

ture research. It is crucial to develop methods for 602

detecting and discounting misleading information 603

produced by LLMs, especially as the volume of 604

such content continues to escalate. 605
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Limitation606

Our work has the following limitations:607

• This study is confined to open-domain question608

answering, a representative knowledge-intensive609

task. The behavior of LLMs across a broader610

spectrum of natural language processing tasks611

remains to be further explored.612

• This work does not propose specific solutions613

to effectively mitigate the observed bias, as we614

focus on revealing the phenomena and analyzing615

the causes.616

• To create a controlled environment conducive617

to analysis, we utilize a single instance for each618

context type. LLMs face increasingly intricate619

conflict scenarios when handling multiple con-620

texts from each type. These conflicts emerge not621

only between retrieved and internally generated622

contexts but also among the various contexts623

originating from the same source (Chen et al.,624

2022; Xie et al., 2023).625

Ethics Statement626

Data All data used in this study are publicly avail-627

able and do not pose any privacy concerns.628

AI Writing Assistance In our study, we only em-629

ployed ChatGPT to polish our textual expressions630

rather than to generate new ideas or suggestions.631
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A Appendix883

A.1 Related work884

A.1.1 Generation-Augmented Approaches885

Generation-augmented approaches prompt LLMs886

to generate intermediate contexts for the final re-887

sponse, thereby leveraging their extensive para-888

metric knowledge acquired during the pre-training889

phase on vast text corpora (Roberts et al., 2020;890

Petroni et al., 2019). Recent studies have demon-891

strated the effectiveness of these methods across892

a range of tasks. Liu et al. (2022) represents an893

early exploration into augmenting LLMs in com-894

monsense reasoning tasks using knowledge gener-895

ated by LLMs themselves. Sun et al. (2023); Yu896

et al. (2022) employ LLMs to produce background897

documents (or recitations) and subsequently use898

these documents to enhance LLM performance899

in knowledge-intensive tasks. Another line of re-900

search, known as the chain-of-thought (Wei et al.,901

2022; Kojima et al., 2022), prompts LLMs to902

generate intermediate reasoning steps to enhance903

LLMs’ reasoning abilities. Despite the effective-904

ness of these methods, the LLM-generated knowl-905

edge may contain hallucinations (Chen et al., 2023;906

Ji et al., 2023) due to LLMs’ outdated memory907

(De Cao et al., 2021) and limited memory for long-908

tail knowledge (Kandpal et al., 2023). The LLM-909

generated inaccuracy information could potentially910

mislead current retrieval model (Dai et al., 2023)911

and open-domain question answering systems (Pan912

et al., 2023).913

A.1.2 Retrieval-Augmented Approaches914

The retrieval-augmented approaches (Guu et al.,915

2020; Lewis et al., 2020; Ram et al., 2023; Gao916

et al., 2023) enhance LLMs by incorporating rel-917

evant documents from the external corpus. These918

approaches represent a promising direction for ad-919

dressing the knowledge limitations of LLMs, such920

as the need for knowledge updating (Jang et al.,921

2022) and long-tail knowledge (Kandpal et al.,922

2023). Early retrieval-augmented methods (Guu923

et al., 2020; Lewis et al., 2020; Izacard et al.,924

2022) focused on the joint training of LLMs and925

retrieval modules to improve their cooperation.926

With the evolution of general-purpose LLMs, re-927

cent studies (Ram et al., 2023; Shi et al., 2023)928

investigate the strategy of appending relevant docu-929

ments directly to the input while keeping the LLMs930

frozen. Despite the effectiveness of these meth-931

ods, the retrieval-augmented approaches still face932

challenges due to irrelevant retrieval results and 933

incomplete knowledge coverage (Yu et al., 2023; 934

Mallen et al., 2023). These noisy retrieval results 935

can misguide the outcomes of LLMs (Mallen et al., 936

2023; Yoran et al., 2023; Ren et al., 2023). 937

A.1.3 Hybrid Approaches and Knowledge 938

Conflicts 939

Recent works investigate merging retrieved and 940

generated contexts to leverage both parametric 941

knowledge and external knowledge (Abdallah and 942

Jatowt, 2023; Yu et al., 2022). These combina- 943

tion methods have shown improved performance 944

over those relying solely on a single information 945

source in a fully-supervised setting. Furthermore, 946

(Zhang et al., 2023) proposes an improved method 947

to effectively leverage the two sources of informa- 948

tion, especially when conflicts arise. While these 949

works have focused on improving the efficacy of 950

hybrid approaches, the underlying mechanisms by 951

which LLMs process conflicting information from 952

different types of contexts remain underexplored. 953

Current research on knowledge conflicts in 954

LLMs primarily focuses on two aspects: con- 955

flicts between input contexts and LLMs’ paramet- 956

ric memory, and conflicts among the input con- 957

texts themselves. Regarding the former, Xie et al. 958

(2023); Chen et al. (2022) find that LLMs are 959

highly receptive to the input contexts rather than 960

their internal memory. Concerning conflicts within 961

multiple input contexts, Chen et al. (2022) demon- 962

strates that LLMs tend to rely on a few most rel- 963

evant retrieved contexts. Additionally, Xie et al. 964

(2023) reveals a confirmation bias, i.e., LLMs 965

demonstrate a tendency to favor contexts that align 966

with their parametric knowledge when confronted 967

with both supporting and opposing contexts. How- 968

ever, these studies are limited to analyzing context 969

conflicts within a single type of input context. Our 970

work complements these studies by considering 971

conflicts between generated and retrieved contexts 972

and reveals several key factors, such as semantic 973

completeness and text similarity. 974

A.2 Length Control for Generated Contexts 975

A.2.1 Length Distribution across LLMs 976

In our proposed framework, we regulate the length 977

of generated contexts by incorporating length con- 978

straints in the prompt: 979
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Dataset Retrieved
Generated

GPT 4 GPT 3.5 Llama2-13b Llama2-7b

NQ 107.3 108.0 106.0 110.1 104.0
TQA 106.3 107.2 104.9 105.5 102.6

Table 6: Average lengths of the generated and retrieved
contexts. Length is measured in the number of words
after punctuation removal.

Context Completeness NQ-AIR TQA-AIR

Sentence Semantic Length Jaccard Length Jaccard

GPT-3.5 Nature ✔ ✔ 106.0 0.187 105.0 0.398
S-Trunc ✔ ✗ 104.9 0.184 106.3 0.397
Trunc ✗ ✔ 107.4 0.187 103.6 0.397

Llama2-13b Nature ✔ ✔ 109.7 0.202 105.5 0.313
S-Trunc ✔ ✗ 105.9 0.193 104.8 0.293
Trunc ✗ ✔ 107.4 0.196 106.3 0.295

Table 7: Average length and similarity of generated
context with different control methods. Three types
of methods create contexts with comparable average
length and similarity. The core difference lies in the
completeness.

Generate a background context from Wikipedia
to answer the given question {#question} Keep
the length of the document around n words

980

981

We observed that GPT 4 effectively controls the982

output length, whereas other models struggle with983

this aspect. To address this issue in the latter, we984

employ multiple values of n and select the one that985

best matches the retrieved context.986

As a result, Figure 9 shows the length distribu-987

tion of retrieved contexts and contexts generated by988

various LLMs. The length distribution of retrieved989

contexts is more concentrated as they consist of text990

limited to precisely 100 words, along with their ti-991

tles (Karpukhin et al., 2020). The variation in the992

length of different retrieved contexts is solely due993

to the differences in title lengths.994

A.2.2 Length Distribution with Different995

Control Methods996

In Section 5.3, we employ three methods, “Nature”,997

“Trunc.” and “S-Trunc.”, to vary the completeness998

of generated contexts, while controlling the length999

at the same time. Figure 10 illustrates the length1000

distribution for generated contexts corresponding1001

to these methods. From the results, we can observe1002

that the contexts generated by original GenRead1003

(Yu et al., 2022) are significantly longer compared1004

to the retrieved contexts.1005

Table 7 illustrates the average similarity and1006

completeness of three types of generated contexts.1007

“Nature”, “Trunc.” and “S-Trunc.” result in con-1008

texts with similar average length and similarity,1009

with preliminary differences in completeness.1010

A.3 Dataset Size 1011

Table 8 presents the data size of context-conflicting 1012

datasets corresponding to various generator-reader 1013

pairs. The statistics indicate that conflicting data 1014

comprise a substantial proportion across all combi- 1015

nations of generators and readers. 1016

A.4 Effect of Context Order 1017

In the above experiments, retrieved and generated 1018

contexts are presented in random order. Previous 1019

studies (Xie et al., 2023; Liu et al., 2023; Lu et al., 1020

2022) have found that the model may be sensitive 1021

to the order of the input contexts. In their exper- 1022

iments, the input context was either all retrieved 1023

(Liu et al., 2023) or all generated (Xie et al., 2023). 1024

We conducted experiments to investigate whether 1025

the context order impacts the preference for the 1026

generated context. The generated and retrieved 1027

contexts are concatenated with three different or- 1028

ders: generated-first, retrieved-first, and random. 1029

To control the cost of API, this section conducts ex- 1030

periments on the context-conflicting datasets from 1031

only the test sets of NQ and TQA. We compute the 1032

DiffGR with different context orders respectively. 1033

As shown in Table 9, across all context orders, 1034

LLMs consistently show a strong tendency to favor 1035

generated contexts. When the retrieved context 1036

is positioned first, there is a slight reduction in 1037

DiffGR. This reduction may result from the LLMs’ 1038

preference for generated contexts being partially 1039

offset by their bias towards the top context (Liu 1040

et al., 2023; Xie et al., 2023). 1041

A.5 More Results on AIG Datasets 1042

Figure 11 shows the DiffGR with different (reader, 1043

generator) pairs on their corresponding NQ-AIG 1044

datasets. It can be observed that LLMs show 1045

a strong tendency to rely on generated contexts 1046

across various (reader, generator) pairs. 1047

A.6 More Details about Confirmation Bias 1048

A.6.1 Experiment Setting 1049

We construct counter-memory contexts for each 1050

instance on the original AIR context-conflicting 1051

subsets, as outlined below: 1052

Counter-Memory Answers Preparation. For 1053

each question on the AIR subsets, we substitute the 1054

original memory answer (e.g., “Canada”) with a 1055

same-type yet distinct entity (e.g., “United States”), 1056

which serves as the counter-memory answer. Con- 1057

cretely, we employ ChatGPT to associate a differ- 1058
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ent entity of the same type. It is noteworthy that the1059

prompt does not incorporate the question, ensuring1060

that the LLM’s counter-memory answer is merely a1061

categorical equivalent rather than a memory related1062

to the question.1063

Give you a reference word, transform it into an
analogous word.
Reference: Missouri River
Analogous Word: Mississippi River
Reference: {memory answer}
Analogous Word:

1064

Furthermore, to facilitate the calculation of 1065

DiffGR, we only retain those samples where the 1066

counter-memory answer also diverges from aγϕ, the 1067

answer provided by the retrieved context. Formally, 1068

the counter-memory answer satisfies aϱ
′

ϕ ̸= aϱϕ and 1069

aϱ
′

ϕ ̸= aγϕ. 1070

Counter-Memory Contexts Generation. We en- 1071

force LLMs to generate a counter-memory context 1072

that supports the counter-memory answer. This ap- 1073

proach is inspired by the success of using LLMs to 1074

generate misinformation (Pan et al., 2023). 1075
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Reader Generator NQ (3610) TQA (11313)

NQ-AIG NQ-AIR TQA-AIG TQA-AIR

GPT 4 GPT 4 1120 763 1712 681
GPT 4 GPT 3.5 1017 922 - -
GPT 4 Llama2-13b 730 1461 - -
GPT 4 Llama2-7b 600 1627 - -
GPT 3.5 GPT 4 1514 769 2701 794
GPT 3.5 GPT 3.5 1337 857 2389 1042
GPT 3.5 Llama2-13b 875 1318 1781 2119
GPT 3.5 Llama2-7b 701 1502 1471 2641
Llama2-13b GPT 4 2501 767 4769 741
Llama2-13b GPT 3.5 2211 899 4210 1038
Llama2-13b Llama2-13b 1441 1336 2982 2091
Llama2-13b Llama2-7b 1221 1583 2567 2773
Llama2-7b GPT 4 2699 668 5370 830
Llama2-7b GPT 3.5 2435 785 4813 1120
Llama2-7b Llama2-13b 1569 1220 3526 2051
Llama2-7b Llama2-7b 1423 1381 3064 2604

Table 8: The data quantities of the constructed subsets for different (Generator, Reader) pairs. NQ and TQA refer to
the original datasets (dev+test).

Order NQ-AIR TQA-AIR

generated-first 0.699 0.682
retrieved-first 0.665 0.556
random 0.691 0.586

Table 9: DiffGR with different context order on NQ-
AIR and TQA-AIR datasets. GPT-3.5 serves as the
generator and reader.

Generate a background document in support
of the given opinion to the question. Keep the
length of the document around n words. Ques-
tion: {question} Opinion: {counter memory
answer} Document:

1076

Following Section 3, the prompt also incorpo-1077

rates a length constraint to mitigate the influence1078

of length, as evidenced by the length statistics pre-1079

sented in Table 10.1080

Answer Consistency Checking. To verify that
the counter-memory context actually supports the
counter-memory answer, we retain only those in-
stances where the predicted answer, derived exclu-
sively from the counter-memory context, exactly
matches the counter-memory answer:

aϱ
′

ϕ = ϕ(q, dϱ
′

1 )

Following the above procedures, we obtain sub-1081

sets from original AIR datasets, with each instance1082

encompassing a question q, a generated context1083

dϱ1, a retrieved context dγ1 , a counter-memory con-1084

text dϱ
′

1 and the associated answers for these con-1085

texts. Table 11 shows the size of developed context-1086

conflicting subsets with counter-memory contexts.1087

Context NQ-AIR TQA-AIR ConflictQA(PopQA)

Length Jaccard Length Jaccard Length Jaccard

Retrieved 107.5 0.111 106.3 0.184 - -

GPT-3.5 Gen 105.9 0.194 104.9 0.385 62.14 0.169
Ctr 105.7 0.251 103.8 0.499 100.4 0.236

Llama2-13b Gen 107.4 0.197 104.3 0.319 - -
Ctr 106.7 0.165 103.5 0.310 - -

Table 10: Average length and Jaccard similarity of dif-
ferent contexts. Gen, Ret, and Ctr respectively repre-
sent generated contexts, retrieved contexts, and counter-
memory contexts. “-” means the context is not included
in this dataset. Detailed discussion about Jaccard simi-
larity is shown in Section 5.2.

Reader & Generator NQ-AIR TQA-AIR

GPT-3.5 504 596
Llama2-13b 883 1376

Table 11: The size of context-conflicting subsets with
counter-memory contexts.

A.6.2 Discussion 1088

In Table 3, we observe a phenomenon: GPT-3.5 1089

exhibits a stronger bias towards counter-memory 1090

contexts compared to the original generated con- 1091

texts, which does not exist in Llama2-13b. This 1092

phenomenon is also observed in Xie et al. (2023) 1093

(Table 5 in their work). Upon further investigation, 1094

we discover that this may be due to the relatively 1095

higher similarity between the counter-memory con- 1096

text generated by GPT-3.5 and the question, as 1097

shown in Table 10. In contrast, the generated con- 1098

text and counter-memory context for Llama2-13b 1099

exhibit approximately equal levels of similarity. 1100

Furthermore, we analyze the original ConflictQA 1101
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(PopQA) datasets introduced by Xie et al. (2023)1102

and identify a similar disparity in context similari-1103

ties, as shown in Table 10. This means that previ-1104

ous works may ignore some significant factors to1105

LLMs’ preference, such as similarity (investigated1106

in Section 5.2).1107

A.7 More Details and Results about Similarity1108

A.7.1 Similarity Metric1109

We employ Jaccard similarity to assess the term-1110

based overlap, and BERTScore (Zhang et al., 2020)1111

for evaluating the semantic similarity between con-1112

texts and questions. To mitigate the effect of length1113

discrepancies between contexts and questions, we1114

calculate the similarity at the sentence level and1115

then aggregate them to derive the overall context-1116

question similarity. In this work, we adopt a max-1117

imum aggregation strategy due to the single-hop1118

nature of the NQ and TQA datasets, where the ma-1119

jority of questions can be answered using a small1120

subset of sentences. We also try the average aggre-1121

gation strategy and observe similar results.1122

Figure 12 illustrates the distribution of similarity1123

when employing maximum and average aggrega-1124

tion methods. It is observable that the generated1125

contexts exhibit a markedly higher degree of sim-1126

ilarity regardless of the aggregation method used.1127

Furthermore, this disparity in similarity is more1128

pronounced with maximum aggregation, as con-1129

texts typically contain sentences that are irrelevant,1130

which dilute the similarity scores when an average1131

aggregation is applied.1132

A.7.2 Similarity Distribution1133

Figure 13 and 14 show the similarity distribution1134

of retrieved and generated contexts across various1135

generators. All LLM-generated contexts exhibit a1136

higher similarity over retrieved contexts.1137

A.7.3 Effect of Similarity.1138

Figure 15 demonstrates a general trend that on1139

slices with a smaller average similarity gap, LLMs1140

exhibit a reduced preference for generated context.1141

A.7.4 Cases about Similarity1142

Table 12 shows examples that contain contexts with1143

different similarities to the question. The contexts1144

with high similarity typically directly support an-1145

swering by repeating the phrasing in the question.1146

Conversely, the contexts with low similarity intro-1147

duce more challenges, often necessitating an under-1148

standing of synonyms and even some inferences.1149

These observations indicate that text similarity can 1150

partly reflect the relevance between a question and 1151

a context, as well as the difficulty the LLM encoun- 1152

ters in identifying potential answers. 1153

A.8 Cases about completeness 1154

Table 13 provides some examples to facilitate the 1155

understanding of completeness. From the cases, we 1156

observe that retrieved contexts and “Trunc.” often 1157

contain incomplete sentences. Additionally, com- 1158

pared to “S-Trunc”, “Nature” typically exhibits 1159

greater semantic completeness. Specifically, “Na- 1160

ture” often encompasses a full logical structure of 1161

an article, including an introduction, discussion, 1162

and conclusion, whereas “S-Trunc” may terminate 1163

abruptly. 1164
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Figure 12: Similarity distribution with maximum or mean aggregation strategies. Generated contexts consistently
exhibit higher similarity across two aggregation strategies.

TQA-AIR Example TQA-AIG Example

Question
Between 1959 and 1967 which city was
the capital of Pakistan (Islamabad was
being built)?

Who is the most successful UK solo
artist in the USA?

Golden Answer Rawalpindi Elton John

Generated Context

Between 1959 and 1967, the capital of
Pakistan was Karachi. Karachi is the
largest city in Pakistan and is located on
the southern coast of the country. . .

Elton John is the most successful UK
solo artist in the USA. Born Reginald
Kenneth Dwight in 1947, he adopted
the stage name Elton John in the late
1960s. . .

Jaccard Similarity: 0.47 Jaccard Similarity: 0.69
BertScore: 0.93 BertScore: 0.93

Retrieved Context

. . . was first shifted temporarily to
Rawalpindi in the early 60s, and then to
Islamabad when essential development
work was completed in 1966. . .

. . . In 2009, Jay Sean’s single "Down"
reached the number one spot on the
"Billboard" Hot 100 and sold millions
in the United States, making him ẗhe
most successful male UK urban artist in
US chart historyät the time. . .

Jaccard Similarity: 0.16 Jaccard Similarity: 0.14
BertScore: 0.85 BertScore: 0.86

Model output Karachi Elton John

Table 12: Some examples where both the generator and reader are GPT-3.5. We highlight the incorrect candidate
answers in the context in pink, and the correct answers in the context in green.
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Figure 13: BERTScore distribution of retrieved contexts and contexts generated by different LLMs. All LLM-
generated contexts exhibit a higher similarity over retrieved contexts.
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Figure 14: Jaccard Similarity distribution of retrieved contexts and contexts generated by different LLMs. All
LLM-generated contexts exhibit a higher similarity over retrieved contexts.
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Figure 15: The generation ratio in slices with different average ∆sim. ∆sim is the difference in similarity between
the generated context and the retrieved context.
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Example

Question: In World War I, what did the Allies call the defence line that was known as the ’Siegfried Line’
to the Germans?
Answer: [’Hindenberg Line’, ’Hindenburg line’, ’Battles of the Hindenburg Line’, "’HINDENBURG
LINE’", ’Advance to the Hindenburg Line’, ’Hindenburg Line’]
Retrieved context: Title: Siegfried Line Content: Siegfried Line The term Siegfried Line refers to two
different German defensive lines, one during the First World War and the other during the Second World
War. The original was a line of forts and tank defences built by Germany in northern France during
1916–17, known in German as the Siegfriedstellung ("Siegfried Position"). The British referred to it as
the "Hindenburg Line", a name subsequently adopted by the rest of the Allies. After WW1 the German
Fortifications East of the Rhein were required to be demolished due to the Treaty of Versailles. The
second, commonly known in German as the
Generated context (Nature): The Allies referred to the German defence line known as the ’Siegfried
Line’ as the ’Westwall’ during World War I. Constructed between 1936 and 1940, the Westwall was a
system of fortifications built along Germany’s western border. It stretched from the Swiss border to the
Dutch border, covering approximately 630 kilometers. The line consisted of concrete bunkers, tank traps,
and anti-tank ditches, aiming to deter any potential invasion from the west. The Allies recognized the
formidable nature of this defensive barrier and thus referred to it as the Westwall, while the Germans
named it the Siegfried Line, after the mythical hero Siegfried from German folklore.
Generated context (Trunc.): The Allies referred to the German defence line known as the "Siegfried
Line" as the "Westwall" during World War I. The Westwall was a series of fortifications constructed by
Germany along its western border, stretching from the Swiss border to the Netherlands. It was named after
the German Emperor, Wilhelm II, who was commonly referred to as "Kaiser Wilhelm" or "Siegfried" by
the Allies. The construction of the Westwall began in the 1930s as a response to the growing tensions in
Europe and the threat of war. The line consisted of a network of bunkers, pillboxes, tank traps, and other
defensive structures, strategically positioned
Generated context (S-Trunc.): The Allies referred to the German defence line known as the "Siegfried
Line" as the "Westwall" during World War I. The Westwall was a series of fortifications constructed by
Germany along its western border, stretching from the Swiss border to the Netherlands. It was named after
the German Emperor, Wilhelm II, who was commonly referred to as "Kaiser Wilhelm" or "Siegfried" by
the Allies. The construction of the Westwall began in the 1930s as a response to the growing tensions in
Europe and the threat of war. The line consisted of a network of bunkers, pillboxes, tank traps, and other
defensive structures, strategically positioned to impede any potential invasion from the west.

Table 13: Examples with retrieved contexts and generated contexts. “Nature”, “Trunc.” and “S-Trunc.” represent
three types of generated contexts with different completeness. Retrieved contexts often contain incomplete sentences.

Reader Generator NQ-AIG NQ-AIR TQA-AIG TQA-AIR

Gen Ret Others Gen Ret Others Gen Ret Others Gen Ret Others

GPT 4 GPT 4 0.9125 0.0589 0.0286 0.7379 0.1743 0.0878 0.9387 0.0304 0.031 0.7651 0.1762 0.0587
GPT 3.5 GPT 3.5 0.9177 0.0449 0.0374 0.7083 0.1470 0.1447 0.9347 0.026 0.0393 0.7332 0.1775 0.0893
Llama2-13b Llama2-13b 0.8966 0.0500 0.0534 0.7216 0.1811 0.0973 0.9071 0.0433 0.0496 0.7212 0.1918 0.0870
Llama2-7b Llama2-7b 0.7041 0.1082 0.1876 0.6148 0.2071 0.1781 0.7973 0.0927 0.1100 0.6555 0.2101 0.1344

Table 14: “Gen” denotes the proportion of responses that match the candidate answer within generated contexts,
whereas “Ret” refers to the proportion of matching the candidate answer within retrieved contexts. “Others”
encompasses the proportion of responses that do not align with either category. Given that the proportion of “Others”
is significantly lower relative to the disparities between “Gen” and “Ret”, its impact on the conclusions of this
paper is negligible.
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