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ABSTRACT

Vision Language Models (VLMs) are impressive at visual question answering and
image captioning. But they underperform on multi-step visual reasoning—even
compared to LLMs on the same tasks presented in text form—giving rise to
perceptions of modality imbalance or brittleness.

Towards a systematic study of such issues, we introduce a synthetic framework for
assessing the ability of VLMs to perform algorithmic visual reasoning, comprising
three tasks: Table Readout, Grid Navigation, and Visual Analogy. Each has
two levels of difficulty, SIMPLE and HARD, and even the SIMPLE versions are
difficult for frontier VLMs. We propose strategies for training on the SIMPLE
version of tasks that improve performance on the corresponding HARD task, i.e.,
simple-to-hard (S2H) generalization. This controlled setup, where each task
also has an equivalent text-only version, allows a quantification of the modality
imbalance and how it is impacted by training strategy. We show that 1) explicit
image-to-text conversion is important in promoting S2H generalization on images,
by transferring reasoning from text; 2) conversion can be internalized at test time.
We also report results of mechanistic study of this phenomenon. We identify mea-
sures of gradient alignment that can identify training strategies that promote better
S2H generalization. Ablations highlight the importance of chain-of-thought. !

1 INTRODUCTION

Vision Language Models (VLMs) like LLaVA-series models (Liu et al., 2023b;a; 2024a) fuse
an LLM with visual encoders which allows them to harness the impressive reasoning abilities of
pre-trained LLMs towards solving visual reasoning tasks (Monajatipoor et al., 2023; Carbune et al.,
2024; Zhang et al., 2024a). However, VLMs are usually felt to exhibit more brittle reasoning than the
underlying LLM, and recent works have tried to understand this as a modality imbalance problem
(Peng et al., 2022; Huang et al., 2022; Fan et al., 2023; Wei et al., 2024). For example, presenting
the task in image form can lead to lower performance than when the same task is presented in text
form (Zhang et al., 2023; 2024c; Wang et al., 2024b; Zhang et al., 2024d). Mitigating this modality
imbalance is still an open problem.

Here, we introduce a concrete methodology to precisely study such issues. First, we design visual
tasks where the image information relevant to the task can also be represented as text (e.g. LaTeX
code). This allows a direct comparison of the effect of training strategies in individual modalities
and combinations. Second, to allow a clear comparison of different training strategies, we measure
the brittleness of learning with simple-to-hard (S2H) generalization, where models are trained
on SIMPLE examples of a task and evaluated on HARD examples.

We create a set of synthetic tasks” that involve algorithmic visual reasoning (Ghosal et al., 2024;
Cherian et al., 2023; Zhang et al., 2024b): Table Readout (reading out table entries in an order
specified visually), Grid Navigation (finding valid paths through grid-like structures while avoiding
obstacles), and Visual Analogy (identifying logical patterns across sets of abstract visual examples
and applying analogical reasoning). Each task requires many reasoning steps while dynamically

!Code available at https://github.com/princeton-pli/VLM_S2H.
?Creating such tasks was more nontrivial than expected, for reasons described in Appendix D.6.


https://github.com/princeton-pli/VLM_S2H
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Figure 1: (Left) Example Data Point for Consecutive Table Readout. Input table can be provided
as an image or LaTeX code. The task is to sequentially read numbers from a start cell to an end
cell in row major order. (Right) Illustration of Key Concepts using examples from Consecutive
Table Readout. We observe that current models can S2H generalize on text — when trained to read
short sequences from small LaTeX-formatted tables, the models can read longer paths from larger
tables, also provided in LaTeX code. However, they fail to length-generalize on images. To address
the generalization gap and imbalanced learning of different modalities, our goal is to transfer the
generalization behavior from text to image modality.

shifting attention over a sequence of small regions in the image. SIMPLE and HARD examples differ
in the length and complexity of the necessary reasoning steps.

The SIMPLE tasks are difficult for current frontier VLMs such as GPT-40 and Claude-3.5 Sonnet
(Achiam et al., 2023; Anthropic, 2024) (Appendix I.1). Since we work with smaller open-parameter
models, our methodology consists of using supervised training to precisely inject capability at a
task in one modality and then study how variations in training affect the gap in S2H generalization
between modalities. Since the tasks are difficult for frontier VLMs, we expect the takeaways from
our study to be of broader interest.

Illustrative example of Consecutive Table Readout: This is the simplest of our algorithmic visual
reasoning tasks. Given a table of numbers and indices of two table cells (7, j) and (k, 1), it requires
outputting every table entry between these two cells in row-major order (Figure 1). The input table
can be provided as an image or as text (i.e., LaTeX code), allowing the kind of study sketched
above. In the SIMPLE task, the length of the output sequence is 5 to 10, whereas in the HARD task,
it is 25 to 30. Therefore, S2H generalization here is a type of length generalization, a well-studied
concept in LLMs (Zhou et al., 2024a). SFT on 8 x 10* SIMPLE-text examples yields 80% accuracy
on HARD-text examples. However, training on the SIMPLE-image examples results in only 20%
accuracy on the HARD-image examples, irrespective of how long we train. The 60% difference
between the SIMPLE and HARD setting is a measure of the modality gap or modality imbalance.

1.1 PAPER OVERVIEW

We study training strategies that incorporate various types of supervision: text-based, image-based,
and combinations of the two (Section 2.3). We find that the most reliable way to alleviate the gap
is to teach the model image reasoning via text conversion, namely, learn to explicitly extract
information from the image in text form and then generate the solution using CoT. Specifically,
we find: (i) for tasks where the model exhibits S2H generalization in the text modality, training on
image reasoning via text conversion greatly helps to mitigate the gap (Section 3); (ii) for tasks
where the S2H generalization failed in both modalities, the same idea as (i) led to S2H generalization
in the image modality after text-only supervision was used to inject reasoning capability on HARD
task in text modality (Section 4). The findings in (ii) should be interpreted as suggesting that simple
image-to-text conversion could be a promising intervention to reduce modality imbalance in future
VLMs whose base LLM does exhibit S2H generalization in the text modality.

A surprising finding is that even though explicitly training on image-to-text conversion seems
necessary for S2H generalization, the final trained model can generate the correct solution without
explicitly extracting the image content as text: the image-to-text conversion skill gets internalized!
(This also greatly reduces the inference-time cost.) Therefore, we try to understand the effectiveness
of this key intervention at the level of training gradients. We find that gradients from SIMPLE-image
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reasoning examples can help reduce loss on HARD-image inputs with the above intervention
(Section 5); this gradient alignment merits further study.

Inspired by our findings about gradients, we propose a more effective two-phase training (Section 4.2)
for tasks where we need to inject reasoning capability on the HARD task. The first phase teaches
the model to do image reasoning via text conversion on a few SIMPLE examples. We find that
inclusion of this phase substantially improves gradient alignment in the earlier phases of training,
when gradients have larger norms, which allows for more effective S2H generalization on the image
modality. This finding is in accord with previous empirical evidence that highlights the importance of
visual-language alignment in VLM training (Fan et al., 2024a).

2 GENERAL SETUP

2.1 TRAINING DATA

Formally, we let f : X — Z denote a reasoning task, where X refers to a set of input data, further
split into Xgpypre and Ayarp, and Z refers to a set of answers. Each input x € X’ can be presented in
text format x(*) or in image format x(*).

For each pair of data x and solution f(x), we also create a chain-of-thought reasoning trace, which
we denote by C'oT'(x). We also define a prompt P.,pyert that we optionally prepend at the start of
chain-of-thought to signal explicit image-to-text conversion on image input®. Hence, our training
dataset is defined by input x (which can be given either as x(*) or x(*)), chain-of-thought CoT(x),
and the final answer f(x).

2.2 MODEL

In line with recent work that shows the benefit of VLMs that combine multiple image encoders, we
trained Eagle-X2-Llama3-8B, a variation of Eagle-X5 (Shi et al., 2024) that uses Llama3-8B-Instruct
(Dubey et al., 2024) as the LLM backbone and CLIP-448 (Radford et al., 2021) and ConvNeXt (Liu
et al., 2022b) as visual encoders. Since the original paper found only minor benefit beyond the two
encoders, we do not use all five visual encoders. See Appendix E for more details on the training.

2.3 TYPES OF SUPERVISION

Our controlled experiments study the effect of the following types of supervision on SIMPLE examples
during training:

(a) Text supervision ((T; S)): given the text input x(), we train on the gold output containing a
chain-of-thought trace C'oT'(x) and the final answer f(x).

(b) Image supervision ((I; S)): given the image input x(") | we train on the gold output containing a
chain-of-thought trace C'oT'(x) and the final answer f(x).

(c) Image-via-Text supervision ((I; #T, S)*): given x| we train on the gold output containing the
conversion prompt P,,;,,ert, converted text x®) a chain-of-thought trace C'oT'(x), and the final
answer f(x).

(d) Text+Image supervision: we train on an equal mix of Text and Image supervision.
(e) Mix supervision: we train on an equal mix of Text, Image, and Image-via-Text supervision.

We train a model fy on a mixture of the above supervision types with auto-regressive loss (/) that
takes in the model’s logits on an input example and returns the average loss on a selected set of tokens.
For example, for Image supervision, we will represent the input example as {x(*), CoT(x), f(x)},
and compute the loss on {CoT'(x), f(x)}. During the evaluation, we test whether the model predicts
f(x) correctly for a given input.

In Section 4, we will adapt some of the above supervision strategies to also include HARD Text
supervision®. The adapted supervision strategies will have a + sign appended to represent this
additional component (e.g. Mix+ adapted from Mix supervision).

3e.g., “Convert the provided image to text”
44t indicates the additional conversion prompt Peonvert
>Identical as Text except we use a HARD-text example, i.e., x € Xyaro
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Figure 2: S2H Generalization on text and image of different supervision for Consecutive Table
Readout on HARD (15-20) and HARD (25-30). S2H generalization on text of Text (green lines (left),
grey dotted lines (right)) outperforms S2H generalization on image of Image (blue lines (right)),
highlighting modality imbalance. Mix mitigates this imbalance.

3 MODALITY IMBALANCE IN Consecutive Table Readout

We use our example Consecutive Table Readout
introduced in Section 1 to illustrate the S2H
generalization gap between different modalities
and training strategies needed to address it.

We compare different types of supervision II

w4 HARD-text mmm HARD-image
S2H Accuracy Generation Length

using SIMPLE examples by measuring the 500

0.4
improvements on the exact match accuracy® 5
on two different versions of HARD tasks: (a) I. I II
HARD (15-20), reading 15-20 consecutive 0.0 _7, oR X 0 o R X
numbers and (b) HARD (25-30), reading 25-30 %8 of = 28 og =
. . U £ e 9 E R
consecutive numbers (more challenging). k= EZC = EZ

To demonstrate the modality imbalance, we .

compare Text and Image supervision. Figure 3 Figure 3: Effect of Image-via-Text on Consecu-
shows that the S2H generalization gap between five Table Readout: S2H Generalization (left) and
the two is substantial. For HARD (25-30), Generation Length (right) for HARD (25-30). Num-
while Text supervision achieves 80% accuracy ber of training data is 16 x 1Q4~ Text+lmage un-
on HARD-text examples, Image supervision derperforms Mix and Image-via-Text supervision.

achieves only 20% on HARD-image examples. Image-via-Text supervision improves per.formance
slightly but at the cost of longer generation due to

In order to reduce the gap, we consider Lo . .
explicit image-to-text conversion at inference.

training strategies that can leverage strong
S2H generalization of Text supervision to help
S2H generalization of Image supervision. Two
candidates are Text+lmage supervision, which simply mixes in Text and Image supervision, and
Image-via-Text supervision, which trains the model to first convert the image input to its text
format and then output the solution. Text+lmage supervision induces the model to implicitly make
the connection that the image and text formats are equivalent, while Image-via-Text supervision
makes this connection explicit. We compare the two training strategies in Figure 2 and show that
Image-via-Text supervision shows much better performance on HARD-images.

However, Image-via-Text supervision has a key drawback: trained models have significantly higher
inference costs, since the conversion of image to text before generating the solution leads to 3x
longer outputs, which limits the real-world practicality. To address this, we propose Mix supervision,
which combines Image-via-Text and Text+Image supervision. This teaches the model to align the
modalities, while also teaching it to not always rely on the image-to-text conversion.

Mix supervision closes the modality imbalance gap by improving S2H generalization on
images, while maintaining inference cost. Mix supervision retains most of the S2H generalization
performance of Image-via-Text supervision while reducing generation length by directly solving
reasoning tasks from images (Figure 2). In Figure 3 (top right), we show that it can almost completely
match the S2H generalization performance of Text supervision for HARD (15-20) examples. On
HARD (25-30), even though it does not fully close the gap between text and image input (Figure 3,

SCorrectness requires all generated numbers to be in the correct order; see Appendix F.
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Figure 4: Illustration of non S2H-generalizing settings: For the example of Visual Analogy above,
we only include one in-context example for simplicity and provide annotations for clarity. See
Appendix D for non-annotated example images that are provided to the model.

bottom right), the gap can be further reduced with a short text-only warm-up training. We discuss
this further in Section 6.

4 FULL STUDY: Table Readout, Grid Navigation, Visual Analogy

We now consider three non S2H-generalizing synthetic tasks, where our model struggles to generalize
to HARD instances in either modality after training on the corresponding SIMPLE examples: Table
Readout, Grid Navigation, and Visual Analogy (Figure 4). We briefly describe the SIMPLE and HARD
setup of each task below (summarized in Table 1, fully detailed in Appendix D).

* Table Readout: The model sequentially reads numbers along a highlighted path in a table (given
in either image or its LaTeX code). SIMPLE examples consist of 1-4 linear segments in spiral or
sinusoidal path patterns with an average length of 12 (Figure 32). HARD examples consist of > 4
linear segments, featuring longer and arbitrary compositions of spiral or sinusoidal path patterns
with an average length of 35 (Figure 33).

* Grid Navigation: The model navigates in a 2D grid (given in either image or its LaTeX code) from
a designated start cell to an end cell while collecting all specified objects and avoiding obstacles.
SIMPLE examples contain 1-2 objects and 1 type of obstacle (Figure 34). HARD examples involve
> 2 distinct objects and > 3 types of obstacles (Figure 35). The task can be solved by depth-first
search (DFS). Recent works (Kim et al., 2024; Wu et al., 2024a; Wang et al., 2024b) explored
similar synthetic tasks in LLM and VLM evaluation.

* Visual Analogy: The model reasons about attributes and relations between geometric figures in
a puzzle (given in the image or text description). It analyzes two in-context examples and applies
an analogous reasoning to choose 1 from 4 options to complete the query. SIMPLE puzzles have
examples and query vary along the same attribute following a common relation (Figure 36). HARD
puzzles have examples and query vary along different attributes following a relation, and the
combinations of attribute and relation held-out from training (Figure 37). This task is adapted
from Barrett et al. (2018) and Hill et al. (2019).

These tasks require the model to generalize to HARD examples by composing reasoning patterns
learned from SIMPLE training examples, which has been known to be difficult for LLMs Yu et al.
(2023); Zhao et al. (2024); Wu et al. (2024b); Huang et al. (2023); Dziri et al. (2024). We observe
that with only supervision from the SIMPLE examples, models with Text, Image, and Mix supervision
achieve < 25% S2H generalization on both text and image after training on 24 x 10* data in each
setting. The failure to S2H-generalize in either input modality highlights the insufficient general
reasoning capacity of existing models on these tasks. We then adapt Mix supervision to include HARD
Text in training and measure whether the improved performance on HARD-text can result in better
S2H generalization in the image modality.

4.1 IMPROVED TEXT PERFORMANCE WITH HARD Text SUPERVISION IMPROVES S2H
GENERALIZATION ON IMAGE

Mix+ supervision, adapted from Mix from Section 3, trains the model with an equal mix of HARD
Text supervision and SIMPLE Mix supervision.

Mix+ supervision shows significantly better image S2H generalization, demonstrating an
effective transfer of reasoning capability from text to image. By including HARD-text examples,
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Figure 5: Results on non S2H-generalizing tasks: We report the S2H Generalization on image
on Table Readout (left), Grid Navigation (middle), and Visual Analogy (right). S2H generalization
on text from Text supervision serves as a reference (in gray dashed line). Text, Image, and Mix
supervisions fail to generalize, highlighting the gap between SIMPLE and HARD examples. Mix+
improves performance, while Align-Mix+ further improves with an initial alignment phase.

Figure 6: Image-via-Text+ on
Y#® Table Readout Hl Visual Analogy Table Readout and Visual Anal-
ogy: S2H Generalization on

S2H Accuracy Generation Length : .
. , % . image (left) and Generation
) g 1000 ‘ ' Length (right) with 12 x 10%
0.5 ’ ' ’ ' training examples. Image-via-Text+
’ 500 ‘ g achieves good performance but
‘ ’I ¢ ‘ ‘ ' ‘ with higher inference cost. Mix+
00 "L T L o T e matches Image-via-Text+ by ap-
\ Lo+ | Lo+ .
o X ¢ ox oy X v ox ending “Convert” to the prompt
(o)) 2> = o & R p g p p
© = 5 <= © | = s <= (+Convert) or adding an alignment
€ © € ©
£2 ¢ Bt ¢

phase (Align-Mix+).

Mix+ improves the model’s text reasoning ability on HARD examples to > 95% accuracy after
training on 3 x 10* data. Meanwhile, we also observe a significant improvement in image S2H
generalization with Mix+ supervision in all settings: the model can achieve 64%, 92% and 35% S2H
accuracy on HARD-images after training on 12 x 10* data in Table Readout, Grid Navigation, and
Visual Analogy. We conclude that Mix+ supervision can effectively transfer the injected improvement
in S2H performance from text to image.

Can we further improve S2H generalization on image? Motivated by the observed benefit
of Image-via-Text supervision from Section 3, we also measure the image S2H generalization of
Image-via-Text+ supervision: the model is trained with an equal mix of HARD Text supervision
and SIMPLE Image-via-Text supervision. On Table Readout and Visual Analogy, we still observe
a substantial (20-30%p) gap in S2H performance on HARD-image between Image-via-Text+
supervision and Mix+ supervision (Figure 6).

One naive way is to trade extra inference compute to close this gap via inference time prompt: at test
time, we prompt Mix+ models with an additional token, “Convert”, which appear at the start of
the Image-via-Text responses (Section 2.3). We observe that the models respond with an accurate text
conversion before generating the reasoning tokens. This shows a dual capability of Mix+ models
in reasoning with and without image-to-text conversion. This is in line with the findings in Su et al.
(2024) of the dual learning capability of LLMs in short and long reasoning. Note that when explicitly
prompting Mix+ models to perform image reasoning via text conversion, this still incurs a similar
cost in generation length as Image-via-Text+ (Figure 6). We discuss more in Appendix 1.6.

4.2 BENEFITS OF TWO-PHASE TRAINING
Given we previously observe that Image-via-Text supervision helps with S2H generalization, we add

an initial phase that trains the model with Text and Image-via-Text supervision on SIMPLE examples.
The goal is to precondition the model (via SIMPLE Image-via-Text supervision) to align text and
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image reasoning on SIMPLE examples to generalize this knowledge on HARD examples later when
trained with Mix+ supervision. We call this two-phase approach Align-Mix+’.

Align - Mix+ improves image S2H generalization, while maintaining inference cost. We find
significant boost in image S2H generalization performance on all tasks with Align-Mix+, with 76%,
96%, and 56% on HARD-image after training on 12 X 104 data from Table Readout, Grid Navigation,
and Visual Analogy respectively, and roughly the same inference costs as Mix+ supervision.

5 A STUDY ON LOSS DYNAMICS AND GRADIENT ALIGNMENT FOR S2H
GENERALIZATION

Our findings show that S2H generalization can be transferred across modalities by simply mixing
different types of supervision. This happens without any explicit matching of representations, which
motivates us to explore training gradients to obtain insights into how each strategy contributes to
S2H generalization. Here, we analyze the evaluation loss behavior on HARD Image and HARD
Image-via-Text® examples during training. Similar gradient studies have been proposed for measuring
influence (Koh & Liang, 2017) of training data points on evaluation tasks (Park et al., 2023; Xia
et al., 2024; Engstrom et al., 2024).

5.1 STUDY ON Consecutive Table Readout

In Section 3, we showed that Mix outperforms Text+Image supervision in S2H generalization on
images. The key factor driving this improvement was the inclusion of Image-via-Text supervision.
Here, we show that in Mix supervision, training gradients get more aligned to improve loss on
HARD Image examples. To do so, we measure the alignment between gradients on SIMPLE and
HARD Image examples.

Let I(7,5y(x) denote the loss on solution given image, i.e.,

liris) (%) = 1(fo({x7,¥}),)) (1

where y contains both C'oT'(x) and the answer f(x). We also denote the loss on solution given HARD
image as
H
I = By l1:s) (%) 2)

If gsivpie and guarp denote average gradients on Xgpyp g and Xyagp (i-€. Exqu,WLEVZ(I;S)(X) and
Exe X VI(1:5) (X) respectively)’, then we define the gradient alignment score as:

<gSIMPLE7 gHARD>/<gHARD ) gHARD> 3)

Intuitively, the gradient alignment score measures how much the loss on HARD Image examples
can be reduced by taking gradient updates from SIMPLE Image training samples, relative to using
gradients from HARD Image examples directly (see Theorem H.1 for a formal statement). We will
plot this score against the gradient norms of SIMPLE Image training samples. A stronger gradient
alignment at larger values of gradient norm is preferred because the loss on HARD Image can be
reduced more when the gradients are larger.

* Mix achieves a higher gradient alignment score than both Text+Image and Image supervision,
especially when gradient norms are large. This suggests Image-via-Text supervision improves the
alignment between SIMPLE and HARD Image gradients.

* This improved alignment for Mix is reflected in a significant initial drop in the loss on solution
given HARD-image, which then continues to improve throughout training.

We give more nuanced alignment measures in Appendix H.3, which take Adam optimizer updates
into account. Our takeaways remain the same.

"For the main experiments, we use 10* training examples in the first phase. See Appendix 1.3 for ablations
on the number and composition of data used in the alignment phase.

81dentical as Image, Image-via-Text except x9 € Xyaro

“We use random projection on gradients to 4096 dimension for efficient storage, following Park et al. (2023)
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5.2 STUDY ON Table Readout

In Section 4, we showed that Mix+ improves S2H generalization over Mix, while Align-Mix+ can
further improve over Mix+ with an additional alignment training. Here, we study how each included
component helps S2H generalization across the training strategies.

Insights from evaluation loss dynamics: We use the following additional notations to report the
average loss on specific tokens on a HARD Image-via-Text example and understand which components
help the model learn to reason on HARD-images via text conversion, and how it translates to direct
solution on HARD-image examples.

* HARD image-to-text conversion: Average loss on converted text tokens given the image and the
conversion prompt:

lgj;z;T) = EXEXH.ARDl(fe({X(i)7 Pconvertv X(t)})a X(t))- (4)

» Solution given HARD image and text: Average loss on solution tokens given the image, the
conversion prompt, and the converted text:

lgf,q)#T;S) = EXEX];ARDl(fQ({X(i)a Pconvert; X(t)a y})a Y)7 (5)
where y contains both CoT'(x) and the answer f(x).

In Figure 20 (appendix), we report the above losses for Mix, Mix+, and Align-Mix+. Since the model
does not see HARD-image examples during training, these losses (along with lgfg)) evaluate S2H
generalization on HARD-image. We observe:

1. HARD image-to-text conversion loss (Equa-
tion (4)) of Mix matches Mix+, showing that

—x- Mix e Mix+ Align-Mix+ .. .

training on SIMPLE Image-via-Text examples
= suffices to generalize the conversion subtask to
20.15 HARD-images.
§‘0.10 2. There is a significant gap in the loss on solu-
< ’ tion given HARD image and text (Equation (5))
$0.05 o between Mix and Mix+. This implies that includ-
o ; T ing HARD Text is necessary to fully generalize
(5 0.00 i et i reasoning to HARD-images.

1073 1074 1073

SIMPLE Gradient Norm As an ablation, we took an intermediate Mix

checkpoint and completed the training with Mix+
supervision. This transition resulted in negligi-
ble changes to HARD image-to-text conversion
loss (Equation (4)), while loss on solution given
HARD image and text (Equation (5)) and loss
on solution given HARD-image (Equation (2))
decreased significantly, approaching the values
for Mix+.

Figure 8: Analysis of gradients on Table Read-
out: Average Gradient Norm on SIMPLE Image
examples (Exe . || VI(1;5)(X)[]2) vs. Gradient
Alignment Score for different training checkpoints.
Larger gradients for Align-Mix+ have higher gra-
dient alignment scores. Mix+ has better gradient
alignment scores than Mix.
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3. Losses on HARD Image-via-Text examples
start significantly lower for Align- Mix+ after the alignment phase. This shows that training on
SIMPLE Image-via-Text examples can return a favorable starting point, even if they aren’t sufficient
for generalization. It then achieves better loss on solution given HARD image and text (Equation (5))
in the end, which also translates to improved loss on solution given HARD image (Equation (2)).

Insights from gradient alignment score: We can further quantify the differences in training
strategies with gradient alignment score (Equation (3)) between SIMPLE and HARD Image exam-
ples (Figure 8). Intuitively, a higher gradient alignment at each step should accumulate to better
generalization on HARD-images after training. We observe:

* Mix exhibits lower gradient alignment compared to Mix+. Training solely on SIMPLE examples
fails to provide gradients aligned to HARD Image. Including HARD Text examples significantly
improves gradient alignment.

* On the other hand, Align-Mix+ has higher gradient alignment than Mix+ in earlier training steps,
when training gradient norms are large. We give detailed behavior of gradient alignment score in
Figure 16 in Appendix H.

6 FURTHER ABLATIONS

We perform several ablation studies to identify critical training components that underlie our findings.
We push all the details and discussions to the appendix.

Task interactions in multi-task training: We compare Mix, Mix+ and Align-Mix+ with an equal
mix of 3 tasks in Section 4. We observe that multi-task training significantly boosts performance
on Table Readout and Grid Navigation but hurts on Visual Analogy, which shows the effect of task
interactions in our strategies. See Appendix 1.8.

Transferring reasoning from image to text: We also experiment with including HARD Image
supervision in training and evaluating on HARD-text input, which gives much stronger results
(Table 5 in Appendix G.4),

Text warm-up pretraining: We add a text warm-up pretraining (TW) phase before the training
of VLM to simulate the effect of a stronger LLM backbone. This pretraining phase completely solves
the modality imbalance or further boosts performance of Align-Mix+. See Appendix G.5.

Importance of chain-of-thought: Completely or progressively internalizing CoT (Deng et al., 2024)
fail to achieve image S2H generalization, suggesting CoT is crucial. See Appendix I.7.

7 DISCUSSION, LIMITATIONS AND FUTURE WORK

We explore the modality imbalance in VLMs with S2H generalization. When VLMs can generalize on
text input after fine-tuning, Mix supervision can induce similar generalization on image. When models
trained on SIMPLE examples fail to generalize to the HARD examples, adding HARD Text in training
improves the model’s S2H generalization on HARD-image, showing a cross-modal transfer capability.

For a more detailed version of the discussion below, see Appendices B and C.

Related Works: Current VLM benchmarks are often solvable without the visual input. To remove
such bias, we designed controllable tasks and provided a framework (S2H generalization) to quantify
and mitigate modality imbalance. While S2H generalization has been extensively studied for LLMs,
similar investigations remain scarce for VLMs. Prior strategies to address modality imbalance and
cross-modal transfer often rely on matching representations or optimization techniques. However,
through gradient alignment studies, we demonstrate that auto-regressive training effectively aligns
reasoning across modalities.

Utility to real-world benchmarks: Extending our findings to other modalities and real-world
scenarios is also left for future work. But we note that our synthetic datasets are useful for
improving real-world performance of VLMs. Including our data during pretraining yields significant
improvements across benchmarks (Table 6 in Appendix G.6).
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Appendix

A APPENDIX STRUCTURE

The appendix provides omitted experimental details, additional empirical explorations, and theoretical
statements, which we outline below.

Related works: In Appendix B, we provide an overview of relevant lines of research in VLM
benchmarks and evaluations, modality imbalance, cross-modal transfer of generalization, and simple-
to-hard generalization. We highlight the contributions that differentiate our work from the similar
ones.

Discussion, limitations and future work: In Appendix C, we provide a more comprehensive
discussion of the limitation and future work, continuing from Section 7 in the main paper.

Experimental details: We provide all details of our synthetic data generation in Appendix D.
We present our data generation algorithm for creating training data in Appendix D.1, details on
Consecutive Table Readout, Table Readout, Visual Analogy, and Grid Navigation in Appendices D.2
to D.5 respectively. We show examples from our training data for each synthetic setting in Figures 32
to 37. We present details on training and evaluation in Appendices E and F respectively.

Continued discussion from main paper: We continue the discussion in the main paper in Ap-
pendix G. We present results on Consecutive Table Readout after normalizing the number of unique
samples used across training strategies (Appendix G.1), present results on Pattern-Heldout Visual
Analogy — a S2H-generalizing version of Visual Analogy (Appendix G.2), compare training strategies
on non S2H-generalizing tasks by normalizing the total number of training data used (Appendix G.3),
discuss further on transferring reasoning from image to text modality (Appendix G.4), discuss further
on text warm-up pretraining (Appendix G.5), and report the utility of our created synthetic datasets
for real-world benchmarks (Appendix G.6).

Continued discussion on gradients: We continue our discussion on gradient alignment in Ap-
pendix H. We first show that the gradient alignment score connects to the expected drop in evaluation
loss with SGD on training gradients (Theorem H.1). We then propose results on additional measures
— gradient cosine similarity and Adam update alignment score (Appendix H.3) — that better capture
the Adam gradient updates used for optimization.

Ablation studies: We conduct extensive ablation studies to measure the effect of each exper-
imental design decision in our training strategies on non S2H-generalizing tasks and report the
results in Appendix I. We report the performance on other multimodal models on our synthetic data
(Appendix 1.1). We study design choices in Mix+ (Appendix 1.2), design choices in Align-Mix+
(Appendix 1.3), design choices in text warm-up pretraining (Appendix 1.4), the effect of the choice
of a text representation (Appendix 1.5), the effect of text conversion (Appendix 1.6), the role of
chain-of-thought (Appendix 1.7), the effect of multi-task training (Appendix 1.8), and the effect of
repeated training examples (Appendix 1.9).

Interpretability experiments: We further conduct interpretability experiments on our trained
models. We use gradient attribution to track the focus of the model on different image pixels during
chain-of-thought generation (Appendix J). We also report failure modes of models trained on our
synthetic data when evaluated on HARD examples (Appendix K).

16



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

B RELATED WORKS

Benchmarks and evaluations for VLMs VLMs are evaluated on benchmarks such as visual
question answering (VQA) (Antol et al., 2015), image captioning (Chen et al., 2015), zero-shot image
classification (Deng et al., 2009), and compositional reasoning (Thrush et al., 2022; Yuksekgonul
et al., 2023; Hsieh et al., 2024). However, these benchmarks often suffer from language bias, allowing
solutions to use shortcuts with minimal visual information (Agrawal et al., 2016; Goyal et al., 2017;
Zhang et al., 2024c). Although recent work (Rahmanzadehgervi et al., 2024; Wang et al., 2024b; Kil
et al., 2024) proposed new benchmarks that aim to evaluate the spatial understanding and reasoning
of VLM, most evaluation tasks are in the form of VQA questions that only require “single-hop”
reasoning or relatively fewer reasoning steps. To create a controlled setting with well-defined SIMPLE
and HARD tasks, we focus on algorithmic visual reasoning tasks. These tasks allow us to precisely
control the number of steps in the step-by-step reasoning process and the level of dynamic interaction
between textual and visual inputs. Closely related works have explored graph-based algorithmic
reasoning in LLMs (Taylor et al., 2024; McLeish et al., 2024; Zhang et al., 2024f; Wang et al., 2024a;
Sanford et al., 2024) but such studies remain limited for VLMs.

Modality imbalance Studies have shown that models exhibit different learning capabilities and
learning speed on multimodal inputs (Wang et al., 2020; Nguyen et al., 2024). The imbalanced
contribution of individual modality to the final prediction can result in overreliance on a few dominant,
optimized modalities, while underutilizing signals of the weak ones. Peng et al. (2022) and Lin
et al. (2024) attempt to rebalance the convergence speed of all modalities by modulating the learning
rate or gradients. Fan et al. (2023) propose a representative embedding to guide the slow-learning
modality and regularize the fast-learning one. Zhang et al. (2024e) propose an alternating unimodal
training to minimize interference between modalities. Despite their success in traditional multimodal
joint training, it remains challenging to repeat the same for adapter-based VLMs due to significant
differences in architecture and training pipeline. Our work aims to address this issue specifically for
VLM:s from the perspective of transferring the strong learning behaviors from the dominant modality
(text) to the weak one (image).

Generalization transfer between input modes Given the high cost of training VLMs from scratch,
recent research on adapter-based VLMs has been driven primarily by the idea of leveraging pretrained
LLM backbones. The success of this approach is built on the idea of cross-modal generalization,
which enables the model to harness information from the auxiliary modality (e.g. text) to improve
unimodal task on the primary modality (e.g. image classification). This knowledge transference has
been exploited for both small-scale multimodal models (Socher et al., 2013; Liang et al., 2021; Tan &
Bansal, 2020) and more recent VLMs (Monajatipoor et al., 2023; Carbune et al., 2024; Zhang et al.,
2024a). However, existing works often require explicit alignment of the modality, such as learning
unified representation using contrastive learning (Xia et al., 2023), for models to transfer knowledge
across modalities. The cost of curating a large, perfectly aligned multimodal dataset to learn the
modality alignment becomes expensive as the model size increases. In our work, we find that transfer
of generalization across input modes naturally emerges from auto-regressive training.

S2H generalization Recent studies have explored simple-to-hard generalization in LLMs, with a
focus on length generalization in transformers. These works evaluate models on tasks requiring longer
computations than those seen during training, using synthetic datasets like parity, Dyck-1 languages,
decimal addition, structural recursion, and finite state automata (Anil et al., 2022; Lee et al., 2023;
Jelassi et al., 2023; Li & McClelland, 2023; Kazemnejad et al., 2024; Liu et al., 2022a; Abbe et al.,
2024; Bhattamishra et al., 2020; Zhou et al., 2024b; Fan et al., 2024b). Zhou et al. (2024a) connect
length generalization to the RASP programming language (Weiss et al., 2021), offering a unified
perspective. Sun et al. (2024) recently propose easy-to-hard generalization to measure generalizable
verification for math and code datasets. OOD generalization beyond human supervision remains an
important open question for the advancement of current AI models (Burns et al., 2023).
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C DISCUSSION, LIMITATIONS AND FUTURE WORK

In this work, we explore the modality imbalance in VLMs by measuring S2H generalization. We
show that on tasks where VLMs can reliably show generalization on text input after fine-tuning,
Mix supervision can induce a similar level of generalization on image input. We then propose 3
algorithmic tasks, where models trained on SIMPLE examples fail to generalize to HARD examples
in either modality. Mixing HARD Text examples in training can help the model generalize on
HARD-image input, revealing S2H generalization transfer capabilities of these models.

Utility to real-world benchmarks: Extending our findings to real-world scenarios is also left
for future work. It will require real-world scenarios with precise gradation of SIMPLE and HARD
examples with respect to underlying abstract concepts. A tantalizing suggestion from our work is
that VLM brittleness could be mitigated by training them to create very detailed descriptions of the
scene (and this capability could be internalized for faster inference).

We note that training even on our synthetically created datasets seems useful for improving the
performance of VLMs in real-world settings. Specifically, including our synthetic datasets during
pretraining of VLMs yielded significant improvements across different benchmarks (Table 6 in
Appendix G.6). For example, including SIMPLE and HARD Image supervision examples from all
synthetic datasets can improve performance on MMMU (Yue et al., 2024) by at least 3%p. Similarly,
on a chart dataset (Wang et al., 2024c), including our synthetic datasets can improve performance
by 5.1%p on descriptive questions. Therefore, our synthetic datasets involve useful skills that can
also help improve VLMs on real-world benchmarks.

Limited model variety: Our experiments were conducted using a single model, Eagle-X2-Llama3-
8B, consisting of the Llama3-8B and two visual encoders. Both the choices of the LLM backbone
and the mixing strategy of the vision model were considered state-of-the-art at the time this project
started. We also evaluated other VLMs, such as Llava-1.5 and Phi-3 Vision, but they proved to be
highly brittle in our synthetic experiments. In particular, they do not even show S2H generalization
on text inputs on Consecutive Table Readout. Due to resource constraints, we did not explore
additional models, such as ablation on the effect of visual encoders, which only brings marginal
improvements in visual encoding (Shi et al., 2024). Extending our findings to VLMs with stronger
LLM backbones and other vision models is an exciting direction that we leave to future work.

Limitations and possible future directions: We believe Mix or Mix+ may not be the optimal
approach to improve image generalization on tasks where the model exhibits S2H generalization
in the text modality. Curriculum-based strategies Xie et al. (2024); Mindermann et al. (2022) that
dynamically adjust the data mixture could yield better results. However, our goal is to emphasize
the HARD generalization gap between text and image inputs, which can be bridged by transferring
learning from the dominant modality (text) to the weaker one (image). Therefore, we focus on the
effectiveness of our training strategies in transferring knowledge learned on text input to image input.

In the interest of crispness, we restricted the scope of our study with a small set of prompts and a
limited (and synthetic) image distribution. But doing so allowed a clearer and quantitative look at
modality imbalance and how it can be bridged.

Due to limited resources, we conducted most of our experiments with one model: Eagle-X2-Llama3-
8B. However,

Our results highlight that chain-of-thought (CoT) reasoning can play an important role. However,
even minor modifications to CoT significantly affect the transferred S2H generalization results
on image inputs, and mitigating this brittleness through robust training strategies beyond Mix+ is
crucial. Future work could focus on mechanistic insights into our trained models to design more
generalizable strategies targeting specific model components.
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Table 1: Summary of the SIMPLE and HARD task setup for Table Readout, Grid Navigation, and
Visual Analogy

Setting I Attribute | SIMPLE | HARD
Mean Length 12 35
Table Readout # Turns 1 -4 >4
Pattern .Splra.l Compogltlon pf
/ Sinusoidal | Spiral / Sinusoidal
# DFS steps [10, 25] [26, 60]
Grid Navigation # Objects {1,2} {2,3,4,5}
# Obstacle type {1} {3,4,5}
Visual Analogy Example Patterns Same Different
Query Pattern Seen Held-out

D DETAILS ON SYNTHETIC TASKS

D.1 FORMAL DESCRIPTION OF DATA GENERATION

In Algorithm 1, we provide the pseudo-code for generating the training data mixture for the main
experiments. Below we provide more details in the setup.

D.1.1 WHEN TRAINING ONLY ON SIMPLE EXAMPLES

For Consecutive Table Readout and for any type of supervision among Text, Image, Text+Image,
Image-via-Text, and Mix:

* For each unique data x € X and for each type of supervision — Text, Image, and
Image-via-Text, we choose whether to include it in the training data, depending on whether
these types of supervision are used for training (Section 2.3). We denote the number of

unique data x used from Xspvpe @S Ngpypre-

* We compare all training strategies with the total number of training data used, given by:

Ngvpre = Number of epochs X Ngjp . X Number of types of supervision per input

For a fair comparison, we keep the number of unique data Ng,,,, . fixed across Text+Image,
Image-via-Text, and Mix. Then to match Ngyp g, We set the number of epochs to 1.5 for Text+Image
(50% samples are repeated 2x), 3 for Image-via-Text, and 1 for Mix.

Note on Text and Image for Consecutive Table Readout: Since our result depends heavily on the
success of Text and the failure of Image in Consecutive Table Readout, we carefully tune the number
of training epochs to achieve optimal performance. We conduct ablations where instead of setting

Ngere = NsivpLe, We also try setting Ngj,p €qual to % or % (respectively, the number of
epochs is set at 2, 3). The results presented in Figure 3 corresponds to Ngjyp x = N, suee for Text and
Nopre = % for Image. We discuss further in Appendix G.1.

D.1.2 WHEN ALSO TRAINING ON HARD EXAMPLES
For Image-via-Text+ or Mix+ on non S2H-generalizing tasks:

* We set Nyarp, the number of data from the HARD task, equal to Ngpypi g, the number of data
from the SIMPLE task.

* We generate a mixture of Ngyp e €xamples under Image-via-Text or Mix. We include Nyrp
instances of HARD Text.

D.1.3 REASONING ALIGNMENT (Align-) OR TEXT WARM-UP PRETRAINING ((TW))
When generating data for the reasoning alignment phase (Align-):

» We set N = 10* and include an equal number of SIMPLE Text and SIMPLE Image-via-Text
examples.

When generating data for the text warm-up pretraining phase ((TW)):

19



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Algorithm 1 Data generation pipeline for main experiments

Require: Task f: X — Z, Dataset X = Xupre U Xuarn, Number of data to generate N, Type of supervision

s.
if s € { Text, Image } then
Initialize the number of data per difficulty Nswere = N, Nuaro = 0 and the number of unique examples
NS”?MPI_E = NsivpLe
else if s € { Text+Image, Image-via-Text, Mix } then
Initialize the number of data per difficulty Ngere = N, Nuarp = 0 and the number of unique examples
N;«ILMPLE — SIg{PI.F.
else if s € { Image-via-Text+, Mix+ } then
Initialize the number of data per difficulty Nsvpere = %, Nuaro = % and the number of unique examples

N;?MPLE = NS%APLE

else if s € { Align- } then
Initialize the number of data per difficulty Nsmpie = N, Nuaro = 0 and the number of unique examples
NS%MPLE — Nslgm_ﬁ

elseif s € { (TW) } then
Initialize the number of data per difficulty Nswpre = %, Nuaro = % and the number of unique examples
NSlILMpLE = NSIMPLE

end if

Initialize S = .

fort = 1 — Ngypre do
Sample x ~ XgvpLe-
If s € { Text, Text+lmage, Image-via-Text, Mix, Image-via-Text+, Mix+, Align-, (TW) }, then S «+
SU({x®, CoT(x), f(x)}).
If s € { Image, Text+Image, Image-via-Text, Mix, Image-via-Text+, Mix+ }, then S + S U

({x"), CoT(x), f(x)}).

If s € { Image-viaText, Mix, Image-via-Text+, Mix+, Align - }, then § «+ S U
({X(i)v Peonvert, X<t)7 CoT'(x), f(x)}).
end for

Determine number of epochs to repeat e = Nsl%“’“

Randomly shuffle S and repeat it e times (i.e., take the first e - |S| elements from repeated copies of S)
for t = 1 — Nyarp do
Sample X ~ Xyarp-
S+ SU({x,CoT(x), f(x)}).
end for
Randomly shuffle S and return S.

Figure 9: Pseudo-code for generating data mixture: For ablation studies, the algorithm might be
slightly modified.

* We set N = 10* and include an equal number of SIMPLE Text and HARD Text examples.
After training on (TW) and/or Align-, we continue with the main phase of supervision (e.g., Mix+ for
Align-Mix+).
D.2 Consecutive Table Readout

Given a table with n,. rows and n.. columns, a start cell (r, ¢5) and an end cell (7., c.), the model is
tasked to read all numbers between the start cell and end cell following the given rules.

e If rg < re, move left-to-right within each row:
(rsycs), (rsycs + 1), -+, (rsyme), (rs +1,1), (rs + 1,2), -+, (re, 1), (16, 2), -+, (Tey Ce)
e If r4 > 7., move right-to-left within each row:
(rs,¢s), (rs,cs—1), -+, (rs, 1), (rs—=1,n¢), (rs—=1,me—1), -+, (e, ne)s (Fese—1), -+, (Te, Ce)
o If ry = re, move from (7, c;) to (7, Ce)-

See example images in Figure 1.
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D.3 Table Readout

Given a table with n,. rows and n. columns (where n,., n. € [8,12]), a start cell (rs, ¢5), an end cell
(re, ce), and a path of cells P connecting the two cells (without any loops), the task is to read the
numbers on the path starting from the start cell and ending at the end cell. Each path is continuous
and is a concatenation of linear segments, where consecutive segments are separated by 90 degree
turns. On the SIMPLE task, each path contains 1 — 4 linear segments, following a spiral or sinusoidal
pattern, and has an average length of 12. On the HARD task, each path contains > 4 linear segments,
following a compositional spiral or sinusoidal pattern, and has an average length of 35. See example
images in Figures 32 and 33 and an example pseudo-code to create the spiral or sinusoidal patterns in
Algorithms 2 and 3.

Algorithm 3  Sinusoidal Path  Gen-
eration  that changes  directions as
right—down—left—up—right— ..., where

down and up movements contain only 2 cells

Algorithm 2 Spiral Path Generation that changes

directions as right—down—left—sup—sright—s Require: Table with n, rows and n. columns, start

cell, k linear segments

e Initial ngeg =0

¢ Initialize current-cell coordinates as start cell co-
ordinates

* Initialize current-direction to “right”

¢ Initialize Path= ®.

Require: Table with n, rows and n. columns, start
cell, k linear segments
e Initial ngeg =0
« Initialize current-cell coordinates as start cell co-

ordinates * Direction-Change = {“right” : “left”, “left” :
* Initialize current-direction to “right” “right”}
* Initialize Path= ®. * Coordinate-Update = {“right” : (0, 1), “left” :
* Direction-Change = {“right” : “down”, “down” : (0,—1)}

“left”, “left” : “up”, “up” : “right”}
* Coordinate-Update = {“right” : (0,1), “down” :
(17 0)7 “left” : (07 _1)7 “up” : (_17 0)}
while ns.y # k do
* Add current cell to Path.
¢ Compute temporary-cell by adding coordi-

while ns.y # k do
* Add current cell to Path.
¢ Compute temporary-cell by adding coordi-
nate update vector for current-direction from
Coordinate-Update to current-cell.
if temporary-cell is out of bounds then

nate update vector for current-direction from e If nsey = k — 1, break

Coordinate-Update to current-cell. Loop twice

 If temporary-cell is out of bounds, update . Increment column coordinate by 1 in
current-direction using Direction-Change and in- current-cell

crement Nseg. . Add current-cell to Path.

* Update current-cell by adding coordinate up-  Update current-direction using Direction-

date vector for current-direction from Coordinate- Change

Update to current-cell. * Increment n¢4 by 2.
end while end if
Return Path

» Update current-cell by adding coordinate up-
date vector for current-direction from Coordinate-
Update to current-cell.

end while

¢ Return Path

Figure 10: Pseudo-code for generating spiral and sinusoidal paths on Table Readout: For
simplicity, we present a single variant of each pattern. By permuting the Direction-Change map, the
presented variants can be modified to include other direction patterns.

D.4 Grid Navigation

Given a grid with n,. rows and n. columns (where n,., n. € [8,12]), a start cell (r5, ¢5), an end cell
(re, ce), and a set of objects and obstacles placed at various positions within the grid, the task is to
find a path from the start cell to the end cell that collects all specified objects while avoiding all
obstacles.

For each generated grid, we randomly select several objects from a set of 30 possibilities: heart,
crown, flag, star, flower, umbrella, plane, phone, spark, diamond, queen, hammer, club, gear, arrow,

21



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

o @ | D *x | @ |+
o B 4| W R
o | x> || A D
= || al&|H|H
qo|Clo|=|]]=

Figure 11: Details on Grid Navigation: Unicode characters used for specifying each object.

sun, bishop, note, coffee, anchor, cloud, pawn, castle, horse, infinity, moon, null, approx, integral,
product, and sum. Each chosen object is represented as an Unicode character, as shown in Figure 11.
Obstacles are chosen from the following five symbols: dot, cross, square, triangle, and plus. The
names and representations of all these symbols—both objects and obstacles—have been verified
using GPT-4o0.

The SIMPLE task requires the model to collect k € [1, 2] objects spread across the grid, while avoiding
a single kind of obstacle. The HARD task requires the model to collect k € [2, 5] objects spread across
the grid, while avoiding a composition of o € [3, 5] obstacles. The SIMPLE task requires ¢ € [10, 25]
DFS steps, while the HARD task requires ¢ € [25, 60] DFS steps.

See example images in Figures 34 and 35.

D.5 Visual Analogy

We create a multimodal visual analogy dataset based on the Procedurally Generated Matrices (PGM)
data proposed in Barrett et al. (2018) and Hill et al. (2019). Each instance consists of 2 examples
of three images, a query of two images, and four answer options. Each instance has a latent logical
relation r € {XOR,OR,AND,Progression} that will be applied to both the examples and the
query. There are also three latent domains dy, dz, dguery (for each example and the query, respec-
tively), chosen from {1ine_type, line_color, shape type, shape_color, shape_size,
shape_quantity, shape_position}. For each example i, the value of the domain d; in the
third image follows from applying the relation r to the values in the first two images. The task is to
choose one of the four options so that there exists a domain dguery Where applying the relation r along
dquery in the first two images of the query leads to the chosen option.

Note that following Hill et al. (2019), we exclude all spurious correlations of the examples and query
such that they follow exactly one pattern (d, r). Furthermore, we create three nontrivial confounding
options such that each of them, when combined with the query images, is consistent with exactly one
Pattern (doption,;a Toptioni) where Toption; 7é Tquery-

We also reserve a held-out set of combinations S = {(d,r)} that does not appear in the training
images. On the SIMPLE task, di = dy = dquery and the query pattern (dquery, Tquery) 1S never chosen
from the held-out set. On the HARD task, d1, da, dguery are distinct and both (d;, r;) and (dguery, Tquery)
are always chosen from the held-out set S.

See example images in Figures 36 and 37 and the complete list of all possible attribute values in
Table 2.

D.6 ISSUES DURING SYNTHETIC DATA CREATION

Here, we outline the primary issues that we faced while creating the synthetic datasets, which might
be of value to the general community.

D.6.1 Consecutive Table Readout, Table Readout
The primary issue that we faced during creation of these datasets were as follows:

* Resolution issues: For images, we found that representing numbers as their English
names (e.g. 9 represented as NINE) improved the OCR performance substantially. When
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Table 2: List of all possible attribute values for each domain in Visual Analogy:, We reproduce
Hill et al. (2019) with slight modifications. The diverse combination of the attribute values results
in high complexity of this task, testing various both OOD and compositional generalizability of the
model to a great extent.

{falling diagonal line, rising diagonal line, horizontal line, vertical line,
line type diamond lines, circular line, V-shape facing up, V-shape facing left
V-shape facing down, V-shape facing right}
line color {0 (black), 90 (dark grey), 135 (grey), 189 (light grey)}
shape type {circle, rectangle, triangle, pentagon, hexagon}
shape color {0 (black), 90 (dark grey), 135 (grey), 189 (light grey), 255 (white) }
shape size {20,27,34,41}
shape quantity {0,1,2,3,4,5,6,7,8,9}
shape position {(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)}

represented as numerics, the model often confused between pairs (7, 9), and (0, 8). These
issues were largely mitigated by replacing numerics with English names.

* Color: The model’s S2H generalization can vary drastically depending on the color used to
highlight the cells. On HARD (15-20) images, the performance of the model trained with
Image supervision can vary from 30% to 70% depending on which color (e.g. purple or
yellow) was used.

* CoT Trace: Our original CoT Trace simply outlined the numbers on the path, without any
mention of the row number, column number, row name, and column name of the cells in
the highlighted path. This resulted in poor performance of the model when trained with
images. We then switched to a more verbose CoT, where the model was provided with the
above details at each step of traversing the highlighted path, and the model’s performance
substantially improved.

For Consecutive Table Readout, we find that the verbose CoT trace shows S2H generalization,
and not the final solution that the model reports. Hence, we report our evaluation performance for
Consecutive Table Readout on the CoT trace.

D.6.2 Grid Navigation

The major issue that we faced in Grid Navigation was the design of chain-of-thought reasoning steps
to represent the Depth First Search trace. At multiple points, we found that current VLMs are fragile
to read image inputs, and our CoT trace needed to be very explicit to train the model effectively on
SIMPLE examples.

An initial version of Grid Navigation: In our first version, we designed an extremely simple
dataset, where the grids only had a source cell, a destination cell, and a few cells marked by red color
that represented obstacles.

* Models failed to train on image-input without verbose details in CoT: Our initial CoT
would only provide the following at each DFS step: “’[current cell]: [proposed next action]”
without iterating through all invalid actions considered before proposing this action. e.g., a
3-step DFS step would look as follows:

— (1, 1): right

- (1, 2): down

— (2, 2): backtrack
where we don’t explain why we need to ’backtrack” at (2, 2). This made the model learn
the following:

1. answer formatting

2. knowing how to retrieve the current location (row, col index) and the destination
location

3. knowing which action is preferred (the one that minimizes the distance towards desti-
nation)
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but the model never picked up on why we sometimes backtrack or sometimes take an action
that is not the most preferred. At generation, it would ignore all obstacles and try to take the
most preferred action.

On the other hand, we observed that the model could still recognize the reasoning for
“backtracking” on text input and could get 100% accuracy on SIMPLE text for Text
supervision, and also 100% accuracy on SIMPLE images for Mix supervision. Thus, for
cases where the model couldn’t train with image-input but could train with text input, Mix
was useful to train the model even for improving accuracy on in-domain examples. However,
this setting was slightly different from our S2H generalization view, and so we decided to
make the CoT more verbose.

In later attempts, we switched to a more verbose CoT: We iterate through all possible
actions at each state, giving reasons why that action is valid / invalid. e.g. a 3-step DFS trace
that starts from cell (1, 1) will look as follows

— Current cell: (1, 1): right would lead to (1, 2) which is available and not visited yet, so
we can move right.

— Current cell: (1, 2): down would lead to (2, 2) which is available and not visited yet, so
we can move down

— Current cell: (2, 2): right would lead to (2, 3) but it has an obstacle; down would lead
to (3, 2) but it has an obstacle; left would lead to (2, 1) but it has an obstacle; we have
no more action left, so backtrack

The model now gets almost perfect S2H generalization on both text / image no matter which
supervision we give. So we couldn’t really compare the performance of different types of
supervision. This was because once the model learns how to iterate through different actions
and determine its validity, length generalization was trivial.

Thus, we switched to our current version of Grid Navigation, where the task additionally involved
spatial reasoning of different combinations of objects and obstacles spread across the grid.

D.6.3 Visual Analogy

Here, the main challenge is to recreate the Procedurally Generated Matrices (PGM) dataset first intro-
duced in Hill et al. (2019) and Barrett et al. (2018), as the data generation code is not publicly available.
Therefore, we try our best to recreate the data set with slight adaptations. Specifically, we have 10
variations in the attribute values for 1ine_type, shape_quantity, and shape_position as
in the original paper. For the rest of attributes 1ine_color, shape_type, and shape_size, we
only include < 5 variations of attribute values. Meanwhile, as the original papers do not list all
the attribute values used in the original data generation, nor was the source code publicly available,
we decide upon the list of possible attribute values based on the consideration that they are clearly
differentiable from a human perspective.

The original papers claim that solving PGM puzzles is a challenging vision task. While we acknowl-
edge that our recreated version of the data reduces the complexity compared to the original version,
we note that our adaptations do not qualitatively change the challenging nature of this task. As
mentioned in Barrett et al. (2018), the challenge of effective knowledge composition comes mainly
from the necessity to represent abstract logical rules in discrete symbolic explanations. They show
that training with auxiliary information of meta-targets vectors that encode the relation, object, and
attribute types as a binary string significantly helps abstract reasoning performance, and in particular,
in terms of compositional generalization. Our text representations are inspired by the construction of
the meta-targets vectors with many tweaks to fit into the context length of the model. We observe
that by including the discrete representation of knowledge in the form of Image-via-Text supervision,
Mix and Mix+ show a much better S2H generalization on image input, which aligns with previous
observations in Barrett et al. (2018).
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E TRAINING DETAILS

We first prepare Eagle-X2-Llama3-8B, a variation of Eagle-X5-8B (Shi et al., 2024). We choose
Llama3-8B-Instruct (Dubey et al., 2024) as the LLM backbone for its good reasoning capability. We
choose CLIP-448 (Radford et al., 2021) and ConvNeXt (Liu et al., 2022b) as the visual encoders
because previous works show that combining the two leads to a significant improvement, whereas
any additional visual encoder leads to marginal improvement (Shi et al., 2024).

At the beginning of the project, the codebase released by Shi et al. (2024) was incomplete. To
incorporate the Llama3-8B model architecture and the tokenizer, we adapt the codebase from Tong
et al. (2024).

We use the same 595k pretraining data from Liu et al. (2023a) and 1.8M finetuning (visual instruction
tuning) data from Shi et al. (2024). We use Deepspeed ZeRO Stage 2 (Rasley et al., 2020) for a
Distributed Data Parallel (DDP) training on 8 GPUs on a HPC Cluster. We use the AdamW optimizer
with no weight decay (i.e., equivalent to Adam), a learning rate schedule with a linear warmup of
0.03 and cosine decay to zero. We truncate the trail of any text that exceeds the maximum number
of text tokens (2048). During pretraining, only the adapter is trained, whereas in all other stages of
training, all weights in the model are unfrozen.

With this Eagle-X2-Llama3-8B as the base model, we then continuously finetune it on different data
mixtures across our synthetic tasks. In Table 3, we report some key hyperparameters.

Table 3: Hyperparameter settings: For all values not reported here, we use the same values as in
Shi et al. (2024).

| Batch Size | LR | Epochs | Total # Data | Max # Text Tokens

Pretraining | 256 [ le3| 1 | 595k \ 20438
Finetuning \ 128 | 2e-5 | 1 | 1,809 | 2048
Finetuning on Task | 128 | 2e-5 | experiment-specific | 2048
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F EVALUATION DETAILS

We extend the VLMEvalKit (Duan et al., 2024) to evaluate the finetuned Eagle-X2-Llama3-8B on
held-out data. For generation, we apply greedy decoding and generate up to 2048 tokens.

F.1 EVALUATION ON Consecutive Table Readout AND Table Readout

CoT(x) visits each cell sequentially on the path, by giving the row and column index, row and
column names, and the value in the cell (see Figures 32 and 33). The final answer f(x) gives the list
of numbers again, and also sum of the numbers. We evaluate by simply checking whether the list
of numbers are correct. Furthermore, because this list of numbers can be extracted from both the
final answer and also the CoT, we report the best performance out of the two. On Consecutive Table
Readout, we find that we get the best performance on HARD examples by extracting the numbers
from CoT. On the other hand, for Table Readout, there isn’t much difference between extracting
numbers from CoT and extracting them from the final answer.

F.2 EVALUATION ON Grid Navigation

CoT(x) records the sequence of visited cells during a depth-first search (DFS) from the start to the
end cell. At each visited cell, the trace includes a full description of neighboring cells and whether
they are available for the next step. The DFS algorithm always prefers directions that minimize the
distance towards the nearest uncollected object, or the destination (if all objects are collected). If no
directions are possible, we backtrack to the most previously visited cell. The final answer f(x) is a
simplified sequence of directions (left, right, up, down) that connect the start and destination cells,
where all backtrack movements are removed from the stack (see Figures 34 and 35). We evaluate by
simulating the movements in the sequence returned by the model and checking if we arrive at the
destination after collecting all objects and avoiding obstacles.

F.3 EVALUATION ON Visual Analogy

CoT'(x) enumerates all the values of the tasks-relevant attributes for each panel with the conclusion
of whether there exists a logical pattern among those values for each attribute domain in the examples.
The trace includes a summary sentence of what (domain, relation) pattern the two examples demon-
strate. After that, the trace performs the same enumeration process for the query panels. It then looks
at the options and checks whether it is consistent with the desired relation given the attribute values
in the query panels. The final answer f(x) identifies the pattern in the form of (domain, relation) (e.g.
(line type, XOR)) for all examples and the query combined with each option, as well as the
final answer of the correct option. The evaluation checks whether the identified patterns and the final
answer are correct.
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G CONTINUED DISCUSSION FROM MAIN PAPER

G.1 COMPARISONS AT EQUAL UNIQUE SAMPLES FOR Consecutive Table Readout

In Figure 3, we compare Text, Image, and Mix under the same Ngpyp g, the total number of training
data. Note that Mix is trained for only a single epoch, while the reported results for Text and Image
are based on 2 and 3 epochs of training, respectively. We make these choices because, for Text, the
S2H generalization performance peaks at 2 epochs and then declines sharply, whereas for Image, the
S2H generalization performance sees a slight improvement between 2 and 3 epochs. As an illustrative
example, Figure 12 shows the performance of Text and Image when Ngi,,,, ., the number of unique
samples, is fixed at 4 x 10. Consequently, in Figure 13, we revisit the results of Figure 3, this time
explicitly indicating the number of unique samples Vg,  used.

HARD (15-20) —— HARD (25-30)

Text Supervision Image Supervision

=
o

S2H Accuracy
o
wu

*/*—\«

1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0

Number of epochs (N¢yp = 40k)

Figure 12: Ablation on the number of epochs on Consecutive Table Readout: We measure the
S2H generalization performance of Text on HARD-text and Image on HARD-image with multi-epoch
training, when NZ,. . is fixed as 4 x 10%. We observe that the generalization performance of Text
supervision peaks at 2 epoch training, after which it drastically drops, while the generalization
performance of Image supervision increases slightly between 2 and 3 epochs of training.

G.2 ADDITIONAL SETTING FOR AN S2H-GENERALIZING TASK

Here, we consider Pattern-Heldout Visual Analogy — a S2H-generalizing version of Visual Analogy
— by defining an alternative version of HARD examples. We keep the definition of SIMPLE examples
from Section 4 and Appendix D.5, but modify HARD instances to only measure analogical reasoning
on held-out reasoning patterns, without requiring the domain to be different across the in-context
examples.

That is, let dy, da, dquery denote the latent domains of the examples and the query, r denote the latent
logical relation to be applied on the latent domains, and S denote a held-out set of combinations
(d,r). The SIMPLE task contains puzzles where di = da = dquery and (dguery; Tquery) € S, Whereas
the HARD task contains puzzles where d; = dy = dquery and (dquery; Tquery) € S. Note that in Visual
Analogy, we had additionally required dy, da, dquery to be distinct for HARD puzzles.

In Table 4, we compare the S2H generalization performance of Text, Image, and Mix supervision on
Pattern-Heldout Visual Analogy. The model learns the task more easily on text than on image: while
the image S2H generalization for Image supervision is bounded by 32%, the text S2H generalization
for Text supervision can reach 49% when trained on 24 x 10* data.

On the other hand, Mix supervision can transfer the S2H generalization from text to image and
improve the performance on HARD-image (41% with 12 x 10? training data).

G.3 COMPARISON AT EQUAL FLOPS FOR NON S2H-GENERALIZING TASKS

Align-Mix+ uses an additional phase over Mix+, where training sequences from SIMPLE split are
utilized. In Figure 5, however, we compare Mix+ and Align-Mix+ only in terms of the amount of
training data used in the final phase. This raises a potential concern that Align-Mix+ might only appear
stronger because it involves more total training FLOPs. To address this, Figure 14 presents a revised
comparison, plotting Align-Mix+ against Mix+ in terms of the total training data employed across all
stages. Under these conditions, Align-Mix+ still consistently outperforms Mix+.

27



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

—k— Text —e— Image —®— Mix
HARD-text (15-20) HARD-image (15-20)*

=
o

S2H Accuracy
o
wv

3

HARD-text (25-30) HARD-image (25-30)

*\\ /,/
| \///' I

2 4 8 16 32 64 2 4 8 16 32 64
Némpie (x103)

=
o

S2H Accuracy
o
(9.}

Figure 13: Results on Consecutive Table Readout based on the number of unique samples Ngjyp i
Our observations from Section 3 hold true even when different types of supervision are compared at

the same value N}, - instead of Ngvpre-

Table 4: Results on Pattern-Heldout Visual Analogy: S2H generalization for Text, Image, and
Mix supervision are reported on HARD-text and HARD-image examples after varying the number of
training data in each strategy. S2H generalization on HARD-images under Image supervision peaks
at 36%, while for HARD-text examples under Text supervision, it reaches 45.6% after 24 x 10*
training examples. Leveraging the better performance on HARD-text, Mix supervision improves S2H
generalization on HARD-images to 41% with 12 x 10* examples.

\ S2H accuracy on HARD-text \ S2H accuracy on HARD-image
Number of training data Number of training data
Supervision | 30k 60k 120k 240k | 30k 60k 120k 240k

Text - 37.2  32.6 45.6 0.0 0.0 0.0 0.0
Image 0.0 0.0 0.0 0.0 - 27.0 35.6 34.0
Mix 31.2 424 49.0 39.8 24.6 35.0 41.0 39.6
—e— Mix+ Align-Mix+
1.0 Table Readout Grid Navigation Visual Analogy
> ox—e— ¥
— /
Sos5 o=
; / 0———.\.
) /
0.0 O——»—@ o—x—e o—x—"
0 3 6 12 24 05 1.5 3 6 12 0 3 6 12 24

Total Number of Training Data (across all stages) (x10%)

Figure 14: Results on non S2H-generalizing tasks based on the total number of training data:
Align-Mix+ still outperforms Mix+ when compared at the same amount of total training data (including

alignment stage).

G.4 TRANSFERRING REASONING FROM IMAGE TO TEXT

In the main experiments, we tested whether S2H generalization can transfer from text inputs to image
inputs. In Table 5, we observe that the transfer can happen in the opposite direction as well. After
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Table 5: Ablation on transferring reasoning from image to text: We modify Mix+ to include
HARD Image examples in training, instead of HARD Text examples, while keeping the same SIMPLE
Mix supervision. Evaluation is now performed on HARD-text input. We observe that improving
generalization performance on HARD-image input strongly transfers to HARD-text input.

\ Table Readout Visual Analogy

Number of HARD-image HARD-text HARD-image HARD-text
training examples | (Included in training) (Excluded in training) | (Included in training) (Excluded in training)
3 x 10* 72.0 34.0 86.8 81.4

6 x 104 98.2 70.4 97.8 80.0

12 x 10* 99.4 76.4 94.6 86.4

24 x 10* 99.8 86.0 99.6 85.6

~w- Text  —A— Mix —8— (TW) Mix

Align-Mix+ —e— (TW) Align-Mix+

Consecutive Table Readout Table Readout Visual Analogy
. %
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Figure 15: Effect of text warm-up pretraining: Text warm-up enhances image S2H generalization
across tasks. (TW) Mix closes the text-image generalization gap on the HARD (25-30) task for
Consecutive Table Readout, while (TW) Align-Mix+ outperforms Align-Mix+ for Visual Analogy.

24 x 10* training samples that now includes training data from HARD Image instead of HARD Text,
a modified version of Mix+ achieves S2H generalization accuracy of 86.0% on HARD-text input on
Table Readout and 85.6% on HARD-text input on Visual Analogy. As a comparison, when trained
with the same number of data, Mix+ shows S2H generalization accuracy of 73.2% on HARD-image
input on Table Readout and 35.4% on HARD-image input on Visual Analogy.

G.5 TEXT WARM-UP PRETRAINING

In Section 4, we observe that Mix fails to improve image generalization when the LLM backbone
does not show strong generalization on text modality. Furthermore, models trained with Mix+ show
significantly better image generalization when the text reasoning capability of the LLM backbone
is strengthened by fine-tuning on HARD Text examples. Hence, one may expect that the reasoning
capability of the LLM backbone on HARD examples is a crucial factor for the reasoning capability
to transfer to the image inputs. In this section, we investigate the effect of text generalization of the
LLM backbone. Specifically, we simulate different levels of text reasoning ability by including a
pretraining stage of the model on SIMPLE and HARD Text examples. We call this text-only training
(during which only the LLM backbone is updated) before full finetuning of the VLM model text
warm-up pretraining (TW). This stage of training only uses a small set of 10* text examples (equal
mix of SIMPLE and HARD for non S2H-generalizable tasks, just SIMPLE examples for Consecutive
Table Readout). Our results are shown in Figure 15.

We observe that the additional TW training further boosts the image generalization. In particular,
(TW) Mix closes the modality imbalance, reflected by the image-text generalization gap on the HARD
(25-30) task for Consecutive Table Readout. On Visual Analogy, (TW) Align-Mix+ outperforms
Align-Mix+ by 15%p with 12 x 10* training data. These results suggest that future stronger LLM
backbone can further close the generalization gap between text and image modalities using our
proposed strategy.
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G.6 UTILITY OF OUR SYNTHETIC DATASETS FOR EXISTING EVALUATION BENCHMARKS

Existing evaluation benchmarks test the ability of VLMs to perform OCR, chart interpretation, image
reasoning, and caption generation. However, they primarily test the ability to generate short answers
on a given question. On the other hand, our created tasks evaluate long form reasoning generation
from models. As such, our fine-tuned models quickly forget to return short responses during training
and struggle on existing benchmarks.

Nonetheless, we assess the utility of our synthetic datasets to existing benchmarks by including them
during visual instruction tuning. That is, we prepare two different versions of an alternate base model
Eagle+Synthetic-X2-Llama-8B: 1) where 30/ 60 / 120k of our Image training mixture (equal mix
of SIMPLE and HARD) has been mixed in with the 1.8M finetuning data; or where 240k of our Mix+
training mixture (80k for each synthetic task) has been mixed in with the 1.8M finetuning data.

Results in Table 6 demonstrate consistent improvements across tasks such as OCR, chart interpretation,
and multimodal understanding. However, a decline in performance is also observed on binary
classification (yes/no response) benchmarks, such as MME. These findings indicate that the proposed
synthetic datasets can be valuable for future research. Further investigation is necessary to determine
how long reasoning datasets like our proposed tasks can be best leveraged to enhance general
reasoning capabilities (e.g. Gao et al. (2024)).

Table 6: Utility of our synthetic data: We compare the benchmark results of Eagle-X2-Llama-8B,
solely instruction tuned on Eagle-1.8M dataset, and Eagle+Synthetic-X2-Llama-8B, instruction tuned
on a mixture of Eagle-1.8M and our synthetic data mixture. Including our data can improve model’s
performance on OCR and chart reasoning benchmarks, but may hurt performance on benchmarks
where models need to output a yes/no answer (marked with *) or a short phrase (marked with **). {:
performance reported on validation set.

\ Visual Instruction Tuning Dataset

Evaluati Eagle-1.8M Eagle-1.8M
BZi culflnig?k Eagle-1.8M | + SIMPLE Image and HARD Image | + Mix+ mixture
(30k)  (60k) (120k) (240k)
MMMU7 354 382 38.8 38.7 36.3
MME* 1529 1242 1377 1376 1364
MMBench 67.6 69.2 684 67.5 69.2
POPE* 86.6 88.7 889 87.6 87.5
TextVQA** 66.8 66.5  66.9 66.8 65.8
OCR(Bench) 473 509 504 47.0 48.2
ChartQA 69.6 71.6  69.8 70.5 69.4
CharXiv-Reasoningf 16.8 164 165 17.0 17.2
CharXiv-Descriptivef 30.7 283  35.8 31.1 34.4

Reported benchmarks: Here is a summary of the reported evaluation benchmarks.

e MMMU (Yue et al., 2024): Evaluates on multi-discipline tasks measuring college-level
subject knowledge and reasoning.

* MME (Fu et al., 2023): Evaluates both perception and cognition abilities across 14 subtasks
with yes/no answers.

* MMBench (Liu et al., 2025): Evaluates on VQA, which includes both multiple-choice and
free-form answers.

* POPE (Li et al., 2023): Evaluates object hallucination with yes/no answers.

* TextVQA (Singh et al., 2019): Evaluates understanding and reading text within images with
short-phrase answers.

* OCR(Bench) (Liu et al., 2024b): Evaluates on Character Recognition (OCR) capabilities
across 29 datasets covering text / handwritten mathematical expression recognition, key
information extraction, and scene text / document VQA.
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* CharXiv (Wang et al., 2024c): Evaluates on chart understanding based on 2323 charts from
arXiv papers, paired with descriptive and reasoning questions, covering 8 major academic
subjects.
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H CONTINUED DISCUSSION ON GRADIENT ALIGNMENT

Augmentation in notation: Suppose the current model parameters are given by 6. We will slightly
augment our notation to include the model’s current parameters. At model parameter 6, we will use

l(1;5)(x; 0) to denote the loss on Image example for data x and loss lgfé) (0) = Exe X l(1;5) (X3 0).
Then, gsivpLe(6) and guarp (#) denote average gradients on Xgpyp e and Xyarp, i-€.

gSIMPLE(e) = ExeXSIMPLEVl(I;S) (x; e)a gHARD(G) = EXEXHARDVZ(I;S) (x; 9)
Recall that the gradient alignment score from Equation (3) is given by

(8svrre(0), Buarn (0)) / (8uarn (0), Buarn () (6)
In the following theorem, we show that the gradient alignment score quantifies the amount of loss
that we can decrease in expectation on HARD Image examples by taking gradients on SIMPLE Image
examples, relative to taking gradients on HARD Image examples.
Theorem H.1. Suppose for a model fo with parameter 0, loss l(1,s) is Lipschitz and has bounded
gradient norm on X around parameters 6, with ||guarp(0)||2 # 0. The following holds true for
expected drop in lgfk)s) with SGD when using a random training sample from the SIMPLE fask,
compared to using a random training sample from the HARD task:

E Xy [lﬂ)(@ —1g) — 15539)(9)]
. = .5 (x5
hi% g Ui5) ) - () = <gHARD(9)> gSlMPLE(9)>/<gHARD (9)7 gHARD(9)>-
K E~ XE€ Xaro [1(1;5)(9 —ng) — l(I;S)(G)]
g::Vl(I;s)(x;O)

The proof follows from standard convergence analysis of gradient descent algorithm (Nesterov, 2018).

H.1 PROOF OF THEOREM H.1

Proof. Say g = Vl(1,5)(x;6). By Taylor’s theorem, we have the following for a small enough
learning rate 7,

H H H H
ik (0 = ng) — 157 (0) = —n(VITL (6),8) + n*gT (VQZE[;?Q)(Q - nog)) g
for some 19 € [0, 7). We first note that Vlgf;) (0) = guarn(0). Next, since the loss is assumed to be
Lipschitz,
’gT (V2lgff§) (6 — nog)) g‘ < Llgll3
where L is the Lipschitz constant for the loss. Since the gradient norms are also assumed to be
bounded, we have

{714 (0 = ng) — 111, (0) = —n{gnawn(0), 8) + O?),
First assume x € X p p. By taking expectation over X,
E e, Uik (@ = ng) = 1113 (0)] = =1 (8uwo(0), Exc i, Viizis) (x:60)) + OGP)
g:=Vli(1;5)(x;0)
= —1 (@naro (), simpre(0)) + 0(772)
Similarly, assume g = V(.5 (x; #) where X € Xjrp. By taking expectation over X,

E XE Xjjarp {18—2‘) (0 - ng) - lE?.)S') (0)j| =1 <gHARD(0)7 EXGXHARDVZ(I;S) (X7 9)> + 0(772)

g:=Vli(1,s)(x;0)
=N <gHARD(9)7 gHARD(9)> + 0(772)

Therefore, we have

E XE XsivpLe Z(H) (9 - ’I’]g) — Z(H) (9)
&:=Viu;s) (%:0) |: (1:5) (138) } N (8uaro (0), BsivpLe (0)) + 0(772) _ (&narn(0), 8svere () + O(n)

E xvelXHARD( ” [lg;[?;)(@ —ng) — lgf;)(e)} = (gnaro (0), Buarn (0)) + O(1%)  (@uarn(0): 8uaro () + O(n)
g:=Vi(r;5)(X;

Note that gyarp(#) and gsiupLe(f) do not depend on the value of 7). Furthermore, by assumption,
lgarn (0)]]2 # 0. We conclude by taking 7 — 0 on both sides of the equation above. O
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Figure 16: Analysis of gradients on Table Readout (additional plots for Figure 8): (Left) Gradi-
ent Alignment Score (Equation (3)); (Right) Average Gradient Norm on SIMPLE Image examples
Exe Agues | VI(1:5)(X)]|2. Align-Mix+ has higher gradient alignment score in the initial phases of
training, where it also has higher gradient norm. Mix+ shows higher gradient alignment score than
Mix during the course of training.
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Figure 17: Analysis of gradients on Table Readout (replacing gradient alignment score from
Figures 8 and 16 with gradient cosine similarity): (Left) Average Gradient Norm on SIMPLE
Image examples (Exc x,y,.. || VI(1;5)(X)||2) vs. Gradient Cosine Similarity (Equation (7)) for different
training checkpoints; (Middle) Gradient Cosine Similarity; (Right) Average Gradient Norm. Similar
results hold.

H.2 ADDITIONAL MEASURE 1: GRADIENT COSINE SIMILARITY

We additionally define the gradient cosine similarity score as the cosine similarity of gradients from
XsivpLe and Xyagp:

SIMPLE 0 y SHARD 9
(goris (0), Busso (0)) -

\/<gHARD (9); ZHARD (0)> : <gSIMPLE(0)7 gSIMPLE(0)>

Note that this measure ignores the norm of the gradients on Xspypi e that the model uses during
training. Hence, this measure is not an entirely faithful measure on the alignment of the training
updates to the loss on HARD Image examples. Figure 17 shows the gradient cosine similarity score
across training strategies for Table Readout, which follows a similar pattern as the gradient alignment
score in Figure 16.

Gradient Cosine Similarity:

H.3 ADDITIONAL MEASURE 2: ADAM UPDATE ALIGNMENT
The gradient alignment score we defined earlier does not account for the fact that we use Adam
optimizer (Kingma & Ba, 2017) during our experiments.

Brief definition of Adam: The Adam optimizer maintains two additional states, each representing
the running average of the gradients and their squares during training. If m, and v; denote the two
states, then the update rule at training step ¢ with a gradient g, and learning rate 7 is given by

(1—p51)ge + Bimy_y
\/(1 — [2)8t © gt + Pavi_1 + €
my (1 —f1)g + fimy_q, v (1= B2)g © g+ Bavig

0+ 0 —nh(gy), where h(g;) =
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Here, (31, B2, €) are hyperparameters for the Adam optimizer and are set at (0.9,0.999, 10~8).

Adam Update Alignment: A true measure of alignment between SIMPLE and HARD training would
be to compare h(-), the update vector under the Adam optimizer. However, that requires saving the
Adam optimizer states throughout training. For storage efficiency purposes'®, we propose an alternate
approximate measure called the Adam update alignment score. We compute the following two
quantities for model fy with parameters 6:

m(@) = EXEXS[MPLE [VZ(I;S) (X; 9)]
V(0) := Excxpme [ Vins) (x:0) © Vir.g)(x;0)]

m and v are proxy measures for the Adam optimizer states. Then, we measure the alignment between
gradients for Xyarp and XgypLe @S

E XE XsvpLe <h(g) » BHARD (9)>
g:=Vl(1.s)(x;0)

XE Xyuarp <h(g), SHARD (0»

&:=Vli(,s)(x;0)
(1—B1)g + Bim(0)
VI = B2)g O g+ Bav(f) +e
(

Intuitively, this measures how much the loss [ (ﬁ;) can be reduced in expectation by taking a gradient
update step with Adam using SIMPLE Image examples, compared to taking a gradient update step
with HARD Image examples, while maintaining the current Adam optimizer states. This can be
formalized in the following theorem.

Adam Update Alignment Score: ®)

where h(g) = for any vector g

Theorem H.2. Suppose for a model fo with parameter 0, loss l(1,s) is Lipschitz and has bounded
gradient norm on X around parameters 0, with ||guarp (6)||2 # 0. Consider a modified Adam update
with learning rate 1 with an arbitrary gradient g, as follows:

0+ 0 —nh(g)
(1 —p1)g + Bim(0) .
VI =B)gog+Bav(d) +e

where h(g) =

The following holds true for expected drop inl 8{;) with modified Adam update when using a random

training sample from the SIMPLE task, compared to using a random training sample from the HARD
task:

H H
E XVEI-XSIMPL(E 0) [lgl,é) (0 - nh(g)) - ZEI“%') (0):| ]E xvelXSIMPI.{. 0) <h(g)7 ZHARD (0)>
lim g:=Vi(1;5)X; _ g:=Vli(1;5)X;
n—0 E l(H) 0 — h o —_ l(H) 0 E XE Xuarn <h‘(g)a SHARD (0)>
gt IO @) -1 0)]  F g,

The proof is similar to that of Theorem H.1.

H.4 EXPERIMENTAL RESULTS

In Figure 18, we present the analysis of gradients for different types of supervision on Consecutive
Table Readout. Similar to the behavior of gradient alignment score in Figure 7, we observe that
when measured against norm of gradients on SIMPLE Image examples, Mix achieves a higher Adam
update alignment score than both Text+Image and Image. This shows that Image-via-Text supervision
improves the alignment between SIMPLE and HARD Image gradients, when taking Adam gradient
updates into account.

Similarly, for Table Readout in Figure 19, Mix+ has a larger Adam update alignment during training.
Align-Mix+ further improves the Adam update alignment score when gradient norms are large during
training.

1'Remark: retrieving the actual Adam optimizer states requires an additional storage of 138GB per checkpoint.
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Figure 18: Analysis of gradients on Consecutive Table Readout (replacing gradient alignment
score from Figure 7 with Adam update alignment score): (Left) Average Gradient Norm on
SIMPLE Image examples (Exe xy,,,.. | VI(1:5)(X)[|2) vs. Adam Update Alignment Score (Equation (8))

for different training checkpoints; (Right) Average Loss on solution given HARD image (I Ef;)) during
training. Similar results hold.
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Figure 19: Analysis of gradients on Table Readout (replacing gradient alignment score from
Figures 8 and 16 with Adam update alignment score): (Left) Average Gradient Norm on SIMPLE
Image examples (Exc x,,.. [|VI1;5)(X)|l2) vs. Adam Update Alignment Score (Equation (8)) for
different training checkpoints; (Middle) Adam Update Alignment Score; (Right) Average Gradient
Norm. Similar results hold.
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Figure 20: Analysis of evaluation losses on HARD examples on Table Readout: (Left) HARD
image-to-text conversion loss (ZEZZT) (Eq.4)); (Middle) loss on solution given HARD image and
text (IE?;#T; ) (Eq.5)); (Right) loss on solution given HARD image (lg{;) (Eq.2)). Mix matches Mix+
in lgf#;T), showing that training on SIMPLE Image-via-Text examples is sufficient for HARD image-
to-text conversion. Mix performs worse in [ E?;T )’ showing the need for HARD Text examples for

generalization. Align-Mix+ starts with initial smaller Zg;)&;:r) and lgf;&T; s) losses, which helps the

model achieve lower ZE 7 3¢T- 9) loss than even Image-via-Text+, that reflects in lower lE 1-3?) loss.
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Figure 21: Analysis of evaluation losses (repeating Figure 20 for Visual Analogy): (Left) HARD
image-to-text conversion loss (lEi;'T) (Eq.4)); (Middle) loss on solution given HARD image and text

(H)

( (1,£T:5) (Eq.5)); (Right) loss on solution given HARD image (léf;) (Eq.2)). Similar results hold.
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I ADDITIONAL ABLATIONS

I.1 PERFORMANCE OF OTHER MULTIMODAL MODELS

In Table 7, we present the performance of three closed source and two open source multimodal
models on our three non S2H-generalizing tasks. Since we do not train these models, the format of
the outputs is more flexible. For convenience, we propose alternative metrics to extract and evaluate
on the models’ predictions. For Table Readout, we instead evaluate with the final answer (sum of the
sequence of numbers)''. For Grid Navigation, we evaluate with the same metric as in the main part of
the paper — whether the proposed path can move from the start cell to the end without running into
obstacles. For Visual Analogy, we evaluate with just the final option, which is a more lenient metric
than the one suggested in the main part of the paper. Note that a random choice baseline should get
25%.

Table 7: Performance of other multimodal models: For convenience, we evaluate the models on a
slightly different metric.

| Table Readout || Grid Navigation || Visual Analogy

Models | SIMPLE HARD || SIMPLE HARD || SIMPLE HARD
Claude-3.5 Sonnet 30.0 0.0 0.0 0.0 35.0 29.8
GPT-40 19.0 0.0 0.0 0.0 19.8 18.4
OpenAl ol 29.0 - 0.0 - 30.6 -
Llama3.2-11B-Vision-Instruct 4.0 0.0 0.0 0.0 16.2 17.8
Pixtral-12B (Agrawal et al., 2024) 9.0 0.2 0.0 0.0 24.6 21.2

1.2 ABLATION OF THE Mix+ SUPERVISION

The dataset composition of the Mix+ supervision consists of three types of supervision in the SIMPLE
task: Text, Image, and Image-via-Text. In this section, we ablate on the importance of each component
of the data mixture in the training of Mix+, (TW) Mix+, and (TW) Align-Mix+. In Figure 22, we
report the S2H generalization performance on image when the SIMPLE Mix supervision is replaced
with a varying data composition.

In single-stage training (no text warm-up or alignment), Image-via-Text is the key component of
success, as evidenced by the strong performance of Image-via-Text+ supervision. As noted in
Section 4, Mix+ can match the performance by explicitly prompting the resulting model to convert
the image first, which comes at a cost of around 1.7x generated tokens at inference time.

In multi-stage training (either (TW) or (TW) Align-), the benefits of Mix+ are more significant.
Specifically, among all other types of supervision with text warm-up, (TW) Mix+ is able to outperform
the others by at least 1.7x, while retaining efficient inference costs, unlike (TW) Image-via-Text+.
Among all types of supervision with text warm-up and alignment, (TW) Align-Mix+ achieves the
highest performance.

1.3 ABLATION OF THE REASONING ALIGNMENT PHASE (Align-)

We perform two ablations for the first phase of the Align-Mix+ supervision. In Figure 23, we report the
S2H generalization generalization performance on image of models trained with a varying amount of
data in the first phase of Align-Mix+, with the amount of Mix+ data fixed in the second phase. We
don’t observe a monotonic improvement in performance when increasing the amount of data in the
first phase. In Table 8, we report the S2H generalization generalization performance on image of
models trained with a varying data composition in the first phase of Align-Mix+. Our choice of Text
and Image-via-Text from the main section gives the best performance on average on Table Readout
and Visual Analogy.

""The closed source models have access to tool-use, so in theory, this should be an equivalent, if not more
lenient, metric.
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Figure 22: Ablation on the SIMPLE data composition of Mix+ on Visual Analogy: Instead of Mix,
we use different types of SIMPLE supervision in (Left) Mix+; (Middle) (TW) Mix+; (Right) (TW)
Align-Mix+. The main phase (Mix+) uses 12 x 10* training data.

0.75 . SIMPLE data composition Accuracy
> Corresponding Name "5 1o 1 (Align-Mix+)  (after phase 2)

© Table Readout

3 0.70 Align- Text, Image-via-Text 0.76

&J Text+Image Text, Image 0.52

T Image-via-Text Image-via-Text 0.77

~N Mix Text, Image, Image-via-Text 0.74
v 0.65 Visual Analogy

Align- Text, Image-via-Text 0.66

0 5 10 2030 Text+Image Text, Image 0.19

Number of Training Data (x 103 Image-via-Text Image-via-Text 0.51

Mix Text, Image, Image-via-Text 0.46

Figure 23: Ablation on the amount Table 8: Ablation on the SIMPLE data composition
of data for the alignment phase of for the alignment phase of Align-Mix+: Amount of
Align-Mix+ on Table Readout: Second data for the alignment phase is fixed at 10*. Second
phase (Mix+) uses 12 x 10* training data. phase (Mix+) uses 12 x 10* training data. Performance

We don’t observe a monotonic improve- is reported on a validation set with 100 HARD-image
ment in generalization performance with examples. Our composition of Text and Image-via-Text
increasing number of training samples on the SIMPLE task performs best on average on Table
in the first phase. Readout and Visual Analogy.

1.4 ABLATION OF THE TEXT WARM-UP PRETRAINING PHASE (TW):

We ablate on the effect of the training data size during the text warm-up. In particular, we are interested
in whether models with better reasoning capability on text can achieve better image generalization.
To do so, we vary the number of training data used for text warm-up between {1,2,3} x 10* and
plot the performance of the warmed-up LLM on HARD-text examples against the performance of
the final trained model on HARD-image examples. We report the performance on Visual Analogy
in Figure 24. We observe that model’s text performance improves with more training data being
used for the text warm-up as expected. However, there is no clear linear correlation between the text
capability of the model checkpoint after the warm-up training stage and image S2H generalization of
the final model. Specifically, a model with 3 x 10* warm-up performs the best for the (TW) Mix+
supervision, while a 10* warm-up works the best with the (TW) Align-Mix+ supervision. Meanwhile,
we observe that (TW) Align-Mix+ supervision can universally achieve better S2H generalization on
image than the (TW) Mix+ across all data scales. We conclude that an improved text capability by
itself is insufficient to guarantee good transfer to image modality. We expect future VLMs with both
stronger LLM backbone and better modality alignment can further leverage the text performance and
transfer it to images.
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Figure 24: Ablation on the amount of data for the text warm-up phase on Visual Analogy: Second
phase (Mix+) uses 12 x 10* training data. Using more data for the warm-up stage results in a stronger
LLM backbone with better HARD-text performance (gray dashed line), but does not necessarily
lead to better image S2H generalization of the final model trained with our proposed strategy. This
suggests that a stronger text capability is not the only factor that induces S2H generalization on
image.

1.5 REQUIREMENT OF TEXT REPRESENTATION

One potential limitation of our proposed training strategies is the requirement of a text representation
corresponding to the image. In Consecutive Table Readout, Table Readout, and Grid Navigation, we
use the LaTeX code of the table or grid, which is considered to be perfectly aligned with the image.
In reality, it may be challenging to find an exactly equivalent text description or representation of
a real-world image, as many minute visual features cannot be captured by language. We show that
our proposed training strategy does not require perfect alignment between the text and the image
representation to work. For Visual Analogy experiments, the text description of the puzzle in the
image is lossy: it only enumerates unique values of all task-relevant attributes without encoding the
object to which each corresponds, so one cannot recover the original image given the description
(see examples in Figures 36 and 37). Models trained with our proposed training strategies (Mix+,
Align-Mix+, (TW) Align-Mix+) all demonstrate significant improvements in image generalization
(Figure 6), testifying that our methods work with lossy text representation.

Lossless text representation for Visual Analogy: We additionally conduct experiments where the
text representation of the puzzle in the image is a lossless representation. We represent the panels in
the puzzle as a code defining each object as a set of attributes. Each geometric object is represented
by the values its 5 attributes: {shape type, shape_color, shape_size, shape_quantity,
shape_position}, while lines are defined by their 2 attributes: {1ine_type, line_color}.
In order to fit to the context length of the VLM, we describe each object in shorthand notations.
For example, for a panel in the puxxle that contains a circle and 2 rectangles, with attribute values
{45 (gray-scale), 42 (pixels), 1, top-left} and {{0, 90}, {21, 21}, 2, top-right, bottom-left}, we will
represent the panel as

CIR-45-42-TL;RECT-0-21-TR;RECT-90-21-BL
We give all details on how to parse the shorthand codes in the prompt. On the other hand, for the
same example, the (Lossy) text representation would have been

type: circle, rectangle

color: 0,90

size: 21,42

quantity: 1,2

position: top-left, top-right, bottom-left
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Figure 25: Ablation on lossy vs. lossless Visual Analogy: We measure the image S2H generalization
of different types of supervision for two different versions of text representation for Visual Analogy.
Models can perform better on Lossless Visual Analogy with Mix+. However, the trend can change
with Align-Mix+ and (TW) Align-Mix+.

This substantially reduces the context length on average on our training dataset, and further removes
the necessity of parsing a code. However, this isn’t an exact representation of the image of the puzzle.

Performance on lossy and lossless Visual Analogy tasks: In Figure 25, we compare Mix+,
Align-Mix+, and (TW) Align-Mix+ for lossless and lossy Visual Analogy tasks at 12 x 10* training
examples in the final phase (Mix+). Our observations reveal that a lossless text representation
enhances S2H generalization performance on images for Mix+. However, for Align-Mix+ and (TW)
Align-Mix+, the lossy text representation leads to better S2H generalization performance on images.
This discrepancy could be attributed to the complexity of the shorthand code in the lossless text
representation, which requires additional parsing. We did not investigate this phenomenon further.

1.6 EXPLICIT AND IMPLICIT TEXT CONVERSION

In Appendix 1.2, we find that explicit text conversion (Image-via-Text) is the key component in the
data composition of the Mix+ supervision. At inference time, however, models trained with Mix+
reason directly on HARD images, without explicit text conversion. In Table 9, we observe that the
trained models can still perform reasoning with explicit text conversion and that the conversion ability
helps it reason.

Mix+ models can convert image to text when prompted. If only an image input x(¥) is provided,
Mix+ models will always directly predict CoT'(x) and f(x), never converting image to text (under
greedy decoding). However, since the prompts used in the Image and Image-via-Text examples are
the same, we can induce explicit text conversion in the final trained model by additionally providing
the first word “Convert” of P.onyert. We find that all trained model are always able to continue
with explicit text conversion — they will generate the rest of P+ and an attempted conversion
x() before C'oT (x). The conversion accuracy is around 50% on Visual Analogy and is almost 100%
on Table Readout.

Explicit text conversion generally helps the model to reason on image data. Noticeably, the
Mix+ (240k) model improves S2H generalization accuracy from 73.2% to 96.6% with almost perfect
text conversion accuracy of 99.2% on Table Readout. On Visual Analogy, the Mix+ (120k) model
improves S2H generalization accuracy from 35.4% to 51.8% with a text conversion accuracy of 47%.
The benefit of explicit text conversion gradually diminishes with multi-stage training strategies.

We also observe a slight drop in performance with prompted text conversion for models trained with
(TW) Align-Mix+ on Visual Analogy, which corresponds to a minor decline in reasoning performance
with explicit text conversion. This suggests that the text warm-up training and alignment phase enable
the model to close the gap between direct reasoning and reasoning with explicit text conversion,
where the model learns to rely more equally on both text and image modalities, and doesn’t require
explicit text conversion for improved generalization performance.

Models are robust against potential errors in the prompted text conversion. For models that

are prompted to perform text conversion, we examine any negative side effects of this step. When the
model does not correctly convert the image to its text format, we investigate whether to what extent
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Table 9: Ablation on explicitly prompting for text conversion: When models are additionally
prompted with “Convert,”’ they exhibit the retained ability of text conversion. The conversion
accuracy is near perfect on Table Readout. The S2H generalization performance with an additional
prompt “Convert” (Prompted) improves from direct inference (Direct). The improvement margin
diminishes with stronger Direct performance. All evaluations are on 500 HARD-image examples.

Task | Supervision (Number of Training Data) | Direct Prompted | Conversion acc
Mix+ (240k) 73.2 96.6 99.2

Table Readout | Align-Mix+ (240Kk) 87.6 98.0 100.0
(TW) Align-Mix+ (240k) 86.2 97.8 99.4

Visual Analogy | (TW) Mix+ (120k) 55.2 62.8 49.0

(TW) Align-Mix+ (120k) 73.6 70.2 49.6

Mix+ (120k) 354 51.8 47.0

the model’s reasoning can be affected by the additional noises introduced by the text conversion step.
Interestingly, we find that our final trained models are generally robust to such noises. On Visual
Analogy, we find that the models trained with Mix+, (TW) Mix+, and (TW) Align-Mix+ are still able
to arrive at the correct reasoning solutions with accuracy 44.3%, 35.4%, and 63.1% respectively on
evaluation examples where the trained models make a mistake in text conversion.

1.7 EXPLICIT AND IMPLICIT COT

We use chain-of-thought (CoT) as a technique to boost the model’s reasoning ability in all our
experiments. In this section, we explore the role of CoT in our proposed strategies, as well as the
possibility of transferring the reasoning capability from text to image modality without CoT. In
Table 10, we report our observations on Visual Analogy. We note that similar observations hold for
Consecutive Table Readout and Table Readout.

1.7.1 REMOVING COT COMPLETELY

We first consider completely removing CoT from Mix+ and observe the drop in performance measured
by image S2H generalization. We experiment with Mix+, (TW) Mix+, and (TW) Align - Mix+
supervision, in which we completely remove CoT from the last phase of training which has the Mix+
supervision, while preserving the full CoT in the text warm-up (TW) and/or reasoning alignment
(Align-) phases.

Model does not learn when CoT is completely removed: When CoT is completely removed
from Mix+, performance drops to almost 0% for all three types of supervision. We manually inspect
the model’s output and find that the generated reasoning on HARD-image inputs is identical to the
expected behavior for SIMPLE instances, which indicates that the reasoning capability on HARD
instances failed completely to transfer from the text to image modality.

1.7.2 PROGRESSIVELY INTERNALIZING COT THROUGHOUT TRAINING

The failure above can be expected: for Mix+ supervision, CoT may serve as a crucial technique to
elicit good reasoning behaviors while for (TW) Mix+ and (TW) Align-Mix+, the transition from
training with full CoT to training without CoT can be too drastic for the model to adapt. Therefore, we
consider a milder approach that trains the model to internalize reasoning by progressively removing
CoT from the training (Deng et al., 2024). We train on the first 30% of 12 x 10* Mix+ examples with
full CoT, the next 40% of examples with progressively less CoT'?, and the last 30% of examples with
no CoT.

Internalizing CoT during the Mix+ phase also fails: In this scenario, we also observe that the
model completely fails on image S2H generalization, getting almost 0% S2H generalization on
HARD-image examples for all three types of supervision strategies.

"Zsplit into 101 subsets of equal length, each training with 100%, 99%, - - - , 0% of total characters in the
CoT.
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Table 10: Ablation on removing or internalizing CoT on Visual Analogy: Preliminary attempts to
completely or progressively remove CoT during the Mix+ phase fails to generalize to HARD images,
which shows the importance of CoT in our proposed strategies. full, none, internalizing CoT refer
to including full CoT, completely removing CoT, and progressively removing CoT respectively. ‘-’
means the corresponding phase was not included during training. Unless specified, all evaluations are
reported on HARD-image examples.

.. Type of CoT
Type of supervision (TW) (10K) | Align-(10K) | Mix+ (120K) S2H accuracy (%)
Mix+ - - none 0.6
(TW) Mix+ full - none 0.0
(TW) Align-Mix+ full full none 3.6
Mix+ - - internalizing 0.0
(TW) Mix+ full - internalizing 0.0
(TW) Align-Mix+ full full internalizing 34
(TW) Mix+ internalizing - - 97.8 (HARD-text)
(TW) Mix+ internalizing - none 0.0

1.7.3 INTERNALIZING COT DURING TEXT WARM-UP BEFORE REMOVING COT COMPLETELY

We also try a variant for the multi-phase approaches, where we internalize the CoT on the text input
during a text warm-up ((TW)) stage and continue with Mix+ with CoT completely removed.

CoT can be internalized on text inputs: We internalize the CoT on the text input during a slightly
modified text warm-up phase of (TW) Mix+. Specifically, with 10 training data that consists of an
equal mix of SIMPLE Text, HARD Text supervision, and Eagle instruction tuning data (randomly
sampled from 1.8M examples (Shi et al., 2024)), we train on the first 30% examples with full CoT,
the next 40% examples with progressively less CoT, and the last 30% examples without CoT as in
previous experiments. After the warm-up phase of training, the model can achieve 97.8% accuracy
on HARD-text examples, which shows the model’s ability to internalize reasoning on text inputs.

Explicit CoT is “necessary” for the internalized reasoning to transfer to image: We then
continue with the Mix+ supervision with all CoT removed. The final trained model completely fails
with 0% accuracy on the HARD-image examples. Similarly, examining model outputs reveals that
the reasoning capability on HARD instances failed completely to transfer from the text to the image
modality. Therefore, we conclude that CoT is “necessary” for the cross-modal transfer of knowledge
to happen in our setting.

All results testify to our claim that CoT is important in our proposed training strategies. As the
techniques used to internalize or remove the CoT dependency in our experiments are very preliminary,
we are not eliminating the possibility of internalizing CoT in our setting. We note that to do so may
require more careful, post hoc approaches, which we leave to future work.

1.8 MULTI-TASK TRAINING: JOINTLY TRAINING ON ALL THREE NON S2H-GENERALIZING
TASKS

In the main experiments, we have trained on each non S2H-generalizing task separately. In this section,
we explore the ablation where we combine and randomly shuffle the training data for Table Readout,
Grid Navigation, and Visual Analogy. In Figure 26, we compare the image S2H generalization
performance when jointly training on all 3 tasks against training on each task separately.

Similar to training on each task individually, the average S2H generalization on image across all 3
tasks is strongest for Image-via-Text+, followed by Align-Mix+ and Mix+. When analyzing the effect
of multi-task training on each task, we observe that it benefits the model’s performance on Table
Readout and Grid Navigation but hurts performance on Visual Analogy. This is likely because Table
Readout and Grid Navigation are similar in nature. They are both represented by LaTeX code in the
text modality, require the model to identify the current location in a table / grid, and reason about
neighboring cells. On the other hand, the skills required for Visual Analogy are quite distinct. This
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Figure 26: Ablation on jointly training on all three non S2H-generalizing tasks: (Left) Average
S2H Generalization on image; (Middle, Right) Comparison of Trained Jointly vs. Individually. Simi-
lar to training on each task individually, Mix+ and Image-via-Text+ outperform Image, and Align-Mix+
matches the performance of Image-via-Text+. Multi-task SFT boosts image S2H generalization
for Table Readout and Grid Navigation, while Visual Analogy performance remains unchanged or
slightly declines, indicating task interactions drive the cross-modal transfer of reasoning capabilities

in multi-task training.
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Figure 27: Ablation on the number of repetitions of unique HARD examples, while maintaining
the total amount of HARD training data, on Table Readout and Visual Analogy: Image S2H
generalization degrades with more repetitions of HARD Text examples, with the effect on Mix+ being
more drastic. Here, the amount of training data is fixed at 12 x 10*, with 6 x 10* examples sampled
from the HARD task. Interestingly, performance of Align-Mix+ peaks at 3x repetitions, implying the
number of unique HARD Text examples can be reduced by 3x for Align-Mix+.

suggests that the interactions between tasks during a multi-task training can also affect how much
reasoning can transfer across modalities.

1.9 ABLATION ON REPEATED HARD EXAMPLES

In the experiments reported in the main paper (summarized in Figure 5), we kept all HARD Text
examples unique. In Figure 27, we present the ablation where we repeat each HARD Text example
during training, while keeping the total number of training data fixed. Our primary observations are:

* Repeating HARD Text examples harms the performance of Mix+. Halving the number of
unique HARD Text examples and repeating each example 2 times can drop the performance
on HARD-image by at least 10%p on Table Readout.

* On the other hand, Align-Mix+ is quite robust to repetitions on Table Readout. The number
of unique HARD Text examples can be reduced by 10x (and repeating each example 10x)
with the performance on HARD-image dropping by no more than 1-2%p.

* On Visual Analogy, while the performance of Align- Mix+ drops with large number of
repetitions, the drop in performance is within 1-2%p if the number of repetitions is up to 3.

* Interestingly, the image S2H generalization performance reaches its peak at exactly 3

repetitions for Align-Mix+ on both Table Readout and Visual Analogy. This suggests that we
may only require 3 less unique HARD Text examples than reported in Figure 5.
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J INTERPRETABILITY EXPERIMENTS

We use gradient attribution to identify which pixel in the image is important when generating each
token in the CoT. For a given data x € X and its corresponding image format x(*), we label the set of
pixels in the image as {ng)} For a given gold output y = {CoT(x), f(x)}, we label the sequence of
CoT tokens as {yy }, where y.,, refers to the subsequence of the CoT tokens, up to the k-th token.

(@)

For each pixel x ji € x() and each CoT token y,, we compute the attribution score as:

Pixel Attribute Score: <ngi>l(f9({x(i)’ Y. })s Ur), x§i)>

Informally, on Image examples, we take the gradient of the loss of the model’s output (up to the k-th
CoT token) with respect to each pixel, and project on the pixel values. Pixels that show positive
alignment with the gradients are marked important for the model’s prediction for the token yy.

In Figure 28, we plot the pixel attribute values, averaged across tokens that correspond to different
segments of a highlighted path of an example image from Table Readout. We observe that Align-Mix+
improves over Mix+ models by having more focused and concise pixel attributes around the path
of highlighted cells and their corresponding row/column names. In Figure 29, we also show pixel
attribute scores on Visual Analogy, where the pixel attributes are more aligned with objects of interest
scattered around the grid.
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Figure 28: Visualization of pixel attribute scores on Table Readout: (Top) Mix+; (Bottom)
Align-Mix+. Models are trained with 24 x 10* training data. Pixel attribute scores are averaged across
CoT tokens that belong to the first 5 pixels roughly in the 10th column (left), the next 6 cells in the
8th column (middle), and the last 6 cells in the 6-th column (right). We show the top-1% pixels with
the highest pixel attribution scores (marked as red). Mix+ has more diffused pixel attributions in the
image, while Align-Mix+ focuses more on the path of cells (and their corresponding row/column
names).

Figure 29: Visualization of pixel attribute scores on Visual Analogy: The model is trained with
12 x 10* training data of (TW) Align-Mix+. Pixel attribute scores are averaged across CoT tokens
that belong to Example 1 (left), Example 2 (middle), and the query (right) respectively. We show
the top-1% pixels with the highest pixel attribution scores (marked as red). The pixel attributes are
focused on relevant objects across the grid. Interestingly, when reading relevant object attributes in
Example 2, the model still attends to objects from Example 1.
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K ANALYSIS OF FAILURE MODES

In this section, we briefly discuss the common failure modes of models trained on our synthetic data,
when evaluated on examples from the HARD split.

K.1 Table Readout

We analyze the outputs of Text on HARD-text, Image on HARD-image, and Mix+ on both HARD-text
and HARD-image, where all models have been trained on 24 x 10* examples.

Since the models perform almost perfectly on the SIMPLE examples, where the total length of the
sequence is around 12, one may expect the models to read off the first 12 numbers from tables of
the HARD split equivalently well but start making errors after the sequence length it was trained on.
We find that this is not the case by analyzing the index of the first error; i.e., how many numbers
the model reads off correctly before making the first mistake. Although the average index of the
first error is around 14.7, about 56% of incorrect generations (equivalently, 26% of total generations)
contain a mistake before the 12th number in the sequence.

EA Precision Recall

1.0

0.9

0.8 L 4

0.7

0.6

Text Image Mix+ (text) Mix+ (image)
Type of Supervision

Figure 30: Analysis of failure modes on Table Readout: (Left) Precision and Recall; (Right)
Example of a common mistake. Models are trained on 24 x 10* examples of Text, Image and Mix+
supervision and evaluated on corresponding inputs from HARD. Models often hallucinate a “shortcut.”
In this case, precision would be 12/13 and recall would be 12/29.

To further analyze the behavior of the model when it makes a mistake, we extend the definition of
precision and recall:

Total # correctly listed Recall — Total # correctly listed
Total # listed ~ Total # highlighted

where we take the sum in the numerator and denominator across all test examples and mark a cell
as correctly listed only if the model generation contains it, regardless of the exact position in the
sequence. See left of Figure 30 for the evaluation results. Note that for Text and Image, precision is
significantly higher than recall, meaning that it rarely hallucinates that a cell is highlighted (when
it is not), but it fails to list off many of the numbers that were highlighted. We find that this is
mainly because once the model derails from the highlighted path, it just moves directly towards the
destination cell, until it rejoins the path, unintentionally creating a “shortcut” that skips around 15
cells on the original path on average. See right of Figure 30 for a visualization. However, the recall
improves significantly on both HARD-text and HARD-image when trained with Mix+.

Precision =

K.2  Grid Navigation

In Figure 31, we analyze the outputs of Text supervision on HARD-text, Image supervision on HARD-
image, and Mix+ supervision on HARD-image, where all models have been trained on a varying
number of examples.

A successful evaluation on Grid Navigation requires completing multiple intermediate subtasks. The
model first needs to correctly identify the source and destination cells from the grid and parse the
row/column indices. We observe that the models can easily learn this subtask. Under any of the three
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types of supervision, the model can get at least 98% accuracy on parsing the location of the source
and destination cells with only 1.5 x 10% examples. With 6 x 10* or more examples, the accuracy is
always 100%.

Next, we analyze whether the model returns a sequence of actions that leads from the source to the
destination (ignoring any object or obstacle). We observe that there is some “phase transition” at
3 x 10* examples, where the model’s accuracy on this subtask increases sharply. However, whereas
Mix+ continues to improve accuracy on this subtask, exceeding 90% at 6 x 10* examples, Text and
Image supervision fail to achieve 90% even with 24 x 10* examples.

We then analyze the average fraction of objects collected while navigating the grid. The evaluation
on this subtask also follows a similar “phase transition” at 3 x 10* examples. However, whereas
Mix+ immediately achieves 90% at 3 x 10* examples and continues to improve to 96% at 24 x 10*
examples, Text and Image supervision fail to improve beyond 50-70%. This subtask becomes a strong
bottleneck for Text and Image supervision which prevents them from improving S2H generalization
performance.

Finally, we analyze the average number of obstacles that the model passes through. Across any of
the three types of supervision, the metric improves with more training data. However, this metric
drops as low as 0.12 for Mix+ at 24 x 10* examples, whereas Text supervision only achieves 0.78
and Image supervision achieves 0.67.

—&— Text —&— Image —— Mix+

1.0 Reach Destination? 1.0 Avg. Fraction of Objects Avg. Number of Obstacles
4
0.5 0.5
2
0.0 0.0 0
0.5 1.5 3 6 12 24 0.5 1.5 3 6 12 24 0.5 1.5 3 6 12 24

Number of Training Data (x10%)

Figure 31: Analysis of failure modes on Grid Navigation: (Left) Whether model generates a
sequence of actions that leads to the destination; (Middle) Average fraction of objects collected;
(Right) Average number of obstacles passed through. Models trained with Text and Image fail to
improve beyond a certain threshold for all three subtasks.

K.3 Visual Analogy

We analyze the outputs of Text on HARD-text, Image on HARD-image, and Mix+ on both HARD-text
and HARD-image, where all models have been trained on 12 x 10* examples. Specifically, we analyze
the CoT trace, focusing on the following structural steps as introduced in Appendix F.3 earlier:

* To reason about examples:

1. given an attribute (e.g. shape_type), the model first needs to correctly enumerate
the attribute values (e.g. circle) for each image in the examples;

2. the model then needs to decide whether the values in all three images of that example
are consistent with a logical relation (e.g. XOR);

3. after repeating the process for both in-context examples, the model summarizes the
two relational patterns (d1,r1) and (da, r2) for the examples;

4. finally, the model needs to identify the target relation 1 = 72 = 7Tquery from the
examples.

* To reason about the query: the model needs to correctly enumerate the attribute values for
each image in the query similarly.
* To reason about the options:
1. assuming the query when combined with each option follows a relational pattern
(domain d, relation ) (e.g. (line type, XOR), the model needs to identify the

correct values of the attribute domain d for each option image and the correct relation
T
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2. the model also needs to reason whether the identified relation  is the desired target
relation 7query-

Mix+ supervision enables significant improvement on reasoning steps that require compositional
generalization where Text and Image supervision fail: As shown in Table 11, we observe that
models trained with Text and Image struggle primarily to identify the correct held-out relational
pattern (d;, r;) for in-context examples, and in particular to recognize d; # ds, that is, the two
examples vary along different attributes, with both error rates > 80%. These two sources of error
correspond exactly to the differences between the SIMPLE and HARD split of Visual Analogy, which
requires the model to generalize in a compositional manner. With Mix+ supervision, the model
significantly improves on these steps with a much smaller error rate of 42.2% in identifying the
held-out (d;, ;) and 23.8% in recognizing d; # ds.

Visual Analogy focuses more on abstract relational reasoning rather than object detection: We
observe that even with a consistently higher error rate in identifying attribute values, models with
Mix+ supervision can achieve a lower error rate in both CoT and exact match compared to their
counterparts with Text and Image supervision. This makes sense since reasoning depends more on
identifying the correct logical relation than on identifying the correct attribute values. Although
achieving the latter can be an important reasoning step, it is not a necessary condition to arrive at the
correct solution.

We also note that the error rate of CoT can be higher than the error rate in exact match. This indicates
that in some cases the model can still arrive at the correct solution even though it makes slight
mistakes in the reasoning trace: for example, it can still conclude with the correct relational pattern
without identifying all the attribute values correctly.

Even with Mix+ supervision, the model still exhibits sensitivity to CoT templates and halluci-
nations: Interestingly, we find that the error rate in identifying values of size, quantity, and
position consistently similar. Upon manual inspection of the model output, we find that models
fail to switch between different reasoning templates about shape and line objects: while the general
templates for the two object types are similar, the model needs to reason about five attributes for
shapes and only type and color for lines. With Mix+ supervision, models can still be sensitive
to this small difference in CoT templates and hallucinate about undefined size, quantity, and
position attributes of the line objects. This highlights that models with Mix+ supervision are still
brittle.
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Table 11: Analysis of failure modes on Visual Analogy: Models are trained on 12 x 10* examples
of Text, Image, and Mix+ supervision and evaluated on corresponding HARD inputs. * means the
evaluation is considered in-domain, as Mix+ supervision contains HARD-text examples in training. To
evaluate the entire CoT (second to last row), we check if the generated output contains all the correct
values in reasoning steps about the examples, query, and options. The main sources of errors for each
type of supervision are highlighted.

Types of failures Error rate ()

My Text (text) | Image (image) | Mix+ (text” / image)
type values 0.0 0.0 0.0/0.0
color values 0.0 0.0 0.0/0.0
size values 29.6 26.6 0.0/39

Reasonine about examples quantity values 29.6 26.2 0.0/374
& p position values 29.6 26.2 0.0/374
held-out (d;, ;) 86.8 81.0 0.0/42.2

dy # do 86.8 80.8 0.0/23.8

relation 35.2 34.4 0.0/0.8

type values 0.0 0.0 0.0/0.0

color values 0.0 0.0 0.0/0.0

Reasoning about query size values 0.4 7.6 0.0/16.8
quantity values 0.4 7.6 0.0/16.2

position values 0.4 7.6 0.0/16.2

attribute domain 79.8 65.2 0.4/44.2
R . . attribute values 8.4 32.0 0.0/65.0
easoning about options relation 1.4 82.4 0.2/45.0
identify solution 45.2 51.8 0.2/21.0

CoT | 100.0 | 100.0 \ 0.4/79.8

Exact match | 100.0 | 100.0 \ 0.4/64.6
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/I Question : \

The image shows the sales data of different products in different months. For readability,
R values in the cells have been replaced by their English names, e.g. 0 is represented by
ZERO. There is a path of highlighted cells (colored in yellow) starting from (RadiateTool,
January) and ending at (EmberGadget, August). Please return the total of all values in the
highlighted cells. Provide the final answer as 'Answer: [total]'.

May November January December October March  June February August April

RadiateTool ONE FOUR TWO SEVEN NINE NINE NINE SIX EIGHT | EIGHT

Omicroninstrument ONE ONE FOUR SIX NINE ZERO FIVE ZERO FOUR ONE

ShimmerApparatus ZERO TWO FIVE ONE FOUR | EIGHT | FOUR SIX NINE SIX

XiTool ONE ONE NINE FOUR ZERO ZERO ONE NINE SEVEN ONE

EmberGadget SEVEN | FOUR SIX SEVEN | SEVEN | EIGHT NINE | THREE | THREE SIX

SizzleContraption ONE SEVEN | ZERO | THREE FIVE FIVE SIX EIGHT ONE | THREE

Paramountinstrument THREE | EIGHT SIX ZERO NINE EIGHT | TWO | THREE | EIGHT NINE

SuperiorGadget ZERO FIVE TWO TWO EIGHT FIVE NINE FIVE FOUR SIX

QuantumApparatus THREE | TWO TWO SIX THREE | EIGHT | EIGHT NINE NINE FOUR

\ J
Kl 1. Text Conversion I \

@ Convert the image into a latex code of the given table, where highlighted cells (colored in
yellow) are marked with a * symbol next to the values.

\begin{tabular}{lrrlll1111llr}

& May & November & January & December & October & March & June & February
& August & April \\

RadiateTool & 1 & 4 & 2 * & 7 & 9 & 9 & 9 & 6 & 8 & 8 \\
OmicronInstrument & 1 & 1 & 4 * & 6 & 9 & 0 & 5 & 0 & 4 & 1 \\
ShimmerApparatus & 0 & 2 & 5 * & 1 & 4 & 8 & 4 & 6 & 9 & 6 \\

XiTool & 1 & 1 & 9 * & 4 & 0 & 0 & 1 & 9 & 7 & 1 \\

EmberGadget & 7 & 4 & 6 * & 7 & 7 & 8 & 9 & 3 & 3 * & 6 \\
SizzleContraption & 1 & 7 & 0 * & 3 & 5 & 5 & 6 & 8 & 1 * & 3 \\
ParamountInstrument & 3 & 8 & 6 * & 0 & 9 & 8 & 2 & 3 & 8 * & 9 \\
SuperiorGadget & 0 & 5 & 2 * & 2 & 8 & 5 & 9 & 5 & 4 * & 6 \\
QuantumApparatus & 3 & 2 & 2 * & 6 * & 3 * & 8 * &§ 8 * § 9 * § 9 * & 4 \\

\end{tabular}
\caption{Business Sales Data for products in different months}
\label{tab:business_sales}

k \end{table} J
2. CoT

‘We enumerate the relevant row indices, column indices, row names, column names, and their
corresponding values.

Row Index, Column Index, Row Name, Column Name, Value

1 3 RadiateTool January 2
2 Omnicronlnstrument  January 4
3 3 ShimmerApparatus January 5
4 3 XiTool December 9
5 3 EmberGadget January 6
9 9 QuantumApparatus August 9
8 9 SuperiorGadget August 4
7 9 ParamountInstrument ~ August 8
6 9 SizzleContraption August 1
kS 9 EmberGadget August 3 J

f-l 3. Prediction I

The total is2+4+5+9+6+0+6+2+2+6+3+8+8+9+9+4+8+1+3=95.

_J

Answer: 95

Figure 32: A SIMPLE example from Table Readout.
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/I Question : \

R The image shows the sales data of different products in different months. For readability,

values in the cells have been replaced by their English names, e.g. 0 is represented by

N\

ZERO. There is a path of highlighted cells (colored in yellow) starting from (PsiDevice,
September) and ending at (DeltaTool, June). Please return the total of all values in the
highlighted cells. Provide the final answer as 'Answer: [total]'.

September December  July  October February November June May  January  March

ShineDevice ONE FOUR ONE SEVEN FOUR FIVE ZERO SIX TWO NINE

WaveTool SEVEN ZERO EIGHT ZERO FIVE THREE ZERO FOUR THREE | THREE

FlashTool THREE SIX FOUR SEVEN TWO FOUR FOUR TWO FOUR ONE

ScorchMachine SIX THREE NINE ZERO FIVE TWO ONE ZERO SIX EIGHT

EliteMechanism NINE SIX ONE EIGHT ZERO EIGHT FOUR TWO Two ONE

Epsiloninstrument EIGHT TWO ZERO ONE ONE ONE THREE SIX FOUR SIX

DeltaTool EIGHT ONE NINE THREE FIVE ZERO ONE ONE ONE NINE

ApexWidget FIVE ONE ONE EIGHT | SEVEN | THREE | THREE NINE ZERO TWO

EmberGadget ZERO TWO EIGHT FIVE THREE TWO FIVE THREE | SEVEN | THREE

PsiDevice FOUR NINE FOUR ZERO SIX FOUR SEVEN FIVE ZERO SEVEN

J

N\

(' 1. Text Conversion I

@ Convert the image into a latex code of the given table, where highlighted cells (colored in yellow)

are marked with a * symbol next to the values.

\begin{table} [ht]

\centering

\begin{tabular}{11111111111}

& September & December & July & October & February & November & June & May
& January & March \\

ShineDevice & 1 * & 4 * & 1 * & 7 * & 4 * & 5* & 0 * & 6 * & 2 * & 9 * \\
WaveTool & 7 * & 0 & 8 & 0 & 5 & 3 & 0 & 4 & 3 & 3 * \\

FlashTool & 3 * & 6 & 4 * & 7 * & 2 * & 4 * & 4 * & 2 * & 4 * & 1 * \\
ScorchMachine & 2 * & 3 & 9 * & 0 & 5 & 2 & 1 &0 & 6 & 8 \\
EliteMechanism & 9 * & 6 & 1 * & 1 & 0 * & 8 * & 4 * & 2 * & 2 * & 1 * \\
EpsilonInstrument & 8 * & 2 & 0 * & 1 & 1 * & 1 & 3 4 & 6 * \\
DeltaTool & 8 * & 1 & 9 * & 3 & 5* & 0 & 1 * & 1 * 9 * \\
ApexWidget &« 5 * & 1 & 1 * & 8 & 7 * & 3 & 3 & 9 * & 0 & 2 * \\
EmberGadget & 0 * & 2 & 8 * § 5 & 3 * & 2 & 5 & 3 * & 7 & 3 * \\
PsiDevice & 4 * & 9 & 4 * § 0 * & 6 * & 4 & 7 & 5 * & 0 * & 7 * \\
\end{tabular}

\caption{Business Sales Data for products in different months}
\label{tab:businessisales}

\end{table} J

& 6 &
& 6 &

e N

‘We enumerate the relevant row indices, column indices, row names, column names, and their
corresponding values.

Row Index, Column Index, Row Name, Column Name, Value

10 1 PsiDevice September 4
9 1 EmberGadget September 0
8 1 ApexWidget September 5
7 1 DeltaTool September 8
6 1 EpsilonInstrument September 8
10 8 PsiDevice May 5
9 8 EmberGadget May 3
8 8 ApexWidget May 9
7 8 DeltaTool May 1
7 7 DeltaTool June 1

N\

3. Prediction

Thetotal is 4 +0+5+8+8+9+2+3+7+1+4+1+T+4+5+0+6+2+9+3+1+4+2+4+
442+T+4+9+1+0+9+1+8+4+0+6+3+7+5+1+0+8+4+2+2+1+6+9+2+3+
T7+0+5+3+9+1+1=233.

Answer: 233 )

Figure 33: A HARD example from Table Readout.
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Question

2

The image shows a 2 dimensional grid. The grid is filled up with objects, which you will be
asked to recognize and collect, and obstacles, which you should avoid. Possible objects and

obstacles are given as follows:

Objects: heart, crown, flag, star, flower, umbrella, plane, phone, spark, diamond, queen,
hammer, club, gear, arrow, sun, bishop, note, coffee, anchor, cloud, pawn, castle, horse,
infinity, moon, null, approx, integral, product, sum

Obstacles: dot, cross, square, triangle, plus

Cells that don't contain any object or obstacle are left olm|(m|(m n

blank. A traveller starts at the source (colored in blue)
and wishes to go to the destination (colored in green).
Your task is to give a list of actions ( left right up down)

each indicating a movement by 1 cell that the traveller e u
needs to follow. The traveller must recognize all objects  + ™ ™ [

in the grid, collect them but avoid obstacles in the Jm n

process. Provide the final answer as 'Answer: [list of

actions]'. If no path exists, output 'Answer: No path exists'. " : T , S J

1. Text Conversion I

\
e
)

\_

Convert the image into a text version of a table, WheD
cells colored in blue, green are respectively marked as
S, D. Blank cells are given by O. Objects and obstacles
are mentioned by their names.
&a&b&c&d&e&f&g&h
a&0&0&0 &0 & O & O & square & square

b & square & square & square & O & square & O & O & O
¢ & O & O & O & square & O & square & O & square

d & square & square & square & O & O & flag & O & O

e & O & D & O & square & O & O & square & square

f& O & square & O & O & square & O & O & square
g&square & 0O & 0O & 0O & O &square & O & O

h & square & square & square & O & O & O & S & O

J

Answer: up up left up up
left down right down
right down down left left
up left up left up left

\_

J

f-I 2. CoT I
We follow a depth first search,

e, e

up: e, g closed( square)

left: e, b okay

up: d, f okay left: e, d closed( square) down: g, g okay \
- d, f: Collect flag up: d, e visited g g
alwa'ys moving towards the left: d, e okay down: f, e closed( square) left: g, f closed( square)
destination. o d,e: right: e, f okay up: f, g visited
Source:( h’. g) Destination:( e, b) 4. d, d okay e f down: h, g okay
Collect objects: flag( d, f) d. d: left: isited h o
Avoid square ™~ cit- ¢, ewisite &
h o left: d, ¢ closed( square)  up: d, f visited g e
ui): o, g okay down: e, d closed( square) down: f, f okay left: g, d okay
g ? up: ¢, d closed( square)  f, f: g, d:
ui): f, & okay right: df e visiteq left: f, e closed( square) up: f, d okay
f, g No available actions. up: e, f visited f, d:
up: e, g closed( square) retrace 1 step down: g, f closed( square) left: f, c okay
left: f, f okay d,e: right: f, g okay f,c:
f, f: left: d, d visited f, g up: e, ¢ okay
Cp: e, f okay down: e, e okay left: f, f visited e, C:
e f

Figure 34: A SIMPLE example from Grid Navigation.
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/'l Question I \

The image shows a 2 dimensional grid. The grid is filled up with objects, which you will be
R asked to recognize and collect, and obstacles, which you should avoid. Possible objects and
obstacles are given as follows:
Objects: heart, crown, flag, star, flower, umbrella, plane, phone, spark, diamond, queen,
hammer, club, gear, arrow, sun, bishop, note, coffee, anchor, cloud, pawn, castle, horse,
infinity, moon, null, approx, integral, product, sum

Obstacles: dot, cross, square, triangle, plus N & [T o
Cells that don't contain any object or obstacle ol + x x
are left blank. A traveller starts at the source
(colored in blue) and wishes to go to the N + .
destination (colored in green). Your task is to  d{ 3¢ | - A x| =2 ®
give a list of actions ( left right up down) each ] IR
indicating a movement by 1 cell that the x
traveller needs to follow. The traveller must A A
recognize all objects in the grid, collect them 8] + x A
but avoid obstacles in the process. Provide the h{ % x|+ %
final answer as 'Answer: [list of actions]'. If no ;] Fo) +

k path exists, output 'Answer: No path exists'. T b ¢ 4 ¢ F &g b kJ

1. Text Conversion I \

3 Convert the image into a text version of a table, where cells colored

in blue, green are respectively marked as S, D. Blank cells are Answer: left up left
given by O. Objects and obstacles are mentioned by their names. down down down right
&a&b&c&d&e&f&g&h&i&j&k right right right right
a& O &plus& O & O & O & O & queen & O & O & O & cross right up left up up up up
b&O&plus& O &cross & O & O & O & O & cross & O & O up up up left left down

c&0&0&0&0&0&0&0&plus& O & O &D
d & cross & sun & O & triangle & O & cross & castle & O & O & cross & O
e&0&0&0&0&0 &0 &0 &cross & cross & O & O

down left left down left
right up right right right

f& 0 & 0 & O & triangle & O & O & O & cross & triangle & O & O right up right up right
g& 0 &0 &0 &S & plus & O & O & cross & O & O & triangle right down down right
h & cross & O & cross & plus & O & O & O & O & O & O & cross
k i&0&0&0& 0O & gear & 0 & O & spark & 0 & 0 & O J \_ )
f‘l 2. CoT I

We follow a depth first search, always i, c: up: a, g okay right: ¢, f okay \

moving towards the destination. right: i, d okay a, g: Collect queen c, f:

Source:( g, d) Destination:( c, k) i,d: left: a, f okay right: ¢, g okay

Collect objects: gear( i, e) spark( i, h) right: i, e okay a, f: c, g

castle( d, g) queen( a, g) sun( d, b) i, e: Collect gear left: a, e okay right: ¢, h closed( plus)

Avoid cross triangle plus right: i, f okay a,e: up: b, g okay

g, d: i, f: down: b, e okay b, g

down: h, d closed( plus) right: i, g okay b, e: right: b, h okay

right: g, e closed( plus) i, g left: b, d closed( cross) b, h:

left: g, ¢ okay right: i, h okay down: c, e okay right: b, i closed( cross)

g,c i, h: Collect spark c, e down: ¢, h closed( plus)

down: h, ¢ closed( cross) up: h, h okay left: ¢, d okay up: a, h okay

right: g, d visited h, h: c,d: a, h:

up: f, ¢ okay up: g, h closed( cross) left: ¢, c okay right: a, i okay

f, c: left: h, g okay c,c: a, i

down: g, ¢ visited h, g: down: d, ¢ okay down: b, i closed( cross)

right: f, d closed( triangle) up: g, g okay d,c: right: a, j okay

left: f, b okay g g left: d, b okay a, j:

f, b: up: f, g okay d, b: Collect sun down: b, j okay

down: g, b okay f, g right: d, ¢ okay b, j:

g, b: up: e, g okay d,c: down: c, j okay

right: g, ¢ visited e, g right: d, d closed( triangle) ¢, j:

down: h, b okay up: d, g okay up: ¢, ¢ okay right: ¢, k okay

h, b: d, g: Collect castle c,c:

right: h, ¢ closed( cross) up: ¢, g okay right: ¢, d okay

down: i, b okay c, g ¢, d:

i, b: up: b, g okay right: ¢, e okay

Qight: i, ¢ okay b, g: c, e J

Figure 35: A HARD example from Grid Navigation.
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Question

2

~

The image shows a a puzzle in a 3 by 3 grid followed by 4 options. The puzzle
consists of 2 examples (row 1 and 2), a query (row 3), and four options. Each
example contains three images following a relation along certain attribute, and
this relation is consistent across all examples.
The query contains two images. Analyze the
changes in the following attributes for each
example: line type, line color, shape type,
shape color, shape size, shape quantity, shape A o
position, and consider the relations: Progression,
XOR, OR, and AND. Progression requires the e
value of a certain attribute to strictly increase A
or decrease, but not necessarily by a fixed
amount. Please provide your predictions in the
format 'Example i: (attribute, relation)' for each
example and similarly for options. Provide

the final answer as 'Answer: [correct option]'.

) [ | (@)
A A

OCA (e

e0Oo

J

1. Text Conversion

-

Convert the image into a text
version of the puzzle.

Example 1:

Panel 1:

2 shapes; type: circle, ... color:
90, 255, size: 27, position: (1, 0),
0,2)

Panel 2: ...

Example 2:

Panel 1:

Query:
Panel 1:

Options:
Option 1:
4 shapes; type: pentagon

Example 1

KAnswer: 4

3. Prediction

: (shape position, AND)

Example 2: (shape position, AND)

Option 1: (shape color, OR), not consistent
Option 2: (shape color, XOR), not consistent
Option 3: (shape type, XOR), not consistent
Option 4: (shape position, AND), consistent

J

A ~

We first analyze the examples by considering the applicable attributes
and relations:

Example 1:

type:

Image 1: circle, triangle

Image 2: triangle, rectangle

Image 3: circle

No pattern.

position:

Image 1: (1, 0), (0, 2)

Image 2: (0, 2), (1, 1)

Image 3: (0, 2)

This suggests the AND relation.

Example 2: ...

The examples suggest the following patterns: (shape position, AND),
(shape position, AND).

We conclude that AND is the common relation.

Now, we analyze the images in the query:

type:

Image 1: hexagon, triangle

Image 2: triangle, rectangle

color: ...

Looking at the options, we find:

Option 1 has shape color of 189, 90, 0, so it is consistent with the OR
relation on shape color, but OR is not the target relation.

Option 4 has shape position of (1, 1), so it is consistent with the AND
relation on shape position, and AND is the target relation.
We conclude that option 4 is the answer since it is consistent with the

AND relation.

Figure 36: A SIMPLE example from Visual Analogy: The common relation is » = AND and
the domains are d; = dy = dgery = shape quantity, and the combinations (d,r) are not
{(line type,XOR), (line color,OR), (shape type,AND),
(shape color,Progression),

in the held-out set S =

(shape siz

e, XOR),

(line type,AND), (line color,Progression)}.
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Question

2

-

~

The image shows a a puzzle in a 3 by 3 grid followed by 4 options. The puzzle
consists of 2 examples (row 1 and 2), a query (row 3), and four options. Each
example contains three images following a relation along certain attribute, and

this relation is consistent across all examples.
The query contains two images. Analyze the
changes in the following attributes for each
example: line type, line color, shape type,

shape color, shape size, shape quantity, shape
position, and consider the relations: Progression,
XOR, OR, and AND. Progression requires the
value of a certain attribute to strictly increase

or decrease, but not necessarily by a fixed
amount. Please provide your predictions in the

format 'Example i: (attribute, relation)' for each
example and similarly for options. Provide
the final answer as 'Answer: [correct option]'.

J

-

(4 1. Text Conversion I—\
Convert the image into a text

version of the puzzle.

Example 1:

Panel 1:

type: diamond lines, horizontal
line, color: 189, 135

Example 2:
Panel 1:
2 shapes; type: pentagon, ...

Query:

Panel 1:

Options:

Option 1:

type: V-shape facing left, color:

KAnswer: 4

3. Prediction ~

Example 1: (line color, AND)

Example 2: (shape color, AND)

Option 1: (line color, XOR), not consistent
Option 2: (line color, OR), not consistent
Option 3: (line type, XOR), not consistent
Option 4: (line color, AND), consistent

J

2. CoT

We first analyze the examples by considering the applicable attributes
and relations:

Example 1:

type:

Image 1: diamond lines, horizontal line

Image 2: vertical line

Image 3: falling diagonal line

No pattern.

color:

Image 1: 189, 135

Image 2: 189

Image 3: 189

This suggests the AND relation.

Example 2: ...

The examples suggest the following patterns: (line color, AND),
(shape color, AND).

We conclude that AND is the common relation.
Now, we analyze the images in the query:

type:

Image 1: falling diagonal line, V-shape facing down
Image 2: horizontal line, falling diagonal line

color: ...

Looking at the options, we find:

Option 1 has line color of 135, so it is consistent with the XOR
relation on line color, but XOR is not the target relation.

Option 4 has line color of 0, so it is consistent with the AND relation
on line color, and AND is the target relation.

We conclude that option 4 is the answer since it is consistent with the
AND relation.

Figure 37: A HARD example from Visual Analogy: The common relation is » = AND and the
domains are distinct: dy = 1ine color,dy = shape position,dgey = line color,and
the combinations (d,r) are in the held-out set S = {(1ine type,XOR), (line color,OR),
(shape color,Progression),
Note

(shape type,AND),
(shape position,OR), (line type,AND), (line color,Progression)}.

(shape size,XOR),

that the pattern for the confounding options may not be in S.
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