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ABSTRACT

Diffusion models excel in generative tasks, but aligning them with specific objec-
tives while maintaining their versatility remains challenging. Existing fine-tuning
methods often suffer from reward over-optimization, while approximate guidance
approaches fail to optimize target rewards effectively. Addressing these limita-
tions, we propose a training-free sampling method based on Sequential Monte
Carlo (SMC) to sample from the reward-aligned target distribution. Our approach,
tailored for diffusion sampling and incorporating tempering techniques, achieves
comparable or superior target rewards to fine-tuning methods while preserving
diversity and cross-reward generalization. We demonstrate its effectiveness in
single-reward optimization, multi-objective scenarios, and online black-box opti-
mization. This work offers a robust solution for aligning diffusion models with
diverse downstream objectives without compromising their general capabilities.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021c) have revolution-
ized generative AI, excelling in tasks from Text-to-Image (T2I) generation (Rombach et al., 2022) to
protein structure design (Watson et al., 2023). However, diffusion models are typically pre-trained
on large uncurated datasets that may not accurately represent the desired target distribution. For in-
stance, in the T2I generation, real users want to produce aesthetically pleasing images while faithful
to prompt instructions, rather than generating random internet images from the pre-trained dataset.
Also, one might want to produce only specific cartoon character images, rather than general styles.
These challenges underscore the importance of alignment, a process to adapt diffusion models for
specific customized rewards.

Existing alignment approaches mainly fall into two categories: (1) fine-tuning and (2) guidance
methods. Fine-tuning approaches, including Reinforcement Learning (RL) (Fan et al., 2024; Black
et al., 2023) and direct backpropagation (Clark et al., 2024; Prabhudesai et al., 2024), have shown
promising results in optimizing target rewards. However, it often suffers from the reward over-
optimization problem, sacrificing general image quality and diversity (Clark et al., 2024; Gao et al.,
2022). On the other hand, guidance methods (Bansal et al., 2023; Yu et al., 2023; Song et al., 2023;
He et al., 2024) offer a training-free alternative that stays closer to the pre-trained model distribution.
Meanwhile, they suffer from the reward under-optimization problem, failing to effectively optimize
target rewards due to relying on estimated inference-time corrections of the generation process.

To address these limitations, we propose Diffusion Alignment as Sampling (DAS), a training-free
approach that both achieves effective reward alignment and preserves model generalization. To
guide latents toward high-reward samples, DAS leverages multiple candidate latents through Se-
quential Monte Carlo (SMC) sampling, averaging out errors in estimated corrections to enable sam-
pling from a reward-aligned target distribution. By carefully designing intermediate target distribu-
tions with tempering techniques, DAS achieves high sample efficiency with multiple candidates, as
we demonstrate both theoretically and empirically.

To validate its effectiveness for optimizing target reward without over-optimization, we apply DAS
to Stable Diffusion v1.5 (Rombach et al., 2022), targeting aesthetic reward, e.g., LAION aesthetic
score (Schuhmann, 2022) and human preference, e.g., PickScore (Kirstain et al., 2023). Without
the computational burden of training or extensive hyperparameter tuning, DAS outperforms all fine-
tuning baselines in two target scores, while not sacrificing cross-reward generalization and output
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diversity. We further demonstrate the efficacy of DAS in multi-objective optimization, achieving
a new Pareto front when jointly optimizing CLIPScore (Hessel et al., 2021) and aesthetic score.
Moreover, the diverse sampling ability is especially beneficial in online settings with limited reward
queries. In such a difficult scenario, while existing methods drop the scores of unseen rewards due
to severe over-optimization, DAS improves the pre-trained T2I model by up to 20% in both target
and unseen rewards.

In summary, our main contributions are:

• We propose DAS, a training-free method for aligning diffusion models with arbitrary rewards
while preserving general capabilities.

• We provide theoretical analysis of DAS’s asymptotic properties, proving the benefits of tempering
in SMC sampling for diffusion models.

• We empirically validate DAS’s effectiveness across diverse scenarios, including single-reward,
multi-objective, and online black-box optimization tasks.

2 RELATED WORK

2.1 FINE-TUNING DIFFUSION MODELS FOR ALIGNMENT

Aligning pretrained models through fine-tuning has been extensively studied in language models
(Ziegler et al., 2020; Ouyang et al., 2022; Rafailov et al., 2023). For diffusion models, several
approaches have emerged. Lee et al. (2023) and Wu et al. (2023b) employ supervised fine-tuning
with preference-based reward models. Black et al. (2023) and Fan et al. (2024) formulate sampling
as a Markov decision process and apply reinforcement learning (RL) to maximize rewards. Xu
et al. (2024); Clark et al. (2024) and Prabhudesai et al. (2024) fine-tune by direct backpropagation
through differentiable reward models. These approaches, however, face challenges with reward
over-optimization (Gao et al., 2022; Coste et al., 2024), which may distort alignment or reduce
sample diversity. KL regularization has been proposed as a mitigation strategy (Fan et al., 2024;
Uehara et al., 2024a), inspired by its success in language models (Stiennon et al., 2020; Ouyang
et al., 2022; Korbak et al., 2022). Section 3.2 examines the limitations of this approach, focusing on
the mode-seeking behavior observed in the context of variational inference. While diffusion-based
samplers (Zhang & Chen, 2022; Vargas et al., 2023; Berner et al., 2024; Sanokowski et al., 2024) use
similar training objective to sample from multimodal, unnormalized target density, the fine-tuning
setup makes training more susceptible to mode collapse (Appendix E). Alternatively, Zhang et al.
(2024) approached over-optimization in RL fine-tuning through inductive and primacy biases.

2.2 GUIDANCE METHODS

Building on the score-based formulation of diffusion models (Song et al., 2021c), various guidance
methods have been developed. While classifier guidance (Dhariwal & Nichol, 2021) requires addi-
tional training, recent works approximate guidance to use off-the-shelf classifiers or reward models
directly (Ho et al., 2022; Song et al., 2022; Chung et al., 2023; Bansal et al., 2023; Yu et al., 2023;
Song et al., 2023; Yoon et al., 2023; He et al., 2024). These methods rely on Tweedie’s formula
(Efron, 2011; Chung et al., 2023) for prediction of the original data given noisy data, but our exper-
iments indicate that such inaccurate prediction limits effectiveness in maximizing complex rewards.
Sequential Monte Carlo (SMC) methods have been applied to address inexactness (Trippe et al.,
2023; Cardoso et al., 2024; Wu et al., 2023a; Dou & Song, 2024), but their application has been
limited to inverse problems and class-conditional sampling. While SMC methods offer asymptotic
exactness, naive applications may fail to sample from complex targets within finite samples due
to inefficiency. Our approach incorporates a tempered SMC sampler to enhance sample efficiency,
achieving comparable or superior performance to fine-tuning methods without additional training.

3 DIFFUSION ALIGNMENT AS SAMPLING (DAS)

This section formulates the diffusion alignment problem as sampling from a reward-aligned distri-
bution, examines limitations of existing methods, and introduces DAS, a Sequential Monte Carlo
(SMC) based algorithm with theoretical guarantees for asymptotic exactness and sample efficiency.
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Figure 1: SMC method excels in sampling from the target distribution compared to existing
approaches. Left of dashed line: Samples from pre-trained model trained on mixture of Gaussians,
reward-aligned target distribution ptar. Right of dashed line: methods for sampling from ptar in-
cluding previous methods (RL, direct backpropagation, approximate guidance) and ours using SMC.
Top: reward r(X,Y ) = −X2/100 − Y 2, bottom: reward r(X,Y ) = −X2 − (Y − 1)2/10. EMD
denotes sample estimation of Earth Mover’s Distance, also known as Wasserstein distance between
the sample distribution using each method and the target distribution. Our SMC-based method out-
performs existing approaches in capturing multimodal target distributions, as evidenced by lower
EMD and successful sampling from all modes. Note that samples may exist outside the grid.

3.1 PROBLEM SETUP: ALIGNING DIFFUSION MODELS WITH REWARDS

Aligning diffusion models with rewards can be seen as finding a new distribution that maximizes
the expectation given reward r. Formally, it can be written as solving:

ptar = argmax
p

Ex∼p[r(x)]. (1)

However, this approach may lead to reward over-optimization (Gao et al., 2022), disregarding the
pre-trained distribution. To mitigate this, we employ KL regularization (Korbak et al., 2022; Uehara
et al., 2024a):

ptar = argmax
p

Ex∼p[r(x)]− αDKL(p∥ppre) (2)

where ppre is the sample distribution of the pre-trained diffusion model. Following Rafailov et al.
(2023), it is straightforward to show that the target distribution can be written in an equivalent form:

ptar(x) =
1

Z
ppre(x) exp

(
r(x)

α

)
(3)

whereZ is normalization constant. We frame the diffusion alignment problem as sampling from this
reward-aligned target distribution ptar. Note, however, that we only have access to an unnormalized
density of ptar and its evaluation requires running a probability flow ODE (Song et al., 2021c), even
for a single sample, making the sampling problem highly non-trivial.

Before we continue, we introduce binary optimality variable O ∈ {0, 1} with p(O = 1|x) ∝
exp(r(x)/α), where samples with high reward are interpreted as more likely ”optimal”. Then the
posterior p(x|O = 1) characterizes the distribution of samples that achieve high rewards. Using
Bayes’ rule with prior p = ppre give p(x|O = 1) ∝ p(x)p(O = 1|x) = ppre(x) exp (r(x)/α) ∝
ptar(x), revealing the equivalence between two perspectives. We drop ’=1’ from now on following
common convention.

3.2 LIMITATIONS OF EXISTING METHODS

Previous approaches to sampling from the target distribution (Equation 3) primarily fall into two
categories: fine-tuning and direct sampling using approximate guidance. In this subsection, we first
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demonstrate how these approaches struggle to sample from multimodal target distributions, even for
simple Gaussian mixtures, and explain their limitations leading to potential failures.

Figure 1 illustrates the failure modes of two approaches. Fine-tuning methods (RL, direct backprop-
agation) fail to fit all modes of the multimodal target distribution ptar, depicting their mode-seeking
behavior. Approximate guidance results in low rewards, failing to effectively optimize target re-
ward, portraying the inexactness of the guidance. In contrast, our SMC-based method successfully
samples from all modes, achieving the lowest Earth Mover’s Distance between ptar with high reward.

We first investigate the source of the mode-seeking behavior of fine-tuning methods. Fine-tuning
methods can be interpreted as variational inference, with the following objective (Rafailov et al.
(2023) Appendix A.1) :

minimize
θ

DKL(pθ∥ptar). (4)

This can be optimized using reinforcement learning (RL) (Fan et al., 2024) or direct backpropaga-
tion (Uehara et al., 2024a). However, the mode-seeking behavior of reverse KL divergence (Chan
et al., 2022; Wang et al., 2023) may cause the model to fit only the modes of the target distribution,
especially when ptar is multimodal (See Figure 1). This connects to low diversity of fine-tuning
methods, which we further demonstrate in Section 4 for real-world examples.

Next, we turn to approximate guidance methods. If the exact score function of the posteriors

∇xt
log pt(xt|O) = ∇xt

log pt(xt) +∇xt
log p(O|xt), (5)

is known, one can use reverse diffusion for generation (Song et al., 2021c), where marginal pt(xt)
and conditional distribution pt(xt|O) is defined by the forward diffusion process. However, to
sidestep the intractable integration p(O|xt) =

∫
p(O|x0)p(x0|xt) dx0, line of works (Chung

et al., 2023; Yu et al., 2023; Bansal et al., 2023; Song et al., 2023) rely on the approximation
p(O|xt) = Ep(x0|xt)[p(O|x0)|xt] ≈ p(O|x̂0(xt)) where x̂0 := E[x0|xt] is given by the Tweedie’s
formula (Efron, 2011; Chung et al., 2023). Finally, replacing p(O|x0) ∝ exp (r(x0)/α), approxi-
mate guidance is given as

∇xt log p(O|xt) ≈
1

α
∇xt r̂(xt) (6)

where r̂(·) := r(x̂0(·)). However, predicting clean data with noisy data introduces errors, especially
at the beginning of sampling (He et al., 2024) where the noise is large, making it difficult to sample
exactly from ptar.

3.3 SAMPLING FROM REWARD-ALIGNED TARGET DISTRIBUTION VIA TEMPERED SMC

Fine-tuning often leads to over-optimization, while approximate guidance methods struggle with
reward optimization. To improve approximate guidance, we can use multiple candidate latents (par-
ticles) during sampling, selecting those with high predicted rewards that stay close to the pre-trained
diffusion model’s distribution. This approach leverages Sequential Monte Carlo (SMC) methods,
which take incremental guided steps rather than sampling directly from the target distribution. At
each diffusion step, the process evaluates and resamples candidates based on both reward scores and
alignment with the pre-trained model, ultimately producing samples that satisfy both criteria.

Traditional SMC typically requires thousands of particles, making it computationally expensive
for diffusion models. However, by employing techniques like tempering, we achieve high-quality,
reward-aligned samples with fewer particles, making the method practical for real-world applica-
tions. To formally describe our approach, we first outline the key design choices of SMC samplers
that enable this guided sampling process:

• Sequence of intermediate target distributions πt(xt) = γ̃t(xt)/Zt for t = 0 : T that bridge
between the prior πT and target distribution π0, where γt is unnormalized density of πt

• Backward kernels 1 Lt(xt|xt−1) which define intermediate joint distributions

π̄t(xt:T ) := πt(xt)

T∏
s=t+1

Ls(xs|xs−1) (7)

1Backward respect to sampling procedure, which is the same time direction with a forward diffusion process.
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• Proposals, or transition kernels mt−1(xt−1|xt) for sequential sampling
• Weights

wt−1(xt−1, xt) :=
π̄t−1(xt−1:T )

π̄t(xt:T )mt−1(xt−1|xt)
∝ γ̃t−1(xt−1)

γ̃t(xt)

Lt(xt|xt−1)

mt−1(xt−1|xt)
(8)

in which proposed particles are resampled from Multinomial(x1:N
t−1;w

1:N
t−1)

A more detailed and theoretical introduction to SMC can be found in Appendix B.

3.3.1 BACKWARD KERNEL

To incorporate pre-trained diffusion models, we define the backward kernel using Bayes’ rule
with general stochastic diffusion samplers. For any stochastic diffusion sampler pθ(xt−1|xt) =
N (µθ(xt, t), σ

2
t I), we define the backward kernels as:

Lt(xt|xt−1) :=
pθ(xt−1|xt)pt(xt)

pt−1(xt−1)
. (9)

This formulation also serves as an approximation for general non-Markovian forward processes
given pre-trained generation processes (Song et al., 2021a).

3.3.2 INTERMEDIATE TARGETS: APPROXIMATE POSTERIOR WITH TEMPERING

As stated in section 3.2, sampling from the target p(x0|O) requires score functions of the true pos-
teriors pt(xt|O). Instead, approximate guidance gives a score function of an alternative distribution,
which we refer to as the approximate posterior:

p̂t(xt|O) ∝ pt(xt)p(O|x̂0(xt)) ∝ pt(xt) exp

(
r̂(xt)

α

)
. (10)

However, we can’t sample even from these approximate posteriors since they are not defined by
any forward diffusion process anymore. Nevertheless, this approximate posterior becomes exact at
t = 0 as x̂0 = x0, thus defining a sequence of distributions interpolating pT = N (0, σ2

T I) and ptar
which can be incorporated as intermediate targets for SMC sampler. Since prediction x̂0 gets more
accurate as t goes to 0, the approximate posteriors get closer to the true posteriors while the error
may be large at the beginning of sampling. Hence, we add tempering for intermediate targets as:

πt(xt) ∝ pt(xt)p(O|x̂0(xt))
λt ∝ pt(xt) exp

(
λt

α
r̂(xt)

)
=: γ̃t(xt) (11)

which can interpolate πT = pT to π0 = ptar more smoothly where 0 = λT ≤ λT−1 ≤ · · · ≤ λ0 = 1
is sequence of inverse temperature parameters.

While modern SMC samplers often use adaptive tempering (Chopin & Papaspiliopoulos, 2020;
Murphy, 2023), we find out simply setting λt = (1 + γ)t − 1 works well in our setting where γ
is a hyperparameter. In Section 4.1, we compare different tempering schemes and explain how to
select γ. To the best of our knowledge, this adaptation of density tempering is novel among works
applying SMC methods to diffusion sampling.

3.3.3 PROPOSAL: APPROXIMATING LOCALLY OPTIMAL PROPOSAL

Given the backward kernels and intermediate targets, we derive the locally optimal proposal that
minimizes the variance of the weights. Minimizing weight variance ensures more uniform impor-
tance among particles, thereby enhancing sample efficiency.
Proposition 1 (Locally Optimal Proposal). The locally optimal proposal m∗

t−1(xt−1|xt) that mini-
mizes the conditional variance Var(wt−1(xt−1, xt)|xt) is given by

m∗
t−1(xt−1|xt) ∝ exp

(
− 1

2σ2
t

∥xt−1 − µθ(xt, t)∥2 +
λt−1

α
r̂(xt−1)

)
(12)

proof. The full proof can be found in Appendix C.1.1

5
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Since sampling from m∗ is non-trivial, we adapt Gaussian approximation of m∗ as our proposal:

mt−1(xt−1|xt) := N
(
µθ(xt, t) + σ2

t

λt−1

α
∇xt r̂(xt), σ

2
t I

)
(13)

where we used first-order Taylor approximation r(x̂0(xt−1)) ≈ r(x̂0(xt))+⟨∇xt
r(x̂0(xt)), xt−1−

xt⟩ and x̂0(·, t) ≈ x̂0(·, t− 1) 2.

Tempering further improves this approximation by reducing errors from linear approximation,
thereby decreasing weight variance. It also mitigates off-manifold guidance (He et al., 2024), partic-
ularly in early sampling stages. As λt increases from 0 to 1, it gradually guides sampling towards the
target while minimizing weight degeneracy and manifold deviation. Section 4 provides empirical
validation of these effects.

Finally, the unnormalized weights for each particle are calculated as

wt−1(xt−1, xt) =
γ̃t−1(xt−1)

γ̃t(xt)

Lt(xt|xt−1)

mt−1(xt−1|xt)
=

pθ(xt−1|xt) exp
(

λt−1

α r̂(xt−1)
)

mt−1(xt−1|xt) exp
(
λt

α r̂(xt)
) (14)

for t = 1 : T and wT (xT ) = exp
(
λT

α r̂(xT )
)

which are used for resampling. The pseudo-code of
the final algorithm with adaptive resampling is given in Algorithm A.1.

3.3.4 ASYMPTOTIC BEHAVIOR

This section presents asymptotic analysis results for DAS. We first demonstrate asymptotic exact-
ness, a key property distinguishing SMC methods from other approximate guidance approaches.
Proposition 2 (Asymptotic Exactness). (Informal) Under regularity conditions, sample estimation
of EX∼ptar [φ(X)] given by DAS converge to the true expectation almost surely for test functions φ.

Although SMC samplers are asymptotically exact, their sample efficiency depends on design
choices. Using a Central Limit Theorem analysis, we bound the asymptotic variance of sample
estimations. This approach allows us to prove the benefits of tempering for sample efficiency, pro-
viding theoretical justification beyond intuitive advantages.
Proposition 3 (Asymptotic Variance and Sample Efficiency). (Informal) Under the same regularity
conditions as Proposition 2, the upper bound of asymptotic variances of sample estimations given
by DAS when tempering is used, i.e. λt’s are not all 1 for t = 0 : T , are always smaller or equal to
when tempering isn’t used, i.e. λt’s are all 1 for t = 0 : T .

These propositions further imply setwise convergence of empirical measures to ptar and quantify
the asymptotic error, which is reduced with tempering. Formal statements and proofs are provided
in Appendix C.2.

4 EXPERIMENTS

The main benefits of DAS are twofold: (1) it can avoid over-optimization by directly sampling
from the target distribution, and (2) it is efficient since there is no need for additional training. We
investigate these benefits through various experiments by addressing the following questions:
• Can DAS effectively optimize a single reward while avoiding over-optimization? (§4.1)
• Can DAS optimize multiple rewards all at once without training for each combination? (§4.2)
• Can DAS effectively search diverse viable solutions in an online black-box optimization? (§4.3)
• Does tempering increase sample efficiency as predicted by the theory? (§4.1)

4.1 SINGLE REWARD

4.1.1 EXPERIMENT SETUP

Tasks. For single reward tasks, we use aesthetic scores (Schuhmann et al., 2022) and human prefer-
ence evaluated by PickScore (Kirstain et al., 2023) as objectives. For fine-tuning methods, we used

2x̂0 use noise prediction of pre-trained diffusion model, in which the output depends on time.
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Figure 2: Target Reward vs. Evaluation Metrics. Top: target is the aesthetic score, bottom: target
is PickScore. (a), (e) and (b), (f): evaluation of cross-reward generalization using HPSv2 and Im-
ageReward, respectively. (c), (g) and (d), (h): evaluation of diversity using Truncated CLIP Entropy
(TCE) and mean pairwise distance (MPD) calculated with LPIPS, respectively. Our method reach
similar or better target reward compared to fine-tuning methods (DDPO, AlignProp) while main-
taining cross-reward generalization and diversity like guidance methods (DPS, FreeDoM, MPGD),
breaking through the Pareto-front of previous methods.

animals from Imagenet Deng et al. (2009) and prompts from Human Preference Dataset v2 (HPDv2)
(Wu et al., 2023b) when training on aesthetic score and PickScore respectively, like previous settings
(Black et al., 2023; Clark et al., 2024). Evaluation uses unseen prompts from the same dataset.

Evaluation metrics. We assess three aspects: target rewards, cross-reward generalization, and
sample diversity. For cross-reward generalization, we use HPSv2 (Wu et al., 2023b) and ImageRe-
ward (Xu et al., 2024), both alternative rewards that measure human preference. For sample diver-
sity, we use Truncated CLIP Entropy (TCE) (Ibarrola & Grace, 2024) which measures entropy of
CLIP embeddings, and mean pairwise distance (MPD) calculated with LPIPS (Zhang et al., 2018)
which quantifies perceptual differences.

Baselines. We employ Stable Diffusion v1.5 (Rombach et al., 2022) as the pre-trained model. Other
baselines include fine-tuning methods (DDPO (Black et al., 2023), AlignProp (Prabhudesai et al.,
2024), AlignProp with KL regularization, TDPO (Zhang et al., 2024), and DiffusionDPO (Wallace
et al., 2024) for PickScore) and training-free guidance methods (DPS (Chung et al., 2023), FreeDoM
(Yu et al., 2023), and MPGD (He et al., 2024)).

4.1.2 RESULTS

Quantitative evaluation. Figure 2 shows quantitative results on both the target reward and eval-
uation metrics. Fine-tuning methods generally cluster in the bottom right, indicating reward over-
optimization with high target rewards but low diversity and poor generalization to similar rewards.
AlignProp with KL exhibits a similar trend, failing to mitigate over-optimization due to mode-
seeking behavior, as demonstrated in the mixture of Gaussian example (Section 3.2). TDPO, pro-
posed as an alternative to early stopping and KL regularization, fails to effectively mitigate over-
optimization for aesthetic scores and tends to under-optimize for PickScore. Conversely, guidance
methods typically occupy the upper left quadrant, failing to optimize target rewards effectively.
DAS consistently occupies the upper right quadrant, achieving high target rewards while maintain-
ing cross-reward generalization and diversity, thus effectively mitigating over-optimization.

Preserving diversity while optimizing rewards. Figure 3 showcases samples generated from the
prompt ”crocodile,” aimed at maximizing aesthetic score. Our approach demonstrates superior aes-
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Color Count Composition Location Style Unusual

Pre-trained

DDPO

AlignProp
w/ KL

DAS (Ours)

Figure 4: Qualitative comparison of T2I alignment. Target reward: PickScore. Unseen prompts:
“A green colored rabbit” (color), “Four wolves in the park” (count), “cat and a dog” (composition),
“A dog on the moon” (location), “A cat in the style of Van Gogh’s Starry Night” (style), “A door that
leads to outer space” (unusual). Samples generated by DAS used only 4 particles.

thetic appeal while preserving sample diversity and pre-trained features of the animal. In contrast,
samples from fine-tuning methods deviate significantly from the pre-trained model’s output and ex-
hibit less diversity in colors, backgrounds, and appearances, indicating reward over-optimization.

Pre-trained DDPO AlignProp
w/ KL DAS (Ours)

Figure 3: Qualitative comparison of over-
optimization and diversity.

Improving T2I alignment. Notably, in Figure
2, DAS substantially outperforms fine-tuning
methods for the PickScore task across all met-
rics. To check whether the quantitative re-
sults align with actual human preferences, Fig-
ure 4 visualizes samples targeted to maximize
PickScore across six categories: color, count,
composition, location, style, and generating
unusual scenes. DAS successfully generates
aligned images with high visual appeal, even
compared to fine-tuning baselines, thus effec-
tively aligning the samples with human pref-
erences. We provide additional results in Ap-
pendix F .

Ablation on tempering We additionally con-
ducted an ablation study on tempering, using
the aesthetic score as target reward and ImageReward as evaluation for T2I alignment and cross-
reward generalization. We also tested various tempering strategies, including γ = 0.008, γ = 0.024
(where λt reaches 1 after 90 or 30 steps, respectively), and adaptive tempering (A.2). As shown in
Figure 5, without tempering, SMC suffers from over-optimization, even with 32 particles, resulting
in low ImageReward. In contrast, with tempering, both high aesthetic scores and ImageReward are
achieved using only 4 or 8 particles, greatly improving efficiency regardless of tempering schemes.
Tempering also reduces deviation from the latent manifold (He et al., 2024), indicating fewer gen-
erations of OOD samples. These findings align with the theoretical predictions in Section 3.3.3 and
3.3.4. While the performance of DAS is robust to tempering schemes, we recommend low γ with a
tuned α for the best balance of quality and efficiency in general.
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Figure 5: Effect of tempering on sample efficiency and manifold deviation. We compare dif-
ferent tempering schemes while changing the numbers of particles. (left) Number of Particles vs.
aesthetic score (target reward), (middle) Number of Particles vs. ImageReward (unseen reward),
(right) Number of Particles vs. mean deviation from latent manifold.

4.2 MULTI REWARDS
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(a) Trade-off in multi-objective optimization.

Aesthetic Score Weight
0.1 0.3 0.5 0.7 0.9

DDPO
(soup)

AlignProp
(soup)

DAS
(Ours)

(b) Generated samples according to reward weights

Figure 6: Comparison of multi-objective optimization. (a) DAS achieve Pareto-optimal trade-
off between the two rewards. (b) Prompt: ”classic cars on a city street with people and a dog”.
Interestingly, DAS consistently generates ’dog’ in the prompt when aesthetic score weight gets lower
than 0.9, while baselines fail to generate the dog for some images.

Experiment setup. Multi-objective optimization is crucial for real-world applications that balance
competing goals (Deb et al., 2016) - for instance, generating visually appealing images while being
faithful to prompts. To evaluate DAS in this practical setting, we combine aesthetic score and
CLIPScore (Hessel et al., 2021), which measures image-text alignment. We use a weighted sum:

w · Aesthetic Score + (1− w) · 20 · CLIPScore (15)

with w ∈ {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. Baselines include interpolated LoRA weights fine-tuned
separately on each objective using DDPO and AlignProp (Ramé et al., 2023; Clark et al., 2024;
Prabhudesai et al., 2024), and a model directly fine-tuned on the weighted sum (w = 0.5). We use
HPDv2 prompts for training and evaluation.

Pareto-optimality without fine-tuning. Figure 6a shows DAS achieving Pareto-optimal solutions
without any fine-tuning or model interpolation, outperforming methods that require extensive train-
ing for each objective. While direct fine-tuning on weighted averages fails to improve the Pareto-
front, DAS obtains optimal solutions for any reward combination by sampling from the reward-
aligned target distribution. Figure 6b demonstrates this capability through superior prompt align-
ment and aesthetic quality across different reward weights.

4.3 ONLINE BLACK-BOX OPTIMIZATION
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Target (↑) Unseen Reward (↑) Diversity (↑)

Method Aesthetic HPSv2 ImageReward TCE LPIPS

SEIKO-UCB 6.88 0.25 -0.31 38.5 0.51
SEIKO-Bootstrap 6.51 0.25 -1.01 40.4 0.49
DAS-UCB (Ours) 6.77 0.28 1.25 41.1 0.66
DAS-Bootstrap (Ours) 6.73 0.28 1.27 40.6 0.65

Table 1: Comparison of online optimization methods. DAS achieves comparable target aesthetic
scores while significantly outperforming in generalization to unseen rewards and output diversity.

SEIKO-
UCB

SEIKO-
Bootstrap

DAS-UCB
(Ours)

DAS-Bootstrap
(Ours)

Figure 7: Qualitative comparison of online
methods.

Online black-box optimization with diffu-
sion models. This approach optimizes an un-
known function by receiving iterative feed-
back, especially useful when offline data is
insufficient or objectives (e.g., human prefer-
ences) change over time. Minimizing feed-
back queries is key to reducing costs. SEIKO
(Uehara et al., 2024b) is a feedback-efficient
method using an uncertainty-aware optimistic
surrogate model built through linear model
(UCB) or ensembling (Bootstrap). While SEI-
KO guarantees theoretical regret bounds, this
result relies on sampling from an aligned dis-
tribution using the surrogate model, similar to
ptar in which they incorporate direct backprop-
agation to solve it. Instead, we adapt DAS to
directly sample from this distribution (A.3).

Experiment setup. We adopt aesthetic score as a black-box reward model, and limit to use only
1024 feedback queries for all methods. Experiment is conducted in a batch online setting through
an iterative cycle: proposing samples (from fine-tuned model in SEIKO, or using DAS to directly
sample from distribution aligned with surrogate model), recieving feedbacks from the black-box
reward, and updating the surrogate model.

Efficient exploration of diverse viable solutions. Figure 7 highlights that DAS preserves pre-
trained characteristics and generates diverse, high-quality images, while SEIKO, using AlignProp
with KL, distorts animal features. Quantitatively, in Table 1, DAS matches SEIKO in optimizing
aesthetic scores but significantly outperforms in unseen rewards and diversity, proving its ability to
explore a broader solution space. This demonstrates the advantage of DAS over direct backpropaga-
tion for the online setting: high sample diversity enhances exploration, leading to a robust surrogate
model and avoiding over-optimization. Furthermore, DAS bypasses fine-tuning the diffusion model
every time the surrogate model is updated, enhancing adaptability through frequent updates.

Non-differentiable rewards. Reward maximization often involves non-differentiable or computa-
tionally expensive models. While DAS requires differentiable rewards for guidance, it can handle
general rewards by posing the reward as black-box reward and learning a differentiable surrogate
model with online feedback. We further demonstrate this using JPEG compressibility in F.3.

5 CONCLUSIONS

We introduce DAS, a training-free method using Sequential Monte Carlo sampling to align diffusion
models with rewards. DAS optimizes rewards while preserving generalization without fine-tuning.
In single and multi-reward experiments, DAS achieves comparable or superior target rewards to
fine-tuning methods while excelling in diversity and cross-reward generalization. The online op-
timization results demonstrate DAS’s ability to efficiently explore diverse, high-quality solutions.
These findings establish DAS as a versatile and efficient approach for aligning diffusion models
applicable to a wide range of objectives and scenarios while significantly reducing the cost and
complexity of the alignment process.
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REPRODUCIBILITY STATEMENT

We have made several efforts to ensure the reproducibility of our work. We provide complete proofs
for all theoretical results in Appendix C, including formal statements and proofs for Propositions 2
and 3 in Appendix C.2.4 and C.2.5. Detailed pseudocode for our full DAS algorithm is included in
Appendix A, with versions with adaptive resampling (Algorithm 1), adaptive tempering (Algorithm
3) and adaptation to online setting (Algorithm 5). Appendix D contains comprehensive implementa-
tion details for our method and baselines, including hyperparameter settings, training and sampling
procedures. We will release our full codebase upon publication to enable others to replicate our re-
sults, including implementations of DAS. We use publicly available datasets and evaluation metrics,
with details of experiment setup provided in Section 4. Appendix F contains additional experimental
results to supplement those in the main paper. By providing these materials, we aim to enable other
researchers to reproduce our results and build upon our work. We are committed to addressing any
questions or requests for additional information to further support reproducibility efforts.
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Alexandre Ramé, Guillaume Couairon, Mustafa Shukor, Corentin Dancette, Jean-Baptiste Gaya,
Laure Soulier, and Matthieu Cord. Rewarded soups: towards Pareto-optimal alignment by inter-
polating weights fine-tuned on diverse rewards, October 2023. URL http://arxiv.org/
abs/2306.04488. arXiv:2306.04488 [cs].

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, June 2022.

Sebastian Sanokowski, Sepp Hochreiter, and Sebastian Lehner. A diffusion model framework for
unsupervised neural combinatorial optimization. In Forty-first International Conference on Ma-
chine Learning, 2024.

C. Schuhmann. Laion aesthetic predictor. https://laion.ai/blog/
laion-aesthetics/, 2022. Accessed: 2024-09-29.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Un-
supervised Learning using Nonequilibrium Thermodynamics, November 2015. URL http:
//arxiv.org/abs/1503.03585. arXiv:1503.03585 [cond-mat, q-bio, stat].

Jiaming Song, Chenlin Meng, and Stefano Ermon. DENOISING DIFFUSION IMPLICIT MOD-
ELS. 2021a.

13

http://arxiv.org/abs/2302.12192
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2310.03739
http://arxiv.org/abs/2310.03739
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://arxiv.org/abs/2306.04488
http://arxiv.org/abs/2306.04488
https://laion.ai/blog/laion-aesthetics/
https://laion.ai/blog/laion-aesthetics/
http://arxiv.org/abs/1503.03585
http://arxiv.org/abs/1503.03585


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-Guided Diffusion
Models for Inverse Problems. September 2022. URL https://openreview.net/forum?
id=9_gsMA8MRKQ.

Jiaming Song, Qinsheng Zhang, Hongxu Yin, Morteza Mardani, Ming-Yu Liu, Jan Kautz, Yongxin
Chen, and Arash Vahdat. Loss-guided diffusion models for plug-and-play controllable generation.
In International Conference on Machine Learning, pp. 32483–32498. PMLR, 2023.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum Likelihood Training of
Score-Based Diffusion Models, October 2021b. URL http://arxiv.org/abs/2101.
09258. arXiv:2101.09258 [cs, stat].

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-Based Generative Modeling through Stochastic Differential Equations, February
2021c. URL http://arxiv.org/abs/2011.13456. arXiv:2011.13456 [cs, stat].

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–3021, 2020.

Brian L. Trippe, Jason Yim, Doug Tischer, David Baker, Tamara Broderick, Regina Barzilay, and
Tommi S. Jaakkola. Diffusion probabilistic modeling of protein backbones in 3d for the motif-
scaffolding problem. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=6TxBxqNME1Y.

Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia, Nathaniel Lee
Diamant, Alex M. Tseng, Tommaso Biancalani, and Sergey Levine. Fine-Tuning of Continuous-
Time Diffusion Models as Entropy-Regularized Control, February 2024a. URL http://
arxiv.org/abs/2402.15194. arXiv:2402.15194 [cs, stat].

Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia, Nathaniel Lee
Diamant, Alex M. Tseng, Sergey Levine, and Tommaso Biancalani. Feedback Efficient Online
Fine-Tuning of Diffusion Models. In Forty-first International Conference on Machine Learn-
ing, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024b. URL https:
//openreview.net/forum?id=dtVlc9ybTm. arXiv:2402.16359 [cs, q-bio, stat].

Francisco Vargas, Will Sussman Grathwohl, and Arnaud Doucet. Denoising diffusion samplers. In
The Eleventh International Conference on Learning Representations, 2023.

Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion Model Alignment
Using Direct Preference Optimization. In 2024 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 8228–8238, Seattle, WA, USA, June 2024. IEEE. ISBN
9798350353006. doi: 10.1109/CVPR52733.2024.00786. URL https://ieeexplore.
ieee.org/document/10657686/. arXiv:2311.12908 [cs].

Chaoqi Wang, Yibo Jiang, Chenghao Yang, Han Liu, and Yuxin Chen. Beyond reverse kl: Gen-
eralizing direct preference optimization with diverse divergence constraints. arXiv preprint
arXiv:2309.16240, 2023.

Kai Wang, Mingjia Shi, Yukun Zhou, Zekai Li, Zhihang Yuan, Yuzhang Shang, Xiaojiang Peng,
Hanwang Zhang, and Yang You. A closer look at time steps is worthy of triple speed-up for
diffusion model training. arXiv preprint arXiv:2405.17403, 2024.

Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eise-
nach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of
protein structure and function with rfdiffusion. Nature, 620(7976):1089–1100, 2023.

Luhuan Wu, Brian L. Trippe, Christian A. Naesseth, David M. Blei, and John P. Cunningham.
Practical and Asymptotically Exact Conditional Sampling in Diffusion Models. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,

14

https://openreview.net/forum?id=9_gsMA8MRKQ
https://openreview.net/forum?id=9_gsMA8MRKQ
http://arxiv.org/abs/2101.09258
http://arxiv.org/abs/2101.09258
http://arxiv.org/abs/2011.13456
https://openreview.net/forum?id=6TxBxqNME1Y
http://arxiv.org/abs/2402.15194
http://arxiv.org/abs/2402.15194
https://openreview.net/forum?id=dtVlc9ybTm
https://openreview.net/forum?id=dtVlc9ybTm
https://ieeexplore.ieee.org/document/10657686/
https://ieeexplore.ieee.org/document/10657686/


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

2023. arXiv, 2023a. URL http://papers.nips.cc/paper_files/paper/2023/
hash/63e8bc7bbf1cfea36d1d1b6538aecce5-Abstract-Conference.html.
arXiv:2306.17775 [cs, q-bio, stat].

Xiaoshi Wu, Keqiang Sun, Feng Zhu, Rui Zhao, and Hongsheng Li. Human preference score:
Better aligning text-to-image models with human preference. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 2096–2105, 2023b.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
Advances in Neural Information Processing Systems, 36, 2024.

Taeho Yoon, Kibeom Myoung, Keon Lee, Jaewoong Cho, Albert No, and Ernest K. Ryu. Cen-
sored Sampling of Diffusion Models Using 3 Minutes of Human Feedback. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023. arXiv, 2023. URL http://papers.nips.cc/paper_files/paper/2023/
hash/a5755ccd0efeca8852ae0a1193f319f6-Abstract-Conference.html.
arXiv:2307.02770 [cs].

Jiwen Yu, Yinhuai Wang, Chen Zhao, Bernard Ghanem, and Jian Zhang. FreeDoM: Training-
Free Energy-Guided Conditional Diffusion Model. In IEEE/CVF International Conference on
Computer Vision, ICCV 2023, Paris, France, October 1-6, 2023, pp. 23117–23127. IEEE, 2023.
doi: 10.1109/ICCV51070.2023.02118. arXiv:2303.09833 [cs].

Qinsheng Zhang and Yongxin Chen. Path Integral Sampler: a stochastic control approach for sam-
pling, March 2022. URL http://arxiv.org/abs/2111.15141. arXiv:2111.15141 [cs].

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The Unrea-
sonable Effectiveness of Deep Features as a Perceptual Metric. In 2018 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 586–595, Salt Lake City, UT, June
2018. IEEE. ISBN 978-1-5386-6420-9. doi: 10.1109/CVPR.2018.00068. URL https:
//ieeexplore.ieee.org/document/8578166/.

Ziyi Zhang, Sen Zhang, Yibing Zhan, Yong Luo, Yonggang Wen, and Dacheng Tao. Confronting
reward overoptimization for diffusion models: A perspective of inductive and primacy biases. In
Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scar-
lett, and Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learning Research, pp. 60396–60413. PMLR,
21–27 Jul 2024. URL https://proceedings.mlr.press/v235/zhang24ch.html.

Tianyi Zheng, Peng-Tao Jiang, Ben Wan, Hao Zhang, Jinwei Chen, Jia Wang, and Bo Li. Beta-tuned
timestep diffusion model. In European Conference on Computer Vision, pp. 114–130. Springer,
2025.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-Tuning Language Models from Human Preferences, Jan-
uary 2020. URL http://arxiv.org/abs/1909.08593. arXiv:1909.08593 [cs, stat].

15

http://papers.nips.cc/paper_files/paper/2023/hash/63e8bc7bbf1cfea36d1d1b6538aecce5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/63e8bc7bbf1cfea36d1d1b6538aecce5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a5755ccd0efeca8852ae0a1193f319f6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a5755ccd0efeca8852ae0a1193f319f6-Abstract-Conference.html
http://arxiv.org/abs/2111.15141
https://ieeexplore.ieee.org/document/8578166/
https://ieeexplore.ieee.org/document/8578166/
https://proceedings.mlr.press/v235/zhang24ch.html
http://arxiv.org/abs/1909.08593


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A PSEUDOCODES

A.1 PSEUDOCODE FOR FULL ALGORITHM OF DAS

In practice, adaptive resampling (Chopin & Papaspiliopoulos, 2020; Murphy, 2023) is used instead
of resampling every step with more sophisticated resampling schemes instead of multinomial resam-
pling for variance reduction. We also used adaptive resampling with Srinivasan Sampling Process
(SSP) resampling scheme (Gerber et al., 2019). The full algorithm of DAS is given as follows.

In practice, adaptive resampling (Chopin & Papaspiliopoulos, 2020; Murphy, 2023) is used instead
of resampling at every step. This approach helpsmaintaining particle diversity where resampling
every step may lead to particle degenarcy. Adaptive resampling uses the Effective Sample Size
(ESS) as a criterion to determine when resampling is necessary. The ESS is defined as:

ESS =

(
N∑

n=1

(Wn
t )

2

)−1

(16)

where Wn
t are the normalized particle weights. Resampling is performed only when the ESS falls

below a predetermined threshold, indicating significant imbalance among particle weights. Note
that weights in Equation 14 now become incremental weight.

Furthermore, more sophisticated resampling schemes are often employed instead of simple multi-
nomial resampling to reduce variance. In our implementation of DAS, we use adaptive resampling
with the Srinivasan Sampling Process (SSP) resampling scheme (Gerber et al., 2019).

The full algorithm of DAS incorporating these techniques is given in Algorithm 1 .

Algorithm 1 Full Algorithm of DAS with Adaptive Resampling

1: Input: Number of time steps T , Number of particles N , Minimum ESS threshold ESSmin,
Resampling scheme RESAMPLE(·), Tempering scheme 0 = λT ≤ λT−1 ≤ · · · ≤ λ0 = 1

2: Output: Particle approximations of ptar, {Xn
0 ,W

n
0 }Nn=1

3: // Initialize particles at time T
4: for n = 1 to N do
5: Xn

T ∼ N
(
0, σ2

T I
)

▷ Sample from prior
6: wn

T ← exp
(
λT

α r̂(Xn
T )
)

▷ Initial weights
7: end for
8: Wn

T ← wn
T /
∑N

m=1 w
m
T for n = 1, . . . , N ▷ Normalize weights

9: // Main loop: reverse time from T to 1
10: for t = T to 2 do
11: // Adaptive resampling based on ESS

12: ESS←
(∑N

n=1(W
n
t )

2
)−1

▷ Calculate Effective Sample Size
13: if ESS < ESSmin then
14: A1:N

t ← RESAMPLE(W 1:N
t ) ▷ Resample using SSP

15: ŵn
t ← 1 for n = 1, . . . , N ▷ Reset weights

16: else
17: An

t ← n for n = 1, . . . , N ▷ Keep original indices
18: ŵn

t ← wn
t for n = 1, . . . , N ▷ Keep original weights

19: end if
20: // Importance Sampling
21: for n = 1 to N do
22: Xn

t−1 ∼ mt−1(xt−1|X
An

t
t ) ▷ Propose new particles, equation 13

23: wn
t−1 ← ŵn

t wt−1(X
An

t
t , Xn

t−1) ▷ Update weights, equation 14
24: end for
25: Wn

t−1 ← wn
t−1/

∑N
m=1 w

m
t−1 for n = 1, . . . , N ▷ Normalize weights

26: end for
27: return {Xn

0 ,W
n
0 }Nn=1
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A.2 PSEUDOCODE FOR DAS WITH ADAPTIVE TEMPERING

We also provide pseudocode of DAS with adaptive tempering used in ablation study (Section 4.1)
for completeness.

Algorithm 2 Full Algorithm of DAS with Adaptive Resampling and Adaptive Tempering

1: Input: Number of time steps T , Number of particles N , Target ESS ESStarget, Resampling
scheme RESAMPLE(·)

2: Output: Particle approximations of ptar, {Xn
0 ,W

n
0 }Nn=1

3: // Initialize particles at time T
4: for n = 1 to N do
5: Xn

T ∼ N
(
0, σ2

T I
)

▷ Sample from prior
6: wn

T ← 1 ▷ Initial weights
7: end for
8: Wn

T ← wn
T /
∑N

m=1 w
m
T for n = 1, . . . , N ▷ Normalize weights

9: λT ← 0 ▷ Initial tempering parameter
10: // Main loop: reverse time from T to 1
11: for t = T to 1 do
12: // Adaptive tempering
13: δ ← SOLVEFORDELTA({Xn

t ,W
n
t }Nn=1,ESStarget, λt) ▷ Solve for δ

14: λt−1 ← min(λt + δ, 1) ▷ Update tempering parameter
15: for n = 1 to N do
16: wn

t ← wn
t · exp

(
λt−1−λt

α r̂(Xn
t )
)

▷ Update weights
17: end for
18: Wn

t ← wn
t /
∑N

m=1 w
m
t for n = 1, . . . , N ▷ Normalize weights

19: // Adaptive resampling based on ESS

20: ESS←
(∑N

n=1(W
n
t )

2
)−1

▷ Calculate Effective Sample Size
21: if ESS < ESStarget then
22: A1:N

t ← RESAMPLE(W 1:N
t ) ▷ Resample using SSP

23: ŵn
t ← 1 for n = 1, . . . , N ▷ Reset weights

24: else
25: An

t ← n for n = 1, . . . , N ▷ Keep original indices
26: ŵn

t ← wn
t for n = 1, . . . , N ▷ Keep original weights

27: end if
28: // Importance Sampling
29: if t > 1 then ▷ Skip proposal step for the final iteration
30: for n = 1 to N do
31: Xn

t−1 ∼ mt−1(xt−1|X
An

t
t ) ▷ Propose new particles, equation 13

32: wn
t−1 ← ŵn

t wt−1(X
An

t
t , Xn

t−1) ▷ Update weights using λt−1 = λt, Eq. equation 14
33: end for
34: Wn

t−1 ← wn
t−1/

∑N
m=1 w

m
t−1 for n = 1, . . . , N ▷ Normalize weights

35: end if
36: end for
37: return {Xn

0 ,W
n
0 }Nn=1

Algorithm 3 SolveForDelta function with clamping

1: function SOLVEFORDELTA({Xn
t ,W

n
t }Nn=1, ESStarget, λt)

2: Define f(δ) = ESS({Wn
t · exp( δ

α r̂(X
n
t ))}Nn=1)− ESStarget

3: δunclamped ← NumericalRootFinding(f) ▷ e.g., bisection method
4: δ ← max(0,min(δunclamped, 1− λt)) ▷ Clamp δ between 0 and 1-λt

5: return δ
6: end function
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A.3 PSEUDOCODE FOR ONLINE BLACK-BOX OPTIMIZATION

We first provide pseudocode of SEIKO (Uehara et al., 2024b) for completeness.

Algorithm 4 SEIKO (OptimiStic finE-tuning of dIffusion with KL cOnstraint)

1: Input: Parameters α, β, pre-trained diffusion model fpre : [0, T ]×X → X , initial distribution
νpre : X → ∆(X)

2: Output: Sequence of fine-tuned models p(1), . . . , p(K)

3: Initialize f (0) ← fpre, ν(0) ← νpre
4: for i = 1 to K do
5: Generate new sample x(i) ∼ p̂(i−1)(x) following reverse SDE:
6: dxt = f (i−1)(t, xt)dt+ σ(t)dwt, x0 ∼ ν(i−1)

7: Get feedback y(i) = r(x(i)) + ε
8: Update dataset: D(i) ← D(i−1) ∪ (x(i), y(i))
9: Train surrogate model r̂(i)(x) and uncertainty oracle ĝ(i)(x) using D(i)

10: Fine-tune diffusion model to fit the following distribution:
11: p(i) ∝ exp

(
r̂(i)(·)+ĝ(i)(·)

α+β

)
{p̂(i−1)(·)}

β
α+β {ppre(·)}

α
α+β

12: and get f (i), ν(i),
13: end for
14: return p(1), . . . , p(K)

For every update, SEIKO use direct backpropagation to fit the diffusion model to the target distribu-
tion p(i) by solving

p(i) = argmax
p∈∆(X )

Ex∼p[r(x)]− αKL(p ∥ p(0))− βKL(p ∥ p(i−1)) (17)

similarly to Uehara et al. (2024a). However, we revealed that this method can easily fall into mode-
seeking behavior in Section 3.2 and 4. Instead, we adapt DAS for the corresponding step to sample
from

p̃(i) ∝ ppre(·) exp
(
r̂(i)(·) + ĝ(i)(·)

α

)
(18)

directly. Online algorithm employing DAS is given in Algorithm 5.

Algorithm 5 Online Black-box Optimization using DAS

1: Input: Parameters α, pre-trained diffusion model
2: Output: Samples from final target aligned to black box reward
3: Initialize p̃(0) = ppre
4: for i = 1 to K do
5: Generate new sample x(i) ∼ p̃(i−1)(x) using DAS (Algortihm 1):
6: Get feedback y(i) = r(x(i)) + ε
7: Update dataset: D(i) ← D(i−1) ∪ (x(i), y(i))
8: Train surrogate model r̂(i)(x) and uncertainty oracle ĝ(i)(x) using D(i)

9: end for
10: return p(1), . . . , p(K)

For both aesthetic score experiments (Section 4.3 and JPEG compressibility experiments (Sec-
tionF.3), we used MLP on frozen CLIP embeddings (Radford et al., 2021) for surrogate model.

B INTRODUTION TO SMC

In this section, we give introdution to SMC and particle filtering using Feyman-Kac formulation
following Chopin & Papaspiliopoulos (2020). We additionaly introduce theoretical results in the
SMC literature, which will be used in C.2.4 and C.2.5 for asymptotic analysis of DAS.
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Please note that in this section, we follow similar time notation of general SMC methods which,
unlike diffusion sampling, starts at time 0 and ends at time K. We will come back to time notation
for diffusion models in appendix C where we analyze DAS.

B.1 FEYNMAN-KAC MODELS AND PARTICLE FILTERING

Feynman-Kac models extend a Markov process by incorporating potential functions to create a new
sequence of probability measures via change of measure. Starting with a Markov process on state
space X , with initial distribution M0(dx0) and transition kernels Mk(xk−1, dxk) for k = 1 : K, the
joint distribution defined on XK is:

MK(dx0:K) = M0(dx0)

K∏
k=1

Mk(xk−1, dxk) (19)

The Feynman-Kac foramlization introduces potential functions G0(x0) and Gk(xk−1, xk) for k ≥ 1
which are strictly positive. These define a new sequence of probability measures Qk through change
of measure:

Qk(dx0:k) =
1

Lk
G0(x0)

{
k∏

s=1

Gs(xs−1, xs)

}
Mk(dx0:k) (20)

refered as sequence of Feynman-Kac models. Here, Lk is a normalizing constant:

Lk = EMk

[
G0(X0)

k∏
s=1

Gs(Xs−1, Xs)

]
(21)

Feynman-Kac model will also be used as a term that refer to the collection of kernels and potential
functions {Mk, Gk}. The probability measures can be extended to an arbitrary future horizon K ≥
k, allowing Qk to be defined on XK for all k:

Qk(dx0:K) =
1

Lk
G0(x0)

{
k∏

s=1

Gs(xs−1, xs)

}
MK(dx0:K) (22)

In this extended formulation, Qk(dx0:K) is defined on the full time horizon [0,K] for any k ≤ K.
Qk(dx0:k) becomes the marginal distribution of the first k + 1 components of Qk(dx0:K). For
s > k, the potential functions Gs are effectively set to 1, allowing the process to evolve according to
the original Markov dynamics Ms for the remaining time steps. Note that Qk(dx0:k) is a marginal
of Qk(dx0:K), but not necessarily of QK(dx0:K) for K > k, a distinction crucial in working with
Feynman-Kac models and related inference methods.

Sequential Monte Carlo (SMC), also known as particle filtering, is a generic algorithm that pro-
vides recursive approximations of a given state-space model. It relies on the Feynman-Kac model to
provide the recursive structure for the probability distributions we wish to approximate, and uses im-
portance sampling and resampling techniques to achieve these approximations. Algorithm 6 shows
the sampling process of generic particle filtering algorithm.
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Algorithm 6 Generic Particle Filtering Algorithm

1: Input: Feynman-Kac model {Mk, Gk}, Number of particles N , Resampling scheme
RESAMPLE(·), Number of time steps K

2: Output: Particle approximations {Xn
k ,W

n
k }Nn=1 for k = 0, . . . ,K

3: for n = 1 to N do
4: Xn

0 ∼M0(dx0)
5: wn

0 ← G0(X
n
0 )

6: end for
7: Wn

0 ← wn
0 /
∑N

m=1 w
m
0 for n = 1, . . . , N

8: for k = 1 to K do
9: A1:N

k ← RESAMPLE(W 1:N
k−1)

10: for n = 1 to N do
11: Xn

k ∼Mk(X
An

k

k−1, dxk)

12: wn
k ← Gk(X

An
k

k−1, X
n
k )

13: end for
14: Wn

k ← wn
k/
∑N

m=1 w
m
k for n = 1, . . . , N

15: end for
16: return {Xn

k ,W
n
k }Nn=1 for k = 0, . . . ,K

Ouput of the particle filtering algorithm can be used for sample approximations of the associated
Feyman-Kac models by

Qk−1(dxk) ≈
1

N

N∑
n=1

δXn
k

(23)

Qk(dxk) ≈
N∑

n=1

Wn
k δXn

k
(24)

EQk−1
[φ(Xk)] = Qk−1Mk(φ) ≈

1

N

N∑
n=1

φ(Xn
k ) (25)

EQk
[φ(Xk)] = Qk(φ) ≈

N∑
n=1

Wn
k φ(X

n
k ) (26)

where φ ∈ Cb(X ) is some test function and Cb(X ) denotes the set of functions φ : X → R that
are measurable and bounded. We give further asymptotic analysis of these approximations in the
following sections when assuming multinomial resampling is used. For simplicity, we focus on the
approximation 26.

Finally, we note that SMC samplers apply particle filtering where the associated Feynman-Kac
model targets to approximate intermediate joint distributions in equation 7, but with different time
notation.

B.2 CONVERGENCE OF PARTICLE ESTIMATES

We state the following law of large number (LLN) type proposition for approximation 26 without
proof. This proposition provides the asymptotic exactness of particle filtering algorithms and SMC
samplers, including DAS, when the assumptions are met.
Proposition 4 (Chopin & Papaspiliopoulos (2020), Proposition 11.4). For algorithm 6 with multi-
nomial resampling, if potential functions Gk’s of the associated Feynman-Kac model are all upper
bounded, for k ≥ 0 and φ such that φ×Gk ∈ Cb(X ),

N∑
n=1

Wn
k φ(X

n
k )

a.s.−−→ Qk(φ). (27)

where a.s.−−→ denotes almost sure convergence.
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B.3 CENTRAL LIMIT THEOREMS AND STABILITY OF ASYMPTOTIC VARIANCES

Even if approximations given by particle filtering algorithms and SMC samplers are asymptotically
exact due to Proposition 4, the accuracy of approximation with finite number of particle depends
on the rate of convergence. Typically, the asymptotic error is characterized by CLT type argument,
where the error of estimation is distributed in Gaussian with scale O(N− 1

2 ) and the asymptotic
variance determines rate of convergence. We state formal version of the argument without proof.
Proposition 5 (Chopin & Papaspiliopoulos (2020), Proposition 11.2). Under the same settings and
assumptions as Proposition 2, for k ≥ 0 and φ such that φ×Gk ∈ Cb(X ),

√
N

(
N∑

n=1

Wn
k φ(X

n
k )−Qk(φ)

)
⇒ N (0,Vk(φ)) (28)

where⇒ denotes convergence in distribution and the asymptotic variances Vk’s are defined cumu-
latively as

Vk(φ) =
k∑

s=0

(Qs−1Ms)
[
(ḠsRs+1:k(φ−Qkφ))

2
]
. (29)

Here, Ḡk = Lk

Lk−1
Gk, Rk(φ) = Mk(Ḡk × φ) and Rs+1:k(φ) = Rs+1 ◦ · · · ◦Rk(φ).

Due to the cumulative form of the asymptotic variance, it may easily blow up as the sampling errors
accumulate. To prevent this, the Markov kernels should be strongly mixing, that is, future states of
the Markov process should become increasingly independent of the initial state, making the effect
of previous sampling errors vanish. We lay out the desired properties of the Markov kernels and
potential functions, then state the stability of the asymptotic variance by providing an upper bound
for the asymptotic variances that is uniform over time, based on the assumptions.

We first give a formal definition of strongly mixing Markov kernels.
Definition 1 (Contraction coefficient, Strongly mixing Markov kernel). The contraction coefficient
of a Markov kernel Mk is the quantity ρM ∈ [0, 1] defined as

ρM := sup
xk−1,x′

k−1

∥Mk(xk−1, dxk)−Mk(x
′
k−1, dxk)∥TV . (30)

where ∥P−Q∥TV := supA∈B(X ) |P(A)−Q(A)| is total variation distance between to probability
measures P and Q, and B(X ) denotes Borel σ-algebra of state space X . Furthermore, Markov
kernel Mk is said to be strongly mixing if ρM ≤ 1.

Next we lay out the assumptions for the associated Feynman-Kac model for the asymptotic variance
to be stable.

Assumption (1) Markov kernels Mk for k = 1 : K admit a probability density mk such that

mk(xk|xk−1)

mk(xk|x′
k−1)

≤ cM (31)

for any xk, xk−1, x
′
k−1 ∈ X , for some cM ≥ 1.

Assumption (2) Potential functions Gk’s are uniformly bounded for k = 0 : K as

0 < cl ≤ Gk(xk−1, xk) ≤ cu (32)

where Gk(xk−1, xk) must be replaced by G0(x0) for k = 0.

Given these assumptions, both Mk’s and Markov process defined by Qk’s become strongly mixing
as below.
Proposition 6 (Chopin & Papaspiliopoulos (2020), Proposition 11.9). Under Assumptions (1) and
(2), Mk is strongly mixing with contraction coefficient contraction coefficient ρM ≤ 1 − c−1

M Fur-
thermore, the Markov process defined by Qk is also strongly mixing with contraction coefficient
ρQ ≤ 1− 1/c2mcG where cG = cu/cl

Finally, using the assumptions and Proposition 3 one can prove the following proposition bounding
the asymptotic variances uniformly in time.
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Proposition 7 (Chopin & Papaspiliopoulos (2020), Proposition 11.13). Under Assumptions (1) and
(2), for any φ ∈ Cb(X ), asymptotic variance Vk(φ) define by 29 is bounded uniformly in time by

Vk(φ) ≤ c2G(∆φ)2 exp

(
2ρMcG
1− ρQ

)
× 1

1− ρ2Q
(33)

≤ c2G(∆φ)2 exp

 2
(
1− c−1

M

)
cG

1−
(
1− (c2McG)

−1
)
× 1

1−
(
1− (c2McG)

−1
)2 (34)

where ∆φ := supx,x′∈X |φ(x)− φ(x′)| is the variation of φ.

Note that the upper bound is increasing function of both cM and cG. Intuitively, as these constants
grow, the Markov kernels exhibit stronger mixing properties, which, in turn, accelerates the process
of forgetting or diminishing the influence of past sampling errors. We will use this property in C.2.5
to prove that tempering can lower this uniform upper bound.

C PROOFS

C.1 LOCALLY OPTIMAL PROPOSAL

C.1.1 PROOF OF PROPOSITION 1

proof. We first show that m∗
t−1(xt−1|xt) such that minimizes Var(wt−1(xt−1, xt)|xt) satis-

fies m∗
t−1(xt−1|xt) ∝ γt−1(xt−1)Lt(xt|xt−1). Since the minimization problem has constraint∫

dxt−1mt−1(xt−1|xt) = 1, by introducing a Lagrange multiplier ν(xt), the dual problem can be
written as

min
mt−1(xt−1|xt)

{
Emt−1(xt−1|xt)

[
wt−1(xt−1, xt)

2
]
−
(
Emt−1(xt−1|xt) [wt−1(xt−1, xt)]

)2
+ ν(xt)

(∫
dxt−1mt−1(xt−1|xt)− 1

)}

Here, wt−1(xt−1, xt) =
π̄t−1(xt−1:T )

π̄t(xt:T )mt−1(xt−1|xt)
. Using calculation of variation and that only first and

third term include mt−1, m∗
t−1 should satisfy

0 = w∗
t−1(xt−1, xt)

2 − 2m∗
t−1(xt−1|xt)w

∗
t−1(xt−1, xt)

π̄t−1(xt−1:T )

π̄t(xt:T )m∗
t−1(xt−1|xt)2

+ ν(xt)

= −w∗
t−1(xt−1, xt)

2 + ν(xt)

where w∗
t−1(xt−1, xt) =

π̄t−1(xt−1:T )
π̄t(xt:T )m∗

t−1(xt−1|xt)
. Since ν(xt) is with constant respect to xt−1,

m∗
t−1(xt−1|xt) ∝

π̄t−1(xt−1:T )

π̄t(xt:T )
∝ γt−1(xt−1)Lt(xt|xt−1). (35)

Then using the definitions of intermediate targets and backward kernels used in DAS,

m∗
t−1(xt−1|xt) ∝ pθ(xt−1|xt) exp

(
λt−1

α
r̂(xt−1)

)
∝ exp

(
− 1

2σ2
t

∥xt−1 − µθ(xt, t)∥2 +
λt−1

α
r̂(xt−1)

)
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C.2 ASYMPTOTIC ANLYSIS OF DAS

C.2.1 FEYNMAN-KAC MODEL FOR DAS

To give asymptotic analysis for DAS, we first clarify the Feynman-Kac model for DAS using the
formulations from B. The Feynman-Kac model for DAS is given by simply substituting

M0(dy0) = pT (xT )(dxT ) = N (0, σ2
T I)(dxT ) (36)

Mk(yk−1, dyk) = mt−1(xt−1|xt)(dxt−1) = N
(
µθ(xt, t) + σ2

t

λt−1

α
∇xt

r̂(xt), σ
2
t I

)
(dxt−1)

(37)

G0(y0) = wT (xT ) = exp

(
λT

α
r̂(xT )

)
(38)

Gk(yk−1, yk) = wt−1(xt, xt−1) =
pθ(xt−1|xt) exp

(
λt−1

α r̂(xt−1)
)

mt−1(xt−1|xt) exp
(
λt

α r̂(xt)
) (39)

Then, the associated Feynman-Kac models are

Qt−1(dxt−1:T ) =
1

Lt
wT (xT )

{
T∏

s=t

ws−1(xs, xs−1)

}
pT (xT )

T∏
s=t

ms−1(xs−1|xs)(dxt−1:T )

= π̄T (xT )

T∏
s=t

π̄s−1(xs−1:T )

π̄t(xt:T )ms−1(xs−1|xs)
ms−1(xs−1|xs)(dxt−1:T )

= π̄t−1(xt−1:T )(dxt−1:T )

where we used the alternative definition of wt−1 in 8 and telescoping to simplify the terms. Thus
indeed, Feynman-Kac models become the intermediate joint distributions defined through the inter-
mediate targets and backward kernels. Especially, if we marginalize at t = 0, we get

Q0(dx0) = π0(x0)(dx0) = ptar(x0)(dx0) (40)

C.2.2 ASSUMPTIONS FOR PROPOSITION 2 AND 3

Before we start the main proofs, we lay out the assumptions for the proofs.

Assumption (a) Reward function is bounded by 0 ≤ r(·) ≤ R

Assumption (b) Norm of gradient of r̂ is uniformly bounded by ∥∇xt r̂(xt)∥ ≤ L

Assumption (c) Xt−1, defined as the union of support of pt and supports of mt−1(·|xt) for all xt,
is bounded and dt−1 := diam(Xt−1) = sup{d(x, y) : x, y ∈ Xt−1} for t = 1 : T .

We go over the viability of these assumptions. Assumption (a) can be satisfied lower and upper
bounded rewards by adding a constant. Real-world rewards are indeed lower and upper bounded in
most practical settings, including aesthetic score and PickScore used in our experiments. Even if
not, we can simply clamp the reward to ensure the condition. Assumption (b) should be ensured for
numerical stability of the algorithm. That is, if the gradient explode, generation using the guidance
isn’t possible. Since r(·) and x̂(·) are function using neural networks, the assumption can be met
unless xt gets out of support of the training distribution. Experimentally, this is commonly true
unless using extremely small α. Note that the assumption of uniform bound in time is only for
simplicity and the bound may change in time. Assumption (c) is generally not true since mt is a
Gaussian kernel and pt is also the marginal distribution over Gaussian noise added to clean data.
However, it can ’effectively’ be satisfied. We explain what this means in more detail. First, the
data manifold X0 can be assumed to be bounded since most real-world data without corruption
doesn’t contain infinitely large or small component. Next, suppose we define the forward, reverse
diffusion process and the Markov kernels using Gaussian distribution truncated at tail probability ϵ
instead of standard Gaussian. Numerically, when ϵ is sufficiently small, the impact of the truncation
becomes negligible, hence the diffusion process and the SMC sampler behaves similarly to the
original Gaussian case. However, unlike the unbounded Gaussian noise, the bounded support of the
truncated noise ensures compactness Xt in Assumption (c). Thus the models can be modified to
satisfy Assumption (c) without any effect of the practical algorithm.
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C.2.3 LEMMAS

We first prove lemmas need to prove the propositions. We omit t in µθ(xt, t) from now on for
simplicity.

Lemma 1. Under Assumptions (a) ∼ (c),

mt−1(xt−1|xt)

mt−1(xt−1|x′
t)
≤ exp

(
d2t−1

σ2
t

+ 3dt−1
λt−1

α
L+ 2

(
σt

λt−1

α
L

)2
)

(41)

for any xt−1 ∈ Xt−1 and xt ∈ Xt

proof.

log
mt−1(xt−1|xt)

mt−1(xt−1|x′
t)

=
1

2σ2
t

(
∥xt−1 − µθ(xt)− σ2

t

λt−1

α
∇xt r̂(xt)∥2 − ∥xt−1 − µθ(x

′
t)− σ2

t

λt−1

α
∇x′

t
r̂(x′

t)∥2
)

=
1

σ2
t

〈
xt−1 −

1

2
(µθ(xt) + µθ(x

′
t))−

1

2
σ2
t

λt−1

α
(∇xt

r̂(xt) +∇x′
t
r̂(x′

t)),

(µθ(xt)− µθ(x
′
t)) + σ2

t

λt−1

α
(∇xt r̂(xt)−∇x′

t
r̂(x′

t))

〉

Applying Cauchy-Schwarz inequality,

≤ 1

σ2
t

∥∥∥∥(xt−1 −
1

2
(µθ(xt) + µθ(x

′
t))−

1

2
σ2
t

λt−1

α
(∇xt

r̂(xt) +∇x′
t
r̂(x′

t))

)∥∥∥∥ ·∥∥∥∥(µθ(xt)− µθ(x
′
t)) + σ2

t

λt−1

α
(∇xt r̂(xt)−∇x′

t
r̂(x′

t))

∥∥∥∥
Using Assumption (b) to bound ∥∇xt

r̂(xt)∥, ∥∇x′
t
r̂(x′

t)∥

and Assumption (c) to bound
∥∥∥∥xt−1 −

1

2
(µθ(xt) + µθ(x

′
t))

∥∥∥∥ , ∥µθ(xt)− µθ(x
′
t)∥

since xt−1, µθ(xt), µθ(x
′
t) ∈ Xt,

≤ 1

σ2
t

(
dt−1 + σ2

t

λt−1

α
L

)
·
(
dt−1 + 2σ2

t

λt−1

α
L

)
=

d2t−1

σ2
t

+ 3dt−1
λt−1

α
L+ 2

(
σt

λt−1

α
L

)2

Thus Assumption (1) in B.3 holds for Feynman-Kac model of DAS under Assumptions (a) (̃c) where
the uniform upper bound cM is given by

cM = sup
t∈{1,...,T}

{
exp

(
d2t−1

σ2
t

+ 3dt−1
λt−1

α
L+ 2

(
σt

λt−1

α
L

)2
)}

. (42)

Lemma 2. Under Assumptions (a) ∼ (c),

0 < exp

(
−
(
dt−1 +

1

2
σ2
t

λt−1

α
L

)
· σ2

t

λt−1

α
L− λt

α
R

)
≤ wt−1(xt, xt−1) (43)

and

wt−1(xt, xt−1) ≤ exp

((
dt−1 +

1

2
σ2
t

λt−1

α
L

)
· σ2

t

λt−1

α
L+

λt−1

α
R

)
(44)
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proof.
logwt−1(xt, xt−1)

= log
pθ(xt−1|xt) exp

(
λt−1

α r̂(xt−1)
)

mt−1(xt−1|xt) exp
(
λt

α r̂(xt)
)

= log pθ(xt−1|xt)− logmt−1(xt−1|xt) +
λt−1

α
r̂(xt−1)−

λt

α
r̂(xt)

By Assumption (a),

−λt

α
R ≤ λt−1

α
r̂(xt−1)−

λt

α
r̂(xt) ≤

λt−1

α
R (45)

Also,
log pθ(xt−1|xt)− logmt−1(xt−1|xt)

=
1

2σ2
t

(
∥xt−1 − µθ(xt)∥2 − ∥xt−1 − µθ(xt)− σ2

t

λt−1

α
∇xt r̂(xt)∥2

)
=

1

σ2
t

〈
xt−1 − µθ(xt)−

1

2
σ2
t

λt−1

α
∇xt

r̂(xt), σ
2
t

λt−1

α
∇xt

r̂(xt)

〉

Applying Cauchy-Schwarz inequality,∣∣∣∣〈xt−1 − µθ(xt)−
1

2
σ2
t

λt−1

α
∇xt r̂(xt), σ

2
t

λt−1

α
∇xt r̂(xt)

〉∣∣∣∣
≤
∥∥∥∥xt−1 − µθ(xt)−

1

2
σ2
t

λt−1

α
∇xt

r̂(xt)

∥∥∥∥ · ∥∥∥∥σ2
t

λt−1

α
∇xt

r̂(xt)

∥∥∥∥
Using Assumption (b) to bound ∥∇xt

r̂(xt)∥
and Assumption (c) to bound ∥xt−1 − µθ(xt)∥ since xt−1, µθ(xt) ∈ Xt

≤
(
dt−1 +

1

2
σ2
t

λt−1

α
L

)
· σ2

t

λt−1

α
L

Combining the two bounds, we conclude the proof.

Thus Assumption (2) in B.3 also holds for Feynman-Kac model of DAS under Assumptions (a) ∼
(c). where cG = cu/cl is given by

cG = exp

(
sup

t∈{1,...,T}

{(
dt−1 +

1

2
σ2
t

λt−1

α
L

)
· σ2

t

λt−1

α
L+

λt−1

α
R

}
+

sup
t∈{1,...,T}

{(
dt−1 +

1

2
σ2
t

λt−1

α
L

)
· σ2

t

λt−1

α
L+

λt

α
R

})
(46)

C.2.4 PROOF OF PROPOSITION 2

We state formal version of Proposition 2 and prove it.
Proposition 8. For DAS with multinomial resampling, under Assumptions (a)∼ (c), for φ such that
φ ∈ Cb(X0) and output of DAS {Xn

0 ,W
n
0 }Nn=1,

N∑
n=1

Wn
0 φ(X

n
0 )

a.s.−−→ ptar(φ). (47)

where ptar is the final target distribution of DAS defined in 3.

proof. By Lemma 2, each potential functions of the Feynman-Kac model are all upper bounded, and
thus all conditions for Proposition 4 are met. Using Proposition 4 at t = 0 (i.e. k = T respect to
SMC for time notation), since Q0(dx0) = ptar(x0)(dx0),

N∑
n=1

Wn
0 φ(X

n
0 )

a.s.−−→ ptar(φ). (48)
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Setwise convergence of empirical measure can be derived as direct corollary by substituting φ(X) =
IA(X) for all A ∈ B(X0).

C.2.5 PROOF OF PROPOSITION 3

Finally, we state formal version of Proposition 3 and prove it.
Proposition 9. For DAS with multinomial resampling, under Assumptions (a)∼ (c), for φ such that
φ ∈ Cb(X0) and output of DAS {Xn

0 ,W
n
0 }Nn=1,

√
N

(
N∑

n=1

Wn
0 φ(X

n
0 )− ptar(φ)

)
⇒ N (0,V0(φ)) (49)

where the asymptotic variance V0(φ) is bounded by

V0(φ) ≤ c2G(∆φ)2 exp

 2
(
1− c−1

M

)
cG

1−
(
1− (c2McG)

−1
)
× 1

1−
(
1− (c2McG)

−1
)2 (50)

using the definitions of cM and cG in 42 and 46. Furthermore, this upper bound when tempering is
used, i.e. λt’s are not all 1 for t = 0 : T , is always smaller or equal to when tempering isn’t used,
i.e. λt’s are all 1 for t = 0 : T .

proof. By Lemma 2, each potential functions of the Feynman-Kac model are all upper bounded, and
thus all conditions for Proposition 5 are met. Using Proposition 5 at t = 0 (i.e. k = T respect to
SMC for time notation), since Q0(dx0) = ptar(x0)(dx0),

√
N

(
N∑

n=1

Wn
0 φ(X

n
0 )− ptar(φ)

)
⇒ N (0,V0(φ)) (51)

Also, by Lemma 1 and 2 together, the Feynman-Kac model satisfies the Assumption (1) and (2) in
B.3, thus using Proposition 7, we get

V0(φ) ≤ c2G(∆φ)2 exp

 2
(
1− c−1

M

)
cG

1−
(
1− (c2McG)

−1
)
× 1

1−
(
1− (c2McG)

−1
)2 (52)

Looking at the definitions of cM and cG in 42 and 46, both values when tempering is used, i.e. λt’s
are not all 1 for t = 0 : T , is always smaller or equal to when tempering isn’t used, i.e. λt’s are all
1 for t = 0 : T since the equations in the supremum are all increasing functions of λt ≥ 0. Finally,
since the upper bound is an increasing function of cM and cG, we conclude that the upper bound
when tempering is used is always smaller or equal to when tempering isn’t used.

Again, similar result can be obtained for setwise convergence of empirical measure by substituting
φ(X) = IA(X) and ∆φ = 1 for all A ∈ B(X0).

D IMPLEMENTATION DETAILS

In all experiments, we adapted Stable Diffusion (SD) v1.5 Rombach et al. (2022) for pre-trained
model.

Fine-tuning methods. We used official PyTorch codebase of DDPO, AlignProp, TDPO with min-
imal change of hyperparameters from the settings in the original papers and codebases. We used
200 epoch and effective batch size of 256 using gradient accumulations if need for all methods. For
AlignProp, even with KL regularization, severe reward collapse were mostly observed at the end of
training, generating unrecognizable images. We used checkpoints before the collapse for compar-
isons. For AlignProp with KL regularization, we used the same coefficient of othe KL regularization
terms. For DiffusionDPO, we used the official fine-tuned weights SD v1.5 using Pick-a-Pic dataset
(Kirstain et al., 2023) released by the authors.
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Guidance methods. We adapted the official PyTorch codebase of FreeDoM and MPGD to incor-
porate with diffusers library. For DPS, which wasn’t adapted to latent diffusion, we used the same
implementation of FreeDoM but withou time-travel startegy (Yu et al., 2023; Lugmayr et al., 2022).
As in the official implementations, we scaled the guidance to match the scale of classifier-guidance
and multiplied additional constants. These constants are 0.2 and 15 for FreeDoM and MPGD re-
spectively, following the official implementation.

DAS. Across all experiment results except ablation studies, we used 100 diffusion time steps with
γ = 0.008 for tempering. For single reward experiments, we used KL coefficient α = 0.01 for
aesthetic score task and α = 0.0001 for PickScore task considering the scale of the rewards. For
multi-objective experiments and online black-box optimization, we used α = 0.005. We used 16
particles if not explicitly mentioned. Exceptionally, we used 4 particles during online black-box
optimization for efficieny.

DAS hyperparameter selection recipe. To ehance easiness of adapting DAS, we propose a sys-
tematic approach for selecting hyperparameters based on empirical performance and convergence
behavior. Firstly, tempering parameter γ can be selected depending on the diffusion time steps T
such that (1+γ)T ≈ 1. While more particles are often better, 4 to 16 particles are sufficient to guar-
antee good performance as in the ablation study from Section 4.1. Especially, for rapid prototyping,
we recommend 4 particles. KL coefficient α should be scaled to reward magnitude. Speicificaly, α in
the range such that approximate guidance norm ≈ classifier guidance norm∗ [1/5, 5] is appropriate.
While α is the main tuning parameter, based on the above criteria, optimal values can be efficiently
found through few sampling iterations since DAS requires no training. Typically, we fixed T = 100,
γ = 0.008, N = 4 and used grid search for α ∈ {10−1, 10−2, 10−3, 10−4}. After selecting the best
10−k, we again used grid search for α ∈ {3× 10−(k+1), 5× 10−(k+1), 10−k, 3× 10−k, 5× 10−k}.

E COMPARISON WITH DIFFUSION-BASED SAMPLERS

Connection to Diffusion-based Samplers. Starting from the objective of fine-tuning methods:

minimize
θ

DKL(pθ∥ptar), (53)

RL (Fan et al., 2024) or direct backpropagation (Uehara et al., 2024a) optimize the variational lower
bound of this objective given by the data processing inequality, DKL(pθ(x0:T )∥ptar(x0:T )), which is
the KL divergence between joint distribution along the diffusion process (path measure for continu-
ous processes). This objective can alternatively written as

DKL(pθ(x0:T )||ptar(x0:T )) = DKL(pθ(x0:T )||pref(x0:T )) + Ex0∼pθ(x0)

[
log

ptar(x0)

pref(x0)

]
(54)

where pref is defined by the same forward diffusion starting from a different reference distribution,
since

ptar(x0:T ) = ptar(x0:T |x0)ptar(x0) = pref(x0:T |x0)ptar(x0) = pref(x0:T )
ptar(x0)

pref(x0)
. (55)

In our problem setting for reward maximization, the reference diffusion is given by the pre-trained
model by pref = ppre and log ptar(x0)

pref(x0)
= r(x0), and thus the objective becomes reward with KL

regularization term enforcing the diffusion process to stay close to the pre-trained diffusion process.

This formulation reveals the connection to diffusion-based samplers (Zhang & Chen, 2022; Vargas
et al., 2023; Berner et al., 2024) which also use similar variational objective for training diffusion
model to sample from a given unnormalized target density. While standard diffusion training can be
interpreted as optimizing similar variational objective (Ho et al. (2020) for discrete time framework,
Song et al. (2021b) for continuous time framework), they use conditional score matching using the
samples from the target distribution. However, when sampling from unnormalized density, due to
the lack of samples from the target, the methods use direct backpropagation for optimization. Sim-
ilarly, reward alignment tasks also have no samples from the target distribution, thus previously
proposed works are also based on direct backpropagation or RL. Compared to RL and direct back-
propgation methods for reward maximization, diffusion-based samplers use different reference dif-
fusions. Specifically, PIS (Zhang & Chen, 2022) use pinned Brownian motion running backwards

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Pre-trained
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Target
Distribution

FT-NN
(Backprop) Train-NN FT-Grad Train-Grad

(DDS)
DAS

(Ours)

Figure 8: Comparison with diffusion-based samplers. Without either the Grad parameterization
(Train-NN) or random initialization (FT-Grad), the methods fail to capture all modes in multimodal
target distributions unlike DDS (Train-Grad), explaining the mode collapse of direct backpropaga-
tion (FT-NN). Furthermore, DAS still outperforms diffusion-based sampler for sampling from the
target distribution

in time, DDS (Vargas et al., 2023) use Variance Preserving (VP) SDE from Song et al. (2021c)
(where DDPM is its discretization) as forward diffusion starting from a Normal distribution, and
DIS (Berner et al., 2024) allows general reference diffusions. Note that given the same final target
distribution, only the forward diffusion process matters for the training objective in equation 54.
Thus when using DDPM sampling, i.e. VP SDE as forward diffusion, training of direct backpropa-
gation methods, DDS, and DIS coincide.

Key Differences. In fact, the key distinction comes from the initialization of the models where
diffusion-based samplers typically train from scratch, i.e. random initialization, while fine-tuning
methods start from pre-trained models. Fine-tuning enables to incorporate prior knowledge from
pre-trained model, offering a practical solution, especially for complex and high-dimensional data
like images. However, it may make models more susceptible to mode collapse since it can only
generate from the pre-trained distribution initially, as we demonstrate in our experiment below.

Additionally, diffusion-based samplers use model parameterization that incorporates the target score
function. For example, PIS and DDS use sθ(xt, t) = NN1(xt, t) + NN2(t) · ∇ log ptar(x), which
we will refer as ’Grad parameterization’. Without Grad parameterization, diffusion-based samplers
failed to fit multimodal target distribution, even for simple GMM (for example, Figure 2 in Zhang
& Chen (2022) and Figure 13 in Berner et al. (2024)). However, we demonstrate that even if we
incorporate Grad parameterization during fine-tuning, the model fails to capture all modes of the
target, indicating the fundamental difference between fine-tuning and training from scratch.

Experiment Setting. We conducted additional experiments using GMM examples from Figure
1. To check our hypothesis and demystify the effect of each element, we conducted experiment
using fine-tuning + NN parameterization (FT-NN, equivalent to direct backpropagation with KL
regularization), fine-tuning + Grad parameterization (FT-Grad), training from scratch + NN param-
eterization (Train-NN), training from scratch + Grad parameterization (Train-Grad, equivalent to
DDS). We excluded PIS from our comparison since DDS already outperforms PIS, where PIS uses
pinned Brownian motion running backward in time as reference diffusion, which is proven to incur
instability both theoretically (Appendix A.2 of Vargas et al. (2023)) and empirically (Appendix C.4
of Vargas et al. (2023)).

We used a two-layer architecture with 64 hidden units for all neural networks used in Figure 1 and
8 (for Grad parameterization, both NN1 and NN2), following [3]. We used 100 diffusion time
steps for DDPM sampling with linear beta schedule from 0.0001 to 0.02 as commonly used. For
pre-training via conditional score matching, we used learning rate 0.001 with 1000 epochs. For
DDS, we used learning rate 3e−5 with 300 epochs. We used Adam optimizer for all training or fine-
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Figure 9: SMC method excels in sampling from the target distribution compared to existing
approaches. Left of dashed line: Samples from pre-trained model trained on 3d Swiss roll, reward-
aligned target distribution ptar using reward r(X,Y, Z) = −X2/100 − Y 2/100 − Z2. Right of
dashed line: methods for sampling from ptar including previous methods (RL, direct backpropaga-
tion, approximate guidance) and ours using SMC. Top: Projection of samples to XY plane, reward,
bottom: 3d plot of samples. EMD denotes sample estimation of Earth Mover’s Distance, also known
as Wasserstein distance between the sample distribution using each method and the target distribu-
tion. DAS outperforms existing approaches in capturing complex target distributions, as evidenced
by lower EMD and the similarity with the target samples. Note that samples may exist outside the
grid.

tuning. For other methods, we only changed epochs since each methods had different convegence
rate when optimizing the objective. For example, the simple NN parameterization typically requires
more iterations to converge compared to Grad parameterization, and training from scratch generally
needs more iterations than fine-tuning.

Empirical Validation. The result presented in Figure 8 shows that the methods fail to capture all
modes in multimodal target distributions without either the Grad parameterization from diffusion-
based samplers or random initialization. Furthermore, DAS still outperforms DDS in EMD (earth
mover’s distance) between the target distribution, indicating that the samples from DAS are closer
to the target distribution.

In conclusion, we claim that constraints in the reward alignment setting pose additional difficulty in
training a diffusion model that can sample from unnormalized target distribution. DAS can overcome
this problem by offering a training-free solution.

F ADDITIONAL EXPERIMENT RESULTS

F.1 3D SWISS ROLL

To further visualize the effectiveness of DAS for sampling from unnormlized target density using
pre-trained diffusion model, we conducted additional experiment using 3d Swiss roll. As in Figure
9, DAS again demonstrates superior performance in sampling from the target distribution.

F.2 DAS WITH SDXL

We conducted experiment using SDXL (Podell et al., 2024) as pre-trained base model to demon-
strate the generality of our approach. We compare with the pre-trained SDXL (base + refiner),
DPO-SDXL which fine-tuned SDXL using DiffusionDPO (Wallace et al., 2024), and our DAS with
SDXL as base model. The results summarized in Figure 11 show that DAS’s effectiveness gen-
eralizes beyond SD v1.5, achieving superior performance in both target optimization (PickScore)
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SDXL DPO-SDXL DAS-SDXL
(Ours)

Figure 10: Qualitative Comparison.

SDXL DPO DAS
PickScore* 0.23 0.23 0.25
HPSv2 0.29 0.29 0.31
ImageReward 0.82 1.24 1.40
TCE 46.1 46.7 46.1
LPIPS MPD 0.57 0.61 0.61

*Target reward

Table 2: Quantitative Comparison.

Figure 11: Experiment using SDXL. Target reward: PickScore. Unseen prompts for qualitative
comparison: “A close up of a handpalm with leaves growing from it.”, “A photo-realistic image
of flying lion with blue butterfly wings”. Unseen prompts for quantitative comparison: HPDv2
evaluation prompts. Samples generated by DAS used only 4 particles.

SD1.5 DAS-SD1.5 SDXL DAS-SDXL

PickScore (Target) 0.220 0.256 (+0.036) 0.225 0.255 (+0.031)
HPSv2 0.284 0.303 (+0.019) 0.285 0.306 (+0.021)
ImageReward 0.41 1.06 (+0.65) 0.82 1.40 (+0.58)
TCE 46.0 46.0 46.1 46.1
LPIPS MPD 0.662 0.647 0.568 0.608

Table 3: Comparison of different backbones. We compare DAS combined with SD1.5 and SDXL.

and cross-reward generalization (HPSv2, ImageReward) while maintaining competitive diversity
metrics (TCE, LPIPS MPD), even with just 4 particles.

To check if the effectiveness of DAS depends on the pre-trained model’s quality, we compared the
performance of DAS when combined with SD1.5 and SDXL. As shown in Table 3, DAS improves
the target reward score (PickScore) and cross reward scores (HPSv2 and ImageReward) while main-
taining the diversity metrics (TCE and LPIPS MPD) regardless of the backbone’s quality. Specif-
ically, looking at the target reward (PickScore), DAS-SD1.5 achieves the most performance im-
provements, outpeforming the vanilla SDXL and performing nearly identical to DAS-SDXL. This
indicates that the effectiveness of DAS does not depend on the quality of pre-trained models.

F.3 NON-DIFFERENTIABLE REWARDS

As stated in Section 4.3, DAS can effectively optimize non-differentiable rewards by incorporating
them as black-box rewards in our online black-box optimization framework. This allows us to han-
dle non-differentiable objectives without modifying the core DAS algorithm. To further demonstrate
this capability, we conducted experiments using JPEG compressibility - a strictly non-differentiable
reward measured as the negative file size (in KB) after JPEG compression at quality factor 95. Our
experimental setup included 4096 reward feedback queries, ImageNet animal prompts for evalua-
tion, and comparison with DDPO (Black et al., 2023), which naturally handles non-differentiable
rewards via RL. We combined DAS with UCB as described in Section 4.3.

The results in Figure 13 shows that DAS-UCB achieves the best compressibility score, outperform-
ing both pre-trained model and DDPO. Also, it maintains CLIPScore and diversity metrics compared
to the pre-trained model, mitigating over-optimization as intended. The qualitative results show how
our method effectively minimizes background complexity while preserving key semantic features
of the subjects.
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In conclusion, while DAS is designed for differentiable rewards, our approach provides a practical
and effective solution for non-differentiable objectives through online black-box optimization. The
empirical results demonstrate that this approach outperforms methods specifically designed for non-
differentiable rewards while maintaining the key benefits of DAS such as diversity preservation and
avoiding over-optimization.

Pre-trained

DDPO

DAS-UCB
(Ours)

Figure 12: Qualitative Comparison.

SD1.5 DDPO DAS

Compressibility* -116 -84 -71
CLIPScore 0.26 0.26 0.26
TCE 39.8 41.1 43.4
LPIPS MPD 0.66 0.62 0.62

Table 4: Quantitative Comparison.

Figure 13: JPEG Compressibility. Online black-box optimization framework enable DAS to
optimize non-differentiable rewards, outperforming DDPO which can naturally incorporate non-
differentiable rewards using RL.

F.4 AESTHETIC SCORE ADDITIONAL RESULTS

Figure 14 provides additional samples generated from each methods to target Aesthetic Score.

F.5 PICKSCORE ADDITIONAL RESULTS

Figure 15 provides additional samples generated from each methods to target PickScore.

G FUTURE WORKS

Extended Analysis of Tempering. While our theoretical and empirical analysis in Section 3.3
and 4.1 builds on both SMC literature for sampling efficiency and latent manifold deviation for
understanding off-manifold behavior, recent work has uncovered additional interesting properties
about non-uniform behavior (Wang et al., 2024; Zheng et al., 2025) and gradient contradictions
(Hang et al., 2023; Go et al., 2024) in diffusion models. Our tempering approach already shows
connections to these findings - the gradual adjustment of influence across timesteps aligns with
the non-uniform importance discovered in recent works, and our careful tempering and resampling
may naturally help mitigate gradient contradictions. Analyzing these connections more formally
could provide additional theoretical insights complementing our existing analyses and further our
understanding of why tempering proves particularly effective in the diffusion model context.

Extensions to Other Modalities. While we demonstrated DAS’s effectiveness on image generation,
our method could naturally extend to other modalities where diffusion models have shown promise.
The core advantages of DAS - its training-free approach enabling quick adaptation to changing re-
wards, strong cross-reward generalization capabilities, and maintenance of sample diversity - make it
particularly valuable for complex domains. For instance, in protein structure design, DAS could help
optimize properties like binding affinity or stability while maintaining general protein functionality
and exploring diverse structural variants. In audio generation, it could align generated speech or mu-
sic with desired acoustic qualities while preserving broader sound characteristics and generalization
across different quality metrics. For video generation, DAS could help optimize temporal consis-
tency and visual quality across frames while maintaining robust performance across various video
quality measures and diverse motion patterns. As these domains often involve complex, domain-
specific rewards and constraints that may evolve during development, DAS’s ability to generalize
across rewards while preserving diversity - all without requiring any training - could significantly
reduce development cycles while ensuring robust and versatile generation.
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Figure 14: Images generated to target aesthetic score using prompts: ’bat’, ’cheetah’, ’crocodile’,
’gorilla’, ’hedgehog’, ’hippopotamus’, ’kangaroo’, ’lobster’, ’octopus’, ’snail’
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Figure 15: Images generated to target PickScore using prompts: ’A toy elephant is sitting inside
a wooden car toy.’, ’A white toilet in a generic public bathroom stall.’, ’An eye level counter-view
shows blue tile, a faucet, dish scrubbers, bowls, a squirt bottle and similar kitchen items.’, ’People
getting on a bus in the city.’, ’Street merchant with bowls of grains and other products.’, ’The black
motorcycle is parked on the sidewalk.’, ’Three people are preparing a meal in a small kitchen.’, ’a
black motorcycle is parked by the side of the road.’, ’a dog with a plate of food on the ground.’,
’there is a red bus that has a mans face on it.’
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