
Under review as a conference paper at ICLR 2022

ASAP DML: DEEP METRIC LEARNING WITH ALTER-
NATING SETS OF ALTERNATING PROXIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep metric learning (DML) aims to minimize empirical expected loss of the
pairwise intra-/inter- class proximity violations in the embedding image. We relate
DML to feasibility problem of finite chance constraints. We show that minimizer
of proxy-based DML satisfies certain chance constraints, and that the worst case
generalization performance of the proxy-based methods can be characterized by
the radius of the smallest ball around a class proxy to cover the entire domain
of the corresponding class samples, suggesting multiple proxies per class helps
performance. To provide a scalable algorithm as well as exploiting more proxies,
we consider the chance constraints implied by the minimizers of proxy-based
DML instances and reformulate DML as finding a feasible point in intersection of
such constraints, resulting in a problem to be approximately solved by alternating
projections. Simply put, we repeatedly train a regularized proxy-based loss and
re-initialize the proxies with the embeddings of the deliberately selected new
samples. We apply our method with the well-accepted losses and evaluate on four
popular benchmark datasets for image retrieval. Outperforming state-of-the-art, the
proposed approach consistently improves the performance of the applied losses.

1 INRODUCTION

Figure 1: Illustrationü of our method and the geometry
of the embedding space before, (a), and after, (b), our
method (through iterations 1-4), where boxes are the
converged proxies and the circles are the next proxies
as the result of k-Center. In proxy-based DML, proxies
are coalesced into one whereas with ASAP, we have
diverse proxies, resulting reduced covering radius.

Deep metric learning (DML) poses dis-
tance metric problem as learning the pa-
rameters of an embedding function so that
the semantically similar samples are em-
bedded to the small vicinity in the repre-
sentation space as the dissimilar ones are
placed relatively apart in the Euclidean
sense. The typical embedding function is
implemented as convolutional neural net-
works (CNN) for visual tasks and the pa-
rameters are learned through minimizing
the empirical expected loss with possibly
deliberately selected mini-batch gradient
updates (Roth et al., 2020; Musgrave et al.,
2020). The loss terms in the empirical loss
penalize violations of the desired intra- and
inter-class proximity constrains. Large-
scale problems (in terms of #classes) suf-
fer from the noisy estimation of the ex-
pected loss with mini-batches (Schroff et al., 2015; Wang et al., 2020; Musgrave et al., 2020).
Recently, augmenting the mini-batches with virtual embeddings called proxies is shown to better
approximate empirical loss in large-scale problems (Wang et al., 2020; Musgrave et al., 2020) owing
to pseudo-global consideration of the dataset during loss computation. These advances raise a critical
question: "How does increasing proxies help?" which is partially addressed empirically with the
methods exploiting multiple proxies per class (Qian et al., 2019; Wang et al., 2020; Zhu et al., 2020).

Characterizing generalization performance of proxy-based DML can be a decisive step towards
theoretically addressing that question. To this end, we approach DML differently by posing it as a

1

Under review as a conference paper at ICLR 2022

feasibility problem. In particular, we consider a chance constraint for desired embedding function
and relate it to the typical expected loss of DML. Using such a relation, we provide an upper bound
to the generalization error of proxy-based DML. Aligned with the literature, the form of the bound
suggests possible room for the improvement on the generalization performance if more and diverse
proxies are considered per class. However, straightforward increase of the proxies may not help;
since, i) proxies of the same class tend to merge (Qian et al., 2019) and ii) memory is prohibitive.

To alleviate these limitations, we relate minimizer of the proxy-based DML to a feasible point of
some chance constraints, and reformulate DML as finding a feasible point at the intersection of
the sets that the proxies imply. We provide a scalable algorithm using alternating projections to
the individual sets to solve the problem. Each projection problem corresponds to a regularized
proxy-based DML. Hence, we inherently increase the number of diverse proxies included in the
problem. We empirically study the implications of our formulation. Evaluation of our method on
image retrieval shows state-of-the-art (SOTA) performance in improving the baselines.

2 RELATED WORK

We discuss the works which are most related to ours. Briefly, our contributions include that i)
we reformulate DML as a feasibility problem (i.e., set intersection) to be solved by alternating
projections, ii) we expand on the discussions of the works on the generalization bounds to characterize
generalization of proxy-based DML, iii) we implicitly utilize arbitrary number of proxies per class.

DML. Most of the existing efforts follow tailoring the loss terms (Roth et al., 2020; Musgrave
et al., 2020) to impose the desired intra- and inter-class proximity constraints in the representation
space. Mini-batch construction for empirical estimation of the expected loss is tackled with either i)
mining of samples in global (Harwood et al., 2017; Ge, 2018; Suh et al., 2019) and local (Schroff
et al., 2015; Sohn, 2016; Yuan et al., 2017; Wu et al., 2017; Wang et al., 2019a;b) manner or ii)
generating informative samples (Duan et al., 2018; Zhao et al., 2018; Lin et al., 2018; Zheng et al.,
2019; Ko & Gu, 2020; Liu et al., 2021). Regularization terms to improve gradient updates towards
better generalization are introduced (Zhang et al., 2020; Kim & Park, 2021). More sophisticated
tracks to enhance the diversity of the semantic information embedded to the vector representations
involve ensemble (Opitz et al., 2017; Kim et al., 2018; Xuan et al., 2018; Sanakoyeu et al., 2019) and
discriminative feature learning (Lin et al., 2018; Roth et al., 2019; Do et al., 2019; Jacob et al., 2019;
Milbich et al., 2020; Zhao et al., 2021) approaches.

Ranking losses in DML. Typical DML objective enforces distance ranking constraints among the
samples in the embedding space via hinge losses penalizing ranking violations. The contrastive
(Hadsell et al., 2006), triplet (Weinberger et al., 2006; Schroff et al., 2015), and generalized contrastive
with margin (Wu et al., 2017) losses are the simplest forms of the pairwise distance ranking based
losses. Proceeding approaches utilize smoothed versions of these losses by replacing hinge loss with
log-sum-exp (Wang et al., 2019b) or soft-max (Sohn, 2016; Yu & Tao, 2019) expressions. Similarly,
mining for tuples (Schroff et al., 2015; Sohn, 2016; Wu et al., 2017) and ranking among more samples
via soft-batch-mining (Oh Song et al., 2016; Sohn, 2016; Wang et al., 2019a; Yu & Tao, 2019; Kim
et al., 2020) are addressed to exploit in-batch tuples with non-trivial settings. In our work, we do not
consider crafting a loss term. We rather relate minimizing the ranking losses to feasibility of some
chance constraints on the probability of observing pairs violating desired intra-/inter-class distances.

Proxy-based DML. Proxy-based methods consider augmenting the mini-batch with more samples
for less noisy estimate of the expected loss and circumvent the costly embedding computation to
include more samples in the mini-batches. Proxies typically are vectors representing embeddings
of the class centers (Movshovitz-Attias et al., 2017; Chen et al., 2018; Teh et al., 2020; Kim et al.,
2020) and are trained along with the embedding function parameters. Non-trainable proxies are
also exploited in (Wang et al., 2020) to gradually augment mini-batch with previously computed
embeddings. In proxy-based DML, the pairwise distances are computed between the proxies and
the mini-batch samples. Thus, pseudo-global information of the dataset is considered during loss
computation. To better represent global geometry, multiple proxies per class are considered in (Rippel
et al., 2016; Qian et al., 2019; Zhu et al., 2020) where the former two build on improving P@11 by
fine-grained clustering of class samples to overlook intra-class variances. In our analysis, we also

1 P@1 (immediate neighbourhood) and MAP@R (global geometry) are explained in Appendix-A.2.

2

Under review as a conference paper at ICLR 2022

align with increasing the proxies. Our work differs in that i) we build on reducing the probability of
proximity violations (i.e., improving MAP@R 1) and ii) we progressively increase the proxies by
relating the proxy-based DML instances.

Fairness in evaluation. Independent works (Roth et al., 2020; Musgrave et al., 2020; Fehervari et al.,
2019) reveal that conventional training and evaluation procedures in DML may fail to properly assess
the true order of performance that the methods bring. The consensus for unbiased comparability
is evaluation of the methods with their best version under the same experimental settings unless
the compared methods demand any particular architecture or experimental setup. Our experimental
setting is completely aligned with the literature’s claims for unbiased evaluation of our method.

Characterizing generalization bounds. Notion of robustness in learning algorihms is studied in
(Xu & Mannor, 2012) and generalization error bounds of several techniques are derived accordingly.
This study is extended to metric learning setting in (Bellet & Habrard, 2015). These works study
the deviation between the expected loss and the empricial loss over the whole dataset. Differently
in (Sener & Savarese, 2018), deviation between two empirical losses, core-set loss, is studied and
generalization error is characterized by the core-set loss to formulate an optimization objective for
their active learning method. Core-set loss typically measures how much is lost when a subset of
the training data is exploited. Generalization bound for metric learning is further studied in (Dong
et al., 2020) to analyze and suggest training strategies. Our work expands on the theories in the
aforementioned works to characterize and improve generalization bound for proxy-based DML.

3 NOTATION AND PROBLEM DEFINITION

In typical DML, we consider the set Z = X × Y with elements z = (x ∈ X , y ∈ Y) where X is a
compact space and Y = {1, . . . , C} is a finite label set. We will use x(y) to denote x(y) component
of z. We have pZ , an unknown probability distribution over Z . Indicator of the two samples, z and
z′, belonging to the same class is denoted as ιy,y′ ∈ {91, 1} where ιy,y′ = 1 if y = y′.

We are interested in finding the parameters, θ, of an embedding function, f(·; θ) : X−→IRD, so that
the parametric distance, df (x, x′; θ) := ∥f(x; θ)− f(x′; θ)∥2, between two samples, (x, x′) ∼ pX ,
reflects their semantic dissimilarity. For any pair, (z, z′) ∼ pZ and embedding function, f(·; θ), we
associate a loss, ℓ(z, z′; θ), penalizing proximity violations in the embedding image. We omit f
dependency in the ℓ notation for simplicity. We are to consider minimization of the expected loss:

θ∗ = argmin
θ

Ez,z′∼pZ [ℓ(z, z
′; θ)] (3.1)

In practice, we are given a dataset of n instances sampled i.i.d. from Z as {zi}i∈[n] ∼ pZ where
[n] = {1, . . . , n}, and an algorithm, As1xs2 , which outputs parameters, θ, minimizing empirical
expected loss with a training error, e(As1xs2), for a given set of pairs, {(zi, zj)}i,j∈s1xs2 , from the
dataset, where sk = {sk(l) ∈ [n]}l∈[nk] ⊆ [n] is a pool of indexes chosen from the dataset, [n]. i.e.,

As1xs2 := argmin
θ

1
n1 n2

∑
i∈[n1]

∑
j∈[n2]

ℓ(zs1(i), zs2(j); θ) , (3.2)

and we formally define DML as A[n]x[n], i.e., minimizing empirical expected loss with all possible
pairs. We will consider improving the generalization error of As1xs2 which is:

L(As1xs2) = Ez,z′∼pZ [ℓ(z, z
′;As1xs2)]. (3.3)

4 METHOD

We will iteratively solve multiple proxy-based DML problems. At each problem, we re-initialize
the class proxies by samples from the dataset. We relate the problems by regularizing the learned
parameters to be in the close vicinity of the previous ones. In the following sections, we provide
theoretical foundation behind the motivation of our method. We defer all the proofs to Appendix-B.

We start with reformulating DML with a chance constraint. We will introduce two propositions that
allow us to decompose the chance constraint into finite chance constraints. We also show minimizer
of proxy-based DML satisfies some chance constraints. Hence, we link DML to finding a point in the

3

Under review as a conference paper at ICLR 2022

intersection of finite sets, which we solve using alternating projections that correspond to regularized
proxy-based DML problem instances.

In the formulations throughout the paper, we rely on Lipschitz continuity of the loss function for
which we refer to Lemma 4.1. Our methods builds on improving the generalization performance on
training domain. Granted, in DML models, the embedding vector is typically obtained by global
average pooling of local CNN features. In that manner, local features can be considered as visual
words. Thus, if we consider better generalization in training domain, the semantics captured by
the visual words can be transferred to represent the samples from an unseen domain. Besides, our
empirical studies support that the implications suggested by the formulations are quite effective.

4.1 REFORMULATION OF DEEP METRIC LEARNING WITH CHANCE CONSTRAINTS

We consider the solution of the following feasibility problem:

min
θ

0⊺θ subject to pz,z′∼pZ (ιy,y′(df (x, x
′; θ)− β) ⩾ 0) ⩽ ε , (4.1)

with some small ε. Namely, we want the probability of observing two samples of the same (different)
class being apart (close) more than β in the embedding space being low. We write that probability as
expected violation, Ez,z′∼pZ [1(ιy,y′(df (x, x

′; θ)− β) ⩾ 0)], and bound it for β ⩾ α > 0 as:

pz,z′∼pZ (ιy,y′(df (x, x
′; θ)− β) ⩾ 0) ⩽ 1/αEz,z′∼pZ [(ιy,y′(df (x, x

′; θ)− β) + α)+] , (4.2)

using Markov’s inequality where (u)+ = max{0, u}. Note that to each value of the expectation, e(θ),
there corresponds an ε = e(θ)/α which the chance constraint satisfies. Hence, we use the expectation
as the surrogate of the penalty term for the chance constraint and can redefine the aforementioned
feasibility problem as in problem (3.1) with ℓ(z1, z2; θ) = (ιy,y′(df (x, x

′; θ)−β)+α)+. In particular,
we end up with minimization of the expected generalized contrastive loss (Wu et al., 2017).

We now consider the relaxed feasibility problem in which we consider m chance constraints condi-
tioned on given m samples S={zi}i∈[m] ∼ pZ . In other words, we want to find θ ∈ CS where:

CS = {θ | pz∼pZ (ιyi,y(df (xi, x; θ)− β) ⩾ 0) ⩽ ε, ∀i ∈ [m]} (4.3)

Using expectation bounds as in Eqn. (4.2), the unconstrained problem becomes:

θ∗ = argmin
θ

1
m

∑
i∈[m]

Ez∼pZ [ℓ(zi, z; θ)] . (4.4)

The following Proposition 4.1 gives an upper bound for the expected loss when we solve (4.4) instead.

Proposition 4.1. Given S={zi}i∈[m]
i.i.d.∼ pZ such that ∀k∈Y {xi|yi=k} is δS -cover2 ofX , ℓ(z, z′; θ)

is ζℓ-Lipschitz in x, x′ for all y, y′ and θ, and bounded by L; then with probability at least 1− γ,∣∣∣Ez,z′∼pZ [ℓ(z, z
′; θ)]− 1

m

∑
i∈[m]

Ez∼pZ [ℓ(zi, z; θ)]
∣∣∣ ⩽ O(ζℓ δS) +O(L√

log
1
γ/m).

Proposition 4.1 gives an upper bound which is controlled by the diversity of the samples defining the
relaxed problem. Theoretically, such a controlled bound allows DML to be formulated as a feasibility
problem of finite sets for some accepted error tolerance. In practice, the best we can do is using all
the samples in the dataset when defining CS in (4.3). Granted that the minimization of the empirical
loss boils down to the classical DML (3.1), such a formulation using finite feasible sets is a key to
characterize generalization of proxy based methods as well as developing our method.

4.2 REDUCING CHANCE CONSTRAINTS

The problems in (3.1) and (4.4) have the same overall empirical loss but different stochastic op-
timization procedure. The formulation based on the relaxed problem suggests sampling batch of
instances rather than pairs, which yields less noisy gradient estimates with the same batch budget3.

2S ⊂ S ′ is δS -cover of S ′ if ∀z′ ∈ S ′, ∃z ∈ S such that ∥z − z′∥2 ⩽ δS .
3Besides intiution, implied by Thm. 3 in (Xu & Mannor, 2012) and Thm. 1 in (Bellet & Habrard, 2015).

4

Under review as a conference paper at ICLR 2022

This intuitively explains the superior performance of the methods using batches augmented by class
proxies, past embeddings or more samples (i.e., larger batches), especially in large-scale problems.

However, the loss terms conditioned on fixed samples in the formulation of (4.4) are computationally
prohibitive in large-scale problems. Thus, we are interested in reducing the chance constraints
inducing the loss terms as random variables. To this end, proxy-based methods are quite related.

Proxy-based methods use parametric vectors, {ρi}i∈[C], to represent embedding of the class centers
and minimize the pair losses with respect to those centers. Formally, given a dataset {zi}i∈[n] ∼ pZ ,
proxy-based methods consider the following problem:

min
θ,ρ

1
nC

∑
i∈[C]

∑
j∈[n]

ℓ̂(ρi, zj ; θ) (4.5)

where ℓ̂(ρi, zj ; θ) is a loss term in which the pairwise distance is computed as ∥ρi − f(xj ; θ)∥2.
We can associate an algorithm, Asx[n] defined in (3.2), to the minimizer of (4.5) with e(Asx[n])
training error where s = {s(i) ∈ [n] | f(xs(i);Asx[n]) = ρi}i∈[C]. In other words, to each proxy, we
associate a sample whose embedding matches that proxy, assuming such sample exists. Hence, the
minimizer of the proxy-based methods can be reformulated as the following feasibility problem:

min
θ

θ⊺0 s. to θ ∈ {θ | pz∼pZ (ιi,y(df (xs(i), x; θ)− β) ⩾ 0) ⩽ ε, ∀i ∈ [C]} (4.6)

where ε = 1
αL(Asx[n]) from (4.2) and L(Asx[n]) defined in (3.3) is bounded (Bellet & Habrard,

2015). Reformulation of proxy-based DML defines the feasibility problem with one sample per class.

We now consider more general case where we use m samples per class from the dataset, {zi}i∈[n] ∼
pZ , to define the feasibility problem. We have m-many disjoint 1-per-class sets, s = ∪k∈[m]sk,
where sk = {sk(i) ∈ [n] | ysk(i) = i}i∈[C] with ∩k∈[m]sk = ∅. We define the problem as:

min
θ∈∩kCsk

0⊺θ where Csk = {θ | pz∼pZ (ιi,y(df (xsk(i), x; θ)− β) ⩾ 0) ⩽ ε, ∀i ∈ [C]} (4.7)

Solving the problem by minimizing the empirical expectation bounds in (4.4), we end up with
an algorithm Asx[n] in which we are minimizing expected loss over a subset of all possible pairs.
We want to characterize the generalization performance of the algorithm Asx[n]. We consider the
following bound proposed in (Sener & Savarese, 2018) for the generalization error:

Ez,z′∼pZ [ℓ(z, z
′;Asx[n])] ⩽

∣∣∣Ez,z′∼pZ [ℓ(z, z
′;Asx[n])]− 1

n2

∑
i,j∈[n]x[n]

ℓ(zi, zj ;Asx[n])
∣∣∣
(L1)

+
∣∣∣ 1
n2

∑
i,j∈[n]x[n]

ℓ(zi, zj ;Asx[n])− 1
|s|n

∑
i,j∈sx[n]

ℓ(zi, zj ;Asx[n])
∣∣∣
(L2)

+
∣∣∣ 1
|s|n

∑
i,j∈sx[n]

ℓ(zi, zj ;Asx[n])
∣∣∣
(L3)

(4.8)

where the bound is controlled by (L1) the deviation between expected loss and empirical loss over
all possible pairs, (L2) the deviation between empirical loss over all possible pairs and empirical
loss over the subset of pairs defining the algorithm, Asx[n], and (L3) training loss (i.e., e(Asx[n])).
It is widely observed that high capacity CNNs can reach very small training error. Moreover, L1 is
proved to be bounded in (Bellet & Habrard, 2015) and is independent of A. Thus, L2 characterizes
the generalization performance of using the subset of pairs over exploiting all possible pairs.

Proposition 4.2. Given {zi}i∈[n]
i.i.d.∼ pZ and a set s ⊂ [n]. If s = ∪ks′k with s′k is the δs-cover of

{i ∈ [n] | yi = k} (i.e., the samples in class k), ℓ(z, z′; θ) is ζℓ-Lipschitz in x, x′ for all y, y′ and θ,
and bounded by L, e(Asx[n]) training error; then with probability at least 1− γ we have:∣∣∣ 1

n2

∑
i,j∈[n]x[n]

ℓ(zi, zj ;Asx[n])− 1
|s|n

∑
i,j∈sx[n]

ℓ(zi, zj ;Asx[n])
∣∣∣ ⩽ O(ζℓ δs) +O(e(Asx[n])) +O(L

√
log 1/γ

n)

Corollary 4.2.1. Generalization performance of the proxy-based methods can be limited by the
maximum of distances between the proxies and the corresponding class samples in the dataset.

Proposition 4.2 implies that increasing the number of chance constraints with more samples in the
feasible point problem formulation of DML improves the generalization error bound as long as
the included samples improve the covering radius of the dataset. In other words, including more
samples do not improve the bound unless the covering radius is decreased. Similarly, Corollary

5

Under review as a conference paper at ICLR 2022

4.2.1 informally suggests possible improvement on the generalization error bound of the proxy-based
methods if we manage to introduce more proxies which are spread over the dataset once trained. In
practice introducing more proxies generally does not help the performance; since, they eventually
coalesce into a single point. Besides, the computation power limits the number of proxies to be
included in the formulation. In the next section, we develop an approach to alleviate these problems.

4.3 SOLVING FEASIBILITY PROBLEM WITH ALTERNATING PROJECTIONS

Algorithm 1 ASAP DML

initialize θ∗ randomly, given {zi}i∈[n]∼pZ
initialize ρ∗ with random samples, set budget b
repeat

ρ← GreedyKCenterProxy(ρ∗, b, f(·; θ∗))
repeat

sample {j(i) ∈ [n]}i∈[m]∼[n] a batch
gθ←λ (θ∗−θ)+∇θ

1
m|ρ|

∑
ρx[m] ℓ(ρi, zj ; θ)

gρ←∇ρ
1

m|ρ|
∑

ρx[m] ℓ(ρi, zj ; θ)

(θ, ρ)←ApplyGradient(θ, ρ, gθ, gρ)
until convergence
θ∗←θ, ρ∗←ρ

until convergence

We now introduce our method, outlined in
Algorithm 1, exploiting proxy-based training
together with satisfying arbitrarily increased
chance constraints. In short, we repeatedly
solve a proxy-DML and improve the solution
by re-initializing the proxies with the new
samples reducing the covering radius.

We consider the problem in (4.7) as finding a
point in the intersection of the sets. In partic-
ular, given dataset {zi}i∈[n] ∼ pZ , we have
m many 1-per-class sets, sk = {sk(i) ∈ [n] |
ysk(i) = i}i∈[C], to define the constraint set
as Cs = ∩k∈[m]Csk . If the sets were closed
and convex, the problem would be solvable
by alternating projection methods (Bregman,
1967; Bauschke & Lewis, 2000). Nevertheless, it is not uncommon to perform alternating projection
methods to non-convex set intersection problems (Pang, 2015; Solomon et al., 2015). Hence, we
propose to solve the problem approximately by performing alternating projections onto the feasible
sets, Csk , defined by sk. At each iteration, k, we solve the following projection problem given θ(k91):

θ(k) = argmin
θ∈Csk

1
2∥θ

(k91) − θ∥22 where Csk is defined in (4.7) (4.9)

Using expectation bounds as the surrogate of the penalty terms for the chance constraints, we have:

θ(k) = argmin
θ

λ
2 ∥θ

(k91) − θ∥22 + 1
C

∑
i∈[C]

Ez∼pZ [ℓ(zsk(i), z; θ)] (4.10)

where λ is a hyperparameter for the projection regularization. We can minimize the resultant loss by
using batch stochastic gradient approaches. However, the batch should be augmented by C many
samples to compute the loss, which becomes prohibitive for large-scale problems. To alleviate costly
embedding computation of C many samples, we propose to use proxies, ρi, in place of the embedding
of the samples, zsk(i). Namely, at each iteration k, we initialize ρi = f(zsk(i); θ

(k91)) and solve:

θ(k), ρ∗ = argmin
θ,ρ

λ
2 ∥θ

(k91) − θ∥22 + 1
C

∑
i∈[C]

Ez∼pZ [ℓ(ρi, z; θ)] (4.11)

where the resultant problem we solve at each iteration corresponds to a proxy-based DML.

Algorithm 2 Greedy K-Center Proxy

input: proxy set ρ, sampling budget b and f(·; θ)
repeat for each class c

sc ← {xi | yi = c}i∈[b], b-sample-per-class
initialize rc ← {}, p← f(sc; θ)
repeat

q ← argmaxu∈p\rc minv∈ρc∪rc ∥u− v∥2
rc ← {q} ∪ rc

until |rc| = |ρc|
return ∪crc

Proxy selection. Theoretically, we should cy-
cle through the sets until convergence to solve
θ∈∩k∈[m]Csk . On the other hand, Proposition
4.2 implies that generalization is improved as
long as we end up with converged proxies
reducing the covering radius. Therefore, in-
stead of explicitly defining the sets we will
alternate on, we greedily select (i.e., initial-
ize) the next proxies on the fly as outlined in
Algorithm 2. Given a budget, b, we sample
b many instances per class and compute their
embeddings to form a pool. We then select
the samples that reduce the covering radius most once added to proxy set. This selection is equivalent
to k-Center problem as formulated in (Sener & Savarese, 2018). Such a selection of proxies helps

6

Under review as a conference paper at ICLR 2022

converged proxies to be diverse as well as fitting better to training with random data augmentations.
b = 1 reduces to random sampling which also works in practice. Intuitively, we eventually observe
informative samples through the iterations.

We set up the formulation using single proxy per class, it is straightforward to extend to more general
case including multiple proxies. The updates of the proxies are not guaranteed to mimic the actual
updates of the corresponding samples. With that being said, we will still have a solution, as (4.6)
suggests, to feasibility of some chance constraints as long as the converged proxies, ρ∗, are diverse.
We empirically observe that the proxies initialized with diverse samples converge to embedding of
distinct samples (Fig. 1). Hence, we have solutions to alternating sets with alternating proxies.

Relation to cross-batch-memory (XBM)(Wang et al., 2020). XBM stores past embeddings in a
queue based memory which dequeues the oldest ones at each iteration to enqueue the latest batch. If
the memory size is relatively larger than the batch size and slow drift (Wang et al., 2020) is assumed,
the loss terms are conditioned to particular proxies until they are updated. In this manner, XBM can
be considered as solving alternating problems of proxy-based DML with fuzzy boundaries and λ = 0.

4.4 IMPLEMENTATION DETAILS

Embedding function. For the embedding function, f(·; θ), we use CNNs with ReLU activation,
max- and average-pooling. In particular, we use ResNetV2-20 (He et al., 2016) for MNIST (LeCun &
Cortes, 2010) experiments, and ImageNet (Russakovsky et al., 2015) pretrained BN-Inception (Ioffe
& Szegedy, 2015) for the rest. We exploit architectures until the output of the global average pooling
layer. We add a fully connected layer to the output of the global average pooling layer to obtain the
embedding vectors of size 2 (ResNetV2-20) and 128 (BN-Inception). We state the following lemma
to prove our loss is Lipschitz continuous:
Lemma 4.1. Generalized contrastive loss defined as ℓ(z, z′; θ) := (ιy,y′(df (x, x

′; θ)− β) + α)+ is√
2ωL-Lipschitz in x and x′ for all y, y′, θ for the embedding function f(·; θ) being L-layer CNN

(with ReLU, max-pool, average-pool) with a fully connected layer at the end, where ω is the maximum
sum of the input weights per neuron.

ω can be made arbitrarily small by using weight regularization, which is commonly used. SOTA
methods widely use L2 normalization on the embeddings. For L2 normalization, we apply v̂ = v/∥v∥2

if ∥v∥2 ⩾ 1 or no normalization otherwise (i.e., v̂ = v if ∥v∥2 ⩽ 1). Unlike L2 normalization, such a
transform is Lipschitz continuous, hence so are our loss.

Solving projections. Performing a projection defined in (4.11) involves a minimization problem. We
monitor MAP@R validation accuracy and use early stopping patience of 3 to pass the next projection.

5 EXPERIMENTAL WORK

We examine the effectiveness of the proposed proxy-based DML framework for the image retrieval
task. We further perform ablation studies for the implications of our formulation as well as the effects
of the hyperparameters. We use our own framework implemented in Tensorflow (Abadi et al., 2016)
library in the experiments. Throughout the section, we use ASAP to refer our framework.

5.1 EXPERIMENTAL SETUP

We mostly follow the procedures proposed in (Musgrave et al., 2020) to provide fair and unbiased
evaluation of our method as well as comparisons with the other invented methods. We provide full
detail of our experimental setup in Appendix-A.2 for complete transparency and reproducibility.

Datasets. CUB-200-2011 (CUB) (Wah et al., 2011), Cars196 (Krause & Golovin, 2014), InShop (Liu
et al., 2016), Stanford Online Products (SOP) (Oh Song et al., 2016) with Musgrave et al. (2020)’s
data augmentation.

Evaluation metrics. Precision at 1 (P@1), precision (P@R) and mean average precision (MAP@R)
at R where R is defined for each query and is the total number of true references of the query.

Training. Default Adam (Kingma & Ba, 2014) optimizer with 1095 learning rate, 1094 weight decay,
mini-batch size of 32 (4 samples per class), 4-fold: 4 models (1 for each 3/4 partition of the train set).

7

Under review as a conference paper at ICLR 2022

Evaluation. Average performance (128-D) and Ensemble (concatenated) performance (512-D).

Losses with ASAP. C1-ASAP: Contrastive loss (Hadsell et al., 2006), C2-ASAP: Contrastive loss
with positive margin (Wu et al., 2017), MS-ASAP: Multi-similarity (MS) loss (Wang et al., 2019b),
Triplet-ASAP: Triplet loss (Schroff et al., 2015).

ASAP hyperparameters. λ=21094, 8(4) proxies per class with pool size of 12(7) (i.e., b=12(7) in
greedy k-Center method) for CUB and Cars (Inshop and SOP).

Compared methods and fairness. We compare our method against proxy-based SoftTriple (Qian
et al., 2019), ProxyAnchor (Kim et al., 2020) and ProxyNCA++ (Teh et al., 2020) methods as well
as XBM (Wang et al., 2020). We note that like the compared methods, our method’s improvement
claims do not demand any particular architecture or experimental setup. Therefore, to evaluate
the improvements purely coming from the proposed ideas, we implemented the best version of the
compared methods in our framework and evaluate on the same architecture and experimental settings.

5.2 ABLATION STUDY

Figure 2: Bayesian search on λ-#proxy

Proof of the concept. We evaluate our method on
MNIST dataset with 2-D embeddings to show the im-
plications of our formulation. In Fig. 1, we provide the
distribution of the samples in the embedding space. We
use 4 proxies per class and pool size b=16. We observe
that when single proxy-based method is converged (Fig.
1-(a)), the class proxies collapse to a single point. Once
we continue training with proposed approach (Fig. 1-(b)),
the covering radius decreases, leading to performance
improvement. It can also be observed that diverse sam-
ples results in diverse proxies. We also experiment the
case where we use samples instead of proxies. Though
it is not practically applicable to large-scale problems,
it is important to see whether our intuitions about al-
ternating proxies in place of samples hold. We obtain
98.06% MAP@R performance with sample-based train-
ing against 97.21% MAP@R performance of proxy-based training. This empirical result supports
our motivation on using the proxies in place of samples.

Effect of proxy per class and projection regularization. We perform Bayesian search on the
λ-#proxy space to see the effect of two in CUB with C2-ASAP. We provide the results in Fig.
2. We observe that absence of λ degrades the performance. Similarly, large values of λ causes
over-regularization. We obtain interval of [1091, 1095] that works well for λ. For the number of
proxies, we observe increasing the proxy per class improves performance. On the other hand, the
increase saturates as it can also be observed from Fig. 3. As the result of Bayesian parameter search,
we take λ=21094 and #proxy=8 with pool size b=12 in our evaluations against other methods.

Figure 3: Analysis of the relation between the number
of proxies and the pool size used for the proxy selection
on CUB (left) and Cars (right) dataset with C2-ASAP.

Effect of proxy selection. We perform ab-
lation study with C2-ASAP to see the re-
lation between the number of proxies and
the pool size used for the proxy selection.
We give the corresponding results in Fig.
3. We observe that both increasing the
number of proxies and the pool size for
proxy selection helps performance. We in-
terestingly see that for single proxy case,
increasing the pool size gives no better re-
sults than random selection. Owing to our
greedy proxy selection, we do consider
the past geometry no earlier than single
step. Thus, in the single proxy case, we
are prune to oscillate between similar samples for proxy selection. On the other hand, selecting the
samples that reduce the covering radius most brings better generalization over random selection.

8

Under review as a conference paper at ICLR 2022

(a) (b)

Figure 4: Impact of alternating proxies (a) and typical
distribution of the steps per projection problem (b).

Effect of alternating problems. We pro-
vide results on MNIST in Fig. 1 to show
the effect of solving alternating problems
instead of single proxy-based DML. We
additionally evaluate the baseline losses
through solving only a single proxy-DML
(Loss-Proxy) to show (Fig. 4-(a)) that our
performance increase is not solely coming
from augmentation of proxies in the prob-
lem. We clearly observe that alternating
proxies helps performance as our formu-
lation suggests. Moreover, we also pro-
vide a typical distribution of the steps per
proxy-based projection problem in Fig. 4-
(b) to show that we are not greedy on alternating the proxies just to provide more examples.

5.3 QUANTITATIVE RESULTS

Figure 5: Summary of relative improvements

We provide quantitative results in
Table 1. We summarize the re-
sults in Fig. 5 through average 128-
D MAP@R performance of 4-fold
models on InShop and SOP. We use
Method-S/L naming convention to
denote memory size in XBM and
the proxy per class in SoftTriple,
ASAP where S denotes 1, and L de-
notes 4(10) for SoftTriple and 4(8)
for ASAP in InShop, SOP (CUB,
Cars196). For a fair comparison, we
match XBM memory size and the
number of proxies in ASAP. We observe that ASAP consistently outperforms the associated baseline
methods on each dataset. Contrastive loss’ great performance with ASAP is important to support
the implications of our formulation. Furthermore, performance improvements on the loss functions
which does not directly fit in our formulation show that the broader applicability of our method to the
pairwise distance based loss functions. Additionally, the proposed ASAP framework outperforms not
only the related proxy-based methods but also every single benchmarked approaches in (Musgrave
et al., 2020). When compared with SoftTriple and XBM (i.e., multiple proxy methods), our method
outperforms by large margin especially in the cases where less number of proxies are used.

Table 1: Comparisonü with the existing methods for the retrieval task on SOP, InShop, CUB, Cars

SOP InShop CUB Cars196
512D 128D 512D 128D 512D 128D 512D 128D

Method P@1 MAP@R P@1 MAP@R P@1 MAP@R P@1 MAP@R P@1 MAP@R P@1 MAP@R P@1 MAP@R P@1 MAP@R
C1 68.84 40.25 64.96 36.54 80.12 50.15 76.08 46.51 63.67 23.08 56.21 19.06 77.75 23.50 64.17 16.13

C1-XBM-L 78.68 51.82 75.37 47.39 88.39 58.64 85.75 55.37 65.40 24.87 57.57 19.84 83.68 27.93 72.13 18.83
C1-ASAP-L 79.53 52.73 76.24 48.07 88.52 59.67 85.50 55.56 68.11 27.11 59.56 21.27 83.76 28.32 72.05 18.96

C2 74.87 46.94 71.15 42.66 86.32 59.42 83.04 55.13 67.49 26.47 59.73 21.01 81.04 24.73 69.17 17.22
C2-XBM-L 76.66 49.04 73.47 45.15 87.66 60.64 84.58 56.75 68.62 26.83 60.18 21.41 82.40 25.99 70.01 18.01
C2-ASAP-L 78.95 52.19 75.92 48.18 88.52 61.07 86.11 57.24 69.73 28.02 62.39 22.67 82.89 26.27 72.16 18.52

MS 72.74 44.10 68.96 40.18 88.37 60.65 85.39 56.61 64.65 24.15 57.24 19.64 80.88 26.23 69.27 18.25
MS-ASAP-L 78.96 51.85 75.80 47.97 90.24 63.59 87.10 59.15 68.84 27.44 61.10 22.40 86.26 29.14 74.97 19.85

Triplet 75.40 47.03 70.41 41.03 86.71 60.60 82.58 55.25 64.01 23.43 55.51 18.51 78.44 23.11 64.57 15.68
Triplet-ASAP-L 77.09 49.33 72.21 43.11 89.44 64.28 86.00 59.04 65.36 24.53 56.65 19.31 81.84 25.21 68.75 17.43

ProxyAnchor 77.10 49.01 73.86 44.89 88.08 58.09 85.87 54.95 68.43 26.53 60.61 21.48 85.29 27.73 75.79 19.56
ProxyNCA++ 76.07 48.20 72.89 44.44 87.33 57.48 84.79 54.42 65.48 24.85 58.49 20.96 82.87 26.34 72.45 19.32
SoftTriple-S/L 78.48 50.77 74.66 45.75 88.37 59.56 85.71 55.68 66.10 24.06 56.97 18.82 84.90 27.80 73.16 19.18

6 CONCLUSION

We bring a difference perspective to DML formulation in terms of chance constraints. As a result,
we develop a proxy-based method that implicitly considers arbitrary number of proxies for better
generalization. Extensive evaluations on the benchmark datasets show the efficiency of our method.

9

Under review as a conference paper at ICLR 2022

REPRODUCIBILITY

We provide full detail of our experimental setup and recapitulate thr implementation details in
Appendix-A.2 for the sake of complete transparency and reproducibility. Code is available at:
ASAP-DML Framework.

REFERENCES

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: a system for large-scale machine learning. In
OSDI, volume 16, pp. 265–283, 2016.

Heinz H Bauschke and Adrian S Lewis. Dykstras algorithm with bregman projections: A convergence proof.
Optimization, 48(4):409–427, 2000.

Aurélien Bellet and Amaury Habrard. Robustness and generalization for metric learning. Neurocomputing, 151:
259–267, 2015.

Lev M Bregman. The relaxation method of finding the common point of convex sets and its application to the
solution of problems in convex programming. USSR computational mathematics and mathematical physics, 7
(3):200–217, 1967.

Binghui Chen, Weihong Deng, and Haifeng Shen. Virtual class enhanced discriminative embedding learning.
Advances in Neural Information Processing Systems, 31:1942–1952, 2018.

Thanh-Toan Do, Toan Tran, Ian Reid, Vijay Kumar, Tuan Hoang, and Gustavo Carneiro. A theoretically sound
upper bound on the triplet loss for improving the efficiency of deep distance metric learning. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

M Dong, X Yang, R Zhu, Y Wang, and J Xue. Generalization bound of gradient descent for non-convex metric
learning. Neural Information Processing Systems Foundation, 2020.

Yueqi Duan, Wenzhao Zheng, Xudong Lin, Jiwen Lu, and Jie Zhou. Deep adversarial metric learning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2780–2789, 2018.

Istvan Fehervari, Avinash Ravichandran, and Srikar Appalaraju. Unbiased evaluation of deep metric learning
algorithms. arXiv preprint arXiv:1911.12528, 2019.

Weifeng Ge. Deep metric learning with hierarchical triplet loss. In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 269–285, 2018.

Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant mapping. In
null, pp. 1735–1742. IEEE, 2006.

Ben Harwood, BG Kumar, Gustavo Carneiro, Ian Reid, Tom Drummond, et al. Smart mining for deep metric
learning. In Proceedings of the IEEE International Conference on Computer Vision, pp. 2821–2829, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In
European conference on computer vision, pp. 630–645. Springer, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pp. 448–456. PMLR, 2015.

Pierre Jacob, David Picard, Aymeric Histace, and Edouard Klein. Metric learning with horde: High-order
regularizer for deep embeddings. In The IEEE International Conference on Computer Vision (ICCV), October
2019.

Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak. Proxy anchor loss for deep metric learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3238–3247,
2020.

Wonsik Kim, Bhavya Goyal, Kunal Chawla, Jungmin Lee, and Keunjoo Kwon. Attention-based ensemble for
deep metric learning. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 736–751,
2018.

Yonghyun Kim and Wonpyo Park. Multi-level distance regularization for deep metric learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pp. 1827–1835, 2021.

10

https://drive.google.com/drive/folders/1CFI_rol25d7WII3Nwgix7d3IHJsCMi_d?usp=sharing

Under review as a conference paper at ICLR 2022

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Byungsoo Ko and Geonmo Gu. Embedding expansion: Augmentation in embedding space for deep metric
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7255–7264, 2020.

Andreas Krause and Daniel Golovin. Submodular function maximization., 2014.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.lecun.
com/exdb/mnist/.

Xudong Lin, Yueqi Duan, Qiyuan Dong, Jiwen Lu, and Jie Zhou. Deep variational metric learning. In
Proceedings of the European Conference on Computer Vision (ECCV), pp. 689–704, 2018.

Chang Liu, Han Yu, Boyang Li, Zhiqi Shen, Zhanning Gao, Peiran Ren, Xuansong Xie, Lizhen Cui, and
Chunyan Miao. Noise-resistant deep metric learning with ranking-based instance selection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6811–6820, 2021.

Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou Tang. Deepfashion: Powering robust clothes
recognition and retrieval with rich annotations. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1096–1104, 2016.

Timo Milbich, Karsten Roth, Homanga Bharadhwaj, Samarth Sinha, Yoshua Bengio, Björn Ommer, and
Joseph Paul Cohen. Diva: Diverse visual feature aggregation for deep metric learning. In European
Conference on Computer Vision, pp. 590–607. Springer, 2020.

Yair Movshovitz-Attias, Alexander Toshev, Thomas K Leung, Sergey Ioffe, and Saurabh Singh. No fuss distance
metric learning using proxies. In Proceedings of the IEEE International Conference on Computer Vision, pp.
360–368, 2017.

Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. A metric learning reality check. In European Conference
on Computer Vision, pp. 681–699. Springer, 2020.

Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via lifted structured
feature embedding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
4004–4012, 2016.

Michael Opitz, Georg Waltner, Horst Possegger, and Horst Bischof. Bier-boosting independent embeddings
robustly. In Proceedings of the IEEE International Conference on Computer Vision, pp. 5189–5198, 2017.

CH Pang. Nonconvex set intersection problems: From projection methods to the newton method for super-regular
sets. arXiv preprint arXiv:1506.08246, 2015.

Qi Qian, Lei Shang, Baigui Sun, Juhua Hu, Hao Li, and Rong Jin. Softtriple loss: Deep metric learning without
triplet sampling. In The IEEE International Conference on Computer Vision (ICCV), October 2019.

Oren Rippel, Manohar Paluri, Piotr Dollar, and Lubomir Bourdev. Metric learning with adaptive density
discrimination. International Conference on Learning Representations, 2016.

Karsten Roth, Biagio Brattoli, and Bjorn Ommer. Mic: Mining interclass characteristics for improved metric
learning. In The IEEE International Conference on Computer Vision (ICCV), October 2019.

Karsten Roth, Timo Milbich, Samarth Sinha, Prateek Gupta, Bjorn Ommer, and Joseph Paul Cohen. Revisiting
training strategies and generalization performance in deep metric learning. In International Conference on
Machine Learning, pp. 8242–8252. PMLR, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge.
International journal of computer vision, 115(3):211–252, 2015.

Artsiom Sanakoyeu, Vadim Tschernezki, Uta Buchler, and Bjorn Ommer. Divide and conquer the embedding
space for metric learning. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face recognition
and clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
815–823, 2015.

11

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Under review as a conference paper at ICLR 2022

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set approach. In
International Conference on Learning Representations, 2018.

Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. In Advances in Neural
Information Processing Systems, pp. 1857–1865, 2016.

Justin Solomon, Fernando De Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher, Andy Nguyen, Tao Du,
and Leonidas Guibas. Convolutional wasserstein distances: Efficient optimal transportation on geometric
domains. ACM Transactions on Graphics (TOG), 34(4):66, 2015.

Yumin Suh, Bohyung Han, Wonsik Kim, and Kyoung Mu Lee. Stochastic class-based hard example mining for
deep metric learning. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2019.

Eu Wern Teh, Terrance DeVries, and Graham W Taylor. Proxynca++: Revisiting and revitalizing proxy
neighborhood component analysis. In European Conference on Computer Vision (ECCV). Springer, 2020.

Aad W Van Der Vaart, Aad van der Vaart, Adrianus Willem van der Vaart, and Jon Wellner. Weak convergence
and empirical processes: with applications to statistics. Springer Science & Business Media, 2013.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd birds-200-
2011 dataset. 2011.

Xinshao Wang, Yang Hua, Elyor Kodirov, Guosheng Hu, Romain Garnier, and Neil M. Robertson. Ranked list
loss for deep metric learning. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019a.

Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R. Scott. Multi-similarity loss with
general pair weighting for deep metric learning. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019b.

Xun Wang, Haozhi Zhang, Weilin Huang, and Matthew R Scott. Cross-batch memory for embedding learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6388–6397,
2020.

Kilian Q Weinberger, John Blitzer, and Lawrence K Saul. Distance metric learning for large margin nearest
neighbor classification. In Advances in neural information processing systems, pp. 1473–1480, 2006.

Chao-Yuan Wu, R Manmatha, Alexander J Smola, and Philipp Krahenbuhl. Sampling matters in deep embedding
learning. In Proceedings of the IEEE International Conference on Computer Vision, pp. 2840–2848, 2017.

Huan Xu and Shie Mannor. Robustness and generalization. Machine learning, 86(3):391–423, 2012.

Hong Xuan, Richard Souvenir, and Robert Pless. Deep randomized ensembles for metric learning. In Proceedings
of the European Conference on Computer Vision (ECCV), pp. 723–734, 2018.

Baosheng Yu and Dacheng Tao. Deep metric learning with tuplet margin loss. In The IEEE International
Conference on Computer Vision (ICCV), October 2019.

Yuhui Yuan, Kuiyuan Yang, and Chao Zhang. Hard-aware deeply cascaded embedding. In Proceedings of the
IEEE international conference on computer vision, pp. 814–823, 2017.

Dingyi Zhang, Yingming Li, and Zhongfei Zhang. Deep metric learning with spherical embedding. Advances in
Neural Information Processing Systems, 33, 2020.

Wenliang Zhao, Yongming Rao, Ziyi Wang, Jiwen Lu, and Jie Zhou. Towards interpretable deep metric learning
with structural matching. arXiv preprint arXiv:2108.05889, 2021.

Yiru Zhao, Zhongming Jin, Guo-jun Qi, Hongtao Lu, and Xian-sheng Hua. An adversarial approach to hard
triplet generation. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 501–517,
2018.

Wenzhao Zheng, Zhaodong Chen, Jiwen Lu, and Jie Zhou. Hardness-aware deep metric learning. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Yuehua Zhu, Muli Yang, Cheng Deng, and Wei Liu. Fewer is more: A deep graph metric learning perspective
using fewer proxies. arXiv preprint arXiv:2010.13636, 2020.

12

Under review as a conference paper at ICLR 2022

A SUPPLEMENTARY MATERIAL FOR EXPERIMENTAL WORK

A.1 REPRODUCIBILITY

Code is available at: ASAP-DML Framework.

A.2 EXPERIMENTAL SETUP

Datasets. We perform our experiments on four widely-used benchmark datasets: Stanford Online
Products (SOP) (Oh Song et al., 2016), InShop (Liu et al., 2016), Cars196 (Krause & Golovin, 2014)
and, CUB-200-2011 (CUB) (Wah et al., 2011). SOP Oh Song et al. (2016) has 22,634 classes with
120,053 product images. The first 11,318 classes (59,551 images) are split for training and the other
11,316 (60,502 images) classes are used for testing. InShop has 7,986 classes with 72,712 images.
We use 3,997 classes with 25,882 images as the training set. For the evaluation, we use 14,218 images
of 3,985 classes as the query set and 12,612 images of 3,985 classes as the gallery set. Cars196
contains 196 classes with 16,185 images. The first 98 classes (8,054 images) are used for training
and remaining 98 classes (8,131 images) are reserved for testing. CUB-200-2011 dataset consists of
200 classes with 11,788 images. The first 100 classes (5,864 images) are split for training, the rest of
100 classes (5,924 images) are used for testing.

Training Splits. We split datasets into disjoint training, validation and test sets according to (Mus-
grave et al., 2020). In particular, we partition 50%/50% for training and test, and further split training
data to 4 partitions where 4 models are to be trained by exploiting 1/4 as validation while training on
3/4. For the ablation studies, we split training set into 3 splits instead of 1 and train a single model on
the 2/3 of the set while using 1/3 for the validation.

Data augmentation follows (Musgrave et al., 2020). During training, we resize each image so that its
shorter side has length 256, then make a random crop between 40 and 256, and aspect ratio between
3/4 and 4/3. We resize the resultant image to 227x227 and apply random horizontal flip with 50%
probability. During evaluation, images are resized to 256 and then center cropped to 227x227.

Evaluation metrics. We consider precision at 1 (P@1), precision (P@R) and mean average precision
(MAP@R) at R where R is defined for each query4 and is the total number of true references as the
query. Among those, MAP@R performance metric is shown to better reflect the geometry of the
embedding space and to be less noisy as the evaluation metric (Musgrave et al., 2020). Thus, we use
MAP@R to monitor training.

P@1: Find the nearest reference to the query. The score for that query is 1 if the reference is of the
same class, 0 otherwise. Average over all queries gives P@1 metric.

P@R: For a query, i, find Ri nearest references to the query and let ri be the number of true references
in those Ri-neighbourhood. The score for that query is P@Ri = ri/Ri. Average over all queries gives
P@R metric, i.e., P@R = 1

n

∑
i∈[n]

P@Ri, where n is the number of queries.

MAP@R: For a query, i, we define MAP@Ri := 1
Ri

∑
i∈[Ri]

P (i), where P (i) = P@ii if ith re-

trieval is correct or 0 otherwise. Average over all queries gives MAP@R metric, i.e., MAP@R =
1
n

∑
i∈[n]

MAP@Ri, where n is the number of queries.

Training procedure. For the optimization procedure, we use Adam (Kingma & Ba, 2014) optimizer
for mini-batch gradient descent with a mini-batch size of 32 (4 samples per class), 1095 learning
rate, 1094 weight decay, default moment parameters, β1=.9 and β2=.99. We evaluate validation
MAP@R for every 25 steps of training in CUB and Cars196, for 250 steps in SOP and InShop. We
stop training if no improvement is observed for 60 steps and recover the parameters with the best
validation performance. Following (Musgrave et al., 2020), we train 4 models for each 3/4 partition
of the train set. For the ablation studies, we train a single model on the 2/3 partition.

4A query is an image for which similar images are to be retrieved, and the references are the images in the
searchable database.

13

https://drive.google.com/drive/folders/1CFI_rol25d7WII3Nwgix7d3IHJsCMi_d?usp=sharing

Under review as a conference paper at ICLR 2022

Embedding vectors. Embedding dimension is fixed to 128. During training and evaluation, the
embedding vectors are L2 normalized using the transformation proposed in Section 4.4. We follow
the evaluation method proposed in (Musgrave et al., 2020) and produce two results: i) Average
performance (128 dimensional) of 4-fold models and ii) Ensemble performance (concatenated 512
dimensional) of 4-fold models where the embedding vector is obtained by concatenated 128D vectors
of the individual models before retrieval.

Losses with ASAP. We evaluate our method with C1-ASAP: Contrastive loss (Hadsell et al., 2006),
C2-ASAP: Contrastive loss with positive margin (Wu et al., 2017), MS-ASAP: Multi-similarity (MS)
loss (Wang et al., 2019b), Triplet-ASAP: Triplet loss (Schroff et al., 2015).

Compared methods. We compare our method against proxy-based SoftTriple (Qian et al., 2019),
ProxyAnchor (Kim et al., 2020) and ProxyNCA++ (Teh et al., 2020) methods as well as XBM (Wang
et al., 2020).

Fairness. We note that like the compared methods (i.e., loss functions, proxy-based methods), our
method’s improvement claims do not demand any particular architecture or experimental setup.
Therefore, to evaluate the improvements purely coming from the proposed ideas, we implemented
the best version of the compared methods in our framework and evaluate on the same architecture
and experimental settings. In this manner, we stick to BN-Inception with global average pooling
architecture to directly compare our method with the benchmarked losses in (Musgrave et al., 2020).
To eliminate any framework related performance differences, we re-implemented the methods within
our framework and produce the consistent results with (Musgrave et al., 2020).

Our experimental setting is fair and unbiased; since,

• The compared methods are either invented loss functions or proxy-based approaches, which
do not demand a particular setting to show the effectiveness of the proposed ideas.

• We use the same experimental setting for each method (e.g. image size, architecture,
embedding size, batch size, data augmentation).

• We implement and re-evaluate all the compared methods on our framework (i.e., train and
evaluate).

• We reproduce consistent results reported in (Musgrave et al., 2020) to eliminate any frame-
work related performance bias.

• We use the same train and test split as the conventional methods, but we do not exploit test
data during training. We use 1/4 split of train data for the validation set.

Hyperparameters. For the hyperparameter selection, we exploit the recent work (Musgrave et al.,
2020) that has performed parameter search via Bayesian optimization on variety of losses. We further
experiment the suggested parameters from the original papers and official implementations. We pick
the best performing parameters. We perform no further parameter tuning for the loss parameters
when applied to our method to purely examine the effectiveness of our method.

C1: We adopted XBM’s official implementation for fair comparison. We use 0.5 margin for all
datasets.

C2: C2 has two parameters, (m+,m−): positive margin, m+, and negative margin. We set (m+,m−)
to (0, 0.3841), (0.2652, 0.5409), (0.2858, 0.5130), (0.2858, 0.5130) for CUB, Cars196, InShop and
SOP, respectively.

Triplet: We set its margin to 0.0961, 0.1190, 0.0451, 0.0451 for CUB, Cars196, InShop and SOP,
respectively.

MS: MS has three parameters (α, β, λ). We set (α, β, λ) to (2, 40, 0.5), (14.35, 75.83, 0.66),
(8.49, 57.38, 0.41), (2, 40, 0.5) for CUB, Cars196, InShop and SOP, respectively.

ProxyAnchor: We set its two paremeters (δ, α) to (0.1, 32) for all datasets. We use 1 sample per class
in batch setting (i.e., 32 classes with 1 samples per batch), we perform 1 epoch warm-up training of
the embedding layer, and we apply learning rate multiplier of 100 for the proxies during training.

ProxyNCA++: We set its temperature parameter to 0.1 for all datasets. We use 1 sample per class in
batch setting (i.e., 32 classes with 1 samples per batch), we perform 1 epoch warm-up training of the
embedding layer, and we apply learning rate multiplier of 100 for the proxies during training.

14

Under review as a conference paper at ICLR 2022

SoftTriple: SoftTriple has 4 parameters (λ, γ, τ, δ). We set (λ, γ, τ, δ) to (20, 0.1, 0.2, 0.01),
(17.69, 19.18, 0.0669, 0.3588), (20, 0.1, 0.2, 0.01), (100, 47.9, 0.2, 0.3145) for CUB, Cars196, In-
Shop and SOP, respectively. We use 1 sample per class in batch setting (i.e., 32 classes with 1 samples
per batch), we perform 1 epoch warm-up training of the embedding layer, and we apply learning rate
multiplier of 100 for the proxies during training.

XBM: We evaluate XBM with C1 and C2; since, in the original paper, contrastive loss is reported to
be the best performing baseline with XBM. We set the memory size of XBM to the total number of
proxies (i.e., proxy_per_class×#classes) to compare the methodology by disentangling the effect
of proxy number. With that being said, we also evaluate XBM with the memory sizes suggested
in the original paper. In this manner we use two memory sizes for XBM for each dataset: (S,L)
where S and L denote the number of batches in the memory. For CUB and Cars196, ASAP uses
1(8) proxies per class for S(L) . Thus, we set (S,L) to (3, 25) for CUB and Cars196. For InShop
and SOP, ASAP uses 1(4) proxies per class for S(L). Thus, we set (S,L) to (100, 400), (400, 1400)
for InShop and SOP, respectively. We perform 1K steps of training with the baseline loss prior to
integrate XBM loss in order to ensure slow drift assumption.

ASAP: For the hyperparameters of our method, we use 8 proxies per class and λ=21094 for CUB
and Cars datasets, as the result of the parameter search; and use pool size, b=12, for greedy k-Center
method. We select pool size based on our empirical studies on the effect pool size and number of
proxies. Due to computation limitations, we use 4 proxy per class, λ=21094 and b= 7 for SOP and
InShop dataset. We perform no warm-up or do not use learning rate multiplier for the proxies.

A.3 FURTHER EXPERIMENTAL RESULTS

A.3.1 PROOF OF THE CONCEPT TESTS

Figure 6: Illustration of our method and the geometry of the embedding space before, (a), and after,
(b), our method (through iterations 1-4), where boxes are the converged proxies and the circles are the
next proxies as the result of k-Center. In proxy-based DML, proxies are coalesced into one whereas
with ASAP, we have diverse proxies, resulting reduced covering radius.

Our proof of the concept visualization in Fig. 6 is to show that the proposed method helps to reduce
the covering radius. Thus, we visualize the training data to illustrate proxy convergence, proxy
selection and embedding space geometry. With that being said, it is important to show how such
efforts in the training domain are reflected in the test domain.

We further provide the visualization of the validation data in CUB dataset in Fig. 7. We use 2-D
TSNE embeddings of the validation data in the visualization. We compute covering radii for 1 to n
sample case in k-Center. Namely, we take k samples with minimum cover for k ∈ [n] where n is

15

Under review as a conference paper at ICLR 2022

the number of samples per class. We then take the average of these radii to compute a representative
metric for the covering radius.

We observe that solving single proxy-based DML results in relatively poor generalization in the
test domain. On the contrary, solving the problem as the set intersection problem with alternating
projections improves the embedding geometry (reduced radius with increased inter-class pairwise
distances).

Figure 7: The geometry of the embedding space before, (a), and after, (b), our method (through
iterations 1-3), relating how the generalization efforts in training domain transfer to the geometry of
test domain on CUB dataset with C2-ASAP. We use 2-D TSNE embeddings of the validation data
in the visualization. We report MAP@R, average covering radius and average inter-class pairwise
distances in the visualization.

A.3.2 RESULTS WITH P@R PERFORMANCES

Table 2: Comparison with the existing methods for the retrieval task on SOP and InShop. Red: the
overall best. Bold: the loss term specific best.

SOP InShop
512D 128D 512D 128D

Method P@1 P@R MAP@R P@1 P@R MAP@R P@1 P@R MAP@R P@1 P@R MAP@R
C1 68.84 43.28 40.25 64.96 39.68 36.54 80.12 53.11 50.15 76.08 49.61 46.51

C1-XBM-L 78.68 54.66 51.82 75.37 49.95 47.39 88.39 61.33 58.64 85.75 58.13 55.37
C1-ASAP-L 79.53 55.11 52.73 76.24 50.07 48.07 88.52 62.54 59.67 85.50 58.51 55.56

C2 74.87 49.88 46.94 71.15 45.77 42.66 86.32 62.36 59.42 83.04 58.27 55.13
C2-XBM-L 76.66 51.91 49.04 73.47 48.18 45.15 87.66 63.50 60.64 84.58 59.78 56.75
C2-ASAP-L 78.95 55.01 52.19 75.92 51.14 48.18 88.52 63.94 61.07 86.11 60.16 57.24

MS 72.74 47.07 44.10 68.96 43.25 40.18 88.37 63.53 60.65 85.39 59.65 56.61
MS-ASAP-L 78.96 54.71 51.85 75.80 50.48 47.97 90.24 66.31 63.59 87.10 61.74 59.15

Triplet 75.40 50.13 47.03 70.41 44.32 41.03 86.71 63.81 60.60 82.58 58.74 55.25
Triplet-ASAP-L 77.09 52.42 49.33 72.21 46.38 43.11 89.44 67.23 64.28 86.00 62.24 59.04

ProxyAnchor 77.10 51.95 49.01 73.86 47.94 44.89 88.08 60.91 58.09 85.87 57.80 54.95
ProxyNCA++ 76.07 51.17 48.20 72.89 47.47 44.44 87.33 60.33 57.48 84.79 57.33 54.42
SoftTriple-S 78.48 53.68 50.77 74.66 48.79 45.75 88.37 62.56 59.56 85.71 58.74 55.68

16

Under review as a conference paper at ICLR 2022

Table 3: Comparison with the existing methods for the retrieval task on CUB and Cars196. Red: the
overall best. Bold: the loss term specific best.

CUB Cars196
512D 128D 512D 128D

Method P@1 P@R MAP@R P@1 P@R MAP@R P@1 P@R MAP@R P@1 P@R MAP@R
C1 63.67 33.77 23.08 56.21 29.65 19.06 77.75 33.69 23.50 64.17 26.50 16.13

C1-XBM-L 65.40 35.57 24.87 57.57 30.42 19.84 83.68 37.74 27.93 72.13 28.55 18.83
C1-ASAP-L 68.11 37.85 27.11 59.56 32.06 21.27 83.76 37.78 28.32 72.05 28.74 18.96

C2 67.49 37.18 26.47 59.73 31.86 21.01 81.04 34.97 24.73 69.17 27.70 17.22
C2-XBM-L 68.62 37.53 26.83 60.18 32.25 21.41 82.40 36.07 25.99 70.01 28.49 18.01
C2-ASAP-L 69.73 38.69 28.02 62.39 33.49 22.67 82.89 36.27 26.27 72.16 28.98 18.52

MS 64.65 34.84 24.15 57.24 30.29 19.64 80.88 36.45 26.23 69.27 28.93 18.25
MS-ASAP-L 68.84 38.19 27.44 61.10 33.23 22.40 86.26 38.97 29.14 74.97 30.44 19.85

Triplet 64.01 34.55 23.43 55.51 29.38 18.51 78.44 33.83 23.11 64.57 26.52 15.68
Triplet-ASAP-L 65.36 35.42 24.53 56.65 30.17 19.31 81.84 35.61 25.21 68.75 28.21 17.43

ProxyAnchor 68.43 37.36 26.53 60.61 32.36 21.48 85.29 37.53 27.73 75.79 29.91 19.56
ProxyNCA++ 65.48 35.60 24.85 58.49 31.73 20.96 82.87 36.56 26.34 72.45 29.91 19.32
SoftTriple-L 66.10 34.99 24.06 56.97 29.63 18.82 84.90 37.69 27.80 73.16 29.60 19.18

A.3.3 COMPUTATIONAL ANALYSIS

Figure 8: Analysis of batch size dependence of the perfor-
mance on CUB (left) and Cars (right) dataset with C2-ASAP.

Batch size. We analyze the depen-
dency of the performance on the
batch size; since, batch size plays
important role in DML methods to
perform well. Therefore, it is worth
to analyze the robustness to the batch
size especially for the cases where in-
creasing the batch size is prohibitive.
We trained baseline contrastive loss
and ASAP contrastive loss for the
batch sizes of 16, 32, 64 and 128.
The training setup is the same we
do in the state-of-the-art comparison.
In each batch we use 4 samples per
class. We provide the results in Fig. 8. We observe that baseline contrastive loss has increasing
performance as the batch size increases whereas our method’s performance with small batch size is
on par with the large batch size. Thus, our method has reduced batch size complexity.

Complexity. Proposed method outlined in Algorithm-1 puts little computation and memory overhead
on top of the traditional approaches.

For the computation, we have proxy initialization and weight update steps at the beginning of the
each problem instance. In overall, in our system with RTX 2080 Ti GPU and i7 CPU, that additional
computation adds on the average 5-10 ms per step (batch update). In particular, for batch size of
32, we typically have rate of 105 ms/batch with Contrastive-ASAP whereas vanilla has 97 ms/batch
rate. In InShop and SOP dataset, we have the same rates however for ASAP, we have 200 to 400
ms computation overhead due to sampling for proxy initialization. We do not have such overhead in
Cars and CUB owing to the much less number of classes. Granted, we have such 400 ms overhead in
InShop and SOP only at the beginning of new problem instance, which has no significant effect in
long run. Due to alternating problems, our method takes more steps to converge than their baseline
counterparts.

For the memory, we store the weighs of the previously converged model in the memory as well as the
variables for proxies. For the model, approximately 40-45 mb additional GPU memory is used and
for the proxies 16.6 mb and 5.9 mb memory is used in SOP and InShop dataset (75 kb in CUB and
Cars).

17

Under review as a conference paper at ICLR 2022

B PROOFS

B.1 PROOF FOR LEMMA 4.1

Lemma 4.1. Generalized contrastive loss defined as ℓ(z, z′; θ) := (ιy,y′(df (x, x
′; θ)− β) + α)+ is√

2ωL-Lipschitz in x and x′ for all y, y′, θ for the embedding function f(·; θ) being L-layer CNN
(with ReLU, max-pool, average-pool) with a fully connected layer at the end, where ω is the maximum
sum of the input weights per neuron.

Proof. We first show that f(x; θ) is Lipschitz continuous.

We consider x∈IRd as an input to a layer and x̂∈IRd′
as the corresponding output. We express

ith component of x̂ as x̂i =
∑

j wi,jxsi(j) where si = {si(j) ∈ [d]} is the set of components
contributing to x̂i and wi,j∈θ is the layer weights. For instance, for a fully connected layer si(j) = j;
for a 3x3 convolutional layer, si corresponds to 3x3 window of depth #channels centered at i. We
now consider two inputs x, x′ and their outputs x̂, x̂′. We write:

∥x̂− x̂′∥22
∥x− x′∥22

=

∑
i∈[d′] |x̂i − x̂′

i|2

∥x− x′∥22
=

∑
i∈[d′] |

∑
j wi,jxsi(j) −

∑
j wi,jx

′
si(j)
|2

∥x− x′∥22

⩽

∑
i∈[d′]

∑
j |wi,j |2|xsi(j) − x′

si(j)
|2

∥x− x′∥22
Rearranging terms, we express:∑

i∈[d′]

∑
j |wi,j |2|xsi(j) − x′

si(j)
|2 =

∑
k∈[d]

∑
i,j:si(j)=k

|wi,j |2|xk − x′
k|2

If
∑

i,j:si(j)=k

|wi,j | ⩽ ω for all k and for all layers, i.e., the absolute sum of the input weights per neuron

is bounded by ω, we can write
∑

k∈[d]

∑
i,j:si(j)=k

|wi,j |2|xk − x′
k|2 ⩽ ω2

∑
k∈[d]

|xk − x′
k|2 ⩽ ω2∥x − x′∥22,

hence,
∥x̂− x̂′∥2
∥x− x′∥2

⩽ ω.

For max-pooling and average-pooling layers, the inequality holds with ω = 1; since, we can express
max-pooling as a convolution where only one weight is 1 and the rest is 0; and similarly, we can
express average-pooling as a convolution where the weights sum up to 1.

For ReLU activation, we consider the fact that |max{0, u} −max{0, v}| ⩽ |u− v| to write:

∥ReLU(x)−ReLU(x′)∥2
∥x− x′∥2

⩽ 1.

Therefore, L-layer CNN f(x; θ) is ωL-Lipschitz.

We now consider ℓ(z, z′; θ) = max{0, ιy,y′(∥f(x; θ)−f(x′; θ)∥2−β)+α} as g(h(f(x; θ), f(x′; θ)))

where g(h) = max{0, ιy,y′(h− β) + α} is 1-Lipschitz, and h(f, f ′) = ∥f − f ′∥2 is
√
2-Lipschitz

and 1-Lipschitz in f for fixed f ′. Thus, for y, y′, θ fixed, ℓ(z, z′; θ) := (ιy,y′(df (x, x
′; θ)−β)+α)+

is ωL-Lipschitz in x and in x′; and
√
2ωL-Lipschitz in both, for all y, y′, θ.

Note that it is easy to show that the normalization proposed in Section 4.4:

v̂ =

{
v for ∥v∥2 ⩽ 1
v/∥v∥2 for ∥v∥2 ⩾ 1

is 2-Lipschitz. Therefore, our loss is still Lipschitz continuous with normalized embeddings in our
framework.

18

Under review as a conference paper at ICLR 2022

B.2 PROOF FOR PROPOSITION 4.1

Proposition 4.1. Given S={zi}i∈[m]
i.i.d.∼ pZ such that ∀k∈Y {xi|yi=k} is δS -cover5 ofX , ℓ(z, z′; θ)

is ζℓ-Lipschitz in x, x′ for all y, y′ and θ, and bounded by L; then with probability at least 1− γ,∣∣∣Ez,z′∼pZ [ℓ(z, z
′; θ)]− 1

m

∑
i∈[m]

Ez∼pZ [ℓ(zi, z; θ)]
∣∣∣ ⩽ O(ζℓ δS) +O(L√

log
1
γ/m).

Proof. We start with defining L̂(z; θ) := Ez′∼pZ [ℓ(z, z
′; θ)]. Note that

∥L̂(z1; θ)− L̂(z2; θ)∥2 = |Ez′∼pZ [ℓ(z1, z
′; θ)]− Ez′∼pZ [ℓ(z2, z

′; θ)]|
⩽ Ez′∼pZ [|ℓ(z1, z′; θ)− ℓ(z2, z

′; θ)|].
Therefore, ℓ(z, z′; θ) being ζℓ-Lipschitz in x for fixed x′, y, y′ and θ, and bounded by L implies
L̂(z; θ) is also ζℓ-Lipschitz in x for all y, θ and bounded by L. Hence, we have

|L̂(zi; θ)− L̂(z; θ)| ⩽ ζℓ δS ∀zi, z : zi ∈ S, z ∈ Z, ∥zi − z∥2 ⩽ δS

From Theorem 14 of Xu & Mannor (2012), we can partition Z into K = mint{|t| :

t is δS
2 -cover of Z} disjoint sets, denoted as {Ri}i∈[K], such that ∀i : zi ∈ δS ; both zi, z being

∈ Ri implies |L̂(zi; θ)− L̂(z; θ)| ⩽ ζℓ δS . Hence, from Theorem 3 of Xu & Mannor (2012), with
probability at least 1− γ, we have:∣∣∣Ez,z′∼pZ [ℓ(z, z

′; θ)]− 1
m

∑
i∈[m]

Ez∼pZ [ℓ(zi, z; θ)]
∣∣∣ = ∣∣∣Ez∼pZ [L̂(z; θ)]− 1

m

∑
i∈[m]

L̂(zi; θ)
∣∣∣

⩽ ζℓ δS + L

√
2K log 2 + 2 log 1/γ

m

Note that K is dependent on δs and satisfies lim
m→∞

K
m → 0 ensuring that the right hand side goes to

zero as more samples are exploited and the covering radius is improved. Thus, asymptotically the
following holds:

Ez,z′∼pZ [ℓ(z, z
′; θ∗)] ⩽ O(δs) +O(

√
log

1
γ/m) with probability at least 1− γ .

B.3 PROOF FOR PROPOSITION 4.2

Proposition 4.2. Given {zi}i∈[n]
i.i.d.∼ pZ and a set s ⊂ [n]. If s = ∪ks′k with s′k is the δs-cover of

{i ∈ [n] | yi = k} (i.e., the samples in class k), ℓ(z, z′; θ) is ζℓ-Lipschitz in x, x′ for all y, y′ and θ,
and bounded by L, e(Asx[n]) training error; then with probability at least 1− γ we have:∣∣∣ 1
n2

∑
i,j∈[n]x[n]

ℓ(zi, zj ;Asx[n])− 1
|s|n

∑
i,j∈sx[n]

ℓ(zi, zj ;Asx[n])
∣∣∣ ⩽ O(ζℓ δs) +O(e(Asx[n])) +O(L

√
log

1
γ/n)

Proof. We are given a condition on s that we can partition Z into m = |s| disjoint sets such that any
sample from the dataset (xi, c), i ∈ [n], has a corresponding sample from s, (x′

j , c), j ∈ s within δs
ball. Thus, we start with partitioning Z into s disjoint sets as Z = ∪iSi with Si ∩ Sj = ∅, ∀i ̸= j.

We define ℓ[n](z) =
1
n

∑
i∈[n]

ℓ(z, zi,Asx[n]) and ℓs(z) =
1
m

∑
i∈s

ℓ(z, zi,Asx[n]) for the sake of clarity.

Hence, we are interested in bounding | 1n
∑

[n] ℓ[n](zi) −
1
m

∑
s ℓ[n](zi)|. We proceed with using

triangle inequality to write:∣∣∣ 1n ∑
i∈[n]

ℓ[n](zi)− 1
m

∑
i∈s

ℓ[n](zi)
∣∣∣

⩽
∣∣∣ 1n ∑

i∈[n]

ℓ[n](zi)−
∑
i∈s

ni

n ℓ[n](zi)
∣∣∣(T1)

+
∣∣∣ ∑
i∈s

ni

n ℓ[n](zi)− 1
m

∑
i∈s

ℓ[n](zi)
∣∣∣(T2)

5S ⊂ S ′ is δS -cover of S ′ if ∀z′ ∈ S ′, ∃z ∈ S such that ∥z − z′∥2 ⩽ δS .

19

Under review as a conference paper at ICLR 2022

For term (T1) we write:

(T1) ⩽ 1
n

∑
i∈[m]

∑
zj∈Si

|ℓ[n](zs(i))− ℓ[n](zj)|
(1)

⩽ ζℓ δs

where in (1), we use ζℓ-Lipschitz of the loss function and the condition |zs(i) − zj | ⩽ δs, ∀zj ∈ Si.

Using triangle inequality, we bound term (T2) as:∣∣∣ ∑
i∈s

ni

n ℓ[n](zi)− 1
m

∑
i∈s

ℓ[n](zi)
∣∣∣ ⩽ ∣∣∣Ez∼pZ [ℓs(z)]− Ez∼pZ [ℓ[n](z)]

∣∣∣(T2.1)

+
∣∣∣Ez∼pZ [ℓ[n](z)]−

∑
i∈s

ni

n ℓ[n](zi)
∣∣∣(T2.2)

+
∣∣∣Ez∼pZ [ℓs(z)]− 1

n

∑
i∈[n]

ℓs(zi)
∣∣∣(T2.3)

where we use 1
m

∑
s ℓ[n](zi) =

1
n

∑
[n] ℓs(zi) in (T2.3).

For (T2.1) we have:

(T2.1) ⩽
∣∣∣Ez∼pZ [

1
m

∑
i∈s

ℓ(zi, z)− 1
n

∑
i∈[n]

ℓ(zi, z)]
∣∣∣

where we abuse the notation for the sake of clarity and drop parameter, Asx[n], dependency from the
loss. Rearranging the terms, we have:

(T2.1) ⩽
∣∣∣Ez∼pZ [

1
m

∑
i∈[m]

n−mni

n ℓ(zs(i), z)]
∣∣∣+ ∣∣∣Ez∼pZ [

1
n

∑
i∈[m]

∑
j∈Si

ℓ(zs(i), z)− ℓ(zj , z)]
∣∣∣

where similar to (T1), the second summand is upper bounded by ζℓ δs. Using triangle inequality for
the first summand, we write:∣∣∣Ez∼pZ [

1
m

∑
i∈[m]

n−mni

n ℓ(zs(i), z)]
∣∣∣ ⩽ (T2.3) + e(Asx[n])

Hence, we have:
(T2.1) ⩽ ζℓ δs + (T2.3) + e(Asx[n])

where from Hoeffding’s Bound, (T2.3) ⩽ L

√
log

1
γ/2n with probability at least 1− γ:

Finally, we express (T2.2) as:

(T2.2) =
∣∣∣ ∑
i∈[m]

Ez∼pZ [ℓ[n](z) | z ∈ Si]p(z ∈ Si)−
∑
i∈s

ni

n ℓ[n](zi)
∣∣∣

⩽
∣∣∣ ∑
i∈[m]

Ez∼pZ [ℓ[n](z) | z ∈ Si]ni

n −
∑
i∈s

ni

n ℓ[n](zi)
∣∣∣

+
∣∣∣ ∑
i∈[m]

Ez∼pZ [ℓ[n](z) | z ∈ Si]p(z ∈ Si)−
∑

i∈[m]

Ez∼pZ [ℓ[n](z) | z ∈ Si]ni

n

∣∣∣
Rearranging the terms we have:

(T2.2) ⩽
∑

i∈[m]

ni

n maxz∈Si
|ℓ[n](z)− ℓ[n](zs(i))|+maxz∈Z |ℓ[n](z)|

∑
i∈[m]

∣∣∣ni

n − p(z ∈ Z)
∣∣∣

where the first summand is bounded above by ζℓ (δs + ε(n)) owing to loss being ζℓ-Lipschitz. Here,
we denote ε(n) as the covering radius of Z , i.e., the dataset, {xi, yi}[n] is ε(n)-cover of X xY . We
note that (ni)i∈[m] is an i.i.d. multinomial random variable with parameters n and (pZ(z ∈ Si))i∈[m].
Thus, by the Breteganolle-Huber-Carol inequality (Proposition A6.6 of Van Der Vaart et al. (2013)),
we have :

(T2.2) ⩽ ζℓ (δs + ε(n)) + L

√
2m log 2+2 log 1/γ

n

Finally, with probability at least 1− γ, we end up with:∣∣∣ 1n ∑
i∈[n]

ℓ[n](zi)− 1
m

∑
i∈s

ℓ[n](zi)
∣∣∣ ⩽ ζℓ (3 δs+ε(n))+e(Asx[n])+L (

√
log

1
γ/2n+

√
2m log 2+2 log 1/γ

n)

20

Under review as a conference paper at ICLR 2022

Corollary 4.2.1. Generalization performance of the proxy-based methods can be limited by the
maximum of distances between the proxies and the corresponding class samples in the dataset.

Proof. The covering radius for each class subset is the maximum distance between the corresponding
class samples and the class proxy. We at least know that the generalization error is bounded above
with a term proportional to that distance.

21

	Inroduction
	Related Work
	Notation and Problem Definition
	Method
	Reformulation of Deep Metric Learning with Chance Constraints
	Reducing Chance Constraints
	Solving Feasibility Problem with Alternating Projections
	Implementation Details

	Experimental Work
	Experimental Setup
	Ablation Study
	Quantitative Results

	Conclusion
	Supplementary Material for Experimental Work
	Reproducibility
	Experimental Setup
	Further Experimental Results
	Proof of the Concept Tests
	Results with P@R Performances
	Computational Analysis

	Proofs
	Proof for Lemma 4.1
	Proof for Proposition 4.1
	Proof for Proposition 4.2

