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ABSTRACT

In robust Markov Decision Processes (MDPs), the uncertainty set is often assumed
to be fixed and given. However, the size of the uncertainty set is crucial due to the
inherent trade-off between robustness and conservatives: a larger uncertainty set
fosters a more robust solution but tends towards increased conservativeness, while
a smaller set may sacrifice robustness for higher performance. In this work, we in-
troduce a novel method to learn the size of reward uncertainty set from data. Such
a data-driven approach ensures that the learned uncertainty set is large enough to
cover the underlying models implied by the data while being compact to minimize
conservativeness.

1 INTRODUCTION

Robust reinforcement learning is a tool to tackle decision-making problems where the system pa-
rameters are uncertain or partially known (Nilim & El Ghaoui, 2005; Iyengar, 2005; Mannor et al.,
2004). There are many works on solving the robust Markov Decision Processes (MDPs) for speci-
fied uncertainty set (Wolfram Wiesemann, 2012; Tamar et al., 2014; Ho et al., 2020; Derman et al.,
2021; Abdullah et al., 2019; Wang & Zou, 2021; 2022; Kumar et al., 2022a; 2023a; Gadot et al.,
2023; Kumar et al., 2023b; Wang et al., 2023; 2022). However, the performance-robustness trade-
off receives less attention. That is, excessively big uncertainty leads to overly conservative solutions
that have very sub-optimal performance. Conversely, overly restricted uncertainty sets can result
in less robust solutions, vulnerable to changes in the environment. Thus, striking a careful bal-
ance when formulating assumptions about the uncertainty set becomes pivotal for achieving optimal
performance.

In this work, we focus on learning reward uncertainty sets in a data-driven way, instead of manu-
ally specifying a fixed uncertainty set. More specifically, suppose we have a dataset of transitions
sampled from several reward models within an unknown uncertainty set, we aim to learn a minimal
radius of the uncertainty set that covers all these models. Such a minimal radius would give us a
nice balance between robustness and conservativeness.

2 METHOD

A Markov decision process (MDP) is a tuple (S,A, P,R, µ, γ) such that S, A, P : S ×A →
∆S , R : S ×A → R, µ ∈ ∆S , γ ∈ [0, 1),∆X are state space, action space, transition kernel,
reward function, an initial distribution over states, discount factor ensuring that the infinite-horizon
return is well-defined, and probability simplex over the set X respectively (Sutton & Barto, 2018).
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The policy π ∈ (∆A)
S maps states to action, where π(a|s) is the probability of playing action a in

state s. The return ρπR of a policy π and reward function R, is defined as ρπ(P,R) = ⟨R, dπ⟩ where
dπ(s, a) := E[

∑∞
n=0 γ

n1(sn = s, an = a) | s0 ∼ µ, π, P ] is the occupation measure associated
with policy π (Puterman, 2014).

In most cases, the system parameters are not known exactly, but up to an uncertainty set, hence the
robust return w.r.t. uncertainty set R under policy π is defined as ρπR = minR∈R ρπR (Gadot et al.,
2023). There exists a wide range of literature on solving robust MDPs given the uncertainty set
(Gadot et al., 2023; Derman et al., 2021; Kumar et al., 2022a; 2023a), However, the uncertainty may
not be available to us, making those approaches inapplicable.

We assume that there exists a true but unknown uncertainty set R. We only have access to the
trajectories {st, at, R(st, at) | P, π, µ}∞t=0 from different reward models R ∈ R. The result below
states that the uncertainty set R can be estimated from the occupation measure and returns from the
different models. Note that the returns and the occupation measure are easily estimated from the
trajectories.

Theorem 1. (Radius of Ball uncertainty set) Let B(R0, α) = {R | ∥R−R0∥p ≤ α}, then for every
policy π, we have

α = max
R,R′∈B(R0,α)

|ρπR − ρπR′ |
2∥dπ∥q

.

The occupation measure can be bootstrapped using the γ- contraction operator (in L1 norm) L
defined as (Kumar et al., 2022b)

(Lπd)(s) = µ(s) +
∑
s′

Pπ(s′|s)d(s),

with fixed point dπ . Here we present a sample-based method to learn the uncertainty radius.

Algorithm 1 Sample-based learning of uncertainty radius
Input: Sample trajectories {sin, ain, Ri(s

i
n, a

i
n) | π, P}∞n=0 for different reward functions Ri ∈ R.

Learning rate ηin schedule.
while not converged do

For all i, update the occupancy measure: d(sin) = d(sin) + ηin
[
d0(s

i
n) + γd(sin+1)− d(sin)

]
Keep track of highest and lowest return ρi =

∑∞
n=0 γ

nRi(sin, a
i
n).

Compute α =
maxi ρi−minj ρj

2∥d∥q
.

end while

Once the uncertainty set is learned (i.e., the radius), we can employ the robust method to learn
the robust optimal policy (Gadot et al., 2023). Moreover, it may also be possible to combine both
learning the uncertainty set and solving for robust optimal policy together, in a single efficient
algorithm.

3 DISCUSSIONS

We believe learning the uncertainty set holds promise across various real-world applications. For
instance, in robotics, learning the uncertainty set from past interaction data allows agents to discern
areas within the environment that are more susceptible to disturbances. This knowledge enables
training robust control policies with greater efficiency, mitigating the issues of overly conservative
approaches.

Consider another example in autonomous driving. Each driver may possess distinct preferences
regarding comfortable driving behaviors. By representing these differences as an uncertainty set
and learning this uncertainty set from data, we can develop a driving policy that is not only safe and
robust but also tailored to various driving preferences. This approach ensures an efficient yet secure
driving experience for diverse drivers.
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A APPENDIX

A.1 REWARD UNCERTAINTY

Lemma. (Radius of Ball uncertainty set) Let B(R0, α) = {R | ∥R − R0∥p ≤ α}, then for every
policy π, we have

α = max
R,R′∈B(R0,α)

|ρπR − ρπR′ |
2∥dπ∥q

.

Proof. Then from the previous result, we have

ρπR0
− min

R∈R
ρπR = α∥dπ∥q.

Similarly, it is easy to see,
max
R∈R

ρπR − ρπR0
= α∥dπ∥q.

Adding both, we get
max
R∈R

ρπR − min
R∈R

ρπR = 2α∥dπ∥q.

This implies

max
R,R′∈R

|ρπR − ρπR′ | = max
R∈R

ρπR − min
R∈R

ρπR = 2α∥dπ∥q, ∀R,R′ ∈ R.

This proves the desired claim.

Lemma 1. (Uncertainty Radius Lower Bound) The Lp radius τp is lower bounded as

τp(R) ≥ max
π

max
R,R′∈R

|ρπR − ρπR′ |
2∥dπ∥q

.

Let Lp radius τp(R) of the uncertainty set R, be defined as

τp(R) :=
1

2
max

R,R′∈R
∥R−R′∥p.

Proof. From the above lemma, we have

τp(R) = max
R,R′∈B(R0,τp(R))

|ρπR − ρπR′ |
2∥dπ∥q

, ∀π, (R0 is such that R ⊂ B(R0, τp(R))), (1)

≥ max
R,R′∈R

|ρπR − ρπR′ |
2∥dπ∥q

, ∀π (as R ⊂ B(R0, τp(R))). (2)

This implies the desired result.
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Theorem 2. The radius of the smallest Lp ball that contains R, is given by

α = max
π

max
R,R′∈R

|ρπR − ρπR′ |
2∥dπ∥q

.

Proof. Note that we have

∥R−R′∥p =
|ρπR − ρπR′ |
2∥dπ∥q
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