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ABSTRACT

Editing biological sequences has extensive applications in synthetic biology and
medicine, such as designing regulatory elements for nucleic-acid therapeutics and
treating genetic disorders. The primary objective in biological-sequence editing
is to determine the optimal modifications to a sequence which augment certain
biological properties while adhering to a minimal number of alterations to en-
sure safety and predictability. In this paper, we propose GFNSeqEditor, a novel
biological-sequence editing algorithm which builds on the recently proposed area
of generative flow networks (GFlowNets). Our proposed GFNSeqEditor identifies
elements within a starting seed sequence that may compromise a desired biolog-
ical property. Then, using a learned stochastic policy, the algorithm makes edits
at these identified locations, offering diverse modifications for each sequence in
order to enhance the desired property. Notably, GFNSeqEditor prioritizes edits
with a higher likelihood of substantially improving the desired property. Further-
more, the number of edits can be regulated through specific hyperparameters. We
conducted extensive experiments on a range of real-world datasets and biological
applications, and our results underscore the superior performance of our proposed
algorithm compared to existing state-of-the-art sequence editing methods.

1 INTRODUCTION

Editing biological sequences has a multitude of applications in biology, medicine, and biotechnol-
ogy. For instance, gene editing serves as a tool to elucidate the role of individual gene products in
diseases (Li et al., 2020) and offers the potential to rectify genetic mutations in afflicted tissues and
cells for therapeutic interventions (Cox et al., 2015). The primary objective in biological-sequence
editing is to enhance specific biological attributes of a starting seed sequence, while minimizing
the number of edits. This reduction in the number of alterations not only augments safety but also
facilitates the predictability and precision of modification outcomes.

Existing machine learning methodologies within the domain of biological sequences have predomi-
nantly concentrated on generating novel de novo sequences with desired properties. These methods
employ diverse techniques such as reinforcement learning (Angermueller et al., 2019), generative
adversarial networks (Zrimec et al., 2022), diffusion models Avdeyev et al. (2023), model-based
optimization approaches (Trabucco et al., 2021) and generative flow networks (Jain et al., 2022). A
common feature of these approaches is generating entirely new sequences from scratch. As a result,
there is an inherent risk of deviating significantly from naturally occurring sequences, compromising
safety (e.g. the risk of designing sequences that might trigger an immune response) and predictabil-
ity (e.g. having misleading predictions from models that are trained on genomic sequences due to
out-of-distribution). Despite the paramount importance of editing biological sequences, there has
been a noticeable scarcity of research dedicated to addressing this specific aspect.

The most traditional approaches for biological sequence editing are evolution-based methods,
where—over many iterations—a starting “seed” sequence is randomly mutated, and only the best
sequence (i.e., highest desired property) is kept for the next round (Arnold, 1998; Sinai et al., 2020;
Taskiran et al., 2022); however, the utilization of these approaches necessitates the evaluation of
numerous candidate edited sequences every iteration. This computational demand can become
prohibitively expensive, particularly for lengthy sequences. Additionally, evolution-based meth-
ods heavily rely on evaluations provided by a proxy model capable of assessing the properties of
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unseen sequences; the efficacy of these methods is limited by the reliability of the proxy model.
Beyond evolution-based methods, a perturbation-based editing method known as Ledidi has been
introduced by Schreiber et al. (2020). By treating sequence editing as an optimization task, Ledidi
learns to perturb specific positions within a given sequence. Akin to evolution-based models, Le-
didi’s effectiveness is contingent on the quality of the proxy model, which can compromise Ledidi’s
performance if the proxy model lacks sufficient generalizability for unseen sequences. Furthermore,
both evolution-based methods and Ledidi only perform local searches in sequence space, and as a
result they suffer from low sample efficiency.

Generative flow networks (GFlowNets) (Bengio et al., 2021; 2023) are a generative approach
known for their capacity to sequentially generate new objects. GFlowNets have demonstrated re-
markable performance in the generation of novel biological sequences from scratch (Jain et al.,
2022). Drawing inspiration from the emerging field of GFlowNets, this paper introduces a novel
biological-sequence editing algorithm: GFNSeqEditor. Leveraging a pre-trained flow function from
the GFlowNet (acquired through training on a sequence dataset), GFNSeqEditor assesses the po-
tential for significant property enhancement within a given sequence. GFNSeqEditor iteratively
identifies and subsequently edits specific positions in the input sequence to increase the target prop-
erty. More precisely, using the trained flow function, GFNSeqEditor first identifies positions in the
seed sequence which requires editing. GFNSeqEditor then constructs a stochastic policy using the
flow function to select a substitution from the available options for the identified positions. Diver-
sity holds significant importance when suggesting novel biological sequences (Mullis et al., 2019),
and our stochastic approach empowers GFNSeqEditor to generate a diverse set of edited sequences
for each input sequence. This is particularly crucial that the proposed sequences exhibit diversity
and cover as much as possible the modes of a goodness function. This approach maximizes the
likelihood that, ultimately, at least one of the edited sequences will prove effective.

In contrast to evolution-based methods and Ledidi, GFNSeqEditor does not engage in local searches.
Instead, it relies on a pre-trained flow function that amortizes the search cost over the learning pro-
cess, allocating probability mass across entire space to facilitate exploration and diversity. Unlike
existing aforementioned de novo sequence generative methods, the proposed GFNSeqEditor distin-
guishes itself by the ability to create sequences that closely resemble existing natural sequences.
More discussion about the related works can be found in Appendix D.

In summary, this paper makes the following contributions: 1) We introduce GFNSeqEditor, a novel
sequence-editing method which identifies and edits positions within a given sequence. GFNSeqEd-
itor generates diverse edits for each input sequence based on a stochastic policy. 2) We theoretically
analyze the properties of the sequences edited through GFNSeqEditor, deriving a lower bound on the
property enhancement. Additionally, we demonstrate that the upper bound for the number of edits
performed by GFNSeqEditor can be controlled through the adjustment of hyperparameters (sub-
section 3.3). 3) We conduct experiments across various DNA and protein sequence editing tasks,
showcasing GFNSeqEditor’s remarkable efficiency in enhancing properties with a reduced number
of edits when compared to existing state-of-the-art methods. (subsection 4.1). 4) We highlight the
versatility of GFNSeqEditor, which can be employed not only for sequence editing but also along-
side biological-sequence generation models to produce novel sequences with improved properties
and increased diversity (subsection 4.2). 5) We demonstrate the usage of GFNSeqEditor for se-
quence length reduction, allowing the creation of new, relatively shorter sequences by combining
pairs of long and short sequences (subsection 4.3).

2 PRELIMINARIES AND PROBLEM STATEMENT

Let x be a biological sequence with property y. For example, x may be a DNA sequence and y
may be the likelihood it binds to a particular protein of interest. The present paper considers the
problem of searching for edits in x to improve the sequence property. To this end, the goal is to
learn an editor function E(·) which accepts a sequence x and outputs the edited sequence E(x) = x̂
with property ŷ. The editor function E(·) should maximize ŷ, while at the same time minimizing the
number of edits between x and x̂. To achieve this goal, we propose GFNSeqEditor. GFNSeqEditor
first identifies positions in a given biological sequence such that editing those positions leads to
considerable improvement in the property of the sequence. Then, the learned editor function E edits
these identified locations (Figure 1). GFNSeqEditor uses a trained GFlowNet (Bengio et al., 2021;
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2023) to identify positions that require editing and subsequently generate edits for those positions.
The following subsections present preliminaries on GFlowNets.

2.1 GENERATIVE FLOW NETWORKS

Generative Flow Networks (GFlowNets) learn a stochastic policy π(·) to sequentially construct a
discrete object x. Let X be the space of discrete objects x. It is assumed that the space X is
compositional, meaning that an object x can be constructed using a sequence of actions taken from
an action set A. At each step t, given a partially constructed object st, GFlowNet samples an action
at+1 from the set A using the stochastic policy π(·|st). Then, GFlowNet appends at+1 to st to
obtain st+1. In this context, st can be viewed as the state at step t. The above procedure continues
until reaching a terminating state, which yields the fully constructed object x. To construct an object
x, the GFlowNet starts from an initial empty state s0, and applying actions sequentially, all fully
constructed objects must end in a special final state sf . Therefore, the trajectory of states to construct
an object x can be written as τx = (s0 → s1 → · · · → x → sf ). Let T be the set of all possible
trajectories. Furthermore, let R(·) : X → R+ be a non-negative reward function defined on X . The
goal of GFlowNet is to learn a stochastic policy π(·) such that π(x) ∝ R(x). This means that the
GFlowNet learns a stochastic policy π(·) to generate an object x with a probability proportional to
its reward.

As described later, to obtain the policy π(·), the GFlowNet uses trajectory flow F : T → R+. The
trajectory flow F (τ) assigns a probability mass to the trajectory τ . Then the edge flow from state
s to state s′ is defined as F (s → s′) =

∑
∀τ :s→s′∈τ F (τ). Moreover, the state flow is defined

as F (s) =
∑

∀τ :s∈τ F (τ). The trajectory flow F (·) induces a probability measure PF (·) over
completed trajectories that can be expressed as PF (τ) =

F (τ)
Z where Z =

∑
∀τ∈T F (τ) represents

the total flow. The probability of visiting state s can be written as

PF (s) =

∑
∀τ∈T:s∈τ F (τ)

Z
. (1)

Then, the forward transition probability from state s to state s′ can be obtained as

PF (s
′|s) = F (s → s′)

F (s)
. (2)

The trajectory flow F (·) is called a consistent flow if for any state s it satisfies∑
∀s′:s′→s

F (s′ → s) =
∑

∀s′′:s→s′′

F (s → s′′), (3)

which constitutes that the in-flow and out-flow of state s are equal. Bengio et al. (2021) shows that
if F (·) is a consistent flow such that the terminal flow is set as reward (i.e. F (x → sf ) = R(x)),
the policy π(·) defined as π(s′|s) = PF (s

′|s) satisfies π(x) = R(x)
Z which means that the policy

π(·) samples an object x proportional to its reward.

2.2 TRAINING GFLOWNET MODELS

In order to learn the policy π(·), a GFlowNet model approximates trajectory flow with a flow func-
tion Fθ(·) where θ includes learnable parameters of the flow function. In order to learn the flow

A T G T C C G C

DNA sequence x with property y

Sequence
Editor E A C G T C C A C

DNA sequence x̂ with property ŷ

Figure 1: An example of editing the DNA sequence ‘ATGTCCGC’. The goal is to make a limited
number of edits to maximize the property ŷ. Each token in the sequence in this example is called
a base and can be any one letter from the alphabet [‘A’, ‘C’, ‘T’, ‘G’]. The editor function
E accepts the starting sequence and determines that the second and seventh bases require editing
(highlighted in red). Then, E modifies the bases at these identified locations.
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function that can provide consistency condition, Bengio et al. (2021) formulates flow-matching loss
function as follows:

LFM(s;θ) =

(
log

∑
∀s′:s′→s Fθ(s

′ → s)∑
∀s′′:s→s′′ Fθ(s → s′′)

)2

. (4)

Moreover, as an alternative objective function, Malkin et al. (2022) introduces trajectory balance as:

LTB(s;θ) =

(
log

Zθ

∏
s→s′ PFθ

(s′|s)
R(x)

)2

(5)

where Zθ is a learnable parameter. The trajectory-balance objective function in equation 5 can
accelerate training GFlowNets and provide robustness to long trajectories. Given a training dataset,
optimization techniques such as stochastic gradient descent can be applied to objective functions in
equation 4 and equation 5 to train the GFlowNet model.

3 SEQUENCE EDITING WITH GFLOWNET

To edit a given sequence x, we propose identifying sub-optimal positions of x such that editing
them can lead to considerable improvement in the sequence property. Assume that the flow function
Fθ(·) is trained on an available offline training data. GFNSeqEditor uses the trained GFlowNet’s
flow function Fθ(·) to identify sub-optimal positions of x, and subsequently replace the sub-optimal
parts with newly sampled edits based on the stochastic policy π(·).

3.1 SUB-OPTIMAL-POSITION IDENTIFICATION

This subsection provides intuition on how GFNSeqEditor uses a pre-trained flow function Fθ(·)
to identify sub-optimal positions in a sequence x to edit. Let xt and x:t denote the t-th element
and the first t elements in the sequence x, respectively. For example, in the DNA sequence x =
‘ATGTCCGC’, we have x2 = ‘T’ and x:2 = ‘AT’. GFNSeqEditor constructs edited sequences
token by token and for each position t+1 it examines if xt+1 should be used or not. Using the flow
function Fθ(·), given x:t, GFlowNet would evaluate the average reward obtained by appending any
possible token to x:t. In this context, each token can be viewed as an action. Let x:t + a denotes
the expanded x:t by appending token a. For instance for the DNA sequence x = ‘ATGTCCGC’,
appending token a = ‘C’ to x:2, we get x:2 + a = ‘ATC’. Let A represent the available action
set. For each a ∈ A, using the state flow Fθ(x:t + a) the value of action a given x:t can be
evaluated. As discussed in Section 2, the state flow Fθ(x:t+a) is proportional to the total reward of
all possible sequences that have x:t + a as their prefix. Therefore, if Fθ(x:t + a1) > Fθ(x:t + a2),
this indicates that taking action a1 instead of action a2 can lead to obtaining better candidates for
the final sequence. We can leverage this property of the flow function Fθ(·) to examine if xt+1 is
sub-optimal or not. If the reward resulting from having xt+1 in the seed sequence is evaluated by
Fθ(·) to be relatively small compared to other possible actions, then xt+1 is considered sub-optimal.
In particular, xt+1 is identified as sub-optimal if we have

Fθ(x:t + xt+1) < δmax
a∈A

Fθ(x:t + a) (6)

where 0 ≤ δ ≤ 1 is a hyperparameter. Choosing larger δ, it is more probable that the algorithm
identifies xt+1 as sub-optimal. From equation 6 it can be inferred that xt+1 is identified as sub-
optimal if its associated out-flow is considerably smaller than the out-flow associated with the best
possible action in A. This means that the flow function Fθ(·) suggests that replacing xt+1 with other
actions can lead to remarkable improvement in the sequence property.

3.2 SEQUENCE EDITING WITH GFNSEQEDITOR

Using the flow function Fθ(·), GFNSeqEditor iteratively identifies and edits positions in a seed se-
quence. Subsection 3.1 presented a simple function for determining if a position xt+1 in a sequence
should be edited to improve the target property value (equation 6). Based on this intuition, we now
modify equation 6 to formally define the sub-optimal-position identification function D(·) used by
GFNSeqEditor.
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Algorithm 1 GFNSeqEditor: Sequence Editor using GFlowNet

1: Input: Sequence x with length T , flow function Fθ(·) and parameters δ, λ and σ.
2: Initialize x̂:0 as an empty sequence.
3: for t = 1, . . . , T do
4: Check if xt is sub-optimal by obtaining D(xt, x̂:t−1; δ, σ) according to equation 8.
5: if D(x̂:t−1; δ, σ) = 1 then
6: Sample x̂t according to policy π(·|x̂:t−1) in equation 9.
7: else
8: Assign x̂t = xt.
9: end if

10: end for
11: Output: Edited sequence x̂.

Let x̂:t denote the first t elements of the edited sequence. Assume that xt ∈ A, ∀t meaning that xt

is always in the available actions. At each step t of the algorithm, D(·) accepts x̂:t−1 and evaluates
whether appending xt (from the seed sequence) to the edited partial sequence x̂:t−1 is detrimental to
the performance. In order to perform exploration in sub-optimal identification, modifying condition
in equation 6, the sub-optimal identifier function D(·) checks the following condition:

Fθ(x̂:t−1 + xt)∑
a′∈A Fθ(x̂:t−1 + a′)

< δmax
a∈A

Fθ(x̂:t−1 + a)∑
a′∈A Fθ(x̂:t−1 + a′)

+ ν (7)

where ν ∼ N (0, σ2) is a Gaussian random variable with variance of σ2. The variance σ2 is a
hyperparameter. The relation between σ and the algorithm performance will be analyzed in section
3.3 and Appendix E. The inclusion of additive noise ν on the right-hand side of equation 7 introduces
a degree of randomness into the process of identifying sub-optimal positions. This, in turn, fosters
exploration in the editing process. The sub-optimal-position-identifier function D(·) determines if
xt is sub-optimal as follows:

D(xt, x̂:t−1; δ, σ) =

{
1 If the condition in equation 7 is met
0 Otherwise

. (8)

If D(xt, x̂:t−1; δ, σ) = 0, at step t the algorithm appends xt from the original sequence x to x̂:t−1.
Otherwise, if D(xt, x̂:t−1; δ, σ) = 1, the algorithm samples an action a according to the following
policy:

π(a|x̂:t−1) = (1− λ)
Fθ(x̂:t−1 + a)∑

a′∈A Fθ(x̂:t−1 + a′)
+ λ1a=xt

(9)

where 0 ≤ λ < 1 is a regularization coefficient and 1a=xt denotes indicator function and is 1 if
a = xt. The regularization parameter λ allows tuning the sampling process to favor the original
sequence. Choosing larger λ leads to obtaining smaller number of edits. The policy in equation 9
constitutes a trade-off between increasing the target property and decreasing the distance between
the edited sequence x̂ and the original sequence x. Specifically, the first term in the right hand
side of equation 9 samples actions with probability proportional to their flow. The second term in
the right hand side of equation 9 increases the likelihood of choosing the original xt to reduce the
distance between the edited sequence and the original one. Let x̃t be the action sampled by the
policy π in equation 9. In summary, the t-th element in the edited sequence can be written as

x̂t = D(xt, x̂:t−1; δ, σ)x̃t + (1−D(xt, x̂:t−1; δ, σ))xt. (10)

Therefore, at each step t, the edited sequence is updated as x̂:t = x̂:t−1 + x̂t. This continues until
the step T is reached where T = |x| denotes the length of the original sequence x. Note that x̂:0 is
an empty sequence. Algorithm 1 summarizes the proposed algorithm GFNSeqEditor.

3.3 ANALYSIS

This subsection analyzes the reward of the edited sequence and the number of edits performed by
GFNSeqEditor. Specifically, the bounds for the reward of the edited sequence and the number
of edits are determined by the algorithm’s hyperparameters σ, δ, and λ. The following theorem
specifies the lower bound for the reward of edited sequence by GFNSeqEditor.
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Theorem 1. Let T be the length of the original sequence x. The expected reward of x̂ edited
sequence by GFNSeqEditor given x is bounded from below as

E[R(x̂)|x] ≥
(
1− Φ(

1− δ

σ
)

)
(1− λ)RF,T (11)

where Φ(·) denotes the cumulative distribution function (CDF) for the normal distribution and RF,T

represents the expected reward of a sequence with length T generated using the flow function Fθ(·).

Proof of Theorem 1 is deferred to Appendix A. From Theorem 1, we can deduce that greater values
of δ and σ correspond to larger lower bounds for the reward of the edited sequence. Furthermore,
Theorem 1 demonstrates that a reduction in λ results in a larger lower bound for the reward. Accord-
ing to equation 9, a lower λ results in a higher editing probability. The following theorem shows the
connections between the number of edits and the hyperparameters of GFNSeqEditor.
Theorem 2. The expected distance between the edited sequence x̂ by GFNSeqEditor and the origi-
nal sequence x is bounded from above as

E[lev(x, x̂)] ≤
[
(1− λ)

(
1− Φ(− δ

σ
)

)]
T (12)

where lev(·, ·) is the Levenshtein distance between two sequences.

The proof for Theorem 2 is available in Appendix B. Theorem 2 demonstrates that larger values of
δ yields a higher upper bound for the expected distance between the edited and original sequences,
and conversely, a lower values of λ and σ leads to an increase in this expected distance. Theorems 1
and 2 reveal a trade-off between the expected number of edits and the lower bound for the expected
reward. While it is preferable to select hyperparameters that reduce the expected number of edits, an
increase in the number of edits corresponds to a larger lower bound for the reward. More analysis
on property improvement upper bound and distance lower bound can be found in Appendix E.

4 EXPERIMENTS

We conducted extensive experiments to assess the performance of GFNSeqEditor in comparison to
several state-of-the-art baselines across diverse DNA- and protein-sequence editing tasks. We eval-
uate on TFbinding, AMP, and CRE datasets. TFbinding and CRE datasets consist DNA sequences
with lengths of 8 and 200, respectively. The task in both datasets is to edit sequences to increase
their binding activities. The vocabulary for both TFbinding and CRE is the four DNA bases, {A,
C, G, T}. AMP dataset comprises positive samples, representing anti-microbial peptides (AMPs),
and negative samples, which are non-AMPs. The vocabulary consists of 20 amino acids. The pri-
mary objective is to edit the non-AMP samples in such a way that the edited versions attain the
characteristics exhibited by AMP samples.

To evaluate the performance of sequence editing methods, we compute the following metrics:
• Property Improvement (PI): The PI for a given sequence x with label y is calculated as the
average enhancement in property across edits, expressed as PI = 1

ne

∑ne

i=1 (ŷi − y) where ne is the
number of edited sequences associated with the original sequence x and ŷi denote the property of
the i-th edited sequence x̂i. To evaluate the performance of editing methods, for each dataset we
leverage an oracle to obtain ŷi given x̂i. More details about oracles can be found in Appendix C.
• Edit Percentage (EP): The average Levenshtein distance between x and edited sequences nor-
malized by the length of x expressed as 1

neT

∑ne

i=1 lev(x, x̂i).
• Diversity: For each sequence x, the diversity among edited sequences can be obtained as

2
ne(ne−1)

∑ne−1
i=1

∑ne

j=i+1 lev(x̂i, x̂j).

We compared GFNSeqEditor to several baselines, including Directed Evolution (DE) (Sinai et al.,
2020), Ledidi (Schreiber et al., 2020), GFlowNet (Jain et al., 2022), and Seq2Seq. To perform
Directed Evolution for sequence editing, we select a set of positions uniformly at random within a
given sequence and then apply the directed-evolution algorithm to edit these positions. Inspired by
graph-to-graph translation for molecular optimization in Jin et al. (2019), we implemented another
editing baseline which is called Seq2Seq. For the Seq2Seq baseline, we initially partition the dataset
into two subsets: i) sequences with lower target-property values, and ii) sequences with relatively
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Table 1: Performance of GFNSeqEditor compared to the baselines in terms of property improvement
(PI), edit percentage (EP) and diversity on TFbinding, AMP, and CRE datasets. Higher PI with a
lower EP is preferable.

TFbinding AMP CRE
Algorithms PI EP(%) Diversity PI EP(%) Diversity PI EP(%) Diversity
DE 0.12 25.00 3.01 0.11 33.82 13.67 0.63 22.93 62.07
Ledidi 0.06 27.80 1.25 0.18 34.79 11.65 1.36 22.13 50.49
GFlowNet-E 0.11 28.35 2.10 0.28 35.68 3.42 4.24 22.73 37.06
Seq2Seq 0.03 41.98 - 0.21 78.05 - - - -
GFNSeqEditor 0.14 24.27 3.84 0.33 34.49 14.34 9.90 21.90 40.41

higher target-property values. Subsequently, we create pairs of data samples such that each low-
property sequence is paired with its closest counterpart from the high-property sequence set, based
on Levenshtein distance. A translator model is then trained to map each low-property sequence to its
high-property pair. Essentially, Seq2Seq baseline endeavors to map an input sequence to a similar
sequence with superior property. Furthermore, we adapted GFLowNet-AL for sequence editing
and named it GflowNet-E. In this baseline, the initial segment of the sequence serves as the input,
allowing the model to generate the subsequent portion of the sequence. For TF-binding, AMP and
CRE, GFlowNet-E takes in the initial 70%, 65% and 60% of elements respectively from the input
sequence x, and generates the remaining elements using the pre-trained flow function. Detailed
information about the implementation of the baselines can be found in Appendix C.1.

To train models associated with baselines and the proposed GFNSeqEditor, we partition each dataset
into a 72% training set and an 18% validation set. The remaining 10% constitutes the test set, em-
ployed to evaluate the performance of methods in sequence editing tasks. The trained flow function
Fθ(·) employed by GFlowNet-E and the proposed GFNSeqEditor, is an MLP comprising two hid-
den layers, each with a dimension of 2048, and |A| outputs corresponding to actions. Throughout
our experiments, we employ the trajectory balance objective for training the flow function. Detailed
information about training the flow function can be found in Appendix C.1.

4.1 SEQUENCE EDITING

Table 1 presents the performance of GFNSeqEditor and other baselines on TFbinding, AMP and
CRE datasets 1. We set GFNSeqEditor and all baselines except for Seq2Seq to create 10 edited se-
quences for each input sequence. However, our Seq2Seq implementation closely resembles a deter-
ministic machine translator and is limited to producing just one edited sequence per input, resulting
in a diversity score of zero. Additionally, Figure 2 provides a visualization of property improve-
ment achieved by GFNSeqEditor, DE, and Ledidi across a range of edit percentages. As evident
from Table 1 and Figure 2, GFNSeqEditor surpasses all baselines in terms of achieving substantial
property improvements with a minimal number of edits when compared to the other methods. This
superior performance is attributed to GFNSeqEditor’s utilization of a pre-trained flow function from
GFlowNet, enabling it to attain notably higher property improvements than DE and Ledidi, which
relies on local search techniques. Specifically, the flow function Fθ(·) is trained to sample sequences
with probability proportional to their reward and as a result employing the policy in equation 9 for
editing enables GFNSeqEditor to involve global information contained in Fθ(·) about the entire
space of sequences. However, both DE and Ledidi perform local search such that at each iteration
they perturb the edited sequence obtained from the previous iteration and then they evaluate their
perturbed sequences using the proxy model to update the edited sequence. Furthermore, GFNSe-
qEditor achieves larger property improvement than GFlowNet-E. The GFNSeqEditor identifies and
edits sub-optimal positions within a seed sequence using equation 7 while GFlowNet-E only edits
the tail of the input seed sequence. This indicates the effectiveness of sub-optimal position identi-
fication of GFNSeqEditor. In addition to sequence editing, the proposed GFNSeqEditor is able to
generate new sequences. The performance of GFNSeqEditor in generating new sequences is studied
in Appendix C.4.

1Seq2Seq relies on identifying pairs of similar sequences for training. However, we were unable to identify
similar pairs for CRE, possibly because of the limited number of training samples relative to the lengthy nature
of the sequences (i.e., sequences with a length of 200).
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Figure 2: Property improvement of AMP (left) and CRE (right) with respect to edit percentage.
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Figure 3: Studying the effect of heyperparameters δ and λ on the performance of GFNSeqEditor
over AMP (left) and CRE (right) datasets. The marker values are edit percentages.

Furthermore, in Figure 3, we present the property improvement achieved by GFNSeqEditor along
with edit percentage across various choices of hyperparameters δ and λ. The figure illustrates that
an increase in δ generally corresponds to an increase in both property improvement and edit per-
centage, whereas, in most cases, an increase in λ results in a decrease in property improvement and
edit percentage. Furthermore, in Figure 4, we illustrate the impact of changing σ on property im-
provement and edit diversity for GFNSeqEditor. This figure highlights that increasing σ results in
decreased property improvement and enhanced diversity. These results corroborate the theoretical
analyses outlined in Theorems 1 and 2 in section 3.3 as well as Theorem 3 in Appendix E.

4.2 ASSISTING SEQUENCE GENERATION

GFNSeqEditor can complement generative models to enhance the generation of novel sequences.
In this subsection, we incorporate a diffusion model (DM) for sequence generation, with further de-
tails available in Appendix C.2. The sequences generated unconditionally by the DM are passed
to GFNSeqEditor to improve their target property. Given that GFNSeqEditor utilizes a trained
GFlowNet model, this combination of a DM and GFNSeqEditor can be regarded as an ensemble
approach, effectively leveraging both the DM and the GFlowNet for sequence generation. Table
2 presents the property and diversity metrics for sequences generated by the DM, the GFlowNet,
and the combined DM+GFNSeqEditor across AMP and CRE datasets, with each method generat-
ing 1, 000 sequences. As observed from Table 2, GFlowNet excels at producing sequences with
higher property values compared to the DM, while the DM exhibits greater sequence diversity than
the GFlowNet. Sequences generated by DM+GFNSeqEditor maintain similar property levels as the
GFlowNet on its own, while their diversity is in line with that of the DM. This highlights the ef-
fectiveness of DM+GFNSeqEditor in harnessing the benefits of both the GFlowNet and the DM.
Moreover, we show the CDF of properties for sequences generated by the DM, the GFlowNet, and
DM+GFNSeqEditor in Figure 5. As shown, the CDF of DM+GFNSeqEditor aligns with both DM
and GFlowNet. Specifically, for AMP dataset, DM+GFNSeqEditor generates more sequences with
higher properties than 0.78 compared to GFlowNet, while reducing the number of low-property gen-
erated sequences compared to DM alone. In the case of CRE dataset, the results in Figure 5 indicate
that as δ increases, the CDF of DM+GFNSeqEditor becomes more akin to that of GFlowNet. This
is expected, as an increase in δ leads to a greater number of edits performed by GFNSeqEditor.

4.3 SEQUENCE COMBINATION

GFNSeqEditor possesses the capability to combine multiple sequences, yielding a novel sequence
that closely resembles its parent sequences. This capability proves invaluable in applications where
shortening relatively lengthy sequences is advantageous while retaining desired properties (see e.g.
Xu et al. (2021); Zhao et al. (2023)). GFNSeqEditor accomplishes this by merging the longer
sequence with a shorter one. The resultant sequence maintains similarities with the longer one
to retain its desired properties while also resembling a realistic, relatively shorter sequence to ensure
safety and predictability. Algorithm 2 in Appendix C.5 describes using GFNSeqEditor to combine
two sequences to shorten the longer one. We evaluate GFNSeqEditor’s performance in combining
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Figure 4: Studying the effect of hyperparameter σ on the diversity and performance of GFNSeqEd-
itor over AMP (left) and CRE (right) datasets.
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Figure 5: CDF of generated sequence properties for AMP (left) and CRE (right). A right-shifted
curve indicates that the model is generating more sequences that are high in the target property.

pairs of long and short sequences using the AMP dataset as a test case. In this context, a long
sequence is defined as one with a length exceeding 30, while a short sequence has a length shorter
than 20. Each pair consists of a long AMP sequence and the closest short sequence to the long one,
chosen from among all short sequences, with an AMP property exceeding 0.7. Table 3 and Figure 7
in Appendix C.5 present the results of sequence combination for the purpose of reducing the length
of long sequences. As indicated in Table 3, GFNSeqEditor not only enhances the properties of
the initial long sequences but also significantly shortens them, by more than 63%. Additionally, the
sequences generated by GFNSeqEditor exhibit a resemblance to both long and short sequences, with
a Levenshtein similarity of approximately 65% to long sequences and 55% to short sequences.

Table 3: Performance of GFNSeqEditor for sequence reduction on AMP dataset in terms of variation
in property, edit percentage of long sequences (EPLS), edit percentage of short sequences (EPSS),
and percentage of length reduction in the long sequences.

Input Property Output Property EPLS(%) EPSS(%) Sequence Reduction(%)
GFNSeqEditor 0.65 0.67 35.96 44.65 63.23

5 CONCLUSIONS

Table 2: Performance of DM, GFlowNet and
combination of DM with GFNSeqEditor for gen-
erating novel sequences.

AMP CRE
Algorithms Property Diversity Property Diversity
DM 0.66 23.86 1.75 107.38
GFlowNet 0.74 17.86 28.20 83.88
DM+GFNSeqEditor 0.73 23.78 26.42 103.10

This paper introduces GFNSeqEditor, a
sequence-editing method built upon GFlowNet.
Given an input sequence, GFNSeqEditor iden-
tifies and edits positions within the input
sequence to enhance its property. This paper
also offers a theoretical analysis of the proper-
ties of edited sequences and the amount of edits
performed by GFNSeqEditor. Experimental
evaluations using real-world DNA and protein
datasets demonstrate that GFNSeqEditor outperforms state-of-the-art sequence-editing baselines
in terms of property enhancement while maintaining a similar amount of edits. Moreover, the
empirical findings highlight the versatility of GFNSeqEditor, showcasing its applications beyond
single-sequence editing. Furthermore, GFNSeqEditor can effectively complement other generative
models to generate sequences with improved properties and increased diversity. It can also be
employed to combine two sequences into a new one with desired properties. Nevertheless, akin
to many machine learning algorithms, GFNSeqEditor does have its limitations. It relies on a
well-trained GFlowNet model, necessitating the availability of a high-quality trained GFlowNet for
optimal performance.
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A PROOF OF THEOREM 1

Let z denotes a sequence with length T generated from scratch using the policy πF (·) as

πF (a|z:t) =
Fθ(z:t + a)∑

a′∈A Fθ(z:t + a′)
. (13)

The expected reward of z can be obtained as

RF,T = E[z] =
∑

w∈TT

Pr[z = w]R(w) =
∑

w∈TT

T∏
t=1

πF (wt|w:t−1)R(w) (14)

where TT denotes the set of sequences with length T that can be generated by Fθ(·). The probability
that the GFNSeqEditor outputs an arbitrary sequence w ∈ TT given x can be expressed as

Pr[x̂ = w|x] =
T∏

t=1

Pr[x̂t = wt|x̂:t−1,x]. (15)

The probability Pr[x̂t = wt|x̂:t−1,x] can be obtained as
Pr[x̂t = wt|x̂:t−1,x] = Pr[D(x̂:t−1; δ, σ) = 1]π(wt|w:t−1) + Pr[D(x̂:t−1; δ, σ) = 0]1wt=xt

≥ Pr[D(x̂:t−1; δ, σ) = 1]π(wt|w:t−1) (16)
where π(·) defined in equation 9. According to equation 9, it can be written that

π(wt|w:t−1) ≥ (1− λ)
Fθ(w:t)∑

a′∈A Fθ(w:t−1 + a′)
= (1− λ)πF (wt|w:t−1). (17)

Furthermore, according to equation 7 and equation 8, we have D(x̂:t−1; δ, σ) = 1 if
Fθ(x̂:t−1 + xt)∑

a′∈A Fθ(x̂:t−1 + a′)
− δmax

a∈A

Fθ(x̂:t−1 + a)∑
a′∈A Fθ(x̂:t−1 + a′)

< ν. (18)

In addition, it can be inferred that
Fθ(x̂:t−1 + xt)∑

a′∈A Fθ(x̂:t−1 + a′)
− δmax

a∈A

Fθ(x̂:t−1 + a)∑
a′∈A Fθ(x̂:t−1 + a′)

≤ 1− δ. (19)

Therefore, it can be concluded that if ν > 1 − δ, it is guaranteed that D(x̂:t−1; δ, σ) = 1. Since ν
follows a Gaussian distribution with a variance of σ2 we have ν > 1−δ with probability 1−Φ( 1−δ

σ ).
Hence, it can be written that

Pr[D(x̂:t−1; δ, σ) = 1] ≥ 1− Φ(
1− δ

σ
). (20)

Combining equation 20 and equation 17 with equation 16, we get

Pr[x̂t = wt|x̂:t−1,x] ≥ (1− λ)πF (wt|w:t−1)

(
1− Φ(

1− δ

σ
)

)
. (21)

Moreover, combining equation 21 with equation 15, we obtain

Pr[x̂ = w|x] ≥
T∏

t=1

(1− λ)πF (wt|w:t−1)

(
1− Φ(

1− δ

σ
)

)
. (22)

Using equation 22 for the expected reward of x̂ given x we can write

E[R(x̂)|x] =
∑

w∈TT

Pr[x̂ = w|x]R(w)

≥
∑

w∈TT

T∏
t=1

(1− λ)πF (wt|w:t−1)

(
1− Φ(

1− δ

σ
)

)
R(w). (23)

Combining equation 23 with equation 14, we get

E[R(x̂)|x] ≥ (1− λ)

(
1− Φ(

1− δ

σ
)

)
RF,T (24)

which proves equation 11. Moreover, the upper bound of property improvement by the proposed
GFNSeqEditor is analyzed in Appendix E.
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B PROOF OF THEOREM 2

We obtain the upper bound for the expected distance between edited sequence x̂ and the original
sequence x. Since both x and x̂ have the same length T , the distance lev(x, x̂) can be interpreted
as the number of elements different in these two sequences. Therefore, in order to obtain lev(x, x̂),
it is sufficient to find the number of times that xt ̸= x̂t, ∀t : 1 ≤ t ≤ T . If D(x̂:t−1; δ, σ) = 0, then
x̂t = xt. Furthermore, if D(x̂:t−1; δ, σ) = 1, then according to equation 9, we have x̂t = xt with
probability

(1− λ)
Fθ(x̂:t−1 + xt)∑

a′∈A Fθ(x̂:t−1 + a′)
+ λ. (25)

Therefore, the probability Pr[x̂t ̸= xt] can be obtained as

Pr[x̂t ̸= xt] = Pr[D(x̂:t−1; δ, σ) = 1](1− λ)

(
1− Fθ(x̂:t−1 + xt)∑

a′∈A Fθ(x̂:t−1 + a′)

)
. (26)

Since Fθ(x̂:t−1 + xt) ≥ 0, the probability Pr[x̂t ̸= xt] can be bounded as

Pr[x̂t ̸= xt] ≤ Pr[D(x̂:t−1; δ, σ) = 1](1− λ). (27)

Moreover, if we have

ν ≤ Fθ(x̂:t−1 + xt)∑
a′∈A Fθ(x̂:t−1 + a′)

− δmax
a∈A

Fθ(x̂:t−1 + a)∑
a′∈A Fθ(x̂:t−1 + a′)

(28)

then D(x̂:t−1; δ, σ) = 0. Furthermore, the right hand side of equation 28 can be bounded from
below as

Fθ(x̂:t−1 + xt)∑
a′∈A Fθ(x̂:t−1 + a′)

− δmax
a∈A

Fθ(x̂:t−1 + a)∑
a′∈A Fθ(x̂:t−1 + a′)

≥ −δ. (29)

Therefore, if ν ≤ −δ, it is ensured that D(x̂:t−1; δ, σ) = 0. The probability that ν ≤ −δ is Φ(− δ
σ ).

Hence, we can conclude that

Pr[D(x̂:t−1; δ, σ) = 1] = 1− Pr[D(x̂:t−1; δ, σ) = 0] ≤ 1− Φ(− δ

σ
). (30)

Combining equation 30 with equation 27, we arrive at

Pr[x̂t ̸= xt] ≤
(
1− Φ(− δ

σ
)

)
(1− λ). (31)

Moreover, since both x and x̂ have the same length T , the expected Levenshtein distance between
x and x̂ can be obtained as

E[lev(x, x̂)] =
T∑

t=1

Pr[x̂t ̸= xt]. (32)

Thus, combining equation 32 with equation 31, we can write that

E[lev(x, x̂)] ≤
(
1− Φ(− δ

σ
)

)
(1− λ)T (33)

which proves the Theorem.

C SUPPLEMENTARY EXPERIMENTAL RESULTS AND DETAILS

This appendix provides a comprehensive overview of the experimental setup in Section 4 and
presents additional supplementary experimental results.
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C.1 IMPLEMENTATION DETAILS

C.1.1 DATASETS

Detailed information about the datasets can be foud below:

• TFbinding: The dataset is taken from Barrera et al. (2016) and contains all possible DNA
sequences with length 8. The vocabulary is the four DNA bases, {A, C, G, T}. The goal
is to edit a given DNA sequence to increase its binding activity with certain DNA-binding
proteins called transcription factors. Higher binding activity is preferable. For train, test
and validation purposes 50% of the dataset is set aside. The task entails editing a test
dataset consisting of 10% of samples while the remaining data is utilized for training and
validation.

• AMP: The dataset, acquired from DBAASP (Pirtskhalava et al., 2020), is curated following
the approach outlined by Jain et al. (2022). Peptides (i.e. short proteins) within a sequence-
length range of 12 to 60 amino acids are specifically chosen. The dataset comprises a
total of 6, 438 positive samples, representing anti-microbial peptides (AMPs), and 9,522
negative samples, which are non-AMPs. The vocabulary consists of 20 amino acids. The
primary objective is to edit the non-AMP samples in such a way that the edited versions
attain the characteristics exhibited by AMP samples. The task primarily centers on editing
a subset comprising 10% of the non-AMP samples, designated for use as test samples, with
the remaining samples allocated for training and validation purposes.

• CRE: The dataset contains putative human cis-regulatory elements (CRE) which are reg-
ulatory DNA sequences modulating gene expression. CREs were profiled via massively
parallel reporter assays (MPRAs)(Gosai et al., 2023) where the activity is measured as the
expression of the reporter gene. For our analysis, we randomly extract 10, 000 DNA se-
quences, each with a length of 200 base pairs, utilizing a vocabulary of the four bases.
The overarching objective is to edit the DNA sequences to increase the reporter gene’s
expression specifically within the K562 cell line, which represents erythroid precursors
in leukemia. The task involves editing a subset of 1, 000 test samples, while the rest are
allocated for training and validation purposes.

C.1.2 ORACLES

To evaluate the performance of each sequence editing method in terms of property improvement,
it is required to obtain the properties of edited sequences. To this end, we employ an oracle for
each dataset. The TFbinding dataset contains all possible 65, 792 DNA sequences with length of 8.
Therefore, by looking into the dataset the true label of each edited sequence can be found. Following
Angermueller et al. (2019); Jain et al. (2022), the AMP dataset is split into two parts: D1 and D2.
The oracle for the AMP dataset is a set of trained models on partition D2 as a simulation of wet-lab
experiments. We employed oracles trained by (Jain et al., 2022) for AMP dataset. Furthermore,
for CRE dataset we leverage the Malinois model (Gosai et al., 2023) which is a deep convolutional
neural network (CNN) for cell type-informed CRE activity prediction of any arbitrary sequence.

C.1.3 BASELINES IMPLEMENTATION

DE and Ledidi. In order to implement DE and Ledidi baselines, there should be a proxy model
to enable baselines to evaluate their candidate edits at each iteration of these algorithms. For each
dataset, we train a proxy model on the training split of each dataset. For the TFBinding dataset,
we configure a three-layer MLP with hidden dimensions of 64. In the case of AMP, we opt for a
four-layer MLP, also with hidden dimensions of 64. Finally, for CRE, we utilize a four-layer MLP
with hidden dimensions set to 2048. Across all models, the learning rate is consistently set to 10−4,
ReLU serves as the activation function, and we set the number of epochs as 2, 000.

Seq2Seq. In order to implement Seq2Seq baseline we use a standard transformer (Vaswani et al.,
2017) as the translator to map an input sequence to an output sequence with superior property.
We paired samples in each dataset such that each pair contains a sequence with lower property
and a similar sequence with higher property which is the most similar to the sequence with lower
property in the dataset. The transformer is trained to map the low property sequence to the high
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property sequence in each pair. The transformer is trained using the standard configurations in
Pytorch transformer module tutorial. Both the embedding dimension of the transformer and the
dimension of the 2 layer feedforward network model in the transformer encoder are set to 200.
The number of heads in multihead attention layer is 2 and the drop-out rate is 0.2. We employ the
CrossEntropyLoss function in conjunction with the stochastic gradient descent optimizer. The initial
learning rate is set at 5.0 and follows a StepLR schedule.

C.1.4 GFLOWNET TRAINING

Both the baseline GFlowNet-E and the proposed GFNSeqEditor use the same trained GFlowNet
model. We trained an active learning based GFlowNet model following the setting in Jain et al.
(2022). In active learning setting, at each round of active learning t × K candidates generated by
GFlowNet are sampled and then top K samples based on scores given by a proxy are chosen to
be added to the offline dataset. Here offline dataset refers to an initial labeled dataset. To train the
GFlowNet, we employed the same proxy models as those used by other baseline methods. For all
datasets, we set the number of active learning rounds to 1, with t equal to 5 and K equal to 100. We
parameterize the flow using a MLP comprising two hidden layers, each with a dimension of 2048,
and |A| outputs corresponding to individual actions. Throughout our experiments, we employ the
trajectory balance objective for training. Adam optimizer with (β0, β1) = (0.9, 0.999) is utilized
during the training process. The learning rate for logZ in trajectory balance loss is set to 10−3 for
all the experiments. The number of training steps for TFbinding, AMP and CRE are 5000, 106 and
104, respectively. The remaining hyperparameters were configured in accordance with the settings
established in Jain et al. (2022).

C.2 DIFFUSION MODEL TRAINING

We trained our diffusion models on the full sequence datasets of AMP sequences or CRE sequences.
The sequences were one-hot encoded, yielding 20-vectors for protein sequences and 4-vectors for
DNA sequences.

We employed the “variance-preserving stochastic differential equation” (VP-SDE) (Song et al.,
2021). We used a variance schedule of β(t) = 0.9t + 0.1. We set our time horizon T = 1 (i.e.
t ∈ [0, 1)). This amounts to adding Gaussian noise over continuous time.

For our discrete-time diffusion model, we defined a discrete-time Gaussian noising process, follow-
ing Ho et al. (2020). We defined βt = (1×10−4)+(1×10−5)t. We set our time horizon T = 1000
(i.e. t ∈ [0, 1000]).

Our denoising network was based on a transformer architecture. The time embedding was computed
as [sin(2π t

T z), cos(2π
t
T z)], where z is a 30-vector of Gaussian-distributed parameters that are not

trainable. The time embeddings were passed through two dense layers with a sigmoid in between,
mapping to a 256-vector of time representations. For any input in a batch, it was concatenated with
the time embedding and a sinusoidal positional embedding (defined in Vaswani et al. (2017)) of
dimension 64. This concatenation was passed to a linear layer to map it to 128 dimensions. This
was then passed to a standard transformer encoder of 3 layers, 8 attention heads, and with a hidden
dimension of 128 and an MLP dimension of 64. The result was then passed to a linear layer which
projected back to the input dimension.

We trained our diffusion models with a learning rate of 0.001, for 100 epochs. We noted that the
loss had converged for all models at that point. We also employed empirical loss weighting, where
the loss of each input in a batch is divided by the L2 norm of the true Stein score.

We trained our diffusion models on a single Nvidia Quadro P6000.

When generating samples from a continuous-time diffusion model, we used the predictor-corrector
algorithm defined in Song et al. (2021), using 1000 time steps from T to 0. We then rounded all
outputs to the nearest integer to recover the one-hot encoded sample.
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Table 4: Performance of GFNSeqEditor and Ledidi with 100 elements of each sequence masked for
editing for CRE dataset.

Algorithms PI EP(%) Diversity PI EP(%) Diversity
Ledidi 0.52 18.69 38.34 0.26 14.39 37.45
GFNSeqEditor 4.79 17.89 32.30 4.05 14.19 25.52

Table 5: Performance of GFNSeqEditor, GFlowNet and DM on generating new sequences for CRE
dataset.

Algorithms Property Diversity Distance(%)
DM 1.75 107.38 63.59
GFlowNet 28.20 83.88 54.41
GFNSeqEditor 29.25 87.32 47.34

C.3 SUPPLEMENTARY RESULTS FOR SEQUENCE EDITING

In Figure 6, we illustrate the distribution of input non-AMP sequences, the sequences edited by
GFNSeqEditor, and the AMP samples from the AMP dataset. It is evident from Figure 6 that
GFNSeqEditor shifts the property distribution of input non-AMP sequences towards that of AMP
sequences.

0.2 0.4 0.6 0.8
Anti-microbial property

0

2

4

6

8

D
en

si
ty

GFNSeqEditor (output)
non-AMP (input)
AMP

Figure 6: GFNSeqEditor shifts the distribu-
tion of non-AMP inputs to the known AMPs.

It is worth noting that GFNSeqEditor is capable of
performing edits even when certain portions of the
input sequence are masked and cannot be modified.
Table 4 showcases the performance of GFNSeqEdi-
tor compared to Ledidi on the CRE dataset, with the
first 100 elements of the input sequences masked.
As depicted in Table 4, GFNSeqEditor achieves sig-
nificantly greater property improvement than Ledidi
while utilizing a lower edit percentage.

C.4 SUPPLEMENTARY RESULTS FOR SEQUENCE GENERATION

This subsection compares the performance of GFNSeqEditor in sequence generation task with that
of GFlowNet and diffusion model (DM) on CRE dataset. We relax the hyperparameters to allow
a higher amount of edits and we set δ = 0.4, λ = 0.1 and σ = 0.001 for GFNSeqEditor. The
results are presented in Table 5. GFlowNet and DM generate 1000 sequences. GFNSeqEditor also
generates 1000 sequences by editing each of 1000 samples in the test dataset. As can be seen,
GFNSeqEditor achieves higher property than both GFlowNet and DM. It is useful to note that the
experimental study by Jain et al. (2022) have shown that GFlowNet outperforms state-of-the-art
sequence design methods. For each sequence generated by GFlowNet and DM, the distance to the
test set is measured as the distance between the generated sequence and its closest counterpart in
the test set. On average, the distance between sequences generated by GFlowNet and the test set
is 54.34%, while for DM, it is 63.59%. GFNSeqEditor achieves superior performance by editing,
on average, 47.34% of a sequence in the test dataset. The distance between test set and generated
sequences by GFlowNet and DM cannot be controlled. As it is studied in Figures 3 and 4, the
amounts of edits performed by GFNSeqEditor can be controlled by hyperparameters δ, λ and σ.

C.5 SUPPLEMENTARY DISCUSSION AND RESULTS FOR SEQUENCE COMBINATION

Algorithm 2 presents the GFNSeqEditor for combining two sequences in order to obtain a new se-
quence whose length is the length of shorter sequence. In Figure 7, we depict the distributions of
input sequence lengths and properties, alongside the lengths and properties of the outputs gener-
ated by GFNSeqEditor. This scenario pertains to the combination of a long AMP sequence with a
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Algorithm 2 GFNSeqEditor for combining two sequences to shorten the length of longer sequence.

1: Input: x1 and x2 with lengths T1 and T2, flow function Fθ(·) and parameters δ, λ and σ.
2: Initialize x̂:0 as an empty sequence and Tmin = min{T1, T2}.
3: for t = 1, . . . , Tmin do
4: Assign xt = argmax{x1,t,x2,t}{Fθ(x̂:t−1 + x1,t), Fθ(x̂:t−1 + x2,t)}.
5: Check if xt is sub-optimal by obtaining D(xt, x̂:t−1; δ, σ) according to equation 8.
6: if D(xt, x̂:t−1; δ, σ) = 1 then
7: Sample x̂t according to policy π(·|x̂:t−1) as follows:
8: if T1 > T2 then
9: π(a|x̂:t−1) = (1− λ) Fθ(x̂:t−1+a)∑

a′∈A Fθ(x̂:t−1+a′) + λ1a=x1,t
.

10: else
11: π(a|x̂:t−1) = (1− λ) Fθ(x̂:t−1+a)∑

a′∈A Fθ(x̂:t−1+a′) + λ1a=x2,t
.

12: end if
13: else
14: Assign x̂t = xt.
15: end if
16: end for
17: Output: Edited sequence x̂.

Table 6: Performance of GFNSeqEditor for sequence combination over AMP dataset in terms of
property improvements of first (PI-S1) and second (PI-S2) sequences, edit percentages of first (EP-
S1) and second (EP-S2) sequences, and diversity.

Seq1 Seq2 PI-S1 PI-S2 EP-S1(%) EP-S2(%) Diversity
AMP AMP 0.05 0.06 36.10 39.47 7.29
non-AMP AMP 0.41 0.04 41.41 65.39 12.77

short AMP sequence, as detailed in subsection 4.3. As depicted in Figure 7, the edited sequences
produced by GFNSeqEditor exhibit property distributions akin to those of the lengthy input AMP
sequences. Simultaneously, these edited sequences are considerably shorter than the original long in-
put sequences. This highlights GFNSeqEditor’s effectiveness in shortening lengthy AMP sequences
while preserving their inherent properties.
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Figure 7: GFNSeqEditor effectively reduces the length of AMP sequence inputs (right) while keep-
ing their properties intact (left).

Furthermore, Table 6 provides results for combining pairs of AMP sequences as well as pairs con-
sisting of an AMP sequence and a non-AMP sequence. In both cases, GFNSeqEditor generates a
sequence with a length matching that of the longer sequence. When combining two AMP sequences,
GFNSeqEditor produces new sequences with higher properties than their parent sequences, main-
taining an average resemblance of over 60% to each parent. Additionally, GFNSeqEditor can be
applied to combine a non-AMP sequence with an AMP sequence, offering the advantage of render-
ing the edited non-AMP sequence more akin to a genuine AMP sequence. The results in Table 6
demonstrate that GFNSeqEditor substantially enhances the properties of non-AMP sequences, sur-
passing the properties of their AMP parents. Furthermore, on average, 35% of the edited sequences
bear a resemblance to their AMP parents.
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D RELATED WORKS

Generative Flow Networks. GFlowNets, initially proposed by Bengio et al. (2021), were intro-
duced as a reinforcement-learning (RL) algorithm designed to expand upon maximum-entropy RL,
effectively handling scenarios with multiple paths leading to a common state. However, recent stud-
ies have redefined and generalized its scope, describing it as a general framework for amortized
inference with neural networks (Malkin et al., 2023; Jain et al., 2023; Zimmermann et al., 2022;
Zhang et al., 2022a).

There has been a recent surge of interest in employing GFlowNets across various domains. Note-
worthy examples include its utilization in molecule discovery (Bengio et al., 2021), Bayesian struc-
ture learning (Deleu et al., 2022; Nishikawa-Toomey et al., 2022), and graph explainability (Li
et al., 2023). Recognizing its significance, several studies have emerged to enhance the learn-
ing efficiency of GFlowNets (Bengio et al., 2023; Malkin et al., 2023; Madan et al., 2023; Shen
et al., 2023) since the introduction of the flow matching learning objective by Bengio et al. (2021).
Moreover, GFlowNets have demonstrated adaptability in being jointly trained with energy and re-
ward functions (Zhang et al., 2022b). Pan et al. (2022) introduce intrinsic exploration rewards into
GFlowNets, addressing exploration challenges within sparse reward tasks. A couple of recent stud-
ies try to extend GFlowNets to stochastic environments, accommodating stochasticity in transition
dynamics (Pan et al., 2023) and rewards (Zhang et al., 2023).

The aforementioned works have primarily focused on theoretical developments of GFlowNet and
its application in molecular generation, without directly addressing the challenges associated with
sequence design or editing. In a departure from this trend, and inspired by Bayesian Optimization,
Jain et al. (2022) proposed a new active learning algorithm based on GFlowNets, i.e. GFlowNet-
AL to design novel biological sequences. GFlowNet-AL (Jain et al., 2022) utilizes the epistemic
uncertainty of the surrogate model within its reward function, guiding the GFlowNet towards the
optimization of promising yet less-explored regions within the state space. This approach fosters the
generation of a diverse set of de novo sequences from scratch and token-by-token. Unlike GFNSe-
qEditor, it lacks the capability to edit input seed sequences and combine multiple sequences. This
distinction underscores the unique contribution of GFNSeqEditor in addressing the sequence editing
problem, positioning it as a valuable addition to the existing literature on GFLowNet.

Sequence Generation. The generation of biological sequences has been tackled using a diverse
range of methods, including reinforcement learning (Angermueller et al., 2019), Bayesian optimiza-
tion (Terayama et al., 2021), deep generative models for search and sampling (Hoffman et al., 2022),
generative adversarial networks (Zrimec et al., 2022), diffusion models Avdeyev et al. (2023), opti-
mization with deep model-based approaches (Trabucco et al., 2021), adaptive evolutionary strategies
(Hansen, 2006; Swersky et al., 2020), likelihood-free inference (Zhang et al., 2021), and surrogate-
based black-box optimization (Dadkhahi et al., 2022), and GFlowNet (Jain et al., 2022).

Bengio et al. (2023) demonstrated that GFlowNet offers improvements over existing sequence-
generation methods by amortizing the search cost over the learning process, allocating probabil-
ity mass across the entire sequence space to facilitate exploration and diversity, enabling the use
of imperfect data, and efficiently scaling with data through the exploitation of structural patterns
in function approximation. It is important to note that all these sequence-generation methods—
including GFLowNet—generate sequences from scratch. However, ab initio generation carries the
risk of deviating too significantly from naturally occurring genomic sequences, which can compro-
mise safety and predictability. In contrast, our proposed method tends to enhance the target property
of sequences while preserving their similarity to naturally occurring sequences, ensuring safety and
predictability. Consequently, biological sequence design may not be suitable for the purpose of
biological sequence editing.

E SUPPLEMENTARY ANALYSIS

This section provides supplementary analysis to uncover additional insights into the impact of pa-
rameters on algorithm performance, complementing the findings presented in Theorems 1 and 2.
The following Theorem obtains the expected property improvement upper bound of the proposed
GFNSeqEditor.
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Theorem 3. Let S∗x be the set of all sequences in TT which have larger properties than that of
x (i.e. y). Assume that S∗x is a non-empty set. The expected property improvement by applying
GFNSeqEditor on x is bounded from above as

E[PI|x] ≤
∑
w∈S∗x

(
1− Φ(− δ

σ
)

)
(pw − y) (34)

where pw denote the property of the sequence w.

Proof. The expected property improvement of GFNSeqEditor can be obtained as

E[PI|x] =
∑

w∈TT

Pr[x̂ = w|x](pw − y). (35)

Since TT can be split into two sets S∗x and TT \ S∗x, the expected property improvement of GFNSe-
qEditor can be obtained as

E[PI|x] =
∑
w∈S∗x

Pr[x̂ = w|x](pw − y) +
∑

w∈TT \S∗x

Pr[x̂ = w|x](pw − y). (36)

If w ∈ TT \S∗x, then pw ≤ y. Therefore, the expected property improvement of GFNSeqEditor can
be bounded from above as

E[PI|x] ≤
∑
w∈S∗x

Pr[x̂ = w|x](pw − y). (37)

The probability that the GFNSeqEditor outputs w ∈ S∗x can be expressed as

Pr[x̂ = w|x] =
T∏

t=1

Pr[x̂t = wt|x̂:t−1,x]. (38)

The probability Pr[x̂t = wt|x̂:t−1,x] can be obtained as

Pr[x̂t = wt|x̂:t−1,x] =Pr[D(x̂:t−1; δ, σ) = 1]π(wt|w:t−1)

+ Pr[D(x̂:t−1; δ, σ) = 0]1xt=wt . (39)

If xt ̸= wt, according to equation 30 and considering the fact that π(wt|w:t−1) ≤ 1, the probability
in equation 39 can be bounded from above as

Pr[x̂t = wt|x̂:t−1,x] ≤ 1− Φ(− δ

σ
). (40)

Otherwise if xt = wt, it can be written that Pr[x̂t = wt|x̂:t−1,x] ≤ 1. Since any w ∈ S∗x should be
different from x in at least one position, combining equation 38 with equation 40 we can conclude
that

Pr[x̂ = w|x] ≤ 1− Φ(− δ

σ
). (41)

Combining equation 37 with equation 41 proves the Theorem.

Theorem 3 demonstrates that an increase in δ results in an increase in the upper bound of prop-
erty improvement, whereas an increase in σ diminishes the upper bound of property improvement.
The following theorem obtains the lower bound on the number edits performed by the proposed
GFNSeqEditor.
Theorem 4. Let there exists ϵ > 0 such that the flow function Fθ(·) satisfies

max
a∈A

Fθ(x̂:t−1 + a)∑
a′∈A Fθ(x̂:t−1 + a′)

≤ 1− ϵ,∀t (42)

meaning that the probability of choosing of each action is always less than 1 − ϵ. The expected
distance between the edited sequence x̂ by GFNSeqEditor and the original sequence x is bounded
from below as

E[lev(x, x̂)] ≥
[
ϵ(1− λ)

(
1− Φ(

1− δ

σ
)

)]
T. (43)
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Proof. According to equation 26 and the assumption in equation 42, it can be written that

Pr[x̂t ̸= xt] ≥ Pr[D(x̂:t−1; δ, σ) = 1](1− λ)ϵ. (44)

Combining equation 44 with equation 20, we get

Pr[x̂t ̸= xt] ≥ ϵ(1− λ)

(
1− Φ(

1− δ

σ
)

)
. (45)

Summing equation 45 over all elements in the sequence proves the theorem.

Theorem 4 shows that as δ and σ increase, the lower bound of distance increases. In contrast,
increase in λ leads to decrease in lower bound of distance.

F SOCIETAL IMPACT

Biological sequence optimization and design hold transformative potential for biotechnology and
health, offering enhanced therapeutic solutions and a vast range of applications. Techniques that
enable refining sequences can lead to advancements like elucidating the role of individual gene
products, rectifying genetic mutations in afflicted tissues, and optimizing properties of peptides,
antibodies, and nucleic-acid therapeutics. However, the dual-edged nature of such breakthroughs
must be acknowledged, as the same research might be misappropriated for unintended purposes.
Our method can be instrumental in refining diagnostic procedures and uncovering the genetic basis
of diseases, which promises a deeper grasp of genetic factors in diseases. Yet, we must approach
with caution, as these advancements may unintentionally amplify health disparities for marginalized
communities. As researchers, we emphasize the significance of weighing the potential societal
benefits against unintended consequences while remaining optimistic about our work’s predominant
inclination towards beneficial outcomes.
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