
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EXECUTION-EVAL: CAN LANGUAGE MODELS EXE-
CUTE REAL-WORLD CODE?

Anonymous authors
Paper under double-blind review

ABSTRACT

As language models (LLMs) advance, traditional benchmarks face challenges of
dataset saturation and disconnection from real-world performance, limiting our
understanding of true model capabilities. We introduce EXecution-Eval (EXE), a
benchmark designed to assess LLMs’ ability to execute code and predict program
states. EXE attempts to address key limitations in existing evaluations: difficulty
scaling, task diversity, training data contamination, and cost-effective scalability.
Comprising over 30,000 tasks derived from 1,000 popular Python repositories on
GitHub, EXE spans a wide range of lengths and algorithmic complexities. Tasks
require models to execute code, necessitating various operations including math-
ematical reasoning, logical inference, bit manipulation, string operations, loop
execution, and maintaining multiple internal variable states during computation.
Our methodology involves: (a) selecting and preprocessing GitHub repositories,
(b) generating diverse inputs for functions, (c) executing code to obtain ground
truth outputs, and (d) formulating tasks that require models to reason about code
execution. This approach allows for continuous new task generation for as few
as 1,123 tokens, significantly reducing the risk of models ”training on the test
set.” We evaluate several state-of-the-art LLMs on EXE, revealing insights into
their code comprehension and execution capabilities. Our results show that even
the best-performing models struggle with complex, multi-step execution tasks,
highlighting specific computational concepts that pose the greatest challenges for
today’s LLMs. Furthermore, we review EXE’s potential for finding and predicting
errors to aid in assessing a model’s cybersecurity capabilities. We propose EXE
as a sustainable and challenging testbed for evaluating frontier models, offering
insights into their internal mechanistic advancement.

1 INTRODUCTION

Language model benchmarks are facing challenges of rapid saturation (Ott et al., 2022) and an in-
creasing disconnect from real-world performance perceived by end-users (Zheng et al., 2023). Due
to this, benchmarks are being continually created to address failure modes; e.g. SuperGLUE target-
ing GLUE’s low problem difficulty (Wang et al., 2019), BIG-bench targeting general low eval di-
versity (Srivastava et al., 2022) and Auto-Arena-Hard targeting training-set contamination and data
diversity in Chatbot-Arena (Li et al., 2024)(Chiang et al., 2024). These failure modes all demon-
strate the challenge in linking the mechanistic improvements within language models to human
understandable tasks.

Hence, to maximise an eval’s utility we aim to minimise the common failure modes of; a) difficulty,
not ensuring an unbound scale of small trivial problems to complex multi-step problems, b) diversity,
not ensuring a representative distribution across a large space of problems, c) novelty, not ensuring
continually fresh, out-out-training data samples can be generated and, d) scalability, not ensuring
tasks are cost-effective to generate in the thousands and beyond.

Motivated by these challenges we introduce EXecutionEval (EXE), an evaluation replicating one
of the primary tasks humans perform while coding; predicting and comparing a final program state
for a given set of inputs - seen in Figure 1. EXE is designed to avoid the aforementioned failure
modes; emphasising difficulty (smooth scale from trivial 1-step, one-line functions to difficult 100s-
of-step, multi-layer functions), diversity (unbound number of test cases generatable for tasks from

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: An example task from Apache Airflow’s Github repository (code simplified to fit within
diagram). EXE sources tasks from 1,000 Python repositories, generates test cases for them, and
compares the LLM’s ability to execute code against python’s interpreter.

1,000 GitHub Repos), novelty (program inputs can be continually generated) and scalability (initial
release containing 30,000+ problems at a cost of $11).

EXE also holds theoretical inspiration. (Fowler et al., 2022) et al have replicated positive peda-
gogical correlations found by (Lopez et al., 2008) between the abilities of CS1 students to ”trace”
programs (i.e. manually predict outputs and write the internal state out line by line) and their abili-
ties to pass code writing and explanation exams. This is mirrored in CRUX-Eval’s (Gu et al., 2024)
findings, where they observe a moderate correlation between a model’s ability to execute a block of
code and a model’s HumanEval (Chen et al., 2021) code writing Pass@1 rate.

2 EVALUATION FRAMEWORK

As seen in Figure 1, an EXE task is to predict a function’s return value or error from: a) a code
snippet and b) a set of input arguments. Code snippets are extracted from PyPi’s most popular 1,000
python projects hosted on GitHub, we select our snippets to be pure (i.e. deterministic, no side
effects), language model generatable (i.e. arg types of ints, lists, ...) and to only require
builtins (local imports and external libraries are inlined for the snippet). To realise this we follow
the following three stage pipeline:

Figure 2: Three stage EXE task generation pipeline. Detailed example tasks and generated inputs
can be found in Appendix A.1.

1. Repo Selection and Code Scraping. We first select the top 1,000 most popular pypi packages
and collate the corresponding github repos where possible, similar to (Jimenez et al., 2023). These
repos are then pulled down locally and filtered based on a static ast analysis determining which
repositories contain type annotated code.

2. Function Selection and Dependency Collation. We perform a static ast analysis to filter to
functions with LLM generatable argument and return type annotations. Further ast analysis then
recursively identifies dependent elements (modules, functions, classes, variables, ...) across files,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

builds a dependency graph, and inlines them into a base task. Finally, base tasks containing side ef-
fects or non-deterministic code such as environment variables, process calls, randomness or network
requests are filtered out. See Appendix A.2 for detail on acceptable type annotations and filtering.

3. Test Case Generation. Using the argument type annotations we construct a LLM function
calling schema that generates a diverse set of inputs. The base task code is then executed with each
generated input and the result with runtime statistics are logged. This forms the test case (base task
code + generated input), output (returned result or error from executed code) and statistics (runtime
statistics + static ast analysis statistics).

Figure 3: We observe task counts per repository to have a near logarithmic falloff. Note: manual
removal of several bad offender repositories was required as they contained thousands of nearly
identical functions with only url changes.

Through these stages of filtering, the original top 1,000 repositories are filtered down to the 33,950
task instances which comprise EXE. A high level breakdown of these task instances across reposito-
ries is presented in Figure 3. We note some repositories are overrepresented primarily due to being
more modern (using typing) and the style of code (shorter deterministic pieces).

2.1 TASK FORMATION

Model input. The model is given a complete snippet of code alongside the input state to be executed.
The model is then tasked to predict the resulting return value, or in the case that an exception is raised
the model is instructed to generate an exception type and value. In practice, we prompt models
with an odata json representation and use a parser to ensure valid generations. We do append one
additional user reply with the parsing error if the model’s response fails to parse. Examples of input
instances can be found in Appendix A.1.

Evaluation metrics. To evaluate a proposed solution, we use the pass@k metric (Chen et al., 2021),
comparing the ground truth and the generated prediction as json objects (set and frozenset
are sorted before conversion to json lists). If the original code produced an exception, we compare
the type and message (excluding stacktrace) using a language model comparison. Examples of
generated outputs can be seen in Appendix A.1.

2.2 FEATURES OF EXE

Diversity of inputs and outputs. Unlike many benchmarks focused on a particular subject matter
area, a task in this eval may require a model to perform mathematical reasoning, logical inference,
bit manipulation, string operations, loop execution, or to maintain multiple internal variables during
computation. Furthermore, these may only form part of an algorithm that the model has to exe-
cute. Our random human inspection has uncovered algorithmic time complexities spanning from
O(1) to O(xn) and structured analysis has found tasks with code context lengths ranging from 440
to 311,000 tokens. Ensuring this broad diversity reduces the risk of hitting a local maxima and
increases our opportunity to measure internal capabilities across a range of difficulties.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Continually updatable. Both our code collection and task input generation processes can create
new tasks with minimal human oversight. Simply re-running our code collection to pull the latest
commits or directing it towards an uncollected Python GitHub repository will create new task in-
stances. Furthermore we can continue to generate new test cases for existing tasks, our test case
generator automatically avoids generating seen inputs. Hence, EXE can be extended continually
with new task instances, ensuring answers were not included in training corpuses of models for
evaluation.

Cost effective scalability. With generation of new tasks requiring an average of 1,112 input tokens
(batch of 15) and evaluation of tasks typically requiring 1,123 tokens, ExecEval can be generated,
tested and continually updated at a fraction of the cost of human-curated benchmarks. Our initial
dataset of 33,950 cases has only incurred an approximate costing of $11 to produce and $95 to test
on.

Long multi-step problems with smooth difficulty scaling. We provide a continuous spectrum
of task difficulties, ranging from 1-step, one-line functions to multi-file, multi-class, multi-100-
step tasks. Our most complex tasks include function call depths (non-recursive) of up to 13 levels
(median: 2), separate identifier counts (i.e. variable names, function names, . . .) of up to 823
(median: 16) and up to 63 if statements (median: 1). This smooth scaling of difficulty allows for
a more detailed measurement of model coherence along multi-step problems than what is typically
seen in traditional evals. However, as language models continue to advance rapidly, even this wide
range of difficulties may eventually face saturation.

To address this, we observe a mechanism inspired by the SKILL-MIX evaluation (Yu et al., 2023)
that leverages the typed nature of our function selection process. This approach allows us to cre-
ate even more complex tasks by chaining functions where the output type of one matches the input
type of another, or by combining multiple outputs into a composite input. The number of poten-
tial new tasks can be upper bounded by n2 · (Tmax)

k · C,, where n is the total number of types,
Tmax = maxi,j Ti,j is the maximum number of existing tasks between any two types, k is the num-
ber of functions to chain, and C is the average number of test cases per task. While this is an upper
bound and the actual number of valid composite tasks would be lower due to specific type compat-
ibility constraints, it still represents a significant expansion of our task space. We view this as an
opportunity to trade some of the ’realism’ of using 100% real-world code for the ability to probe the
upper bounds of model capabilities. For constant compute models, this approach allows us to test
their internal mechanistic capabilities in handling increasingly complex, multi-step problems. And
for chain-of-thought models, it provides a test of increasingly long-term agentic coherency.

Error prediction. To test the full spectrum of code execution we further generate test cases designed
to trigger exceptions. Many of these require in-depth analysis to see ahead of time, for example
predicting an invalid array index through multiple functions. While debugging exceptions is one
of the more challenging software engineering tasks, we are yet to see it commonly evaluated in
benchmarks.

3 RESULTS

We report our evaluation results across different SOTA models alongside our findings across differ-
ent task statistics below.

Table 1: EXE Pass@1 results
Model EXE dataset (Pass@1) Errors (Pass@1)

gpt4o 72.4 49.5
gpt4o-mini 60.9 32.0

LLMs can execute real-world code, achieving results in-line with code generation benchmarks.
We find EXE shows similar relative model performance between models as seen in coding bench-
marks such as HumanEval (Chen et al., 2021) and as seen in benchmarks requiring logical inference

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

such as (Lu et al., 2023). Furthermore we find a similar diversity of performance across packages as
seen in agentic benchmarks such as (Jimenez et al., 2023). We show our findings in Figure 4.

Figure 4: Left - We show the relative accuracy of different models across the top 20 packages by task
count. Both the relative differences between models and the relative differences between packages
are within expectations from other coding benchmarks (Jimenez et al., 2023). Right - We show the
magnitude of diversity across packages (mean performance across all models).

Prior works such as Learning To Execute (Zaremba & Sutskever, 2014) and CRUX-Eval (Gu et al.,
2024) have placed justifiable limitations on code complexity; removing mathematical operations,
limiting line count, disallowing custom classes and only having one singular function to name a few.
We hypothesised that these are no longer necessary, and to understand the true internal capabilities
of a constant compute model (i.e. no Chain of Thought) we must test on real-world code, only
applying limitations where forced (i.e. no arbitrary object inputs, as LLMs can’t generate them).
Our results as seen in table 1 provide initial evidence towards our hypothesis.

ExecEval provides a smooth curve of task difficulties. We set out to ensure a) our eval does not
induce saturation from a bounded distribution of task difficulties, b) our eval does not induce an
”AI overhang” by not having a smooth transition between difficulties and, c) the correlated factors
affecting difficulty are human interpretable.

As shown in Figure 5 several task statistics such as ”lines of code”, ”processing time” and ”number
of function calls” all correlate log-linearly with a model’s achieved pass@1 score. These correlations
provide preliminary evidence towards c) as they align with simplistic human intuition, i.e. more lines
of code, more compute cycles, higher difficulty. Furthermore, we view the log-linear relationships
as evidence towards b), i.e. EXE provides a smooth transition between difficulties. And finally, we
view the relationships as a demonstration of difficulty being affected by factors within our control,
i.e. number of function calls - providing empirical evidence towards a).

Figure 5: Pass@1 for all tasks across four of our code metrics. The shaded area represents variance,
and the opacity is scaled with count of samples. Processing time is measured in microseconds.

Stylistic coding patterns shape the metrics. As can be seen in Figure 5 the pass@1 rate of function
calls hits an elbow and then surprisingly improves as the call count increases. During our investi-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

gation we found several of these occurrences, and not only with call count. These were found to be
largely driven by specific coding patterns and complex tasks that LLMs excel at. We show in Figure
6 below three example tasks, and more specifically coding patterns driving this anomaly.

Figure 6: Three examples of high pass@1 rate tasks that contain large amounts of function calls.
Left - Charset-normaliser performs 300+ function calls to define ranges of unicode characters upon
initialisation; this constant has little effect on task difficulty but is used frequently and hence appears
in many tasks. Middle - Langchain’s Unparser class traverses an AST and regenerates source code.
The calling method in our dataset is ”add last line print(str) → str” which takes in code, parses it
and then uses Unparse(...) to unparse it; this is a prime example of a ”directly predictable task”,
i.e. one not requiring line by line code execution to predict a result. Right - Similar to Charset-
normaliser, AWS’s Sagemaker has a module level constant with 10s of calls; not creating a large
impact on task difficulty but frequent in its use.

LLMs struggle with certain coding features. As EXE contains a diverse set of tasks, we are able
to observe model performance differing greatly based on coding features used in any task. To illus-
trate: floating point math operations such as multiplications (gpt4o: 43 mean Pass@1) significantly
increase task difficulty, however bit manipulation and boolean operations only showed a minor nega-
tive impact. Iterative operations such as compound assignment operations i.e. ”i += 1” (56 Pass@1),
list slicing (65 Pass@1) and list comprehensions (68 Pass@1) all increased difficulty, however for
loops on (73 Pass@1) on average did not have a significant impact.

With the above metrics, and those seen in Figure 6, their mean Pass@k decreases as their count
increases. To reduce the risk of our metrics being a proxy for longer problems we show the effects
can still be seen below in Figure 7 after normalisation by lines of code (only lines with executable
syntax tokens are counted).

Figure 7: Pass@1for all tasks across four of our code metrics normalised by line of code count.
All four of the above metrics previously showed a negative impact as they increased, interestingly
we now observe branching statements having little to no impact and return statements surprisingly
driving an increase in Pass@1 score. Our strong negative factors i.e. function calls and identifiers
created, still are seen increasing task difficulty as they take up ever greater percentages of the task.

4 RELATED WORK

There is a rich history of work on evaluating language models’ abilities in reasoning, execution,
and multi-step problem-solving across various domains. These efforts span from natural language
processing to mathematical reasoning, and from code generation to program execution. Our work,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

EXecution-Eval (EXE), builds upon this foundation while addressing key challenges in benchmark
design and evaluation.

Code generation benchmarks have been the foundation of evaluating the coding abilities of language
models. Works like HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) established
standardized datasets for assessing code synthesis from natural language descriptions. These efforts
have expanded to cover multiple programming languages (Cassano et al., 2022; Khan et al., 2023)
and more complex domains such as algorithmic problem solving (Huang et al., 2023). While these
benchmarks focus primarily on the task of code generation, we believe additional focus on the tasks
of code execution and error prediction have been overlooked and may offer additional insight into
the internal capabilities of frontier models.

The concept of ”learning to execute” itself has a long history, Zaremba & Sutskever (2014) explored
neural networks’ ability to learn and execute simple programs. Graves et al. (2014) constructed the
first Neural Turing Machines with (Kaiser & Sutskever, 2015; Reed & de Freitas, 2015; Dehghani
et al., 2018) all building further into this domain. This line of research has evolved, with recent
works like Bieber et al. (2020); Nye et al. (2021) and Gu et al. (2024) applying graph and language
models to execute synthetic or simplistic Python programs. EXE builds upon these foundations by
evaluating execution capabilities on complex, messy, real-world code from diverse GitHub reposi-
tories, providing a more challenging, scaleable and realistic test bed.

Recent trends in benchmark design have emphasized the importance of diverse, multi-step problems
and agentic capabilities. Works like Jimenez et al. (2023) have introduced benchmarks that require
solving real world software engineering problems while Zhou et al. (2023) has enabled evaluation
of complex instruction following and performing multi-step reasoning. In the mathematical domain,
benchmarks like those by Hendrycks et al. (2021) and Lu et al. (2023) have pushed models to solve
intricate, multi-step problems.

The challenge of benchmark saturation and the need for continually updated evaluations has been
recognized in recent works (Ott et al., 2022). Live benchmarks such as those proposed by Li et al.
(2024), (Chiang et al., 2024) and Kiela et al. (2021) aim to address this issue. Skill-Mix (Yu et al.,
2023) takes a novel approach, combining separate skills required to solve a problem they are able
to increase task difficulty non-linearly with k skills. EXE has been inspired by both these concepts,
hence the focus on enabling continual generation of new coding tasks and test cases, as well as the
potential extension into chaining functions.

While many existing benchmarks use curated or synthetic datasets, EXE leverages real-world code
from popular Python repositories. This approach is inspired by works like CodeNet (Puri et al.,
2021) and The Stack (Kocetkov et al., 2022) which demonstrated the value of diverse, real-world
data in training and evaluating language models.

5 EXTENSIONS

Expanding the scope and diversity We believe scaling EXE to include more repositories by as
much as 100x would significantly reduce the noise seen in our coding metrics and provide a more
resilient baseline for future frontier models. By incorporating additional Python functions — po-
tentially using language models to predict missing type annotations — and including a diversity
of other programming languages such as C++, Go and JavaScript, we believe there is even further
opportunity to scale. This would offer further insights into the generalisability of a model’s code
understanding, pose new challenges for analysis such as pointers, macros and type-free codebases.

Probing code execution mechanisms with simple functions We believe there is an opportunity
to align code execution with mechanistic interpretability, to gain an understanding of how constant
compute language models can execute complex multi-step instructions. To illustrate, if we select
the simplest function that a language model can not directly predict the outcome of, a hash function
for example (one that doesn’t use floating point math in this case), one requiring compute at each
iteration. This would force the network to perform the computation step by step, and for a constant
compute feed-forward network, layer by layer. Hence, performing a single iteration that may not
lead to anything interesting, however as we increase the iteration count one by one, the model now
must find a repeated circuit to perform the same computation in the later layers. For every increase it
must find another circuit or a more optimal way of performing its work until it fails. We believe this

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

would present an interesting approach alongside standard mechanistic interpretability techniques for
circuit discovery and understanding of control flow, variable tracking and computational logic at the
mechanistic level.

Breakpoint analysis for validating code execution granularly Rather than evaluating the final
return value, including multiple evaluation points within code execution may assist verification of if
models are performing the step-by-step computations to reach a return value. Furthermore by insert-
ing ’breakpoints’ throughout the execution process, we can transform a single return state prediction
task into numerous intermediate state prediction tasks. To illustrate, given a code snippet with a
breakpoint at a specific line, a model would be tasked to determine the values of the local variables
when the breakpoint is triggered. This mirrors common human debugging practices and may reveal
discrepancies between final output accuracy and intermediate state understanding, offering further
resistance against tasks where their final outcome can be directly predicted.

Connection to cybersecurity threat model. Software vulnerability research techniques are largely
1 enabled by the ability to predict and reason about expected program outcomes. For example,
code injection, path resolution and memory buffer attacks are often found through manual human
analysis; tracing inputs through the control flow, predicting output states and reasoning if there
are opportunities to exploit. As EXE contains parsers such as seen in Appendix A.1 we see an
opportunity to select a subset of EXE where prediction of error would imply language models have
the internal capability to comprehend and aid humans with crafting vulnerabilities.

6 CONCLUSIONS

In this paper, we introduced EXecution-Eval (EXE), a benchmark designed to evaluate whether lan-
guage models can execute real-world code. By collecting over 30,000 tasks from 1,000 popular
Python repositories, EXE presents a diverse range of problems requiring computational operations
such as mathematical reasoning, logical inference, and state maintenance. Our evaluations suggest
that while language models demonstrate some capability in executing code, they often struggle with
complex, multi-step tasks—particularly those involving many identifiers, function calls and iterative
operations. Our findings indicate that although current models have limitations in accurately rea-
soning about and executing real-world code, they perform surprisingly well on average, prompting
several opportunities extending this investigation.

EXE aims to address limitations of existing benchmarks by providing a scalable, diverse, and con-
tinually updatable framework. Its design targets a smooth difficulty scale and easy generation of
new tasks with minimal human oversight with the goal to reduce the risk of models ”training on the
test set.”

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models. August 2021.

David Bieber, Charles Sutton, Hugo Larochelle, and Daniel Tarlow. Learning to execute programs
with instruction pointer attention graph neural networks. October 2020.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, Arjun Guha,
Michael Greenberg, and Abhinav Jangda. MultiPL-E: A scalable and extensible approach to
benchmarking neural code generation. August 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
1Some techniques such as random fuzzing may not rely on any internal program knowledge. However,

to find actionable results within realistic computational bounds, fuzzers are often augmented based on this
knowledge to limit their generatable space.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saun-
ders, Christopher Hesse, Andrew N Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. July 2021.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E Gonzalez, and Ion Stoica.
Chatbot arena: An open platform for evaluating LLMs by human preference. March 2024.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
transformers. July 2018.

Max Fowler, David IV, Mohammed Hassan, Seth Poulsen, Matthew West, and Craig Zilles. Reeval-
uating the relationship between explaining, tracing, and writing skills in cs1 in a replication study.
Computer Science Education, 32:1–29, 06 2022. doi: 10.1080/08993408.2022.2079866.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. October 2014.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I
Wang. CRUXEval: A benchmark for code reasoning, understanding and execution. January 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. March
2021.

Yiming Huang, Zhenghao Lin, Xiao Liu, Yeyun Gong, Shuai Lu, Fangyu Lei, Yaobo Liang, Yelong
Shen, Chen Lin, Nan Duan, and Weizhu Chen. Competition-Level problems are effective LLM
evaluators. December 2023.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. SWE-bench: Can language models resolve real-world GitHub issues? October
2023.

Łukasz Kaiser and Ilya Sutskever. Neural GPUs learn algorithms. November 2015.

Mohammad Abdullah Matin Khan, M Saiful Bari, Xuan Long Do, Weishi Wang, Md Rizwan
Parvez, and Shafiq Joty. XCodeEval: A large scale multilingual multitask benchmark for code
understanding, generation, translation and retrieval. March 2023.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie
Vidgen, Grusha Prasad, Amanpreet Singh, Pratik Ringshia, Zhiyi Ma, Tristan Thrush, Sebastian
Riedel, Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mohit Bansal, Christopher Potts, and Adina
Williams. Dynabench: Rethinking benchmarking in NLP. April 2021.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis,
Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro von
Werra, and Harm de Vries. The stack: 3 TB of permissively licensed source code. November
2022.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gon-
zalez, and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-Hard and
BenchBuilder pipeline. June 2024.

Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. Relationships between
reading, tracing and writing skills in introductory programming. In Proceedings of the Fourth
International Workshop on Computing Education Research, ICER ’08, pp. 101–112, New
York, NY, USA, 2008. Association for Computing Machinery. ISBN 9781605582160. doi:
10.1145/1404520.1404531. URL https://doi.org/10.1145/1404520.1404531.

9

https://doi.org/10.1145/1404520.1404531

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. MathVista: Evaluating mathematical reasoning of
foundation models in visual contexts. October 2023.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Au-
gustus Odena. Show your work: Scratchpads for intermediate computation with language models.
November 2021.

Simon Ott, Adriano Barbosa-Silva, Kathrin Blagec, Jan Brauner, and Matthias Samwald. Mapping
global dynamics of benchmark creation and saturation in artificial intelligence. March 2022.

Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladimir Zolotov,
Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, Veronika Thost, Luca Buratti, Saurabh
Pujar, Shyam Ramji, Ulrich Finkler, Susan Malaika, and Frederick Reiss. CodeNet: A large-scale
AI for code dataset for learning a diversity of coding tasks. May 2021.

Scott Reed and Nando de Freitas. Neural Programmer-Interpreters. November 2015.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,
Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W Ko-
curek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain, Amanda
Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S Iyer, Anders An-
dreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew Dai, Andrew La,
Andrew Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh Gupta,
Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabassum, Arul
Menezes, Arun Kirubarajan, Asher Mullokandov, Ashish Sabharwal, Austin Herrick, Avia Efrat,
Aykut Erdem, Ayla Karakaş, B Ryan Roberts, Bao Sheng Loe, Barret Zoph, Bartłomiej Bo-
janowski, Batuhan Özyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin Inden, Benno
Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Bryan Orinion, Cameron Diao, Cameron
Dour, Catherine Stinson, Cedrick Argueta, and Ramı́rez. Beyond the imitation game: Quantifying
and extrapolating the capabilities of language models. June 2022.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R Bowman. SuperGLUE: A stickier benchmark for general-purpose language
understanding systems. May 2019.

Dingli Yu, Simran Kaur, Arushi Gupta, Jonah Brown-Cohen, Anirudh Goyal, and Sanjeev Arora.
Skill-Mix: a flexible and expandable family of evaluations for AI models. October 2023.

Wojciech Zaremba and Ilya Sutskever. Learning to execute. October 2014.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P Xing, Hao Zhang, Joseph E Gonzalez, and Ion Stoica.
Judging LLM-as-a-judge with MT-bench and chatbot arena. June 2023.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. Instruction-following evaluation for large language models. November 2023.

A APPENDIX

You may include other additional sections here.

A.1 EXAMPLE INPUT & OUTPUT

Below is an example from the eval set. It is split into three components:

1. Code Task. The function split_email was found to pass the type requirements, and as such
all modules, classes, functions and attributes required to execute it have been recursively inlined.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

2. Test Case Inputs. Based on the type definition (used for setting the function calling schema)
inputs/ output pairs have been generated with the goal of maximising diversity of control flow paths
within the function.

3. Outputs. Based on the type definition (used for setting the function calling schema) inputs/
output pairs have been generated with the goal of maximising diversity of control flow paths within
the function.

Code

Note: The top 1,000 PyPI repos are used to form EXE, this function is from email-validator, rank
345

1 from typing import Optional, Tuple
2 import re
3 import unicodedata
4

5

6 class EmailNotValidError(ValueError):
7 """Parent class of all exceptions raised by this module."""
8 pass
9

10

11 class EmailSyntaxError(EmailNotValidError):
12 """Exception raised when an email address fails validation

because of its form."""
13 pass
14

15

16 ATEXT = r’a-zA-Z0-9_!#\$%&\’*\+\-/=\?\ˆ‘\{\|\}˜’
17

18

19 def safe_character_display(c: str) -> str:
20 # Return safely displayable characters in quotes.
21 if c == ’\\’:
22 return f"\"{c}\"" # can’t use repr because it escapes it
23 if unicodedata.category(c)[0] in ("L", "N", "P", "S"):
24 return repr(c)
25

26

27 # Construct a hex string in case the unicode name doesn’t exist.
28 if ord(c) < 0xFFFF:
29 h = f"U+{ord(c):04x}".upper()
30 else:
31 h = f"U+{ord(c):08x}".upper()
32

33

34 # Return the character name or, if it has no name, the hex
string.

35 return unicodedata.name(c, h)
36

37

38 ATEXT_RE = re.compile(’[.’ + ATEXT + ’]’) # ATEXT plus dots
39

40

41 def check_unsafe_chars(s: str, allow_space: bool = False) -> None:
42 # Check for unsafe characters or characters that would make the

string
43 # invalid or non-sensible Unicode.
44 bad_chars = set()
45 for i, c in enumerate(s):
46 category = unicodedata.category(c)
47 if category[0] in ("L", "N", "P", "S"):
48 # Letters, numbers, punctuation, and symbols are permitted

.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

49 pass
50 elif category[0] == "M":
51 # Combining character in first position would combine with

something
52 # outside of the email address if concatenated, so they

are not safe.
53 # We also check if this occurs after the @-sign, which

would not be
54 # sensible because it would modify the @-sign.
55 if i == 0:
56 bad_chars.add(c)
57 elif category == "Zs":
58 # Spaces outside of the ASCII range are not specifically

disallowed in
59 # internationalized addresses as far as I can tell, but

they violate
60 # the spirit of the non-internationalized specification

that email
61 # addresses do not contain ASCII spaces when not quoted.

Excluding
62 # ASCII spaces when not quoted is handled directly by the

atom regex.
63 #
64 # In quoted-string local parts, spaces are explicitly

permitted, and
65 # the ASCII space has category Zs, so we must allow it

here, and we’ll
66 # allow all Unicode spaces to be consistent.
67 if not allow_space:
68 bad_chars.add(c)
69 elif category[0] == "Z":
70 # The two line and paragraph separator characters (in

categories Zl and Zp)
71 # are not specifically disallowed in internationalized

addresses
72 # as far as I can tell, but they violate the spirit of the

non-internationalized
73 # specification that email addresses do not contain line

breaks when not quoted.
74 bad_chars.add(c)
75 elif category[0] == "C":
76 # Control, format, surrogate, private use, and unassigned

code points (C)
77 # are all unsafe in various ways. Control and format

characters can affect
78 # text rendering if the email address is concatenated with

other text.
79 # Bidirectional format characters are unsafe, even if used

properly, because
80 # they cause an email address to render as a different

email address.
81 # Private use characters do not make sense for publicly

deliverable
82 # email addresses.
83 bad_chars.add(c)
84 else:
85 # All categories should be handled above, but in case

there is something new
86 # to the Unicode specification in the future, reject all

other categories.
87 bad_chars.add(c)
88 if bad_chars:
89 raise EmailSyntaxError("The email address contains unsafe

characters: "

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

90 + ", ".join(safe_character_display(c)
for c in sorted(bad_chars)) + ".")

91

92

93 def split_email(email: str) -> Tuple[Optional[str], str, str, bool]:
94 # Return the display name, unescaped local part, and domain part
95 # of the address, and whether the local part was quoted. If no
96 # display name was present and angle brackets do not surround
97 # the address, display name will be None; otherwise, it will be
98 # set to the display name or the empty string if there were
99 # angle brackets but no display name.

100

101

102 # Typical email addresses have a single @-sign and no quote
103 # characters, but the awkward "quoted string" local part form
104 # (RFC 5321 4.1.2) allows @-signs and escaped quotes to appear
105 # in the local part if the local part is quoted.
106

107

108 # A ‘display name <addr>‘ format is also present in MIME
messages

109 # (RFC 5322 3.4) and this format is also often recognized in
110 # mail UIs. It’s not allowed in SMTP commands or in typical web
111 # login forms, but parsing it has been requested, so it’s done
112 # here as a convenience. It’s implemented in the spirit but not
113 # the letter of RFC 5322 3.4 because MIME messages allow

newlines
114 # and comments as a part of the CFWS rule, but this is typically

not
115 # allowed in mail UIs (although comment syntax was requested

once too).
116 #
117 # Display names are either basic characters (the same basic

characters
118 # permitted in email addresses, but periods are not allowed and

spaces
119 # are allowed; see RFC 5322 Appendix A.1.2), or or a quoted

string with
120 # the same rules as a quoted local part. (Multiple quoted

strings might
121 # be allowed? Unclear.) Optional space (RFC 5322 3.4 CFWS) and

then the
122 # email address follows in angle brackets.
123 #
124 # We assume the input string is already stripped of leading and

trailing CFWS.
125

126

127 def split_string_at_unquoted_special(text: str, specials: Tuple[
str, ...]) -> Tuple[str, str]:

128 # Split the string at the first character in specials (an @-
sign

129 # or left angle bracket) that does not occur within quotes
and

130 # is not followed by a Unicode combining character.
131 # If no special character is found, raise an error.
132 inside_quote, escaped, left_part = False, False, ""
133 for i, c in enumerate(text):
134 # < plus U+0338 (Combining Long Solidus Overlay)

normalizes to
135 # U+226E (Not Less-Than), and it would be confusing to

treat
136 # the < as the start of "<email>" syntax in that case.

Likewise,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

137 # if anything combines with an @ or ", we should probably
not

138 # treat it as a special character.
139 if unicodedata.normalize("NFC", text[i:])[0] != c:
140 left_part += c
141

142

143 elif inside_quote:
144 left_part += c
145 if c == ’\\’ and not escaped:
146 escaped = True
147 elif c == ’"’ and not escaped:
148 # The only way to exit the quote is an unescaped

quote.
149 inside_quote = False
150 escaped = False
151 else:
152 escaped = False
153 elif c == ’"’:
154 left_part += c
155 inside_quote = True
156 elif c in specials:
157 # When unquoted, stop before a special character.
158 break
159 else:
160 left_part += c
161

162

163 if len(left_part) == len(text):
164 raise EmailSyntaxError("An email address must have an @-

sign.")
165

166

167 right_part = text[len(left_part):] # The right part is
whatever is left.

168

169

170 return left_part, right_part
171

172

173 def unquote_quoted_string(text: str) -> Tuple[str, bool]:
174 # Remove surrounding quotes and unescape escaped backslashes
175 # and quotes. Escapes are parsed liberally. I think only

backslashes
176 # and quotes can be escaped but we’ll allow anything to be.
177 quoted, escaped, value = False, False, ""
178 for i, c in enumerate(text):
179 if quoted:
180 if escaped:
181 value += c
182 escaped = False
183 elif c == ’\\’:
184 escaped = True
185 elif c == ’"’:
186 if i != len(text) - 1:
187 raise EmailSyntaxError("Extra character(s)

found after close quote: "
188 + ", ".join(

safe_character_display
(c) for c in text[i +
1:]))

189 break
190 else:
191 value += c
192 elif i == 0 and c == ’"’:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

193 quoted = True
194 else:
195 value += c
196

197

198 return value, quoted
199

200

201 # Split the string at the first unquoted @-sign or left angle
bracket.

202 left_part, right_part = split_string_at_unquoted_special(email,
("@", "<"))

203

204

205 # If the right part starts with an angle bracket, then the left
part

206 # is a display name and the rest of the right part up to the
207 # final right angle bracket is the email address, .
208 if right_part.startswith("<"):
209 # Remove space between the display name and angle bracket.
210 left_part = left_part.rstrip()
211

212

213 # Unquote and unescape the display name.
214 display_name, display_name_quoted = unquote_quoted_string(

left_part)
215

216

217 # Check that only basic characters are present in a non-
quoted display name.

218 if not display_name_quoted:
219 bad_chars = {
220 safe_character_display(c)
221 for c in display_name
222 if (not ATEXT_RE.match(c) and c != ’ ’) or c == ’.’
223 }
224 if bad_chars:
225 raise EmailSyntaxError("The display name contains

invalid characters when not quoted: " + ", ".
join(sorted(bad_chars)) + ".")

226

227

228 check_unsafe_chars(display_name, allow_space=True) # Check
for other unsafe characters.

229

230

231 # Check that the right part ends with an angle bracket
232 # but allow spaces after it, I guess.
233 if ">" not in right_part:
234 raise EmailSyntaxError("An open angle bracket at the start

of the email address has to be followed by a close
angle bracket at the end.")

235 right_part = right_part.rstrip(" ")
236 if right_part[-1] != ">":
237 raise EmailSyntaxError("There can’t be anything after the

email address.")
238

239

240 # Remove the initial and trailing angle brackets.
241 addr_spec = right_part[1:].rstrip(">")
242

243

244 # Split the email address at the first unquoted @-sign.
245 local_part, domain_part = split_string_at_unquoted_special(

addr_spec, ("@",))

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

246

247

248 # Otherwise there is no display name. The left part is the local
249 # part and the right part is the domain.
250 else:
251 display_name = None
252 local_part, domain_part = left_part, right_part
253

254

255 if domain_part.startswith("@"):
256 domain_part = domain_part[1:]
257

258

259 # Unquote the local part if it is quoted.
260 local_part, is_quoted_local_part = unquote_quoted_string(

local_part)
261

262

263 return display_name, local_part, domain_part,
is_quoted_local_part

Test Case Inputs
1 [
2 {
3 "input": [["simple@example.com"], {}],
4 "output": [null,"simple","example.com", false],
5 },
6 {
7 "input": [["user+name@sub.domain.com"], {}],
8 "output": [null,"user+name","sub.domain.com", false],
9 },

10 {
11 "input": [["user.name@domain.co.uk"], {}],
12 "output": [null,"user.name","domain.co.uk", false],
13 },
14 {
15 "input": [["\"quoted@local\"@example.com"], {}],
16 "output": [null,"quoted@local","example.com", true],
17 },
18 {
19 "input": [["display name <user@domain.com>"], {}],
20 "output": ["display name","user","domain.com", false],
21 },
22 {
23 "input": [["user@localhost"], {}],
24 "output": [null,"user","localhost", false],
25 },
26 {
27 "input": [["user@[IPv6:2001:db8::1]"], {}],
28 "output": [null,"user","[IPv6:2001:db8::1]", false],
29 },
30 {
31 "input": [["\"escaped\\\"quote\"@example.com"], {}],
32 "output": [null,"escaped\"quote","example.com", true],
33 },
34 {
35 "input": [["user.name@longsubdomain.example.com"], {}],
36 "output": [null,"user.name","longsubdomain.example.com", false],
37 },
38 {
39 "input": [["very.common@example.com"], {}],
40 "output": [null,"very.common","example.com", false],
41 },
42 {

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

43 "input": [["user@domain-with-dash.com"], {}],
44 "output": [null,"user","domain-with-dash.com", false],
45 },
46 {
47 "input": [["user@123.123.123.123"], {}],
48 "output": [null,"user","123.123.123.123", false],
49 },
50 {
51 "input": [["\"much.more unusual\"@example.com"], {}],
52 "output": [null,"much.more unusual","example.com", true],
53 },
54 {
55 "input": [["user@xn--exmple-cua.com"], {}],
56 "output": [null,"user","xn--exmple-cua.com", false],
57 },
58 {
59 "input": [["user@domain_with_underscore.com"], {}],
60 "output": [null,"user","domain_with_underscore.com", false],
61 }
62]

Generated Outputs
1 [
2 {
3 "input": [["simple@example.com"], {}],
4 "output": [null,"simple","example.com", false],
5 "prediction": [null,"simple","example.com",false],
6 "result": true,
7 "answer_tokens": {"completion": 18,"prompt": 4610,"total": 4628}
8 },
9 {

10 "input": [["user+name@sub.domain.com"], {}],
11 "output": [null,"user+name","sub.domain.com", false],
12 "prediction": [null,"user+name","sub.domain.com",false],
13 "result": true,
14 "answer_tokens": {"completion": 21,"prompt": 4614,"total": 4635}
15 },
16 {
17 "input": [["user.name@domain.co.uk"], {}],
18 "output": [null,"user.name","domain.co.uk", false],
19 "prediction": [null,"user.name","domain.co.uk",false],
20 "result": true,
21 "answer_tokens": {"completion": 20,"prompt": 4613,"total": 4633}
22 },
23 {
24 "input": [["\"quoted@local\"@example.com"], {}],
25 "output": [null,"quoted@local","example.com", true],
26 "prediction": ["null","quoted@local","example.com",true],
27 "result": false,
28 "answer_tokens": {"completion": 20,"prompt": 4615,"total": 4635}
29 },
30 {
31 "input": [["display name <user@domain.com>"], {}],
32 "output": ["display name","user","domain.com", false],
33 "prediction": ["display name","user","domain.com",false],
34 "result": true,
35 "answer_tokens": {"completion": 19,"prompt": 4615,"total": 4634}
36 },
37 {
38 "input": [["user@localhost"], {}],
39 "output": [null,"user","localhost", false],
40 "prediction": [null,"user","localhost",false],
41 "result": true,
42 "answer_tokens": {"completion": 17,"prompt": 4610,"total": 4627}

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

43 },
44 {
45 "input": [["user@[IPv6:2001:db8::1]"], {}],
46 "output": [null,"user","[IPv6:2001:db8::1]", false],
47 "prediction": "EmailSyntaxError: An email address must have an @-

sign.",
48 "result": false,
49 "answer_tokens": {"completion": 24,"prompt": 4620,"total": 4644
50 }
51 },
52 {
53 "input": [["\"escaped\\\"quote\"@example.com"], {}],
54 "output": [null,"escaped\"quote","example.com", true],
55 "prediction": ["null","escaped\"quote","example.com",true],
56 "result": false,
57 "answer_tokens": {"completion": 20,"prompt": 4615,"total": 4635}
58 },
59 {
60 "input": [["user.name@longsubdomain.example.com"], {}],
61 "output": [null,"user.name","longsubdomain.example.com", false],
62 "prediction": [null,"user.name","longsubdomain.example.com",false],
63 "result": true,
64 "answer_tokens": {"completion": 22,"prompt": 4615,"total": 4637}
65 },
66 {
67 "input": [["very.common@example.com"], {}],
68 "output": [null,"very.common","example.com", false],
69 "prediction": [null,"very.common","example.com",false],
70 "result": true,
71 "answer_tokens": {"completion": 19,"prompt": 4611,"total": 4630}
72 },
73 {
74 "input": [["user@domain-with-dash.com"], {}],
75 "output": [null,"user","domain-with-dash.com", false],
76 "prediction": [null,"user","domain-with-dash.com",false],
77 "result": true,
78 "answer_tokens": {"completion": 21,"prompt": 4614,"total": 4635}
79 },
80 {
81 "input": [["user@123.123.123.123"], {}],
82 "output": [null,"user","123.123.123.123", false],
83 "prediction": [null,"user","123.123.123.123",false],
84 "result": true,
85 "answer_tokens": {"completion": 23,"prompt": 4616,"total": 4639}
86 },
87 {
88 "input": [["\"much.more unusual\"@example.com"], {}],
89 "output": [null,"much.more unusual","example.com", true],
90 "prediction": [null,"much.more unusual","example.com",true],
91 "result": true,
92 "answer_tokens": {"completion": 20,"prompt": 4615,"total": 4635}
93 },
94 {
95 "input": [["user@xn--exmple-cua.com"], {}],
96 "output": [null,"user","xn--exmple-cua.com", false],
97 "prediction": [null,"user","xn--exmple-cua.com",false],
98 "result": true,
99 "answer_tokens": {"completion": 24,"prompt": 4617,"total": 4641}

100 },
101 {
102 "input": [["user@domain_with_underscore.com"], {}],
103 "output": [null,"user","domain_with_underscore.com", false],
104 "prediction": "EmailSyntaxError: The email address contains unsafe

characters: ’U+005F’.",
105 "result": false,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

106 "answer_tokens": {"completion": 28,"prompt": 4614,"total": 4642}
107 }
108]

A.2 ACCEPTABLE TYPES & FILTERING CRITERIA

Acceptable types. To find functions where the inputs and outputs are LLM generat-
able, we recursively parse both arguements and return types as ast objects i.e. for
list[tuple[str, False]] we first check list is an acceptable type, then recurse down
into tuple, following that we then check str and finally we check False. False isn’t an ac-
ceptable type but it is an acceptable constant and hence accepted. Note: certain acceptable types and
constants are not allowed as return values, i.e. None is not an accepted return constant

acceptable types = { ’int’, ’str’, ’float’, ’bool’, ’none’, ’list’, ’dict’,
’tuple’, ’set’, ’datetime.date’, ’date’, ’literal’, ’optional’, ’union’,
’sequence’, ’iterable’, ’frozenset’, ’mapping’ }

acceptable constants = { ’ellipsis’, True, False, None }

Filtering functions. When filtering functions we maintain four separate block lists, 1) a list of
banned imports (including direct and aliases), 2) a list of banned functions (some common libraries
have a limited set of non-deterministic methods, we don’t want to fully exclude them), 3) a list of
banned variables (some variables such as __version__ are likely to be environment based), 4) a
list of banned repos (some repos from cloud providers provide thousands of near identical methods
with different urls, we remove these as they are not a valuable contribution to the evaluation).

19

	Introduction
	Evaluation Framework
	Task Formation
	Features of EXE

	Results
	Related Work
	Extensions
	Conclusions
	Appendix
	Example Input & Output
	Acceptable Types & Filtering Criteria

