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ABSTRACT

As language models (LLMs) advance, traditional benchmarks face challenges of
dataset saturation and disconnection from real-world performance, limiting our
understanding of true model capabilities. We introduce EXecution-Eval (EXE), a
benchmark designed to assess LLMs’ ability to execute code and predict program
states. EXE attempts to address key limitations in existing evaluations: difficulty
scaling, task diversity, training data contamination, and cost-effective scalability.
Comprising over 30,000 tasks derived from 1,000 popular Python repositories on
GitHub, EXE spans a wide range of lengths and algorithmic complexities. Tasks
require models to execute code, necessitating various operations including math-
ematical reasoning, logical inference, bit manipulation, string operations, loop
execution, and maintaining multiple internal variable states during computation.
Our methodology involves: (a) selecting and preprocessing GitHub repositories,
(b) generating diverse inputs for functions, (c) executing code to obtain ground
truth outputs, and (d) formulating tasks that require models to reason about code
execution. This approach allows for continuous new task generation for as few
as 1,123 tokens, significantly reducing the risk of models ”training on the test
set.” We evaluate several state-of-the-art LLMs on EXE, revealing insights into
their code comprehension and execution capabilities. Our results show that even
the best-performing models struggle with complex, multi-step execution tasks,
highlighting specific computational concepts that pose the greatest challenges for
today’s LLMs. Furthermore, we review EXE’s potential for finding and predicting
errors to aid in assessing a model’s cybersecurity capabilities. We propose EXE
as a sustainable and challenging testbed for evaluating frontier models, offering
insights into their internal mechanistic advancement.

1 INTRODUCTION

Language model benchmarks are facing challenges of rapid saturation (Ott et al., 2022) and an in-
creasing disconnect from real-world performance perceived by end-users (Zheng et al., 2023). Due
to this, benchmarks are being continually created to address failure modes; e.g. SuperGLUE target-
ing GLUE’s low problem difficulty (Wang et al., 2019), BIG-bench targeting general low eval di-
versity (Srivastava et al., 2022) and Auto-Arena-Hard targeting training-set contamination and data
diversity in Chatbot-Arena (Li et al., 2024)(Chiang et al., 2024). These failure modes all demon-
strate the challenge in linking the mechanistic improvements within language models to human
understandable tasks.

Hence, to maximise an eval’s utility we aim to minimise the common failure modes of; a) difficulty,
not ensuring an unbound scale of small trivial problems to complex multi-step problems, b) diversity,
not ensuring a representative distribution across a large space of problems, c) novelty, not ensuring
continually fresh, out-out-training data samples can be generated and, d) scalability, not ensuring
tasks are cost-effective to generate in the thousands and beyond.

Motivated by these challenges we introduce EXecutionEval (EXE), an evaluation replicating one
of the primary tasks humans perform while coding; predicting and comparing a final program state
for a given set of inputs - seen in Figure 1. EXE is designed to avoid the aforementioned failure
modes; emphasising difficulty (smooth scale from trivial 1-step, one-line functions to difficult 100s-
of-step, multi-layer functions), diversity (unbound number of test cases generatable for tasks from
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Figure 1: An example task from Apache Airflow’s Github repository (code simplified to fit within
diagram). EXE sources tasks from 1,000 Python repositories, generates test cases for them, and
compares the LLM’s ability to execute code against python’s interpreter.

1,000 GitHub Repos), novelty (program inputs can be continually generated) and scalability (initial
release containing 30,000+ problems at a cost of $11).

EXE also holds theoretical inspiration. (Fowler et al., 2022) et al have replicated positive peda-
gogical correlations found by (Lopez et al., 2008) between the abilities of CS1 students to ”trace”
programs (i.e. manually predict outputs and write the internal state out line by line) and their abili-
ties to pass code writing and explanation exams. This is mirrored in CRUX-Eval’s (Gu et al., 2024)
findings, where they observe a moderate correlation between a model’s ability to execute a block of
code and a model’s HumanEval (Chen et al., 2021) code writing Pass@1 rate.

2 EVALUATION FRAMEWORK

As seen in Figure 1, an EXE task is to predict a function’s return value or error from: a) a code
snippet and b) a set of input arguments. Code snippets are extracted from PyPi’s most popular 1,000
python projects hosted on GitHub, we select our snippets to be pure (i.e. deterministic, no side
effects), language model generatable (i.e. arg types of ints, lists, ...) and to only require
builtins (local imports and external libraries are inlined for the snippet). To realise this we follow
the following three stage pipeline:

Figure 2: Three stage EXE task generation pipeline. Detailed example tasks and generated inputs
can be found in Appendix A.1.

1. Repo Selection and Code Scraping. We first select the top 1,000 most popular pypi packages
and collate the corresponding github repos where possible, similar to (Jimenez et al., 2023). These
repos are then pulled down locally and filtered based on a static ast analysis determining which
repositories contain type annotated code.

2. Function Selection and Dependency Collation. We perform a static ast analysis to filter to
functions with LLM generatable argument and return type annotations. Further ast analysis then
recursively identifies dependent elements (modules, functions, classes, variables, ...) across files,
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builds a dependency graph, and inlines them into a base task. Finally, base tasks containing side ef-
fects or non-deterministic code such as environment variables, process calls, randomness or network
requests are filtered out. See Appendix A.2 for detail on acceptable type annotations and filtering.

3. Test Case Generation. Using the argument type annotations we construct a LLM function
calling schema that generates a diverse set of inputs. The base task code is then executed with each
generated input and the result with runtime statistics are logged. This forms the test case (base task
code + generated input), output (returned result or error from executed code) and statistics (runtime
statistics + static ast analysis statistics).

Figure 3: We observe task counts per repository to have a near logarithmic falloff. Note: manual
removal of several bad offender repositories was required as they contained thousands of nearly
identical functions with only url changes.

Through these stages of filtering, the original top 1,000 repositories are filtered down to the 33,950
task instances which comprise EXE. A high level breakdown of these task instances across reposito-
ries is presented in Figure 3. We note some repositories are overrepresented primarily due to being
more modern (using typing) and the style of code (shorter deterministic pieces).

2.1 TASK FORMATION

Model input. The model is given a complete snippet of code alongside the input state to be executed.
The model is then tasked to predict the resulting return value, or in the case that an exception is raised
the model is instructed to generate an exception type and value. In practice, we prompt models
with an odata json representation and use a parser to ensure valid generations. We do append one
additional user reply with the parsing error if the model’s response fails to parse. Examples of input
instances can be found in Appendix A.1.

Evaluation metrics. To evaluate a proposed solution, we use the pass@k metric (Chen et al., 2021),
comparing the ground truth and the generated prediction as json objects (set and frozenset
are sorted before conversion to json lists). If the original code produced an exception, we compare
the type and message (excluding stacktrace) using a language model comparison. Examples of
generated outputs can be seen in Appendix A.1.

2.2 FEATURES OF EXE

Diversity of inputs and outputs. Unlike many benchmarks focused on a particular subject matter
area, a task in this eval may require a model to perform mathematical reasoning, logical inference,
bit manipulation, string operations, loop execution, or to maintain multiple internal variables during
computation. Furthermore, these may only form part of an algorithm that the model has to exe-
cute. Our random human inspection has uncovered algorithmic time complexities spanning from
O(1) to O(xn) and structured analysis has found tasks with code context lengths ranging from 440
to 311,000 tokens. Ensuring this broad diversity reduces the risk of hitting a local maxima and
increases our opportunity to measure internal capabilities across a range of difficulties.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Continually updatable. Both our code collection and task input generation processes can create
new tasks with minimal human oversight. Simply re-running our code collection to pull the latest
commits or directing it towards an uncollected Python GitHub repository will create new task in-
stances. Furthermore we can continue to generate new test cases for existing tasks, our test case
generator automatically avoids generating seen inputs. Hence, EXE can be extended continually
with new task instances, ensuring answers were not included in training corpuses of models for
evaluation.

Cost effective scalability. With generation of new tasks requiring an average of 1,112 input tokens
(batch of 15) and evaluation of tasks typically requiring 1,123 tokens, ExecEval can be generated,
tested and continually updated at a fraction of the cost of human-curated benchmarks. Our initial
dataset of 33,950 cases has only incurred an approximate costing of $11 to produce and $95 to test
on.

Long multi-step problems with smooth difficulty scaling. We provide a continuous spectrum
of task difficulties, ranging from 1-step, one-line functions to multi-file, multi-class, multi-100-
step tasks. Our most complex tasks include function call depths (non-recursive) of up to 13 levels
(median: 2), separate identifier counts (i.e. variable names, function names, . . . ) of up to 823
(median: 16) and up to 63 if statements (median: 1). This smooth scaling of difficulty allows for
a more detailed measurement of model coherence along multi-step problems than what is typically
seen in traditional evals. However, as language models continue to advance rapidly, even this wide
range of difficulties may eventually face saturation.

To address this, we observe a mechanism inspired by the SKILL-MIX evaluation (Yu et al., 2023)
that leverages the typed nature of our function selection process. This approach allows us to cre-
ate even more complex tasks by chaining functions where the output type of one matches the input
type of another, or by combining multiple outputs into a composite input. The number of poten-
tial new tasks can be upper bounded by n2 · (Tmax)

k · C,, where n is the total number of types,
Tmax = maxi,j Ti,j is the maximum number of existing tasks between any two types, k is the num-
ber of functions to chain, and C is the average number of test cases per task. While this is an upper
bound and the actual number of valid composite tasks would be lower due to specific type compat-
ibility constraints, it still represents a significant expansion of our task space. We view this as an
opportunity to trade some of the ’realism’ of using 100% real-world code for the ability to probe the
upper bounds of model capabilities. For constant compute models, this approach allows us to test
their internal mechanistic capabilities in handling increasingly complex, multi-step problems. And
for chain-of-thought models, it provides a test of increasingly long-term agentic coherency.

Error prediction. To test the full spectrum of code execution we further generate test cases designed
to trigger exceptions. Many of these require in-depth analysis to see ahead of time, for example
predicting an invalid array index through multiple functions. While debugging exceptions is one
of the more challenging software engineering tasks, we are yet to see it commonly evaluated in
benchmarks.

3 RESULTS

We report our evaluation results across different SOTA models alongside our findings across differ-
ent task statistics below.

Table 1: EXE Pass@1 results
Model EXE dataset (Pass@1) Errors (Pass@1)

gpt4o 72.4 49.5
gpt4o-mini 60.9 32.0

LLMs can execute real-world code, achieving results in-line with code generation benchmarks.
We find EXE shows similar relative model performance between models as seen in coding bench-
marks such as HumanEval (Chen et al., 2021) and as seen in benchmarks requiring logical inference
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such as (Lu et al., 2023). Furthermore we find a similar diversity of performance across packages as
seen in agentic benchmarks such as (Jimenez et al., 2023). We show our findings in Figure 4.

Figure 4: Left - We show the relative accuracy of different models across the top 20 packages by task
count. Both the relative differences between models and the relative differences between packages
are within expectations from other coding benchmarks (Jimenez et al., 2023). Right - We show the
magnitude of diversity across packages (mean performance across all models).

Prior works such as Learning To Execute (Zaremba & Sutskever, 2014) and CRUX-Eval (Gu et al.,
2024) have placed justifiable limitations on code complexity; removing mathematical operations,
limiting line count, disallowing custom classes and only having one singular function to name a few.
We hypothesised that these are no longer necessary, and to understand the true internal capabilities
of a constant compute model (i.e. no Chain of Thought) we must test on real-world code, only
applying limitations where forced (i.e. no arbitrary object inputs, as LLMs can’t generate them).
Our results as seen in table 1 provide initial evidence towards our hypothesis.

ExecEval provides a smooth curve of task difficulties. We set out to ensure a) our eval does not
induce saturation from a bounded distribution of task difficulties, b) our eval does not induce an
”AI overhang” by not having a smooth transition between difficulties and, c) the correlated factors
affecting difficulty are human interpretable.

As shown in Figure 5 several task statistics such as ”lines of code”, ”processing time” and ”number
of function calls” all correlate log-linearly with a model’s achieved pass@1 score. These correlations
provide preliminary evidence towards c) as they align with simplistic human intuition, i.e. more lines
of code, more compute cycles, higher difficulty. Furthermore, we view the log-linear relationships
as evidence towards b), i.e. EXE provides a smooth transition between difficulties. And finally, we
view the relationships as a demonstration of difficulty being affected by factors within our control,
i.e. number of function calls - providing empirical evidence towards a).

Figure 5: Pass@1 for all tasks across four of our code metrics. The shaded area represents variance,
and the opacity is scaled with count of samples. Processing time is measured in microseconds.

Stylistic coding patterns shape the metrics. As can be seen in Figure 5 the pass@1 rate of function
calls hits an elbow and then surprisingly improves as the call count increases. During our investi-
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gation we found several of these occurrences, and not only with call count. These were found to be
largely driven by specific coding patterns and complex tasks that LLMs excel at. We show in Figure
6 below three example tasks, and more specifically coding patterns driving this anomaly.

Figure 6: Three examples of high pass@1 rate tasks that contain large amounts of function calls.
Left - Charset-normaliser performs 300+ function calls to define ranges of unicode characters upon
initialisation; this constant has little effect on task difficulty but is used frequently and hence appears
in many tasks. Middle - Langchain’s Unparser class traverses an AST and regenerates source code.
The calling method in our dataset is ”add last line print(str) → str” which takes in code, parses it
and then uses Unparse(...) to unparse it; this is a prime example of a ”directly predictable task”,
i.e. one not requiring line by line code execution to predict a result. Right - Similar to Charset-
normaliser, AWS’s Sagemaker has a module level constant with 10s of calls; not creating a large
impact on task difficulty but frequent in its use.

LLMs struggle with certain coding features. As EXE contains a diverse set of tasks, we are able
to observe model performance differing greatly based on coding features used in any task. To illus-
trate: floating point math operations such as multiplications (gpt4o: 43 mean Pass@1) significantly
increase task difficulty, however bit manipulation and boolean operations only showed a minor nega-
tive impact. Iterative operations such as compound assignment operations i.e. ”i += 1” (56 Pass@1),
list slicing (65 Pass@1) and list comprehensions (68 Pass@1) all increased difficulty, however for
loops on (73 Pass@1) on average did not have a significant impact.

With the above metrics, and those seen in Figure 6, their mean Pass@k decreases as their count
increases. To reduce the risk of our metrics being a proxy for longer problems we show the effects
can still be seen below in Figure 7 after normalisation by lines of code (only lines with executable
syntax tokens are counted).

Figure 7: Pass@1for all tasks across four of our code metrics normalised by line of code count.
All four of the above metrics previously showed a negative impact as they increased, interestingly
we now observe branching statements having little to no impact and return statements surprisingly
driving an increase in Pass@1 score. Our strong negative factors i.e. function calls and identifiers
created, still are seen increasing task difficulty as they take up ever greater percentages of the task.

4 RELATED WORK

There is a rich history of work on evaluating language models’ abilities in reasoning, execution,
and multi-step problem-solving across various domains. These efforts span from natural language
processing to mathematical reasoning, and from code generation to program execution. Our work,
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EXecution-Eval (EXE), builds upon this foundation while addressing key challenges in benchmark
design and evaluation.

Code generation benchmarks have been the foundation of evaluating the coding abilities of language
models. Works like HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) established
standardized datasets for assessing code synthesis from natural language descriptions. These efforts
have expanded to cover multiple programming languages (Cassano et al., 2022; Khan et al., 2023)
and more complex domains such as algorithmic problem solving (Huang et al., 2023). While these
benchmarks focus primarily on the task of code generation, we believe additional focus on the tasks
of code execution and error prediction have been overlooked and may offer additional insight into
the internal capabilities of frontier models.

The concept of ”learning to execute” itself has a long history, Zaremba & Sutskever (2014) explored
neural networks’ ability to learn and execute simple programs. Graves et al. (2014) constructed the
first Neural Turing Machines with (Kaiser & Sutskever, 2015; Reed & de Freitas, 2015; Dehghani
et al., 2018) all building further into this domain. This line of research has evolved, with recent
works like Bieber et al. (2020); Nye et al. (2021) and Gu et al. (2024) applying graph and language
models to execute synthetic or simplistic Python programs. EXE builds upon these foundations by
evaluating execution capabilities on complex, messy, real-world code from diverse GitHub reposi-
tories, providing a more challenging, scaleable and realistic test bed.

Recent trends in benchmark design have emphasized the importance of diverse, multi-step problems
and agentic capabilities. Works like Jimenez et al. (2023) have introduced benchmarks that require
solving real world software engineering problems while Zhou et al. (2023) has enabled evaluation
of complex instruction following and performing multi-step reasoning. In the mathematical domain,
benchmarks like those by Hendrycks et al. (2021) and Lu et al. (2023) have pushed models to solve
intricate, multi-step problems.

The challenge of benchmark saturation and the need for continually updated evaluations has been
recognized in recent works (Ott et al., 2022). Live benchmarks such as those proposed by Li et al.
(2024), (Chiang et al., 2024) and Kiela et al. (2021) aim to address this issue. Skill-Mix (Yu et al.,
2023) takes a novel approach, combining separate skills required to solve a problem they are able
to increase task difficulty non-linearly with k skills. EXE has been inspired by both these concepts,
hence the focus on enabling continual generation of new coding tasks and test cases, as well as the
potential extension into chaining functions.

While many existing benchmarks use curated or synthetic datasets, EXE leverages real-world code
from popular Python repositories. This approach is inspired by works like CodeNet (Puri et al.,
2021) and The Stack (Kocetkov et al., 2022) which demonstrated the value of diverse, real-world
data in training and evaluating language models.

5 EXTENSIONS

Expanding the scope and diversity We believe scaling EXE to include more repositories by as
much as 100x would significantly reduce the noise seen in our coding metrics and provide a more
resilient baseline for future frontier models. By incorporating additional Python functions — po-
tentially using language models to predict missing type annotations — and including a diversity
of other programming languages such as C++, Go and JavaScript, we believe there is even further
opportunity to scale. This would offer further insights into the generalisability of a model’s code
understanding, pose new challenges for analysis such as pointers, macros and type-free codebases.

Probing code execution mechanisms with simple functions We believe there is an opportunity
to align code execution with mechanistic interpretability, to gain an understanding of how constant
compute language models can execute complex multi-step instructions. To illustrate, if we select
the simplest function that a language model can not directly predict the outcome of, a hash function
for example (one that doesn’t use floating point math in this case), one requiring compute at each
iteration. This would force the network to perform the computation step by step, and for a constant
compute feed-forward network, layer by layer. Hence, performing a single iteration that may not
lead to anything interesting, however as we increase the iteration count one by one, the model now
must find a repeated circuit to perform the same computation in the later layers. For every increase it
must find another circuit or a more optimal way of performing its work until it fails. We believe this
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would present an interesting approach alongside standard mechanistic interpretability techniques for
circuit discovery and understanding of control flow, variable tracking and computational logic at the
mechanistic level.

Breakpoint analysis for validating code execution granularly Rather than evaluating the final
return value, including multiple evaluation points within code execution may assist verification of if
models are performing the step-by-step computations to reach a return value. Furthermore by insert-
ing ’breakpoints’ throughout the execution process, we can transform a single return state prediction
task into numerous intermediate state prediction tasks. To illustrate, given a code snippet with a
breakpoint at a specific line, a model would be tasked to determine the values of the local variables
when the breakpoint is triggered. This mirrors common human debugging practices and may reveal
discrepancies between final output accuracy and intermediate state understanding, offering further
resistance against tasks where their final outcome can be directly predicted.

Connection to cybersecurity threat model. Software vulnerability research techniques are largely
1 enabled by the ability to predict and reason about expected program outcomes. For example,
code injection, path resolution and memory buffer attacks are often found through manual human
analysis; tracing inputs through the control flow, predicting output states and reasoning if there
are opportunities to exploit. As EXE contains parsers such as seen in Appendix A.1 we see an
opportunity to select a subset of EXE where prediction of error would imply language models have
the internal capability to comprehend and aid humans with crafting vulnerabilities.

6 CONCLUSIONS

In this paper, we introduced EXecution-Eval (EXE), a benchmark designed to evaluate whether lan-
guage models can execute real-world code. By collecting over 30,000 tasks from 1,000 popular
Python repositories, EXE presents a diverse range of problems requiring computational operations
such as mathematical reasoning, logical inference, and state maintenance. Our evaluations suggest
that while language models demonstrate some capability in executing code, they often struggle with
complex, multi-step tasks—particularly those involving many identifiers, function calls and iterative
operations. Our findings indicate that although current models have limitations in accurately rea-
soning about and executing real-world code, they perform surprisingly well on average, prompting
several opportunities extending this investigation.

EXE aims to address limitations of existing benchmarks by providing a scalable, diverse, and con-
tinually updatable framework. Its design targets a smooth difficulty scale and easy generation of
new tasks with minimal human oversight with the goal to reduce the risk of models ”training on the
test set.”
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A APPENDIX

You may include other additional sections here.

A.1 EXAMPLE INPUT & OUTPUT

Below is an example from the eval set. It is split into three components:

1. Code Task. The function split_email was found to pass the type requirements, and as such
all modules, classes, functions and attributes required to execute it have been recursively inlined.
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2. Test Case Inputs. Based on the type definition (used for setting the function calling schema)
inputs/ output pairs have been generated with the goal of maximising diversity of control flow paths
within the function.

3. Outputs. Based on the type definition (used for setting the function calling schema) inputs/
output pairs have been generated with the goal of maximising diversity of control flow paths within
the function.

Code

Note: The top 1,000 PyPI repos are used to form EXE, this function is from email-validator, rank
345

1 from typing import Optional, Tuple
2 import re
3 import unicodedata
4

5

6 class EmailNotValidError(ValueError):
7 """Parent class of all exceptions raised by this module."""
8 pass
9

10

11 class EmailSyntaxError(EmailNotValidError):
12 """Exception raised when an email address fails validation

because of its form."""
13 pass
14

15

16 ATEXT = r’a-zA-Z0-9_!#\$%&\’\*\+\-/=\?\ˆ‘\{\|\}˜’
17

18

19 def safe_character_display(c: str) -> str:
20 # Return safely displayable characters in quotes.
21 if c == ’\\’:
22 return f"\"{c}\"" # can’t use repr because it escapes it
23 if unicodedata.category(c)[0] in ("L", "N", "P", "S"):
24 return repr(c)
25

26

27 # Construct a hex string in case the unicode name doesn’t exist.
28 if ord(c) < 0xFFFF:
29 h = f"U+{ord(c):04x}".upper()
30 else:
31 h = f"U+{ord(c):08x}".upper()
32

33

34 # Return the character name or, if it has no name, the hex
string.

35 return unicodedata.name(c, h)
36

37

38 ATEXT_RE = re.compile(’[.’ + ATEXT + ’]’) # ATEXT plus dots
39

40

41 def check_unsafe_chars(s: str, allow_space: bool = False) -> None:
42 # Check for unsafe characters or characters that would make the

string
43 # invalid or non-sensible Unicode.
44 bad_chars = set()
45 for i, c in enumerate(s):
46 category = unicodedata.category(c)
47 if category[0] in ("L", "N", "P", "S"):
48 # Letters, numbers, punctuation, and symbols are permitted

.
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49 pass
50 elif category[0] == "M":
51 # Combining character in first position would combine with

something
52 # outside of the email address if concatenated, so they

are not safe.
53 # We also check if this occurs after the @-sign, which

would not be
54 # sensible because it would modify the @-sign.
55 if i == 0:
56 bad_chars.add(c)
57 elif category == "Zs":
58 # Spaces outside of the ASCII range are not specifically

disallowed in
59 # internationalized addresses as far as I can tell, but

they violate
60 # the spirit of the non-internationalized specification

that email
61 # addresses do not contain ASCII spaces when not quoted.

Excluding
62 # ASCII spaces when not quoted is handled directly by the

atom regex.
63 #
64 # In quoted-string local parts, spaces are explicitly

permitted, and
65 # the ASCII space has category Zs, so we must allow it

here, and we’ll
66 # allow all Unicode spaces to be consistent.
67 if not allow_space:
68 bad_chars.add(c)
69 elif category[0] == "Z":
70 # The two line and paragraph separator characters (in

categories Zl and Zp)
71 # are not specifically disallowed in internationalized

addresses
72 # as far as I can tell, but they violate the spirit of the

non-internationalized
73 # specification that email addresses do not contain line

breaks when not quoted.
74 bad_chars.add(c)
75 elif category[0] == "C":
76 # Control, format, surrogate, private use, and unassigned

code points (C)
77 # are all unsafe in various ways. Control and format

characters can affect
78 # text rendering if the email address is concatenated with

other text.
79 # Bidirectional format characters are unsafe, even if used

properly, because
80 # they cause an email address to render as a different

email address.
81 # Private use characters do not make sense for publicly

deliverable
82 # email addresses.
83 bad_chars.add(c)
84 else:
85 # All categories should be handled above, but in case

there is something new
86 # to the Unicode specification in the future, reject all

other categories.
87 bad_chars.add(c)
88 if bad_chars:
89 raise EmailSyntaxError("The email address contains unsafe

characters: "
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90 + ", ".join(safe_character_display(c)
for c in sorted(bad_chars)) + ".")

91

92

93 def split_email(email: str) -> Tuple[Optional[str], str, str, bool]:
94 # Return the display name, unescaped local part, and domain part
95 # of the address, and whether the local part was quoted. If no
96 # display name was present and angle brackets do not surround
97 # the address, display name will be None; otherwise, it will be
98 # set to the display name or the empty string if there were
99 # angle brackets but no display name.

100

101

102 # Typical email addresses have a single @-sign and no quote
103 # characters, but the awkward "quoted string" local part form
104 # (RFC 5321 4.1.2) allows @-signs and escaped quotes to appear
105 # in the local part if the local part is quoted.
106

107

108 # A ‘display name <addr>‘ format is also present in MIME
messages

109 # (RFC 5322 3.4) and this format is also often recognized in
110 # mail UIs. It’s not allowed in SMTP commands or in typical web
111 # login forms, but parsing it has been requested, so it’s done
112 # here as a convenience. It’s implemented in the spirit but not
113 # the letter of RFC 5322 3.4 because MIME messages allow

newlines
114 # and comments as a part of the CFWS rule, but this is typically

not
115 # allowed in mail UIs (although comment syntax was requested

once too).
116 #
117 # Display names are either basic characters (the same basic

characters
118 # permitted in email addresses, but periods are not allowed and

spaces
119 # are allowed; see RFC 5322 Appendix A.1.2), or or a quoted

string with
120 # the same rules as a quoted local part. (Multiple quoted

strings might
121 # be allowed? Unclear.) Optional space (RFC 5322 3.4 CFWS) and

then the
122 # email address follows in angle brackets.
123 #
124 # We assume the input string is already stripped of leading and

trailing CFWS.
125

126

127 def split_string_at_unquoted_special(text: str, specials: Tuple[
str, ...]) -> Tuple[str, str]:

128 # Split the string at the first character in specials (an @-
sign

129 # or left angle bracket) that does not occur within quotes
and

130 # is not followed by a Unicode combining character.
131 # If no special character is found, raise an error.
132 inside_quote, escaped, left_part = False, False, ""
133 for i, c in enumerate(text):
134 # < plus U+0338 (Combining Long Solidus Overlay)

normalizes to
135 # U+226E (Not Less-Than), and it would be confusing to

treat
136 # the < as the start of "<email>" syntax in that case.

Likewise,
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137 # if anything combines with an @ or ", we should probably
not

138 # treat it as a special character.
139 if unicodedata.normalize("NFC", text[i:])[0] != c:
140 left_part += c
141

142

143 elif inside_quote:
144 left_part += c
145 if c == ’\\’ and not escaped:
146 escaped = True
147 elif c == ’"’ and not escaped:
148 # The only way to exit the quote is an unescaped

quote.
149 inside_quote = False
150 escaped = False
151 else:
152 escaped = False
153 elif c == ’"’:
154 left_part += c
155 inside_quote = True
156 elif c in specials:
157 # When unquoted, stop before a special character.
158 break
159 else:
160 left_part += c
161

162

163 if len(left_part) == len(text):
164 raise EmailSyntaxError("An email address must have an @-

sign.")
165

166

167 right_part = text[len(left_part):] # The right part is
whatever is left.

168

169

170 return left_part, right_part
171

172

173 def unquote_quoted_string(text: str) -> Tuple[str, bool]:
174 # Remove surrounding quotes and unescape escaped backslashes
175 # and quotes. Escapes are parsed liberally. I think only

backslashes
176 # and quotes can be escaped but we’ll allow anything to be.
177 quoted, escaped, value = False, False, ""
178 for i, c in enumerate(text):
179 if quoted:
180 if escaped:
181 value += c
182 escaped = False
183 elif c == ’\\’:
184 escaped = True
185 elif c == ’"’:
186 if i != len(text) - 1:
187 raise EmailSyntaxError("Extra character(s)

found after close quote: "
188 + ", ".join(

safe_character_display
(c) for c in text[i +
1:]))

189 break
190 else:
191 value += c
192 elif i == 0 and c == ’"’:
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193 quoted = True
194 else:
195 value += c
196

197

198 return value, quoted
199

200

201 # Split the string at the first unquoted @-sign or left angle
bracket.

202 left_part, right_part = split_string_at_unquoted_special(email,
("@", "<"))

203

204

205 # If the right part starts with an angle bracket, then the left
part

206 # is a display name and the rest of the right part up to the
207 # final right angle bracket is the email address, .
208 if right_part.startswith("<"):
209 # Remove space between the display name and angle bracket.
210 left_part = left_part.rstrip()
211

212

213 # Unquote and unescape the display name.
214 display_name, display_name_quoted = unquote_quoted_string(

left_part)
215

216

217 # Check that only basic characters are present in a non-
quoted display name.

218 if not display_name_quoted:
219 bad_chars = {
220 safe_character_display(c)
221 for c in display_name
222 if (not ATEXT_RE.match(c) and c != ’ ’) or c == ’.’
223 }
224 if bad_chars:
225 raise EmailSyntaxError("The display name contains

invalid characters when not quoted: " + ", ".
join(sorted(bad_chars)) + ".")

226

227

228 check_unsafe_chars(display_name, allow_space=True) # Check
for other unsafe characters.

229

230

231 # Check that the right part ends with an angle bracket
232 # but allow spaces after it, I guess.
233 if ">" not in right_part:
234 raise EmailSyntaxError("An open angle bracket at the start

of the email address has to be followed by a close
angle bracket at the end.")

235 right_part = right_part.rstrip(" ")
236 if right_part[-1] != ">":
237 raise EmailSyntaxError("There can’t be anything after the

email address.")
238

239

240 # Remove the initial and trailing angle brackets.
241 addr_spec = right_part[1:].rstrip(">")
242

243

244 # Split the email address at the first unquoted @-sign.
245 local_part, domain_part = split_string_at_unquoted_special(

addr_spec, ("@",))
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246

247

248 # Otherwise there is no display name. The left part is the local
249 # part and the right part is the domain.
250 else:
251 display_name = None
252 local_part, domain_part = left_part, right_part
253

254

255 if domain_part.startswith("@"):
256 domain_part = domain_part[1:]
257

258

259 # Unquote the local part if it is quoted.
260 local_part, is_quoted_local_part = unquote_quoted_string(

local_part)
261

262

263 return display_name, local_part, domain_part,
is_quoted_local_part

Test Case Inputs
1 [
2 {
3 "input": [["simple@example.com"], {}],
4 "output": [null,"simple","example.com", false],
5 },
6 {
7 "input": [["user+name@sub.domain.com"], {}],
8 "output": [null,"user+name","sub.domain.com", false],
9 },

10 {
11 "input": [["user.name@domain.co.uk"], {}],
12 "output": [null,"user.name","domain.co.uk", false],
13 },
14 {
15 "input": [["\"quoted@local\"@example.com"], {}],
16 "output": [null,"quoted@local","example.com", true],
17 },
18 {
19 "input": [["display name <user@domain.com>"], {}],
20 "output": ["display name","user","domain.com", false],
21 },
22 {
23 "input": [["user@localhost"], {}],
24 "output": [null,"user","localhost", false],
25 },
26 {
27 "input": [["user@[IPv6:2001:db8::1]"], {}],
28 "output": [null,"user","[IPv6:2001:db8::1]", false],
29 },
30 {
31 "input": [["\"escaped\\\"quote\"@example.com"], {}],
32 "output": [null,"escaped\"quote","example.com", true],
33 },
34 {
35 "input": [["user.name@longsubdomain.example.com"], {}],
36 "output": [null,"user.name","longsubdomain.example.com", false],
37 },
38 {
39 "input": [["very.common@example.com"], {}],
40 "output": [null,"very.common","example.com", false],
41 },
42 {
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43 "input": [["user@domain-with-dash.com"], {}],
44 "output": [null,"user","domain-with-dash.com", false],
45 },
46 {
47 "input": [["user@123.123.123.123"], {}],
48 "output": [null,"user","123.123.123.123", false],
49 },
50 {
51 "input": [["\"much.more unusual\"@example.com"], {}],
52 "output": [null,"much.more unusual","example.com", true],
53 },
54 {
55 "input": [["user@xn--exmple-cua.com"], {}],
56 "output": [null,"user","xn--exmple-cua.com", false],
57 },
58 {
59 "input": [["user@domain_with_underscore.com"], {}],
60 "output": [null,"user","domain_with_underscore.com", false],
61 }
62 ]

Generated Outputs
1 [
2 {
3 "input": [["simple@example.com"], {}],
4 "output": [null,"simple","example.com", false],
5 "prediction": [null,"simple","example.com",false],
6 "result": true,
7 "answer_tokens": {"completion": 18,"prompt": 4610,"total": 4628}
8 },
9 {

10 "input": [["user+name@sub.domain.com"], {}],
11 "output": [null,"user+name","sub.domain.com", false],
12 "prediction": [null,"user+name","sub.domain.com",false],
13 "result": true,
14 "answer_tokens": {"completion": 21,"prompt": 4614,"total": 4635}
15 },
16 {
17 "input": [["user.name@domain.co.uk"], {}],
18 "output": [null,"user.name","domain.co.uk", false],
19 "prediction": [null,"user.name","domain.co.uk",false],
20 "result": true,
21 "answer_tokens": {"completion": 20,"prompt": 4613,"total": 4633}
22 },
23 {
24 "input": [["\"quoted@local\"@example.com"], {}],
25 "output": [null,"quoted@local","example.com", true],
26 "prediction": ["null","quoted@local","example.com",true],
27 "result": false,
28 "answer_tokens": {"completion": 20,"prompt": 4615,"total": 4635}
29 },
30 {
31 "input": [["display name <user@domain.com>"], {}],
32 "output": ["display name","user","domain.com", false],
33 "prediction": ["display name","user","domain.com",false],
34 "result": true,
35 "answer_tokens": {"completion": 19,"prompt": 4615,"total": 4634}
36 },
37 {
38 "input": [["user@localhost"], {}],
39 "output": [null,"user","localhost", false],
40 "prediction": [null,"user","localhost",false],
41 "result": true,
42 "answer_tokens": {"completion": 17,"prompt": 4610,"total": 4627}
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43 },
44 {
45 "input": [["user@[IPv6:2001:db8::1]"], {}],
46 "output": [null,"user","[IPv6:2001:db8::1]", false],
47 "prediction": "EmailSyntaxError: An email address must have an @-

sign.",
48 "result": false,
49 "answer_tokens": {"completion": 24,"prompt": 4620,"total": 4644
50 }
51 },
52 {
53 "input": [["\"escaped\\\"quote\"@example.com"], {}],
54 "output": [null,"escaped\"quote","example.com", true],
55 "prediction": ["null","escaped\"quote","example.com",true],
56 "result": false,
57 "answer_tokens": {"completion": 20,"prompt": 4615,"total": 4635}
58 },
59 {
60 "input": [["user.name@longsubdomain.example.com"], {}],
61 "output": [null,"user.name","longsubdomain.example.com", false],
62 "prediction": [null,"user.name","longsubdomain.example.com",false],
63 "result": true,
64 "answer_tokens": {"completion": 22,"prompt": 4615,"total": 4637}
65 },
66 {
67 "input": [["very.common@example.com"], {}],
68 "output": [null,"very.common","example.com", false],
69 "prediction": [null,"very.common","example.com",false],
70 "result": true,
71 "answer_tokens": {"completion": 19,"prompt": 4611,"total": 4630}
72 },
73 {
74 "input": [["user@domain-with-dash.com"], {}],
75 "output": [null,"user","domain-with-dash.com", false],
76 "prediction": [null,"user","domain-with-dash.com",false],
77 "result": true,
78 "answer_tokens": {"completion": 21,"prompt": 4614,"total": 4635}
79 },
80 {
81 "input": [["user@123.123.123.123"], {}],
82 "output": [null,"user","123.123.123.123", false],
83 "prediction": [null,"user","123.123.123.123",false],
84 "result": true,
85 "answer_tokens": {"completion": 23,"prompt": 4616,"total": 4639}
86 },
87 {
88 "input": [["\"much.more unusual\"@example.com"], {}],
89 "output": [null,"much.more unusual","example.com", true],
90 "prediction": [null,"much.more unusual","example.com",true],
91 "result": true,
92 "answer_tokens": {"completion": 20,"prompt": 4615,"total": 4635}
93 },
94 {
95 "input": [["user@xn--exmple-cua.com"], {}],
96 "output": [null,"user","xn--exmple-cua.com", false],
97 "prediction": [null,"user","xn--exmple-cua.com",false],
98 "result": true,
99 "answer_tokens": {"completion": 24,"prompt": 4617,"total": 4641}

100 },
101 {
102 "input": [["user@domain_with_underscore.com"], {}],
103 "output": [null,"user","domain_with_underscore.com", false],
104 "prediction": "EmailSyntaxError: The email address contains unsafe

characters: ’U+005F’.",
105 "result": false,
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106 "answer_tokens": {"completion": 28,"prompt": 4614,"total": 4642}
107 }
108 ]

A.2 ACCEPTABLE TYPES & FILTERING CRITERIA

Acceptable types. To find functions where the inputs and outputs are LLM generat-
able, we recursively parse both arguements and return types as ast objects i.e. for
list[tuple[str, False]] we first check list is an acceptable type, then recurse down
into tuple, following that we then check str and finally we check False. False isn’t an ac-
ceptable type but it is an acceptable constant and hence accepted. Note: certain acceptable types and
constants are not allowed as return values, i.e. None is not an accepted return constant

acceptable types = { ’int’, ’str’, ’float’, ’bool’, ’none’, ’list’, ’dict’,
’tuple’, ’set’, ’datetime.date’, ’date’, ’literal’, ’optional’, ’union’,
’sequence’, ’iterable’, ’frozenset’, ’mapping’ }

acceptable constants = { ’ellipsis’, True, False, None }

Filtering functions. When filtering functions we maintain four separate block lists, 1) a list of
banned imports (including direct and aliases), 2) a list of banned functions (some common libraries
have a limited set of non-deterministic methods, we don’t want to fully exclude them), 3) a list of
banned variables (some variables such as __version__ are likely to be environment based), 4) a
list of banned repos (some repos from cloud providers provide thousands of near identical methods
with different urls, we remove these as they are not a valuable contribution to the evaluation).
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