Under review as a conference paper at ICLR 2025

EXECUTION-EVAL: CAN LANGUAGE MODELS EXE-
CUTE REAL-WORLD CODE?

Anonymous authors
Paper under double-blind review

ABSTRACT

As language models advance, traditional benchmarks face challenges of dataset
saturation and disconnection from real-world performance, limiting our under-
standing of true model capabilities. We introduce EXecution-Eval (EXE), a
benchmark designed to assess LLMs’ ability to execute code and predict program
states. EXE attempts to address key limitations in existing evaluations: difficulty
scaling, task diversity, training data contamination, and cost-effective scalability.
Comprising over 30,000 tasks derived from 1,000 popular Python repositories on
GitHub, EXE spans a wide range of lengths and algorithmic complexities. Tasks
require models to execute code, necessitating various operations including math-
ematical reasoning, logical inference, bit manipulation, string operations, loop
execution, and maintaining multiple internal variable states during computation.
Our methodology involves: (a) selecting and preprocessing GitHub repositories,
(b) generating diverse inputs for functions, (c) executing code to obtain ground
truth outputs, and (d) formulating tasks that require models to reason about code
execution. This approach allows for continuous new task generation for as few
as 1,123 tokens, significantly reducing the risk of models “training on the test
set.” We evaluate several state-of-the-art LLMs on EXE, revealing insights into
their code comprehension and execution capabilities. Our results show that even
the best-performing models struggle with complex, multi-step execution tasks,
highlighting specific computational concepts that pose the greatest challenges for
today’s LLMs. Furthermore, we review EXE’s potential for finding and predicting
errors to aid in assessing a model’s cybersecurity capabilities. We propose EXE
as a sustainable and challenging testbed for evaluating frontier models, offering
insights into their internal mechanistic advancement.

1 INTRODUCTION

Language model benchmarks are facing challenges of rapid saturation (Ott et al., 2022) and an
increasing disconnect from real-world performance perceived by end-users (Zheng et al., [2023).
Due to this, benchmarks are being continually created to address failure modes; e.g. SuperGLUE
targeting GLUE’s low problem difficulty (Wang et al.,2019), BIG-bench targeting general low eval-
uation diversity (Srivastava et al.| [2022) and Auto-Arena-Hard targeting training-set contamination
and data diversity in Chatbot-Arena (Li et al., |2024)(Chiang et al., 2024). These failure modes
all demonstrate the challenge in linking the mechanistic improvements within language models to
human understandable tasks.

Hence, to maximise an evaluation’s utility we aim to minimise the common failure modes of; a)
difficulty, not ensuring an unbound scale of small trivial problems to complex multi-step problems,
b) diversity, not ensuring a representative distribution across a large space of problems, c) novelty,
not ensuring continually fresh, out-out-training data samples can be generated and, d) scalability,
not ensuring tasks are cost-effective to generate in the thousands and beyond.

Motivated by these challenges we introduce EXecutionEval (EXE), an evaluation replicating one
of the primary tasks humans perform while coding; predicting and comparing a final program state
for a given set of inputs - seen in Figure [l EXE is designed to avoid the aforementioned failure
modes; emphasising difficulty (smooth scale from trivial 1-step, one-line functions to difficult 100s-
of-step, multi-layer functions), diversity (unbound number of test cases generatable for tasks from
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Figure 1: An example task from Apache Airflow’s Github repository (code simplified to fit within
diagram). EXE sources tasks from 1,000 Python repositories, generates test cases for them, and
compares the LLM’s ability to execute code against python’s interpreter.

1,000 GitHub Repos), novelty (program inputs can be continually generated) and scalability (initial
release containing 30,000+ problems at a cost of $33).

EXE also holds theoretical inspiration. (Fowler et al., 2022) et al have replicated positive peda-
gogical correlations found by (Lopez et al., | 2008) between the abilities of CS1 students to “trace”
programs (i.e. manually predict outputs and write the internal state out line by line) and their abili-
ties to pass code writing and explanation exams. This is mirrored in CRUX-Eval’s (Gu et al., [2024)
findings, where they observe a moderate correlation between a model’s ability to execute a block of
code and a model’s HumanEval (Chen et al.,[2021)) code writing Pass@1 rate.

2 EVALUATION FRAMEWORK

As seen in Figure [T} an EXE task is to predict a function’s return value or error from: a) a code
snippet and b) a set of input arguments. Code snippets are extracted from PyPi’s most popular 1,000
python projects hosted on GitHub, we select our snippets to be pure (i.e. deterministic, no side
effects), language model generatable (i.e. arg types of ints, lists, ...)and to only require
builtins (local imports and external libraries are inlined for the snippet). To realise this we follow
the following three stage pipeline 2}

1 Repo Selection and Pulling 2 Function Selection 3 Task Generation

@ Select top 1,000 PyPi packages { > Collate typed functions per repo @ LLM generation of task inputs

{7 Collate source from GitHub R Inline module dependencies <> Code execution per task

¢ » Filter to type annotated repos 9 7 Filter to deterministic code 9 @ Target data collation

Collated and Filtered Repos: Dataset: [ function_1.py Repos: Functions: [ task_1
DPydanti.c Dwerkzeug B Pillow daf draw_get_angles(...} Writlow  DBfunc_1.py or:[12], kS
m D cpac (3 spacy B function_2.py [ spacy B func_2.py [Btask 2

hpaek pacy [ faker def palette_Lut(...} [ faker  [Bfunc_3.py  arr:[e.9], ki@

Figure 2: Three stage EXE task generation pipeline. Detailed example tasks and generated inputs
can be found in Appendix [A.T]

1. Repo Selection and Code Scraping. We first select the top 1,000 most popular pypi packages
and collate the corresponding github repos where possible, similar to (Jimenez et al.,|2023)). Repos-
itories are filtered to include only those with permissive licences that allow derivative works with
attribution. These repos are then pulled down locally and filtered based on a static Abstract Syntax
Tree (AST) analysis determining which repositories contain type-annotated code.

2. Function Selection and Dependency Collation. We perform a static AST analysis to filter
to functions with LLM generatable argument and return type annotations. Further AST analysis
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then recursively identifies dependent elements (modules, functions, classes, variables, ...) across
files, builds a dependency graph, and inlines them into a base task. Finally, base tasks containing
side effects or non-deterministic code such as environment variables, process calls, randomness or
network requests are filtered out. See Appendix [A.3]for step-by-step methodology and[A.5]for detail
on acceptable type annotations and filtering.

3. Test Case Generation. Using the argument type annotations we construct a LLM function
calling schema that generates a diverse set of inputs. The base task code is then executed with each
generated input and the result with runtime statistics are logged. This forms the test case (base task
code + generated input), output (returned result or error from executed code) and statistics (runtime
statistics + static AST analysis statistics). See Appendix [A.2] for step-by-step methodology and
Appendix [A.6|for details on statistics.
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Figure 3: We observe task counts per repository to have a near logarithmic falloff. Note: Based
on manual observations, several repositories are removed from EXE due to thousands of similar
functions with only single modifications, for example changing a url address.

Through these stages of filtering, the original top 1,000 repositories are filtered down to the 33,875
task instances which comprise EXE. A high level breakdown of these task instances across reposito-
ries is presented in Figure[3] We note some repositories are overrepresented primarily due to being
more modern (using type annotations) and the style of code (shorter deterministic pieces).

2.1 TASK FORMATION

Model input. The model is given a complete snippet of code alongside the input state to be executed.
The model is then tasked to predict the resulting return value, or in the case that an exception is raised
the model is instructed to generate an exception type and value. In practice, we prompt models
with an odata json representation and use a parser to ensure valid generations. We do append one
additional user reply with the parsing error if the model’s response fails to parse. Examples of input
instances can be found in Appendix [A.T]

Evaluation metrics. To evaluate a proposed solution, we use the pass @k metric (Chen et al., 2021)),
comparing the ground truth and the generated prediction as json objects (set and frozenset
are sorted before conversion to json lists). If the original code produced an exception, we compare
the type and message (excluding stacktrace) using a language model comparison. See detailed
methodology in Appendix and see examples of generated outputs in Appendix[A.T]

2.2 FEATURES OF EXE

Diversity of inputs and outputs. Unlike many benchmarks focused on a particular subject matter
area, a task in this eval may require a model to perform mathematical reasoning, logical inference,
bit manipulation, string operations, loop execution, or to maintain multiple internal variables during
computation. Furthermore, these may only form part of an algorithm that the model has to exe-
cute. Our random human inspection has uncovered algorithmic time complexities spanning from
O(1) to O(z™) and structured analysis has found tasks with code context lengths ranging from 440
to 311,000 tokens. Ensuring this broad diversity reduces the risk of hitting a local maxima and
increases our opportunity to measure internal capabilities across a range of difficulties.

Continually updatable. Both our code collection and task input generation processes can create
new tasks with minimal human oversight. Simply re-running our code collection to pull the latest
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commits or directing it towards an uncollected Python GitHub repository will create new task in-
stances. Furthermore we can continue to generate new test cases for existing tasks, our test case
generator automatically avoids generating seen inputs. Hence, EXE can be extended continually
with new task instances, ensuring answers were not included in training corpuses of models for
evaluation.

Cost effective scalability. With generation of new tasks requiring an average of 1,112 input tokens
(batch of 15) and evaluation of tasks typically requiring 1,123 tokens, ExecEval can be generated,
tested and continually updated at a fraction of the cost of human-curated benchmarks. Our initial
dataset of 33,875 cases has only incurred an approximate costing of $33 to produce and $95 to test
on.

Long multi-step problems with smooth difficulty scaling. We provide a continuous spectrum
of task difficulties, ranging from 1-step, one-line functions to multi-file, multi-class, multi-100-
step tasks. Our most complex tasks include function call depths (non-recursive) of up to 13 levels
(median: 2), separate identifier counts (i.e. variable names, function names, ...) of up to 823
(median: 16) and up to 63 if statements (median: 1). This smooth scaling of difficulty allows for
a more detailed measurement of model coherence along multi-step problems than what is typically
seen in traditional evaluations. However, as language models continue to advance rapidly, even this
wide range of difficulties may eventually face saturation.

To address this, we observe a mechanism inspired by the SKILL-MIX evaluation (Yu et al., [2023))
that leverages the typed nature of our function selection process. This approach allows us to cre-
ate even more complex tasks by chaining functions where the output type of one matches the input
type of another, or by combining multiple outputs into a composite input. The number of poten-
tial new tasks can be upper bounded by n? - (Tmax)’“C - C,, where n is the total number of types,
Thax = max; ; T; ; is the maximum number of existing tasks between any two types, k is the num-
ber of functions to chain, and C' is the average number of test cases per task. While this is an upper
bound and the actual number of valid composite tasks would be lower due to specific type compat-
ibility constraints, it still represents a significant expansion of our task space. We view this as an
opportunity to trade some of the ‘realism’ of using 100% real-world code for the ability to probe the
upper bounds of model capabilities. For constant compute models, this approach allows us to test
their internal mechanistic capabilities in handling increasingly complex, multi-step problems. And
for chain-of-thought models, it provides a test of increasingly long-term agentic coherency.

Error prediction. To test the full spectrum of code execution we further generate test cases designed
to trigger exceptions. Many of these require in-depth analysis to see ahead of time, for example
predicting an invalid array index through multiple functions. While debugging exceptions is one
of the more challenging software engineering tasks, we are yet to see it commonly evaluated in
benchmarks.

3 RESULTS

We report our evaluation results across different SOTA models alongside our findings across differ-
ent task statistics below.

Table 1: EXE Pass@]1 results

Model EXE dataset (Pass@1) Errors (Pass@1)
GPT-40 72.4 49.5
GPT-40-mini 60.9 32.0
Llama3.1-8B 37.4 2.1
Llama3.1-405B 71.4 34.3
Claude3.5-Sonnet 76.1 45.8
Mistral-Large-2407 71.5 33.7

LLMs can execute real-world code, achieving results in-line with code generation benchmarks.
We find EXE shows similar relative model performance between models as seen in coding bench-
marks such as HumanEval (Chen et al.,|2021)) and as seen in benchmarks requiring logical inference
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such as (Lu et al.;|2023)). Furthermore we find a similar diversity of performance across packages as
seen in agentic benchmarks such as (Jimenez et al., 2023). We show our findings in FigureE}

Package Pass@1 (Top 25 by task count) Best and Worst Packages (Min 25 Samples)
1.0 1 1.0 1
20»mm| Performance
o
llama-405b Best
llama-8b W Worst
0.8 1 3.5-sonnet 0.84
mistrallarge
0.6 0.6
—
@
a
&
0.4 1 0.4 1
0.2 1 0.2
'0< “o@*‘*(é&*e‘!f\Véev & O ot \%00 < ot (@ (o A 10% o0 (o )
\«’(\t: o9 ¢ : R e“ e o Qv“ 2 a‘ \‘\a° o \‘ m‘% o “\QL«“’\ R “'A“D(\(\E ™ ‘\2 o ft A o c\\za\é B\a%v iio‘jefv ,:Z: c::uﬁvgﬁv PV Q\\: O ‘*\)g(‘ ‘c\«\ W vé\‘ o
o 3
o Nﬁ‘) L“»";oo& e “\e o @gvf:s%“m q°:aQ S T s o

N

Figure 4: Left - We show the relative accuracy of different models across the top 20 packages by task
count. Both the relative differences between models and the relative differences between packages
are within expectations from other coding benchmarks (Jimenez et al.| 2023). Right - We show the
magnitude of diversity across packages (mean performance across all models).

Prior works such as Learning To Execute (Zaremba & Sutskever, |[2014) and CRUX-Eval (Gu et al.,
2024) have placed justifiable limitations on code complexity; removing mathematical operations,
limiting line count, disallowing custom classes and only having one singular function to name a few.
We hypothesised that these are no longer necessary, and to understand the true internal capabilities
of a constant compute model (i.e. no Chain of Thought) we must test on real-world code, only
applying limitations where forced (i.e. no arbitrary object inputs, as LLMs can’t generate them).
Our results as seen in table[I| provide initial evidence towards our hypothesis.

ExecEval provides a smooth curve of task difficulties. We set out to ensure a) our evaluation
does not induce saturation from a bounded distribution of task difficulties, b) our evaluation does
not induce an ”Al overhang” by not having a smooth transition between difficulties and, c) the
correlated factors affecting difficulty are human interpretable.

CEINET)

As shown in Flgurel 5] several task statistics such as lines of code”, ”processing time” and “number
of function calls” all correlate log-linearly with a model’s achieved pass@ 1 score. These correlations
provide preliminary evidence towards c) as they align with simplistic human intuition, i.e. more lines
of code, more compute cycles, higher difficulty. Furthermore, we view the log-linear relationships
as evidence towards b), i.e. EXE provides a smooth transition between difficulties. And finally, we
view the relationships as a demonstration of difficulty being affected by factors within our control,
i.e. number of function calls - providing empirical evidence towards a).

Beyond evaluation-wide difficulty scaling, EXE also demonstrates diversity and varying difficulty
levels within individual task sets. Each function has up to 15 generated test cases, allowing us to
analyse variance per task set. To measure execution path diversity, we collect runtime statistics
(detailed in Appendix @ and find a mean Coefficient of Variation (CV) of 0.61 for ”Count of
conditionals executed”, indicating substantial variation in code paths taken. Furthermore we find
a CV of 0.20 for “lines executed”, showing significant diversity in the number of steps required
to answer. Finally, we measure diversity in generated task difficulty through model performance -
GPT-40 achieves a mean pass rate of 0.742 (o = 0.293) per function, providing empirical evidence
test cases present a difficulty scale.

ExecEval’s test case generation scales. While EXE today includes up to 15 test cases per task, our
analysis demonstrates EXE’s generation pipeline can scale significantly further without plateauing.
As shown in Figure[6] generation of novel test case continues well beyond 300 cases per task while
maintaining all quality controls (detailed in Appendix [A.2)) - implying a potential dataset scale-up
lower bound of 20x. Growth rates vary across specific functions - for example, langchain-core’s
image formatting function, which requests a base64 encoded image string, shows the lowest growth
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Figure 5: Pass@1 for all tasks across four of our code metrics. The shaded area represents variance,
and the opacity is scaled with count of samples. Processing time is measured in microseconds.

rate. This aligns with intuition - generating novel, base64 images poses significantly more difficulty
than generating diverse string or numeric inputs.

Importantly, our token efficiency analysis (right plot) reveals that significant scaling is possible
without proportional prompt growth. By randomly selecting and injecting just 60 prior cases into
the generation prompt, we can effectively generate over 1,000 novel cases. This sublinear token
growth suggests the potential for substantial dataset expansion without incurring prohibitive costs.
Detailed examples of tasks and their generated test cases are provided in Appendix [A.8]
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Figure 6: Test case generation analysis across eleven diverse Python functions sourced from pop-
ular libraries including Azure, PyTorch, Langchain, and NLTK. Functions range from geometric
computations (torchvision) to SQL regex (snowflake-python-connector). Left: Cumulative unique
validated test cases per generation batch. Right: Same data plotted against token usage, showing
generation cost is largely constant per batch (primary factor is initial task code length). Further
methodology and source code for tested functions are provided in Appendix @

Stylistic coding patterns shape the metrics. As can be seen in Figure[5]the pass@1 rate of function
calls hits an elbow and then surprisingly improves as the call count increases. During our investi-
gation we found several of these occurrences, and not only with call count. These were found to be
largely driven by specific coding patterns and complex tasks that LLMs excel at. We show in Figure
[7|below three example tasks, and more specifically coding patterns driving this anomaly.

LLMs struggle with certain coding features. As EXE contains a diverse set of tasks, we are
able to observe model performance differing greatly based on coding features used in any task.
To illustrate: floating point math operations such as multiplications (GPT-40: 43 mean Pass@1)
significantly increase task difficulty, however bit manipulation and boolean operations only showed
a minor negative impact. Iterative operations such as compound assignment operations i.e. 7i += 17
(56 Pass@1), list slicing (65 Pass@1) and list comprehensions (68 Pass@1) all increased difficulty,
however for loops on (73 Pass@1) on average did not have a significant impact.
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Figure 7: Three examples of high pass@]1 rate tasks that contain large amounts of function calls.
Left - Charset-normaliser performs 300+ function calls to define ranges of unicode characters upon
initialisation; this constant has little effect on task difficulty but is used frequently and hence appears
in many tasks. Middle - Langchain’s Unparser class traverses an AST and regenerates source code.
The calling method in our dataset is ’add_last_line_print(str) — str”” which takes in code, parses it
and then uses Unparse(...) to unparse it; this is a prime example of a “directly predictable task”,
i.e. one not requiring line by line code execution to predict a result. Right - Similar to Charset-
normaliser, AWS’s Sagemaker has a module level constant with 10s of calls; not creating a large
impact on task difficulty but frequent in its use.

With the above metrics, and those seen in Figure [7] their mean Pass@k decreases as their count
increases. To reduce the risk of our metrics being a proxy for longer problems we show the effects
can still be seen below in Figure [8] after normalisation by lines of code (only lines with executable
syntax tokens are counted).
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Figure 8: Pass@ 1for all tasks across four of our code metrics normalised by line of code count
(limited to GPT models for readability). All four of the above metrics previously showed a negative
impact as they increased, interestingly we now observe branching statements having little to no
impact and return statements surprisingly driving an increase in Pass@1 score. Our strong negative
factors i.e. function calls and identifiers created, still are seen increasing task difficulty as they take
up ever greater percentages of the task.

4 RELATED WORK

There is a rich history of work on evaluating language models’ abilities in reasoning, execution,
and multi-step problem-solving across various domains. These efforts span from natural language
processing to mathematical reasoning, and from code generation to program execution. Our work,
EXecution-Eval (EXE), builds upon this foundation while addressing key challenges in benchmark
design and evaluation.

Code generation benchmarks have been the foundation of evaluating the coding abilities of language
models. Works like HumanEval (Chen et al., 2021) and MBPP (Austin et al., [2021) established
standardised datasets for assessing code synthesis from natural language descriptions. These efforts
have expanded to cover multiple programming languages (Cassano et al., 2022} |Khan et al., [2023)
and more complex domains such as algorithmic problem solving (Huang et al.,[2023)). While these
benchmarks focus primarily on the task of code generation, we believe additional focus on the tasks
of code execution and error prediction have been overlooked and may offer additional insight into
the internal capabilities of frontier models.
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The concept of "learning to execute” itself has a long history, Zaremba & Sutskever|(2014) explored
neural networks’ ability to learn and execute simple programs. (Graves et al.[(2014) constructed the
first Neural Turing Machines with (Kaiser & Sutskever;, 2015; |Reed & de Freitas|, 2015 |Dehghani
et all 2018)) all building further into this domain. This line of research has evolved, with recent
works like Bieber et al.| (2020); [Nye et al.|(2021) and |Gu et al.|(2024) applying graph and language
models to execute synthetic or simplistic Python programs. EXE builds upon these foundations by
evaluating execution capabilities on complex, messy, real-world code from diverse GitHub reposi-
tories, providing a more challenging, scaleable and realistic test bed.

Recent trends in benchmark design have emphasised the importance of diverse, multi-step problems
and agentic capabilities. Works like Jimenez et al.| (2023)) have introduced benchmarks that require
solving real world software engineering problems while [Zhou et al.| (2023) has enabled evaluation
of complex instruction following and performing multi-step reasoning. In the mathematical domain,
benchmarks like those by [Hendrycks et al.|(2021) and Lu et al.| (2023)) have pushed models to solve
intricate, multi-step problems.

The challenge of benchmark saturation and the need for continually updated evaluations has been
recognized in recent works (Ott et al., [2022). Live benchmarks such as those proposed by |L1 et al.
(2024), (Chiang et al., [2024) and |Kiela et al.|(2021)) aim to address this issue. Skill-Mix (Yu et al.,
2023) takes a novel approach, combining separate skills required to solve a problem they are able
to increase task difficulty non-linearly with & skills. EXE has been inspired by both these concepts,
hence the focus on enabling continual generation of new coding tasks and test cases, as well as the
potential extension into chaining functions.

While many existing benchmarks use curated or synthetic datasets, EXE leverages real-world code
from popular Python repositories. This approach is inspired by works like CodeNet (Puri et al.,
2021)) and The Stack (Kocetkov et al.| [2022)) which demonstrated the value of diverse, real-world
data in training and evaluating language models.

5 EXTENSIONS

Expanding the scope and diversity We believe scaling EXE to include more repositories by as
much as 100x would significantly reduce the noise seen in our coding metrics and provide a more
resilient baseline for future frontier models. By incorporating additional Python functions — po-
tentially using language models to predict missing type annotations — and including a diversity
of other programming languages such as C++, Go and JavaScript, we believe there is even further
opportunity to scale. This would offer further insights into the generalisability of a model’s code
understanding, pose new challenges for analysis such as pointers, macros and type-free codebases.

Probing code execution mechanisms with simple functions We believe there is an opportunity
to align code execution with mechanistic interpretability, to gain an understanding of how constant
compute language models can execute complex multi-step instructions. To illustrate, if we select
the simplest function that a language model can not directly predict the outcome of, a hash function
for example (one that doesn’t use floating point math in this case), one requiring compute at each
iteration. This would force the network to perform the computation step by step, and for a constant
compute feed-forward network, layer by layer. Hence, performing a single iteration that may not
lead to anything interesting, however as we increase the iteration count one by one, the model now
must find a repeated circuit to perform the same computation in the later layers. For every increase it
must find another circuit or a more optimal way of performing its work until it fails. We believe this
would present an interesting approach alongside standard mechanistic interpretability techniques for
circuit discovery and understanding of control flow, variable tracking and computational logic at the
mechanistic level.

Breakpoint analysis for validating code execution granularly Rather than evaluating the final
return value, including multiple evaluation points within code execution may assist verification of if
models are performing the step-by-step computations to reach a return value. Furthermore by insert-
ing “breakpoints’ throughout the execution process, we can transform a single return state prediction
task into numerous intermediate state prediction tasks. To illustrate, given a code snippet with a
breakpoint at a specific line, a model would be tasked to determine the values of the local variables
when the breakpoint is triggered. This mirrors common human debugging practices and may reveal
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discrepancies between final output accuracy and intermediate state understanding, offering further
resistance against tasks where their final outcome can be directly predicted.

Connection to cybersecurity threat model. Software vulnerability research techniques are largely
[ﬂenabled by the ability to predict and reason about expected program outcomes. For example,
code injection, path resolution and memory buffer attacks are often found through manual human
analysis; tracing inputs through the control flow, predicting output states and reasoning if there
are opportunities to exploit. As EXE contains parsers such as seen in Appendix [A.T] we see an
opportunity to select a subset of EXE where prediction of error would imply language models have
the internal capability to comprehend and aid humans with crafting vulnerabilities.

6 CONCLUSIONS

In this paper, we introduced EXecution-Eval (EXE), a benchmark designed to evaluate whether lan-
guage models can execute real-world code. By collecting over 30,000 tasks from 1,000 popular
Python repositories, EXE presents a diverse range of problems requiring computational operations
such as mathematical reasoning, logical inference, and state maintenance. Our evaluations suggest
that while language models demonstrate some capability in executing code, they often struggle with
complex, multi-step tasks—particularly those involving many identifiers, function calls and iterative
operations. Our findings indicate that although current models have limitations in accurately rea-
soning about and executing real-world code, they perform surprisingly well on average, prompting
several opportunities extending this investigation.

EXE aims to address limitations of existing benchmarks by providing a scalable, diverse, and con-
tinually updatable framework. Its design targets a smooth difficulty scale and easy generation of
new tasks with minimal human oversight with the goal to reduce the risk of models “’training on the
test set.”
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A APPENDIX

You may include other additional sections here.

A.1 EXAMPLE INPUT & OUTPUT

Below is an example from the evaluation set. It is split into three components:

1. Code Task. The function split_email was found to pass the type requirements, and as such
all modules, classes, functions and attributes required to execute it have been recursively inlined.

2. Test Case Inputs. Based on the type definition (used for setting the function calling schema)
inputs/ output pairs have been generated with the goal of maximising diversity of control flow paths
within the function.

3. Outputs. Based on the type definition (used for setting the function calling schema) inputs/
output pairs have been generated with the goal of maximising diversity of control flow paths within
the function.

Examples

11
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A.1.1 EXAMPLE A.

Code
Note: The top 1,000 PyPI repos are used to form EXE, this function is from celery, rank 594

def abbr(S: str, max: int, ellipsis: str | bool = '...') -> str:

"""Abbreviate word."""
if S is None:

return '°7?7'
if len(S) > max:

return isinstance(ellipsis, str) and (

S[: max - len(ellipsis)] + ellipsis) or S[: max]

return S

def abbrtask(S: str, max: int) -> str:
"""Abbreviate task name."""
if S is None:
return '?7?7?'
if len(S) > max:

module, _, cls = S.rpartition('.")
module = abbr (module, max - len(cls) - 3, False)
return module + '[.]' + cls
return S
Test Case Inputs

Note: For quick groking, only three inputs are shown for this example. Standard tasks contain 15
generated inputs.

[

"input": [["module.ClassName",15], {}1,
"output": "mod[.]ClassName",
b
{
"input": [["long.module.name.with.many.parts.ClassName",25], {}1],
"output": "long.module.n[.]ClassName",
b
{
"input": [["module.ClassName", 31, {}1,
"output": "[.]ClassName",
b
]
Generated Outputs
[
{
"input": [["module.ClassName",15], {}1,
"output": "mod[.]ClassName",
"prediction": "module[.]ClassName",
"result": false,

"answer_tokens": {"completion": 15, "prompt": 781, "total": 796}

"input": [["long.module.name.with.many.parts.ClassName",25], {}1],
"output": "long.module.n[.]ClassName",
"prediction": "long.module.name[.]ClassName",

"result": false,
"answer_tokens": {"completion": 17, "prompt": 787, "total": 804}

12
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A.1.2
Code

"input": [["module.ClassName", 3], {}],
"output": "[.]ClassName",
"prediction": "[.]ClassName",

"result": true,
"answer_tokens": {"completion": 14, "prompt": 781, "total": 795}

EXAMPLE B.

This function is from email-validator, rank 345.

from typing import Optional, Tuple
import re
import unicodedata

class

class

ATEXT

EmailNotValidError (ValueError) :
"""Parent class of all exceptions raised by this module."""
pass

EmailSyntaxError (EmailNotValidError) :

"""Exception raised when an email address fails validation because
— of its form."""

pass

= r'a-zA-Z0-9_!#\SS&\ "\ x\+\=/=\2\""\{\|\} '

def safe_character_display(c: str) —-> str:

# Return safely displayable characters in quotes.
A @ == I\\"3
return £"\"{c}\"" # can't use repr because it escapes it
if unicodedata.category(c) (0] in ("L", "N", "P", "S"):
return repr (c)

# Construct a hex string in case the unicode name doesn't exist.
if ord(c) < OxFFFF:

h = £"U+{ord(c) :04x}" .upper ()
else:

h = f"U+{ord(c) :08x}" .upper ()

# Return the character name or, if it has no name, the hex string.
return unicodedata.name (c, h)

ATEXT RE = re.compile('[.' + ATEXT + ']') # ATEXT plus dots

def check_unsafe_chars(s: str, allow_space: bool = False) —> None:

# Check for unsafe characters or characters that would make the
— Sstring

# invalid or non—-sensible Unicode.

bad_chars = set ()

for i, c in enumerate(s):
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702
703 category = unicodedata.category (c)
704 if category[O] in ("L", "N", "P", "S"):
# Letters, numbers, punctuation, and symbols are permitted.
705
pass
706 elif category[0] == "M":
707 # Combining character in first position would combine with
708 — something
709 # outside of the email address if concatenated, so they are
— not safe.
710

# We also check if this occurs after the @-sign, which would
711 < not be

712 # sensible because it would modify the @-sign.
713 2o e
714 bad_chars.add(c)
elif category == "Zs":
s # Spaces outside of the ASCII range are not specifically
716 — disallowed in
717 # internationalized addresses as far as I can tell, but they
718 — violate
719 # the spirit of the non-internationalized specification that
— email
720 # addresses do not contain ASCII spaces when not quoted.
721 — Excluding
722 # ASCII spaces when not quoted is handled directly by the
723 — atom regex.
724 ¢ . -
# In quoted-string local parts, spaces are explicitly
725 — permitted, and
726 # the ASCII space has category Zs, so we must allow it here,
727 — and we'll
728 # allow all Unicode spaces to be consistent.
729 if not allow_space:
bad_chars.add(c)
730 elif category[0] == "Z":
731 # The two line and paragraph separator characters (in
732 — categories Z1 and Zp)
733 # are not specifically disallowed in internationalized
734 — addresses
# as far as I can tell, but they violate the spirit of the
735 < non-internationalized
736 # specification that email addresses do not contain line
737 — breaks when not quoted.
738 bad_chars.add(c)
739 elif category[0] == "C":
# Control, format, surrogate, private use, and unassigned
740 — code points (C)
™ # are all unsafe in various ways. Control and format
742 — characters can affect
743 # text rendering if the email address is concatenated with
744 — other text.
# Bidirectional format characters are unsafe, even if used
745 — properly, because
746 # they cause an email address to render as a different email
747 — address.
748 # Private use characters do not make sense for publicly
749 — deliverable
# email addresses.
750 bad_chars.add (c)
751 else:
752 # All categories should be handled above, but in case there
753 < 1s something new
754 # to the Unicode specification in the future, reject all
< other categories.
755 bad_chars.add (c)
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756
757 if bad_chars:
758 raise EmailSyntaxError ("The email address contains unsafe
— characters: "
759 + ", ".Jjoin(safe_character_display(c) for
760 — ¢ in sorted(bad_chars)) + ".")
761
762
def split_email (email: str) -> Tuple[Optional([str], str, str, bool]:
763 . .
# Return the display name, unescaped local part, and domain part
764 # of the address, and whether the local part was quoted. If no
765 # display name was present and angle brackets do not surround
766 # the address, display name will be None; otherwise, it will be
767 # set to the display name or the empty string if there were
768 # angle brackets but no display name.
769
770 # Typical email addresses have a single @-sign and no quote
771 # characters, but the awkward "quoted string" local part form
772 # (RFC 5321 4.1.2) allows @-signs and escaped quotes to appear
773 # in the local part if the local part is quoted.
774
775 # A “display name <addr>' format is also present in MIME messages
776 # (RFC 5322 3.4) and this format is also often recognized in
777 # mail UIs. It's not allowed in SMTP commands or in typical web
# login forms, but parsing it has been requested, so it's done
778 . . . .
# here as a convenience. It's implemented in the spirit but not
779 # the letter of RFC 5322 3.4 because MIME messages allow newlines
780 # and comments as a part of the CFWS rule, but this is typically
781 <~ not
782 # allowed in mail UIs (although comment syntax was requested once
783 ;» too) .
784 # Display names are either basic characters (the same basic
785 < characters
786 # permitted in email addresses, but periods are not allowed and
787 — spaces
788 # are allowed; see RFC 5322 Appendix A.1.2), or or a quoted string
— with
789 # the same rules as a quoted local part. (Multiple quoted strings
790 — might
791 # be allowed? Unclear.) Optional space (RFC 5322 3.4 CFWS) and
792 — then the
703 i email address follows in angle brackets.
794 # We assume the input string is already stripped of leading and
795 e trailing CFWS.
796
797
def split_string_at_unquoted_special (text: str, specials:
798
— Tuple[str, ...]) —> Tuple[str, str]:
799 # Split the string at the first character in specials (an
800 — (@-sign
801 # or left angle bracket) that does not occur within quotes and
802 # is not followed by a Unicode combining character.
803 # If no special character is found, raise an error.
inside_quote, escaped, left_part = False, False, ""
804 for i, c in enumerate (text):
805 # < plus U+0338 (Combining Long Solidus Overlay) normalizes
806 = to
807 # U+226E (Not Less-Than), and it would be confusing to
808 — treat
200 # the < as the start of "<email>" syntax in that case.

— Likewise,
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# 1f anything combines with an @ or ", we should probably

< not
# treat it as a special character.
if unicodedata.normalize ("NFC", text[i:])[0] != c:

left_part += c

elif inside_guote:
left_part += c

if ¢ == '"\\' and not escaped:
escaped = True
elif ¢ == '"' and not escaped:

# The only way to exit the quote 1is an unescaped
— guote.
inside_qguote = False
escaped = False
else:
escaped = False
elif ¢ == ""':
left_part += c
inside_qgquote = True
elif ¢ in specials:
# When unquoted, stop before a special character.

break
else:
left_part += c
if len(left_part) == len(text):

raise EmailSyntaxError ("An email address must have an
— @-sign.")

right_part = text[len(left_part):] # The right part is whatever
— 1s left.

return left_part, right_part

def unquote_quoted_string(text: str) -> Tuple[str, bool]:
# Remove surrounding quotes and unescape escaped backslashes
# and quotes. Escapes are parsed liberally. I think only
— backslashes
# and quotes can be escaped but we'll allow anything to be.
quoted, escaped, value = False, False, ""
for i, c in enumerate (text):
if quoted:
if escaped:
value += c
escaped = False

elif ¢ == '\\':
escaped = True
elif ¢ == ""':
if i != len(text) - 1:

raise EmailSyntaxError ("Extra character (s) found
— after close quote: "

+ "!
— ".Jjoin (safe_character_display (c)
< for ¢ in text[i + 1:1))
break
else:
value += c
elif i == 0 and ¢ == '""':

16



Under review as a conference paper at ICLR 2025

quoted = True
else:
value += c

return value, quoted

# Split the string at the first unquoted @-sign or left angle
— bracket.

left_part, right_part = split_string_at_unquoted_special (email,
oy ("@"’ ll<"))

# If the right part starts with an angle bracket, then the left
— part
# is a display name and the rest of the right part up to the
# final right angle bracket is the email address,
if right_part.startswith("<"):
# Remove space between the display name and angle bracket.
left_part = left_part.rstrip()

# Unquote and unescape the display name.
display_name, display_name_quoted =
— unquote_quoted_string(left_part)

# Check that only basic characters are present in a non—quoted
— display name.
if not display_name_quoted:
bad_chars = {
safe_character_display(c)
for c in display_name
if (not ATEXT RE.match(c) and ¢ != ' ') or ¢ == '.'
}
if bad_chars:
raise EmailSyntaxError ("The display name contains
— invalid characters when not quoted: " + ",
— ".join(sorted(bad_chars)) + ".")

check_unsafe_chars (display_name, allow_space=True) # Check for
— other unsafe characters.

# Check that the right part ends with an angle bracket

# but allow spaces after it, I guess.

if ">" not in right_part:
raise EmailSyntaxError ("An open angle bracket at the start
— of the email address has to be followed by a close angle
— bracket at the end.")

right_part = right_part.rstrip(" ")

if right_part([-1] != ">":
raise EmailSyntaxError ("There can't be anything after the
< email address.")

# Remove the initial and trailing angle brackets.
addr_spec = right_part[l:].rstrip(">")

# Split the email address at the first unquoted @-sign.
local_part, domain_part =
— split_string_at_unquoted_special (addr_spec, ("@",))
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# Otherwise there is no display name. The left part is the local
# part and the right part is the domain.
else:

display_name = None

local_part, domain_part = left_part, right_part

if domain_part.startswith("@"):
domain_part = domain_part[l:]

# Unquote the local part if it is quoted.
local_part, is_quoted_local_part =
— unquote_quoted_string(local_part)

return display_name, local_part, domain_part, is_guoted_local_part

Test Case Inputs
[
{
"input": [["simple@example.com"], {}1,
"output": [null, "simple", "example.com", false],
b
{
"input": [["user+name@sub.domain.com"], {}1,
"output": [null, "user+name", "sub.domain.com", false],
b
{
"input": [["user.name@domain.co.uk"], {}1,
"output": [null, "user.name","domain.co.uk", false],
b
{
"input": [["\"quoted@local\"@example.com"], {}1],
"output": [null, "quoted@local","example.com", true],
b
{
"input": [["display name <user@domain.com>"]1, {}1,
"output": ["display name", "user", "domain.com", false],
b
{
"input": [["user@localhost"], {}1],
"output": [null, "user","localhost", false],
br
{
"input": [["user@[IPv6:2001:db8::11"1, {}1,

"output": [null, "user","[IPv6:2001:db8::1]1", false],

"input": [["\"escaped\\\"quote\"@example.com"], {}1,
"output": [null, "escaped\"quote", "example.com", true],
by
{
"input": [["user.name@longsubdomain.example.com"], {}],
"output": [null, "user.name", "longsubdomain.example.con", false],
by
{
"input": [["very.common@example.com"], {}],
"output": [null, "very.common", "example.com", false],
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"input": [["user@domain-with-dash.com"], {}],
"output": [null, "user","domain-with-dash.com", false],
"input": [["user@123.123.123.123"1, {}1,

"output": [null, "user","123.123.123.123", false],

"input": [["\"much.more unusual\"@example.com"], {}1],
"output": [null, "much.more unusual", "example.com", true],
br
{
"input": [["user@xn--exmple-cua.com"], {}],
"output": [null, "user","xn--exmple-cua.com", false],
by
{
"input": [["user@domain_with_underscore.com"], {}1],
"output": [null, "user","domain_with_underscore.com", false],
}
]
Generated Outputs
[
{
"input": [["simple@example.com"], {}1,
"output": [null, "simple", "example.com", false],
"prediction": [null,"simple", "example.com", false],
"result": true,
"answer_tokens": {"completion": 18, "prompt": 4610, "total": 4628}
by
{
"input": [["user+name@sub.domain.com"], {}1,
"output": [null, "user+name", "sub.domain.com", false],
"prediction": [null, "user+name","sub.domain.com", false],
"result": true,
"answer_tokens": {"completion": 21, "prompt": 4614,"total": 4635}
b
{
"input": [["user.name@domain.co.uk"], {}],
"output": [null, "user.name","domain.co.uk", false],
"prediction": [null, "user.name", "domain.co.uk", false],
"result": true,
"answer_tokens": {"completion": 20, "prompt": 4613, "total": 4633}
by
{
"input": [["\"quoted@local\"@example.com"], {}1,
"output": [null, "quoted@local", "example.com", true],
"prediction": ["null","quoted@local", "example.com",true],
"result": false,
"answer_tokens": {"completion": 20, "prompt": 4615, "total": 4635}
by
{
"input": [["display name <user@domain.com>"], {}1],
"output": ["display name", "user", "domain.com", false],
"prediction": ["display name","user", "domain.com", false],
"result": true,
"answer_tokens": {"completion": 19, "prompt": 4615, "total": 4634}
b
{
"input": [["user@localhost"], {}1,
"output": [null, "user","localhost", false],
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"prediction": [null, "user","localhost", false],
"result": true,
"answer_tokens": {"completion": 17,"prompt": 4610, "total": 4627}

"input": [["user@[IPv6:2001:db8::11"1, {}1]1,

"output": [null, "user","[IPv6:2001:db8::1]", false],
"prediction": "EmailSyntaxError: An email address must have an
— @-sign.",

"result": false,

"answer_tokens": {"completion": 24, "prompt": 4620, "total": 4644

}

"input": [["\"escaped\\\"quote\"@example.com"], {}1,
"output": [null, "escaped\"quote", "example.com", truel,
"prediction": ["null","escaped\"quote", "example.com", true],

"result": false,
"answer_tokens": {"completion": 20, "prompt": 4615, "total": 4635}

"input": [["user.name@longsubdomain.example.com"], {}],
"output": [null, "user.name", "longsubdomain.example.con", false],
"prediction":

— [null, "user.name", "longsubdomain.example.com", false],
"result": true,

"answer_tokens": {"completion": 22, "prompt": 4615, "total": 4637}

"input": [["very.common@example.com"], {}],
"output": [null, "very.common", "example.com", false],
"prediction": [null, "very.common", "example.com", false],

"result": true,
"answer_tokens": {"completion": 19, "prompt": 4611,"total": 4630}

"input": [["user@domain-with-dash.com"], {}],
"output": [null, "user", "domain-with-dash.com", false],
"prediction": [null, "user","domain-with-dash.com", false],

"result": true,
"answer_tokens": {"completion": 21, "prompt": 4614,"total": 4635}

"input": [["user@123.123.123.123"1, {}1,

"output": [null,"user","123.123.123.123", false],

"prediction": [null, "user","123.123.123.123", false],

"result": true,

"answer_tokens": {"completion": 23, "prompt": 4616, "total": 4639}

"input": [["\"much.more unusual\"@example.com"], {}1],
"output": [null, "much.more unusual", "example.com", true],
"prediction": [null, "much.more unusual", "example.com", true]l,

"result": true,
"answer_tokens": {"completion": 20, "prompt": 4615, "total": 4635}

"input": [["user@xn--exmple-cua.com"], {}],
"output": [null, "user","xn--exmple-cua.com", false],
"prediction": [null, "user", "xn--exmple-cua.con", false],

"result": true,
"answer_tokens": {"completion": 24, "prompt": 4617,"total": 4641}
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"input": [["user@domain_with_ underscore.com"], {}1,

"output": [null, "user","domain_with_underscore.com", false],
"prediction": "EmailSyntaxError: The email address contains unsafe
<« characters: 'U+005F'.",

"result": false,

"answer_tokens": {"completion": 28, "prompt": 4614,"total": 4642}

A.2 INPUT GENERATION

Test case generation is performed through a three-stage pipeline: schema construction, test genera-
tion, and validation.

A.2.1 SCHEMA CONSTRUCTION

Using our AST analysis’s findings (see Section [AJ3)), we construct OpenAPI-compatible JSON
schemas from identified argument and return types. Consider a type-annotated function from our
dataset:

from typing import Dict, List, Optional, Tuple, Union

def get_tree_starting_at (module: str, edges: List[Tuplel[str, str]]) —>
— List[Union[str, List[str]]]:

mmwn

Returns the tree starting at a given module following all edges.

Args:
module ('str’): The module that will be the root of the subtree
— we want.
eges ('List[Tuple([str, str]] ): The 1list of all edges of the
— tree.

Returns:
‘List[Union[str, List[str]]] : The tree to print in the
— following format: [module, [list of edges
starting at module], [list of edges starting at the preceding

— level], ...]
vertices_seen = [module]
new_edges = [edge for edge in edges if edge[0] == module and edge[l]
— != module and "__init__ .py" not in edge[l]]
tree = [module]

while len (new_edges) > 0:
tree.append (new_edges)
final_vertices = list ({edge[l] for edge in new_edges})
vertices_seen.extend(final_vertices)
new_edges = [
edge
for edge in edges
if edge[0] in final_vertices and edge[l] not in
— vertices_seen and "__init__ .py" not in edge[l]
]

return tree

This generates the following schema for language model function calling (note: the case below
shows a json schema further wrapped in OpenAlI’s specific “’tool” schema):
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{"tools": [{
"type": "function",
"function": {
"name": "FunctionTestCaseModel",
"description": "Correctly extracted “FunctionTestCaseModel-
— all the required parameters with correct types",
"parameters": {
"Sdefs": {
"ArgsModel": {
"properties": {
"module": ({
"description": "Positional argument 'module'
— type '<class 'str'>'",
"title": "Module",
"type": "string"
by
"edges": {
"description": "Positional argument 'edges'
— type 'typing.List[typing.Tuplel[str, str]
"items": {
"items": {"type": "string"},
lltypell: "arrayll
b
"title": "Edges",
"type": "array"
}
b
"required": ["module", "edges"],
"title": "ArgsModel",
"type": "object"
o
"KwargsModel": {
"properties": {},
"title": "KwargsModel",
"type" . n Object "
s
"TestCase": {
"properties": {
"args" . {
"allOof": [{"$ref": "#/Sdefs/ArgsModel"}],
"description": "Positional args."
by
"kwargs": {
"allOof": [{"Sref": "#/Sdefs/KwargsModel"}],
"description": "Keyword args."
}
b
"required": ["args", "kwargs"],
"title": "TestCase",
"type": "object"
}
I
"properties": {
"test_cases": {
"description": "List of test cases",
"items": {"$ref": "#/Sdefs/TestCase"},
"title": "Test Cases",
"type": "array"
}
I
"required": ["test_cases"],
"type": "object"
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}
11}

This schema is then embedded within our test case generation prompt:

You are an expert software tester tasked with generating diverse test
— cases for a given function. Your goal is to create a comprehensive
— set of tests that cover various scenarios and edge cases.

First, let's review the previously generated test cases to ensure we
— explore new scenarios:

<previously_generated_test_cases>

{seen or "No test cases have been generated yet."}
</previously_generated_test_cases>

Now, let's examine the context and function details:

<module_code>
{module_code}
</module_code>

Now, let's look at the specific function we need to test:

<function_signature>
{func.signature}
</function_signature>

<function_docstring>
{func.docstring}
</function_docstring>

<function_implementation>
{func.code}
</function_implementation>

Before generating the test cases, let's think through the process:

<test_case_analysis>

1. Analyze the function signature, docstring, and implementation to
— understand its purpose and expected behavior.

Identify the input parameters and their types.

Determine the function's return type and expected output format.
Consider the following categories of test cases:

a. Simple and straightforward cases

b. Complex cases with multiple inputs

c. Edge cases with large values or sizes

d. Edge cases with small values or sizes
e
f
g
F

DS N

Cases that may require significant processing time
Cases that might cause errors or exceptions
. Cases with invalid inputs that should raise specific exceptions
or numerical arguments:
— Include positive and negative integers/floats
— Include zero
— Include prime numbers
— Include maximum and minimum possible integer values
— Include very large floats and very small floats (close to zero)
6. For string arguments:
— Include empty strings
— Include strings with special characters
— Include very long strings
— Include strings in different languages or with Unicode characters
7. For boolean arguments:
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— Include both True and False cases
8. For dynamic containers (e.g., lists, dictionaries):

— Include cases with many elements

— Include cases with no elements

— Include cases with deeply nested objects

— Include cases with mixed data types
9. For each test case, predict the expected output or exception.
10. Ensure that each test case is unique and covers a different
— scenario.
11. Consider any specific constraints or requirements mentioned in the
— docstring.
</test_case_analysis>

Now, generate 15 diverse test cases based on this analysis. Present each
— test case as a Python dictionary with 'args' and 'kwargs' keys, even
< 1f one of them is empty. Do not include any additional text or

— formatting.

A.2.2 TEST GENERATION AND EXECUTION

After generation, each test case is executed against the original function in a controlled environment.
We capture:

* Return values or raised exceptions

* Runtime statistics (see Section [A.6)

A.2.3 VALIDATION PIPELINE

Generated test cases are tested against seven validators for quality control. Each validator, upon
failure, appends specific feedback as part of a reply to the conversation with the language model:

Schema Conformance: Test cases must parse as valid function inputs
Duplication: Each test case input must be unique

Coverage: Minimum 10 test cases per function

Non-triviality: Less than 50% of cases can return unmodified input
Output Diversity: No single output as 66% of cases

Error Balance: Exception cases limited to 50% of total

Nk »

Runtime Bounds: CPU time under 10 seconds per case

We provide examples of validation feedback messages in Section[A.4]

A.2.4 REGENERATION STRATEGY

The system allows two full generation attempts, each permitting three validation/reply/regeneration
cycles. To maximise task breadth while maintaining quality, we may still preserve some test cases
from a task that fails to pass all validators. We do this by relaxing some validator requirements:

* The minimum test case count requirement (criterion 3) is waived for the final generation
attempt

» Test cases that contain duplicates or exceed runtime bounds are individually filtered out
(criteria 2 and 7)

 The task’s remaining test cases must still meet our core quality requirements: non-triviality,
output diversity, and a balanced error rate (criteria 4, 5, and 6)

This approach using GPT-4o-latest (generation spanned multiple versions) yields our current dataset
of 33,875 test cases across 1,000 repositories, with an average generation cost of 1,123 tokens per
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test case. Failed generations primarily occur due to schema conformance (criterion 1 - schema con-
formance poses an outsized challenge to smaller models i.e. llama3.1-8b; mirroring the execution
prediction task), duplication and output diversity (criterion 2 and 5 - both commonly observed in
functions with a limited input/output domains, i.e. single boolean args/ returns).

A.3 FUNCTION SELECTION AND DEPENDENCY RESOLUTION

The function selection and dependency collation process comprises three main stages: type annota-
tion analysis, dependency graph construction, and code inlining, followed by a final filtering stage.
Here we detail each stage:

A.3.1 TYPE ANNOTATION ANALYSIS

Function selection begins with a recursive AST analysis of type annotations. Each candidate func-
tion must have both its arguments and return type validated as "LLM-generatable” - meaning they
can be reliably produced by a language model. As detailed in Section[A.5] we recursively validate
against a predefined set of acceptable types.

For example, when processing complex nested types like ‘List[Tuple[str, int]]‘, the analyzer first
validates ‘List‘, then ‘Tuple‘, and finally ‘str‘ and ‘int‘. Functions with arguments or return types
containing non-LLM-generatable elements (e.g., file handles, sockets, custom objects) are filtered
out during this stage.

A.3.2 DEPENDENCY GRAPH CONSTRUCTION

Once a function passes type validation, we construct a dependency graph to identify all code ele-
ments required for the function’s execution. This process involves:

1. Symbol Analysis: For each function, we perform an AST walk to identify:

* Local variables: We track symbols defined within the current scope including but not
limited to assignments, function arguments, loop variables, comprehension variables, and
lambda parameters. These are excluded from dependency tracking as they are part of the
function’s internal logic.

» Used symbols: We collect all variable references, function calls, type annotations (e.g., in
‘x: List[Prompt]‘, both ‘List* and ‘Prompt‘ need resolving), and attribute accesses (e.g., in
‘library.varname‘, both ‘library‘ and ‘varname‘ need resolving). By comparing against the
local variables, we identify which symbols must be resolved externally. For each symbol,
we walk the AST to find its definition.

* Nested scopes: We handle nested functions and classes by treating their names as local
variables in the outer scope while tracking their internal symbol usage separately.
2. Import Resolution: For each identified external dependency, we:
» Resolve relative imports based on the file’s location in the package and module imports
based on the package structure

* Track aliases and renamed imports, mapping against accessed attributes (e.g. for ‘lib.var*
where we ‘import x as lib‘, we must find ‘var® in ‘x*)

* Ignore builtin imports, treating them as standard code blocks

* Recursively process imported modules, classes, functions and variables through Step 1.
Symbol Analysis

» Handle special cases such as ‘__init__.py" files, complex imports ‘from x import *‘ and more
3. Graph Construction: We build a directed graph where nodes represent code blocks (functions,
classes, assignments) and edges represent dependencies between these blocks. The graph maintains

the minimal set of dependencies required for each function while preserving their original relation-
ships.
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4. Symbol Resolution Validation: Before a function is accepted, we verify that every used symbol
has been successfully resolved to a definition. This validation is crucial as it ensures we can create
a complete, self-contained version of the function. Functions using runtime code generation (e.g.,
‘exec’, ‘eval‘), dynamic attribute access (e.g., ‘getattr with variable names), or other patterns that
prevent static resolution are largely filtered out at this stage.

To illustrate this process with a simple example, consider the following from the Azure SDK Ta-
bles package. The original code was spread across two files in ‘azure-nspkg/sdk/tables/azure-data-

tables/azure/data/tables/¢. The extracted minimal dependency chain (debug output preserved to show

file origins and dependency types) is shown below:

from datetlme import timezone

# _common_conversion.py | function —> _to_utc_datetime
def _to_utc_datetime (value) :
try:

value = value.astimezone (timezone.utc)
except ValueError:

# Before Py 3.8, this raised for a
pass
try:
return value.strftime ("$Y-%m—2dT$H:$M:%S.212")

except ValueError:
return value.strftime ("$Y-%m—-2dT%$H:%M:%S2")

-ialize.py | resolved import_from/defaultlib from

1 EK\(J,LT da me

from datetlme import datetime

# lize.py | resolved import_from/defau -> from uuid import
<

from uuld 1mport UUID

# [ | resolv import_from/defaultlib —-> from typing Iimport
— nal, Ur n

from typlng 1mport Dict, Optional

# .py f resolved _import_from/defaultlib —->

# 1 function -> t
def parameter fllter substltutlon(parameters Optlonal[cht[str, strll],
— query_filter: str) -> str:

"""Replace user defined parameters in filter.

:param parameters: User defined parameters

:type parameters: dict[str, str]

:param str query_filter: Filter for querying

:return: A query filter replaced by user defined parameters.
:rtype: sStr

mwn

if parameters:

filter_strings = query_filter.split (" ")
for index, word in enumerate(filter_strings):
if word[0] == "@":

val = parameters[word[l:]]
if val in [True, False]:

filter_strings[index] = str(val).lower ()
elif isinstance(val, (float)):
filter_strings[index] = str(val)

elif isinstance(val, int):
if val.bit_length() <= 32:
filter_strings[index] = str(val)
else:
filter_strings[index] = f"/str(val) /L"
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elif isinstance(val, datetime):
filter_strings[index] =
< f'"datetime'/_to_utc_datetime (val) /'"
elif isinstance(val, UUID):
filter_strings[index] = f"guid'/{str(val) /'"
elif isinstance(val, bytes):
v = str(hexlify(val))

v = v[2:-1]
filter_strings[index] = £"X'/{v}'"
else:
val = val.replace("'", "''")
filter_strings[index] = £"'{val}'"'"
return " ".Jjoin(filter_strings)

return query_filter

Note that these functions have been extracted from much larger source files (indicated by the com-
mented file names) - we only collect the minimal code required for execution.

A.3.3 CODE INLINING

The final stage involves generating a self-contained version of the function with all dependencies in-
lined. Rather than attempting to strip back the original files to their minimal form, we are motivated
to inline as it ensures the language model executes exactly the same code as our interpreter.

The inlining process:
1. Performs a topological sort of the dependency graph to determine the correct order of declarations.

2. Inlines code based on its original structure:

* Most code, including functions, classes, and variables, is inlined directly at the appropriate
scope.

* When an entire module has been imported (e.g., ‘import random*), we create a namespace
class to maintain proper module-level scoping.

3. Generates the final code by maintaining the original code structure and ensuring all dependencies
are declared before use.

After code inlining, we perform a final filtering pass to remove functions with side effects or non-
deterministic behaviour. This filtering must occur after inlining as many problematic patterns only
become apparent once we have the complete code context. For example, network requests might be
hidden behind multiple layers of function calls, or environment variables might be accessed through
utility functions in separate modules. Functions that use system calls, file I/O, network operations,
random number generation, or environment variables are filtered out at this stage.

While our dependency resolution system handles many common Python patterns, including dynamic
imports and aliased imports, there remain some challenges. Functions with circular dependencies
between modules cannot currently be processed, and certain package initialization patterns that rely
on import-time side effects are not supported. These limitations primarily affect a small percentage
of candidate functions.

A.4 VALIDATOR EXAMPLES

Each validator appends specific feedback to guide the model in correcting errors. Below are the
prompts used for each of these feedback messages:

A.4.1 SCHEMA CONFORMANCE VALIDATOR

Validation Error found while parsing test case JSON:
<exception>
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{exception}

</exception>

Recall the function correctly, fix these errors and generate a valid
— test case following the schema.

A.4.2 DUPLICATION VALIDATOR

Validation Error: Duplicate test case inputs detected
The following test cases have identical inputs:
<duplicate_cases>
{json.dumps (duplicate_cases) }
</duplicate_cases>
Recall the function correctly and generate test cases with unique
— input combinations.

A.4.3 COVERAGE VALIDATOR

Validation Error: Insufficient test coverage ({len(cases)}/10 required
< minimum cases).
Generate additional ungiue test cases to cover these scenarios.

A.4.4 NON-TRIVIALITY VALIDATOR

Validation Error: Test cases too simple. Greater than 50% of test cases
— are returning their inputs as outputs. Inputs must undergo some
— transformation during processing.
<test_cases_with_results>
{json.dumps (cases) }
</test_cases_with_results>
Fix these errors by generating test cases that:
1. Explore different code paths within the function
2. Trigger transformation of the inputs so that they differ from the
— outputs

A.4.5 OUTPUT DIVERSITY VALIDATOR

Validation Error: Insufficient output diversity in test cases. One
— output is returned by more than 2/3s of all cases.
<test_cases_counted_outputs>
{json.dumps (output_counter) }
<test_cases_counted_outputs>
<test_cases_with_results>
{json.dumps (cases) }
</test_cases_with_results>
Generate additional test cases that contain differing outputs to the
— most popular above.

A.4.6 ERROR BALANCE VALIDATOR
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Validation Error: Too many error-inducing test cases
[ ({len(error_cases) }/{len(cases)})
<test_cases_with_results>
{json.dumps (cases) }
</test_cases_with_results>

A.5 ACCEPTABLE TYPES & FILTERING CRITERIA

Acceptable types. To find functions where the inputs and outputs are LLM generat-
able, we recursively parse both arguments and return types as AST objects i.e. for
list[tuple[str, False]] we first check 1ist is an acceptable type, then recurse down
into tuple, following that we then check str and finally we check False. False isn’t an ac-
ceptable type but it is an acceptable constant and hence accepted. Note: certain acceptable types and
constants are not allowed as return values, i.e. None is not an accepted return constant

acceptable_types = { 'int', 'str', 'float', 'bool', 'none', 'list', 'dict',
'tuple', 'set', 'datetime.date', 'date', 'literal', 'optional', 'union',
'sequence’', 'iterable', 'frozenset', 'mapping' }
acceptable_constants = { 'ellipsis', True, False, None }

Filtering functions. When filtering functions we maintain four separate block lists, 1) a list of
banned imports (including direct and aliases), 2) a list of banned functions (some common libraries
have a limited set of non-deterministic methods, we don’t want to fully exclude them), 3) a list of
banned variables (some variables such as __version___ are likely to be environment based), 4) a
list of banned repos (some repos from cloud providers provide thousands of near identical methods
with different urls, we remove these as they are not a valuable contribution to the evaluation).

A.6 STATIC AND RUNTIME CODE STATISTICS

Given a task from the evaluation set we perform the following static and runtime analyses:

Static Analysis:

1. Lines of Code Count. Total number of lines, excluding blanks and comments.

2. AST Node Types Count. Count of all Python Abstract Syntax Tree (AST) node types
present in the code, e.g. FunctionDef (), AsyncFunctionDef (), Assign(),
For (), ..

3. Cyclomatic Complexity. An estimate of the number of linearly independent paths through
a program’s source code. Note: There are several limitations in the implementation of this
metric as we only parse python source code, and some modern python features such as
pattern matching statements are yet to be supported.

4. Maintainability Index. A estimate of code maintainability and quality incorporating sev-
eral other estimated measures (e.g. Halstead Volume, Cyclomatic Complexity, and lines of
code). Note: Faces the same aforementioned limitations.

Runtime Analysis:

1. CPU Time.
2. Loop Iterations. Including for loops, while loops and list comprehensions.

3. Arithmetic Operations. Including addition, subtraction, multiplication, division and
power operations.

4. Execution Metrics. Including lines executed, library lines executed and conditional state-
ments executed.

5. Function Calls. Including builtin function calls, user-defined function calls and total func-
tion calls.

6. Variable Usage. Including variables declared and variables used
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Figure 9: Top static statistics visualised against Pass@1 rate for all models tested

A.7 OUTPUT COMPARISON AND VALIDATION

When evaluating model outputs against ground truth values, we employ two distinct comparison
strategies depending on whether the output represents a successful execution result or an error case.
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Figure 10: Runtime statistics visualised against Pass@1 rate for all models tested

This dual approach is necessary because error messages often contain version or implementation-
specific details while maintaining semantic equivalence.

AT.1

DIRECT VALUE COMPARISON

For successful execution results, we perform limited preprocessing (unsorted container objects e.g.
set and frozenset are sorted before conversion to json lists, iterable types i.e. tuples are con-
verted to lists, numbers are consistently formatted), then make a direct comparison between the
model output and ground truth as json objects.

A.7.2 ERROR MESSAGE COMPARISON

For error cases, we use a language model-based comparison approach that focuses on specific error
patterns and known version differences. This structured approach is necessary as error messages
have evolved across Python versions while maintaining the same underlying causes.
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Stacktrace Handling. We explicitly exclude stacktraces from comparison as they contain
execution-specific information like file paths, and external details that the model is not privy to.

Version-Specific Error Messages. Python has evolved to provide more helpful error messages
in recent versions, with significant changes between major releases. Our comparison system must
handle these variations appropriately. Examples of version-specific differences:

my_list = [1, 2 3]
SyntaxError: invalid syntax

my_list = [1, 2 3]
SyntaxError: invalid syntax. Perhaps you forgot a commai

my_string = f"{x z y}" + £"{1 + 1}"
SyntaxError: f-string: invalid syntax. Perhaps you forgot a commai

my_string = f"{x z y}" + £"{1 + 1}"
SyntaxError: invalid syntax. Perhaps you forgot a commai

ff Fhev point he same syntactilc error

To handle these variations, our error comparison system uses a prompt that encourages human-like
reasoning about error equivalence:

You are an expert Python developer looking at two error messages.
— Determine if they are describing the same underlying issue, even if
— expressed differently. Consider:

— Different Python versions might provide different levels of detail for
<~ the same error

— The core issue might be described in more or less helpful ways

- Extra hints or suggestions don't change the fundamental error

— Line numbers and file paths are irrelevant

Message 1: {errorl}
Message 2: {error2}

Would a Python developer consider these to be the same error? Answer
— only 'True' or 'False'.

This structured approach to error comparison improves consistency in evaluation across different
Python versions and implementation variations while maintaining the ability to identify truly distinct
error cases.

A.8 PER FUNCTION TASK SET DIVERSITY

To measure EXE’s potential to scale in the future, we analyse a model’s ability to continually gen-
erate new test cases given a single function. This is performed by:

1. Sampling functions from EXE’s dataset (samples detailed below).

2. Generating a batch of test cases in accordance with[A.2] recording token usage.
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3. Running validators in accordance with[A2] removing cases that are duplicates, fail to exe-
cute, fail to be parsed, or that trigger any validator.

4. Continue generating new batches of test cases, injecting a random selection of (up to 60)
previously generated cases into the prompt (detailed samples of test cases generated can be
seen at the end of this appendix).

A.8.1 INLINED CODE TASKS FOR GENERATION
Example 1. get_origin_link_and_tagfrom utils.py in azure-nspkg:
from typing import List

def get_origin_link_and_tag(issue_body_list: List[str]) -> (str, str):
link, readme_tag = "', "'
for row in issue_body_list:
if 'link' in row.lower () and 'release request' not in
— row.lower () and link == ""':
link = row.split(":", 1)[-1].strip()
if 'readme tag' in row.lower () and readme_tag == '':
readme_tag = row.split(":", 1) [-1].strip()
if link and readme_tag:
break

if link.count ('https') >
link = link.split (']
link = link.replace('][
— "").replace("')', "M

return link, readme_tag

[0]
! "") .replace(']', "").replace(' (',

Example 2. _compute_affine_output_size_python.py from geometry.py in
torchvision:

from typing import List, Tuple
import math

def _compute_affine_output_size_python (matrix: List[float], w: int, h:
— int) -> Tuple[int, int]:

a, b, ¢, d, e, £ = matrix
xx = []
vy = []

half w = 0.5 * w
half_ h = 0.5  h
for x, y in ((-half_w, -half_h), (half_w, -half_h), (half_w,
— half_h), (-half_w, half_h)):

nx = a *x x +b xy+c

ny =d « x +e xy + f

xx.append(nx + half_w)

yy.append(ny + half_h)

nw = math.ceil (max(xx)) — math.floor (min (xx))
nh = math.ceil (max(yy)) - math.floor (min(yy))
return int (nw), int (nh) # w, h
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Example 3. _format_image.py from _chat_models.py in langchain-core:

from typing import Dict
import re

def _format_image (image_url: str) —-> Dict:

mmn
Formats an image of format data:image/jpeg;baseé4, {(b64_string}
to a dict for anthropic api

{
"type": "base64",
"media_type": "image/jpeg",
"data": "/9j/4AAQSkZJRg...",
}

And throws an error if it's not a b64 image

regex = r"“data: (?P<media_type>image/.+);base6d, (?P<data>.+)S"
match = re.match(regex, image_url)
if match is None:

raise ValueError (
"Anthropic only supports base64-encoded images currently."

" Example: data:image/png;base64,'/97/4AAQSk'..."
)
return {
"type": "base64",
"media_type": match.group ("media_type"),
"data": match.group("data"),

Example 4. make_arn_for_alarm.py from utils.py in moto:

REGION_PREFIX_TO_PARTITION = {
# (region prefix, aws partition)
"Cl'l*": "aWS*Cl’l",
"us—-gov-": "aws-us—-gov",
"us-iso-": "aws-iso",
"us—-isob-": "aws-iso-b",

}
DEFAULT_PARTITION = "aws"

PARTITION_NAMES = list (REGION_PREFIX_TO_PARTITION.values()) +
— [DEFAULT_PARTITION]

def get_partition(region: str) —-> str:
if not region:
return DEFAULT_PARTITION
if region in PARTITION_NAMES:
return region
for prefix in REGION_PREFIX_TO_PARTITION:
if region.startswith (prefix):
return REGION_PREFIX_TO_PARTITION [prefix]

return DEFAULT_PARTITION

def make_arn_for_alarm(region: str, account_id: str, alarm name: str) ->

— str:
return
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Example 5. number2lowercase_roman_numeral .py from page_labels.py in pypdf2:

from typing import Iterator

def number2uppercase_roman_numeral (num: int) -> str:
roman = [

(1ooo, "M"),
900, "cM"),
500, "D"),
400, "cbp"),
100, "Ccm),
90, "XCm"),
50, "L"),
40, "XL"),
10, "X"),
9, IIIX"),
5, "v"),
4, IIIVII),
1, "1"),

def roman_num(num: int) -> Iterator([str]:
for decimal, roman_repr in roman:
X, _ = divmod (num, decimal)
yield roman_repr * X
num —-= decimal * x
if num <= 0:
break

return "".Jjoin(list (roman_num (num)))

def number2lowercase_roman_numeral (number: int) —-> str:
return number2uppercase_roman_numeral (number) .lower ()

Example 6. alpha_canonicalize.py from parser.py in opt-einsum:

_einsum_symbols_base =
— "abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"

from typing import Dict

def get_symbol(i: int) -> str:
"""Get the symbol corresponding to int "i°' - runs through the
— usual 52
letters before resorting to unicode characters, starting at
— “‘chr(192) " and skipping surrogates.

xxExamples: xx*

‘" ‘python
get_symbol (2)
#> 'c!

get_symbol (200)
#> 'R’

get_symbol (20000)
#> rr
if 1 < 52:
return _einsum_symbols_base[i]
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elif i >= 55296:
# Skip chr (5734
return chr (i +
else:
return chr (i + 140)

3) - chr(55296) as surrogates
2048)

def alpha_canonicalize(equation: str) —-> str:
"""Alpha convert an equation in an order—independent canonical way.

Examples

>>> oe.parser.alpha_canonicalize ("dcba")
'abcd'

>>> oe.parser.alpha_canonicalize ("H&]1]5")

"abccd'
mmn
rename: Dict[str, str] = {}
for name in equation:
if name in ".,->":
continue
if name not in rename:
rename [name] = get_symbol (len(rename))
return "".join(rename.get (x, x) for x in equation)

Example 7. remove_starting_comments.py from sgl_util.py in snowflake-connector-
python:

import re

COMMENT_START_SQL_RE = re.compile (

r"""
“\sx*(?:
J\*[\w\W] x?\ x/

) Al n,

re.VERBOSE,

def remove_starting_comments(sgl: str) -> str:
"""Remove all comments from the start of a SQL statement."""
commentless_sqgl = sqgl
while True:
start_comment = COMMENT_START_SQL_RE.match (commentless_sql)
if start_comment is None:
break
commentless_sgl = commentless_sqgl|[start_comment.end() :]
return commentless_sgl

Example 8. _pad_version.py from specifiers.py in poetry-core:
import itertools
from typing import List, Tuple
def _pad_version(left: List[str], right: List[str]) -> Tuple[List[str],
< List[str]]:
left_split, right_split = [], []
# Get the release segment of our versions

left_split.append(list (itertools.takewhile (lambda x: x.isdigit (),
— left)))
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right_split.append(list (itertools.takewhile (lambda x: x.isdigit (),
— right)))

# Get the rest of our versions
left_split.append(left[len(left_split[0]) :1)
right_split.append(right[len(right_split[0]) :1)

# Insert our padding

left_split.insert (1, ["0"] % max(0, len(right_split[0]) -
— len(left_split[0])))
right_split.insert (1, ["0"] % max(0, len(left_split[0]) -
— len(right_split[0])))

return (list (itertools.chain(xleft_split)),

— list (itertools.chain (»right_split)))

Example 9. get_flag_suggestions.py from _helpers.py in absl-py:
_SUGGESTION_ERROR_RATE_THRESHOLD = 0.50
from typing import List, Sequence

def _damerau_levenshtein(a, Db):
"""Returns Damerau-Levenshtein edit distance from a to b."""
memo = {}

def distance(x, y):
"""Recursively defined string distance with memoization."""
if (x, y) in memo:
return memo[x, Vy]
if not x:
d = len(y)
elif not y:
d = len(x)

else:
d = min(
distance(x[1:], y) + 1, # correct an insertion error
distance(x, y[l:]) + 1, # correct a deletion error
)

distance(x[1:], y[1l:]) + (x[0] != y[0])) # correct a wrong
— character
if len(x) >= 2 and len(y) >= 2 and x[0] == y[1l] and x[1] == y[0]:
# Correct a transposition.
t = distance(x[2:]1, yI[2:]) + 1
if d > t:
d =t

memo [x, y] = d
return d
return distance(a, b)

def get_flag_suggestions(
attempt: str, longopt_list: Sequence[str]
) —> List[str]:
"""Returns helpful similar matches for an invalid flag."""
# Don't suggest on very short strings, or if no longopts are
— specified.
if len(attempt) <= 2 or not longopt_list:
return []

option_names = [v.split('="')[0] for v in longopt_list]
# Find close approximations in flag prefixes.
# This also handles the case where the flag is spelled right but

— ambiguous.
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distances = [ (_damerau_levenshtein (attempt, option[0O:len(attempt)]),
— option)
for option in option_names]
# t[0] is distance, and sorting by t[1l] allows us to have stable
— output.
distances.sort ()

least_errors, _ = distances[0]

# Don't suggest excessively bad matches.

if least_errors >= _SUGGESTION_ERROR_RATE_THRESHOLD * len(attempt) :
return []

suggestions = []
for errors, name in distances:
if errors == least_errors:
suggestions.append (name)
else:
break

return suggestions

Example 10. valid_contexto.py from core.py inidna:
from types import SimpleNamespace

from typing import Tuple

def _encode_range (start: int, end: int) —-> int:
return (start << 32) | end

def _decode_range(r: int) -> Tuple[int, int]:
return (r >> 32), (r & ((1 << 32) — 1))

import bisect

def intranges_contain(int_: int, ranges: Tuple[int, ...]) —> bool:
"""Determine if ‘“int_ " falls into one of the ranges in ‘ranges ."""
tuple_ = _encode_range (int_, 0)

pos = bisect.bisect_left (ranges, tuple_)
# we could be immediately ahead of a tuple (start, end)
# with start < int_ <= end
if pos > 0:
left, right = _decode_range (ranges[pos—1])
if left <= int_ < right:
return True
# or we could be immediately behind a tuple (int_, end)
if pos < len(ranges):
left, _ = _decode_range (ranges|[pos])
if left == int_:
return True
return False

class idnadataClass (SimpleNamespace) :
def _ init_ (self):
scripts = {

'Greek': (
0x37000000374,
0x37500000378,
0x37a0000037e,
0x37£00000380,
0x38400000385,
0x38600000387,
0x3880000038b,
0x38c0000038d,
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)y

0x38e000003a2,
0x3a3000003e2,
0x3£000000400,
0x1d2600001d2b,
0x1d5d00001d62,
0x1d6600001d6b,
0x1db£00001dcO,
0x1£0000001£16,
0x1£1800001fle,
0x1£2000001£46,
0x1£4800001f4e,
0x1£5000001£58,
0x1£5900001£5a,
0x1£5b00001£5¢,
0x1£5d00001£5e,
0x1£5£00001f7e,
0x1£8000001£b5,
0x1£b600001£c5,
0x1£c600001£d4,
0x1£d600001fdc,
0x1£dd00001££0,
0x1££200001££5,
0x1f£600001fff,
0x212600002127,
0xab650000ab66,
0x101400001018F,
0x10120000101al,
0x1d2000001d246,

'"Han': (

)y

0x2e8000002e9a,
0x2e9b00002ef4,
0x2£f0000002fde6,
0x300500003006,
0x300700003008,
0x30210000302a,
0x30380000303c,
0x340000004dcoO,
0x4e000000a000,
0x£9000000fa6e,
0xfa700000fada,
0x16fe200016fed,
0x16f£f000016ff2,
0x200000002a6e0,
0x2a7000002b73a,
0x2b7400002b81e,
0x2b8200002cea2,
0x2ceb00002ebel,
0x2ebf00002eebe,
0x2f8000002fale,
0x300000003134b,
0x31350000323b0,

'"Hebrew': (

0x591000005c8,
0x5d0000005eb,
0x5e£000005£5,
0xfb1d0000£fb37,
0x£fb380000£fb3d,
0xfb3e0000fb3f,
0x£fb400000£fb42,
0xfb430000fb45,
0x£fb460000£b50,
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'Hiragana': (
0x304100003097,
0x309d000030a0,
0x1b0010001b120,
0x1b1320001b133,
0x1b1500001b153,
0x1£2000001£201,

)

'Katakana': (
0x30a1000030fb,
0x30£d400003100,
0x31£000003200,
0x32d0000032f £,
0x330000003358,
0xff660000££70,
O0xf£f710000ff9%e,
Ox1aff00001aff4,
Oxlaff50001laffc,
Oxlaffd000lafff,
0x1b0000001b001,
0x1b1200001b123,
0x1b1550001b156,
0x1b1640001bl68,

)

}

self. dict__ .update(locals())

idnadata = idnadataClass ()

def

def

_is_script(cp: str, script: str) —-> bool:

return intranges_contain(ord(cp), idnadata.scripts([script])

valid_contexto(label: str, pos: int, exception: bool =
bool:
cp_value = ord(label[pos])

False) —>

if cp_value == 0x00b7:
if 0 < pos < len(label)-1:
if ord(label[pos - 1]) == 0x006c and ord(label[pos + 1]) ==
— 0x006c:

return True
return False

elif cp_value == 0x0375:
if pos < len(label)-1 and len(label) > 1:
return _is_script (label[pos + 1], 'Greek')
return False

elif cp_value == 0x05f3 or cp_value == 0x05f4:
if pos > O:
return _is_script (label[pos - 1], 'Hebrew')

return False

elif cp_value == 0x30fb:
for cp in label:
if cp == '\u30fb':
continue
if _is_script(cp, 'Hiragana') or _is_script (cp,
— or _is_script(cp, 'Han'):
return True
return False

elif 0x660 <= cp_value <= 0x669:
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for cp in label:
if 0x6f0 <= ord(cp) <= 0x06£f9:
return False
return True

elif 0x6f0 <= cp_value <= 0x6£f9:
for cp in label:
if 0x660 <= ord(cp) <= 0x0669:
return False
return True

return False

Example 11. exact_match.py frommeteor_score.py in nltk:

from typing import Callable, Iterable, List, Tuple

def _match_enums (
enum_hypothesis_list: List[Tuple[int, str]],
enum_reference_list: List[Tuple[int, strll],
) —> Tuple[List[Tuple[int, int]], List[Tuple[int, str]], List[Tuplelint,
— strl]ll:
mmwn
matches exact words in hypothesis and reference and returns
a word mapping between enum _hypothesis _1list and enum reference_list
based on the enumerated word id.

:param enum_hypothesis _list: enumerated hypothesis 1list
:param enum_reference_list: enumerated reference list
:return: enumerated matched tuples, enumerated unmatched hypothesis

— tuples,
enumerated unmatched reference tuples

mmwn

word_match = []

for i in range (len(enum_hypothesis_list)) [::-1]:
for j in range(len(enum_reference_list))[::-1]:
if enum_hypothesis_list[i][1l] == enum_reference_list[j][1l]:

word_match.append (
(enum_hypothesis_list[i][0],
— enum_reference_list[j][0])

)

enum_hypothesis_list.pop (i)

enum_reference_list.pop(7J)

break

return word_match, enum_hypothesis_list, enum_reference_list

def _generate_enums (
hypothesis: Iterable[str],
reference: Iterable[str],
preprocess: Callable[[str], str] = str.lower,
) —> Tuple[List[Tuple[int, str]], List[Tuplel[int, str]]l]:
mrmumn
Takes in pre-tokenized inputs for hypothesis and reference and
— returns
enumerated word lists for each of them

:param hypothesis: pre-tokenized hypothesis
:param reference: pre-tokenized reference
:preprocess: preprocessing method (default str.lower)
:return: enumerated words list
mmn
if isinstance (hypothesis, str):

raise TypeError (
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f'"hypothesis" expects pre-tokenized hypothesis
[ (Iterable([str]): {hypothesis}'
)

if isinstance(reference, str):
raise TypeError (
f'"reference" expects pre-tokenized reference

A (ITterable[str]): {reference)'
)
enum_hypothesis_list = list (enumerate (map (preprocess, hypothesis)))
enum_reference_list = list (enumerate (map (preprocess, reference)))

return enum_hypothesis_list, enum_reference_list

def exact_match (

hypothesis: Iterable[str], reference: Iterable[str]
) —> Tuple[List[Tuple[int, int]], List[Tuple[int, str]], List[Tuplelint,
— strl]ll:

mrmumn

matches exact words in hypothesis and reference

and returns a word mapping based on the enumerated

word id between hypothesis and reference

:param hypothesis: pre-tokenized hypothesis
:param reference: pre-tokenized reference
:return: enumerated matched tuples, enumerated unmatched hypothesis
— tuples,
enumerated unmatched reference tuples
mmwmn
enum_hypothesis_list, enum_ reference_list =
— _generate_enums (hypothesis, reference)
return _match_enums (enum_hypothesis_list, enum_reference_list)

A.8.2 GENERATED TEST CASES

Below is a sample of generated test cases (cut down to 3 examples, showing the first 60 cases for
brevity).

First 60 generated cases for alpha_canonicalize

0: {"args": ["alb2c3->d4e5f6"], "kwargs": {}}

1 . {llargsll . ['l —> , — ll] , llkwargsll . { } }

2.8 {"args": [" "], "kwargs": {}}

3: {"args": ["AAA BBB CCC"], "kwargs": {}}

4. {"args": ["abcdefghijklmnopgrstuvwxyz"], "kwargs": {}}

53 {"args": ["a\u0000b\u0001c\u0002->d\u0003e\u0004£\u0005"1],

— "kwargs": {}}

6: {"args": ["abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"],
— "kwargs": {}}

78 {"args":

= ["\ud83d\ude00\ud83d\ude03\ud83d\ude04\ud83d\ude01l\ud83d\ude06->\ud
— 83d\ude05\ud83d\ude02\ud83e\udd23\ud83d\udela\ud83d\ude07"],

— "kwargs": {}}

8: {"args": ["a->b,c->d"], "kwargs": {}}

9: {"args": ["\u3053\u3093\u306b\u3061\u306f->\udel6\u754c, \udf60\u59
— 7d->\udel6\u754c, \uc548\ubl55\ud558\ucl38\uc694->\ucl38\uacc4d"],

— "kwargs": {}}

10: {"args": ["\ud83c\udflfl\ud83c\udf20\u2728\ud83d\udcab\u2b50"],

— "kwargs": {}}

11: {"args": ["ZYXWVUTSRQPONMLKJIHGFEDCBA"], "kwargs": {}}

12: {"args": ["AaBbCcDdEeFfGgHhIiJjKkL1MmNNnOOPpQgRrSsTtUuVvWwXxYyzZz"],

— "kwargs": {}}
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13:

{"args": ["aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaJ
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"l], "kwargs":
{1}

{"args": ["abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ012 |
3456789!@#$%7&* ()_+"1, "kwargs":
{1}

{"args": ["aa"], "kwargs": {}}
{"args": [",,,,,—>...."], "kwargs": {}}
{"args": ["\u03bl\u03b2\u03b3\u03b4\u03b5\u03b6\u03b7\ud3b8\ud3bI\ |

u03ba\u03bb\ul3bc\u03bd\u03be\u03bf\u03c0\u03cI\u03c3\u03c4\ul3c5\u
03c6\u03c7\u03c8\u03c9"], "kwargs":
{1}

{"args": ["1234567890"], "kwargs": {}}

{"args": ["a->a,b->b,c->c,d->d"], "kwargs": {}}

{"args": ["A1->B2,C3->D4,E5->F6"], "kwargs": {}}

{"args": ["123456789"], "kwargs": {}}

{"args": ["a->b,c->d,e->f,g->h"], "kwargs": {}}

{"args": ["a->a,b->b,c->c"], "kwargs": {}}

{"args": ["a\nb\tc\rd->e\nf\tg\rh"], "kwargs": {}}

{"args": [n"] "kwargs"' {}}

{"args": ["->->->->->"], "kwargs": {}}

{"args": ["a->b->c->d->e->f->g->h->i1->j->k->1->m->n->0->p—>g->r->s |

->t->u->v->w->x->y->z"], "kwargs":

{1}

{"args": ["\u7532->\u4de59,\udel9->\udel0l,\ub620a->\u5df1i"],
"kwargs": {}}

{"args": ["\u6df7\u5408\ubSb57\u7b26\ude32with\u82f1\u6587and\u6570
\u5b57123"], "kwargs":
{1}

{"args": [" \u0124\u011b\uOl3c\uOl3c\uOOf6"] "kwargs": {}}

{"args": ["!@#S%"&x()_+"], "kwargs": {}}

{"args": ["aaaaabbbbbccccc"], "kwargs": {1}

{"args": [". ->.,—>.,—>.,->."], "kwargs": {}}

{"args": ['\uOOc4\uOOd6\uOOdc\uOOe4\uOOf6\uOOfc\uOOdf"] "kwargs":
{1}

{"args": ["a->b->c->d->e->f->g->h->i->3j"], "kwargs": {}}

{"args": ["A->1,B->2,C->3,D->4,E->5,F->6,G->7,H->8,1I->9,J->0"],
"kwargs": {}}

{"args":

["\ud83c\udflf->\ud83c\udf19, \ud83c\udfle—>\ud83c\udf0d"],
"kwargs": {}}

{"args":
["\u03b1\u03b2\u03b3\u03b4\u03b5->\u03b6\u03b7\u03b8\ul3b9\uld3ba, \u |
03bb\u03bc\u03bd\u03be\u03bf->\u03c0\u03cl\u03c3\u03c4\uld3c5"],
"kwargs": {}}

{"args": ["AaAaAa->BbBbBb,CcCcCc—>DdDdDd"], "kwargs": {}}

{"args": ["\u3053\u3093\u306b\u3061\u306f->\udel6\u754c"],
"kwargs": {}}

{"argsu: [n.,7>"], "kwargs": {}}

{"args": ["a->b,c->d,e->f"], "kwargs": {}}

{"args": ["!Q@#S$%"&x () _+-=[1{}I;:"\",.<>?/7""], "kwargs": {}}

{"args": ["dcba"], "kwargs": {}}

{"args": ["al->b2,c3->d4,e5->f6"], "kwargs": {}}

{nargsu:

["abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"1,
"kwargs": {}}

{"args": ["AaAaAa->BbBbBb,CcCcCc->DdDdDd, EeEeEe->FfFfFf"],
g
"kwargs": {}}
{"args": ["aaaaaaaaaaaaaaaaaaaa—>bbbbbbbbbbbbbbbbbbbb"], "kwargs":
{1}
{"args": ["ABCDEFGHIJKLMNOPQRSTUVWXYZ"], "kwargs": {}}
{"args": ["a\nb\tc\rd"], "kwargs": {}}
{"args":

["\u0124\u011b\u013c\u013c\u00£6->\u0174\u00£4\u0159\u013c\u010£f"],
"kwargs": {}}
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{"args": ["->"], "kwargs": {}}

{"args": ["\uOOc4\uOOd6\uOOdc\uOOe4\uOOf6\uOOfc\uOOdf7>\uOOeO\uOOeJ
1\u00e2\u00e3\u00e4\u00e5\u00e6\u00e7\ud0e8\ud0e9\ud0ea\ulleb\ullec
\u00ed\u00ee\u00ef"], "kwargs":

{1}

{"args": ["\u0000->\u0001, \u0002->\u0003"], "kwargs": {}}

{nargsu .
["\uff21\uff22\uff23\uff24\uff25->\uff26\uff27\uff28\uff29\uff2a, \u
ff2b\uff2c\uff2d\uff2e\uff2f->\uff30\uff31\uff32\uff33\uff34"],
"kwargs": {}}

{nargsu .
["\u0124\u011b\u013c\u013c\u00£6—>\u0174\u00£4\u0155\u0142\u0111"1,
"kwargs": {}}

{llargsll: [lla"] , "kwargs": { }}

{nargsu .
["\ud83d\ude42\ud83d\udela\ud83d\ude00\ud83d\ude01\ud83d\ude02\ud83
e\udd23\ud83d\ude03\ud83d\ude04\ud83d\ude05\ud83d\udel6"],

"kwargs": {}}

{"args": ["aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaJ
aaaaaaaaaaaaaaaaaaaaaaa—>bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb |
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"], "kwargs":

{1}

{"args": ["aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaJ

aaaaaaaaaaaaaaaaaaaaaaa"], "kwargs":

{1}

First 60 generated cases for _pad_version

0:

{"argsll: [[H9"’ |18H, H'7H, ll6", ll5", "4", "3", "2", "l"]’ ["l",
"mw, m3mw, mw4qnw, owgw owew owgw oomgw wgorl], "kwargs": {}}

{"argsll: [[Hl"’ H2H’ ll3", llall, llbll], [lll", l|2|l, "3", "4", "5"]1,
"kwargs": {}}

{"args": [["999999999999999999999999999999"], (["1", "O", "O", "O",
"o", "o", "O", "O", "O", "O", "O", "O0"11, "kwargs": {}}

{llargsll: [["l", |v2n’ ll3", ll!@#"’ ll$%”‘"’ H&*()ll], [||4|v, ll5ll, "6",
<>, My, "[1"1], "kwargs": {}}

{llargsll: [["l", |v2n’ |l3n], [Hl"’ ll2", ll3", ll4ll]], "kwargs": {}}
{"args": [["0O.1", "O0.2", "0.3", "O.4", "O0.5"], [("1.1", "1.2",
"1.3"11, "kwargs": {}}

{"args": [["1", "2", "3", "4", 6 v5w nmgn, wp",  Mcw,oonvdr, "e"j,

[n5||, v|4||, 11311, "2", "lll, "e", "d"’ HC"’ llb"’ llan]]’ "kwargs": {}}
(YesxzE@®s [[P107, T117, ®127], (997, 17, Til®, D129, ©igP]j,
"kwargs": {}}

{"args": [["10", "20", "30", "40"1, ["5", "15", "25"]], "kwargs":
{1}

{"args": [["1", "2", "3", "4", 6 vn5nw mwgw, owym omgw owgw _wign i,
["lo", "9"’ H8"’ |l7"’ ll6", ll5|l, ll4|l, "3", "2", lll"]], llkwargsll: {}}

{"args": [["O", "O", "1"], ["O", "O", "2"]1, "kwargs": {}}

{llargsll: [[ , ["l", "2", "3"’ "4"’ H5"]]’ llkwargsll: {}}

{"argsll: [["l", ll2", ll3", lla", "b", "CH], ["1", "2", "3", "4",
ll5ll, lld"’ llell’ llfll]]’ llkwargs": {}}

{"args": [["1.1", "2.2", "3.3"], ["4.4", "5.5", "6.6"]1], "kwargs":
{1}

{"argsll: [["l", "2", |13", ll4", "5"], [J], "kwargs": {}}

{llargsll: [[lloll], ["Oll’ lloll’ IIO"’ lllll]]’ llkwargsll: {}}

{"args": [["l", "2", H3", ll4", "5", "6", "’7", "8", "9", "10"],
[lllll, "2", "3"]], llkwargsll: {}}

{"args": [["9999999999"], ["1111111111"]]1, "kwargs": {}}

{llargsll: [ ll\uoabll', ll\uo3b2|l, ll\uo3b3ll]’ [llall, llbll, IICII]],
"kwargs": {

{"args": [
"kwargs": {
{"args": [ "a"I "b"I "c"/ "1"1 "2"1 "3"]I ["X"I "y"l "Z"I "7"1
n 8 " , n 9 n ] ] , llkwargs n . { } }

[
}
[lll", "a", ll2ll, llbll’ ll3ll, llcll]' ["10", "20"’ ll3ovl]],
}
[

44



Under review as a conference paper at ICLR 2025

21:

22

23:
24

25:
26:
27
28:
29:
30:

31:
32:

33:

34:

35:

36:
373

38:

393

40:

41:

42

43:

44

45:

46:

47 :

48:

49:

50:

51:

52:
53:

54:

55:

56:

{"args":
H123"] ] ,
{"args":
{1}
{"args":
{"args":
"gamma",
{"args":

"kwargs":

[["\u4f60\u597d",
{1}

"\udel6\u754c"], ["Hello", "World",

[["l", uau, ll2", "b"], ["1", ||2u’ ||3u’ 11411]]’ "kwargs":
[[], ["111, "211’ 113"]], "kwargs": {}}
[["l", |v2n’ 11311, "alpha", "beta"], [lll", ll2", ll3ll,
"delta"]], "kwargs": {}}
[["\ud4f60\u597d", "\udel6\u754c", "123", "456"],

["Hello", "World", "789", "0"]1], "kwargs": {}}

{llargsll: [["O"’ IIOH’ lll"], [llo", llo", lloll, lllll]], llkwargsll: {}}
{"args": [[], [1], "kwargs": {}}

{"args": [["999999999", "888888888"], ["111ll1l11l1ll1", "222222222",
"333333333"11, "kwargs": {}}

{llargsll: [["l"’ llaH’ |l2"’ llbll, HBII, "C"], [ll4ll, "dll, "5||, lle",
"e", "f"]], "kwargs": {}}

{llargsll: [["9999999999"]’ ["l", "O", "O"’ "O"’ HO"’ "O", llo", lloll,
"o, "0", "O"]1, "kwargs": {}}

{"args": [["2147483647", "a"], ["-2147483648", "b"]], "kwargs": {}}
{"args": [["l", |l2", |l3", lla", "b", "C"], ["4", "5", "6", "7",
lld"’ lleH’ llfll]]’ llkwargsll: {}}

{"args": [["O", "O", lll", lla", "b", "C"], ["Oll, "Oll, "O", "l",
lld"’ lle"’ llfll]]’ llkwargsll: {}}

{"args": [["O"J, ["O", "O", "O", lll", lla", "b", "C"]], "kwargs":
{1}

{"args": [["_1", "_2", "_3", "4", "5"], ["1", "2", "3", "_4",
|l75ll] ] , llkwargs": { } }

{"args": [["1lel0"], ["le-10", "2e-10", "3e-10"1]1, "kwargs": {}}
{"args": [["-1", "-2", "-3", "a", "b"], ["l", "2", "3", "4",
H5"J], "kwargs": {}}

{"args": [["1", "O", "O", "O", "O", "O", "O", "O", "O", "O"I],
["9", "9", "9", "9", "9", "9", H9", H9", "9"]], "kwargs": {}}
{"args": [["9"1 "8"/ "7"/ "6"1 "5"1 "4"1 "3"1 "2"1 "1"]1 ["9"1
H8", "’7", H6H, "5", "4", "3", "2", "1", "O"]], "kwargsll: {}}
{"args": [[("0.1", "O0.01", "O.001"], ["™1000", "100", "10"11,
"kwargs": {}}

{"args": [["10", "20", "30"], ["1", "2", "3", "4, "5MI],

"kwargs":
{"args":
"kwargs":
{"args":
{"args":
{"args":
["lll]],
{"args":
"kwargs":
{"args":
{1}
{"args":
["9",
{1}
{"args":
"6.6.6"]11,

"9",

{1}
["3.14159265358979323846"],
}}

["O"J’ ["O"J],
["2147483647"],

["2.71828182845904523536"]11,

[
{
[ "kwargs": {}}

[ ["2147483648"]],

"kwargs":

{1}

[["l", ll2ll, ll3", "4"’ ll5ll’ "6"’ "7"’ "8", "9", "10"],
"kwargs": {}}

[["O", IIOOH, "OOO"], [IIOH’ "OO", llOOO'I, "OOOO"]],

{1}

[["l", llall, ll2", "bll] 0 [lll", "2"’ ll3ll’ "C"] ] 0 "kwargs":

[["l", IIO", llO", "Oll’ IIOH’ "O", "Oll, "O", "O", "O'l],

"9", "9", "9", "9", H9"’ H9"’ "9", ll9", ll9"]]’ "kwargs":

[["l.l.l",
"kwargs":

"2.2.2H,
{1}

"3.3.3"], ["4.4.4", "5.5.5",

{llargsll: [[Hl"’ ll2", "3", ll4ll, ll5ll], [ll5ll, ll4ll, "3", ll2l|, lllll,
"o, "-1", "-2"11, "kwargs": {}}

{"args": [["999999999999999999999999999999"], ["1", "2", "3"]],
"kwargs": {}}

{llargsll: [[HS"’ ll4", ll3", ll2ll, lllll], [lllll]]’ llkwargsll: {}}

{"args": [["9999", "8888", "7777", "alpha"l, ["1", "2", "3", "4",
H5"’ llbetall ] , "kwargs": {}}

{"args": [["1", "2", "3", "4",6 "Hmw "wew,  mwyw wgw, nwow wig",
Hllll, lllle], ["l"]], llkwargsll: {}}

{"args": [["\u0O3bl", "\uO3b2", "\uO3b3"], ["a", "b", "c", "d",
llell] ] , llkwargsll: {}}

{"args": [["1"1 "2"1 "3"1 "4"I "5"]1 [Hl"l "2"I "3"I "a"I "b"]JI

"kwargs":

{1}
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57 {nargsn: [["a", llbll, IIC"], [lllll, ll2", ll3ll]], "kwargs": {}}

58: {"args": [[Hloovv, "200", "300"]’ ["99"’ |1199", H299"]], "kwargs":

= {1}
59 {"args": [["l"], ["l", "O", "O", "O"]], "kwargs": {}}
60 {nargsu: [["loll, "O", lll"], [11911, ll9", "91!]], "kwargs": {}}

First 60 generated cases for get_flag_suggestions

{"args": ["typo", ["typol", "typo2", "correct"]], "kwargs": {}}
{"args": ["ambiguous", ["ambiguousl", "ambiguous2", "ambiguous3",

"unambiguous", "ambiguous"]], "kwargs": {}}
{"args": ["aaaaaaaaaa", ["aaaaaaaaa", "aaaaaaaaaa",
"aaaaaaaaaaa"]], "kwargs": {}}

{"args": ["\u3053\u3093", ["\u3053\u3093\u306b\u3061\u306£f",
"\u3053\u3093\u3070\u3093\u306f",
"\u3053\u3093\u306a\u306b\u3061\u306£f"]1], "kwargs": {}}
{"args": ["", ["optionl", "option2", "option3"]], "kwargs": {}}
{"args": ["\u65e5\u672c\uB8a9e", ["\u65e5\u672c\u8ae",
"\ude2d\u6587", "\ud55c\uadéd\uc5b4"]], "kwargs": {}}

{"args": ["no_match", ["completely", "different", "options"]],
"kwargs": {}}

{"args": ["a", ["apple", "banana", "cherry"]], "kwargs": {}}
{"args": ["casesensitive", ["CaseSensitive", "casesensitive",
"CASESENSITIVE"]], "kwargs": {}}

L Al N Al A el A RS

"different_option"]], "kwargs": {}}

10: {"args": ["typo", ["type", "types", "typescript", "typoo"ll,
— "kwargs": {}}

11: {"args": ["flagl23", ["flagl23=value", "flagl24=value",

— "flagl25=value"]], "kwargs": {}}

12: {"args": ["short", ["s", "sh", "sho", "shor", "short", "shorts"]],
"kwargs": {}}

13: {"args": ["very_similar", ["very_similarl", "very_similar2",

— "very_similar3", "completely different"]], "kwargs": {}}

14: {"args": ["!Q@#S%"&*", ["!@#S$%"&*", "special_chars",

— "normal_option"]], "kwargs": {}}

15: {"args": ["completelydifferent", ["apple", "banana", "cherry",
— "date"]], "kwargs": {}}

16: {"args": ["flagl23", ["flagl23=value", "flagl24=value",

— "flagl25=value", "flagl23"]], "kwargs": {}}

17: {"args": ["abc", ["abcd", "abce", "abcf"]], "kwargs": {}}

18: {"args": ["flag", []], "kwargs": {}}

19: {"args": ["apple", ["apple", "apples", "applesauce"]], "kwargs":

20: {"args": ["verylong", ["verylongoptionname", "anotherlongoption",
< "yetanotherlongoption"]], "kwargs": {}}

21: {"args": ["verysimilar", ["verysimilarl", "verysimilar2",

< "verysimilar3"]], "kwargs": {}}

22: {"args": ["aaa", ["aaaa", "aaaaa", "aaaaaa", "bbb"]l, "kwargs":

23: {"args": ["exact", ["exact", "exactly", "exacting"]], "kwargs":
24: {"args": ["special!@#", ["special!@#", "special$%"",
— "special&x()"11, "kwargs": {}}

{"args": ["prefix", ["prefix_long_optionl", "prefix_long_option2",

25: {"args": ["short", ["s", "sh", "sho", "shor", "short"]], "kwargs":

— {}}

26: {"args": ["hello", []1], "kwargs": {}}

27: {"args": ["hel", ["hello", "help", "health"]], "kwargs": {}}
28: {"args": ["longflagname", ["longflagnamel", "longflagname2",
— "longflagname3", "shortflag"]], "kwargs": {}}

29: {"args": ["flag=value", ["flagl=value", "flag2=value",

— "flag3=value", "flag=othervalue"]], "kwargs": {}}

30: {"args": ["healh", ["health", "help", "hello"]], "kwargs": {}}
31: {"args": ["prefix", ["prefix optionl", "prefix_option2",

— "different_option"]], "kwargs": {}}
32: {"args": ["option", ["optionl=value", "option2=value",
— "option3=value"]], "kwargs": {}}
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33:
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()}
(@)

{"args": ["completelydifferent", ["apple", "banana", "cherry"ll],
"kwargs": {}}

{"args": ["hlp", ["help", "hello", "health"]], "kwargs": {}}
{"args": ["numl23", ["numl234", "numl2345", "numl23456"]],
"kwargs": {}}

{"args": ["verylongflagname", ["verylongflagnamel",
"verylongflagname2", "verylongflagname3"]], "kwargs": {}}
{"args": ["hel", ["help", "hello", "health", "helmet"]], "kwargs":
{1}

{"args": [" whitespace ", ["whitespace", " whitespace ", "
whitespace "]], "kwargs": {}}

{"args": ["completelydifferent", ["optionl", "option2",
"option3"]1, "kwargs": {}}

{"args": ["mixed_case", ["MIXED_CASE", "mixed_case", "MixedCase"]],
"kwargs": {}}

{"args": [" whitespace ", ["whitespace", " whitespace ", "
whitespace ", "no_whitespace"]], "kwargs": {}}

{"args": ["helpp", ["help", "hello", "health"]], "kwargs": {}}
{"args": ["option", []], "kwargs": {}}

{"args": ["flag=value", ["flagl=value", "flag2=value",
"flag3=value"]], "kwargs": {}}

{"args": ["multi\nline", ["multil\nline", "multiline", "multi line",
"multi\tline"]]1, "kwargs": {}}

{"args": ["test-flag", ["test_flag", "test-flag", "testflag"ll],
"kwargs": {}}

{"args": ["prefix", ["prefix optionl", "prefix_option2",
"different_option", "prefixx"]], "kwargs": {}}

{"args": ["ambiguous", ["ambiguousl", "ambiguous2", "ambiguous3",
"unambiguous"]], "kwargs": {}}

{"args": ["flag", ["flagl", "flag2", "flag3", "flag4", "flag5",
"flagé6e", "flag7", "flag8", "flag9", "flaglO"]], "kwargs": {}}
{"args": ["verylongflagname", ["verylongflagnamel",
"verylongflagname2", "verylongflagname3", "shortflag"]], "kwargs":
{1}

{"args": ["mixed_case", ["MIXED_CASE", "mixed_case", "MixedCase",
"mixedcase"]], "kwargs": {}}

{"args": ["\u3053\u3093\u306b\u3061\u306f",
["\u3053\u3093\u306b\u3061\u306ft",
"\u3055\u3088\u3046\u306a\u3089", "\u304a\u306f\u3088\u3046"]],
"kwargs": {}}

{"args": ["multi\nline", ["multil\nline", "multiline", "multi
line"]], "kwargs": {}}

{"args": ["aaa", ["aaaa", "aaaaa", "aaaaaa"]], "kwargs": {}}
{"args": ["abc", []], "kwargs": {}}

{"args": ["verysimilar", ["verysimilarl", "verysimilar2",
"completelydifferent"]], "kwargs": {}}

{"args": ["verylongflagnamewithmorethanfiftycharacterstotest",

["verylongflagnamewithmorethanfiftycharacterstotestl",
"verylongflagnamewithmorethanfiftycharacterstotest2",
"shortflag"]], "kwargs": {}}

{"args": ["he", ["hello", "help", "health"]], "kwargs": {}}
{"args": ["aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaJ
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
["aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaasaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa |
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa |
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa |
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"l], "kwargs":

{1}

{"args": ["typo", ["type", "types", "typescript"]], "kwargs": {}}
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