
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EXECUTION-EVAL: CAN LANGUAGE MODELS EXE-
CUTE REAL-WORLD CODE?

Anonymous authors
Paper under double-blind review

ABSTRACT

As language models advance, traditional benchmarks face challenges of dataset
saturation and disconnection from real-world performance, limiting our under-
standing of true model capabilities. We introduce EXecution-Eval (EXE), a
benchmark designed to assess LLMs’ ability to execute code and predict program
states. EXE attempts to address key limitations in existing evaluations: difficulty
scaling, task diversity, training data contamination, and cost-effective scalability.
Comprising over 30,000 tasks derived from 1,000 popular Python repositories on
GitHub, EXE spans a wide range of lengths and algorithmic complexities. Tasks
require models to execute code, necessitating various operations including math-
ematical reasoning, logical inference, bit manipulation, string operations, loop
execution, and maintaining multiple internal variable states during computation.
Our methodology involves: (a) selecting and preprocessing GitHub repositories,
(b) generating diverse inputs for functions, (c) executing code to obtain ground
truth outputs, and (d) formulating tasks that require models to reason about code
execution. This approach allows for continuous new task generation for as few
as 1,123 tokens, significantly reducing the risk of models ”training on the test
set.” We evaluate several state-of-the-art LLMs on EXE, revealing insights into
their code comprehension and execution capabilities. Our results show that even
the best-performing models struggle with complex, multi-step execution tasks,
highlighting specific computational concepts that pose the greatest challenges for
today’s LLMs. Furthermore, we review EXE’s potential for finding and predicting
errors to aid in assessing a model’s cybersecurity capabilities. We propose EXE
as a sustainable and challenging testbed for evaluating frontier models, offering
insights into their internal mechanistic advancement.

1 INTRODUCTION

Language model benchmarks are facing challenges of rapid saturation (Ott et al., 2022) and an
increasing disconnect from real-world performance perceived by end-users (Zheng et al., 2023).
Due to this, benchmarks are being continually created to address failure modes; e.g. SuperGLUE
targeting GLUE’s low problem difficulty (Wang et al., 2019), BIG-bench targeting general low eval-
uation diversity (Srivastava et al., 2022) and Auto-Arena-Hard targeting training-set contamination
and data diversity in Chatbot-Arena (Li et al., 2024)(Chiang et al., 2024). These failure modes
all demonstrate the challenge in linking the mechanistic improvements within language models to
human understandable tasks.

Hence, to maximise an evaluation’s utility we aim to minimise the common failure modes of; a)
difficulty, not ensuring an unbound scale of small trivial problems to complex multi-step problems,
b) diversity, not ensuring a representative distribution across a large space of problems, c) novelty,
not ensuring continually fresh, out-out-training data samples can be generated and, d) scalability,
not ensuring tasks are cost-effective to generate in the thousands and beyond.

Motivated by these challenges we introduce EXecutionEval (EXE), an evaluation replicating one
of the primary tasks humans perform while coding; predicting and comparing a final program state
for a given set of inputs - seen in Figure 1. EXE is designed to avoid the aforementioned failure
modes; emphasising difficulty (smooth scale from trivial 1-step, one-line functions to difficult 100s-
of-step, multi-layer functions), diversity (unbound number of test cases generatable for tasks from

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: An example task from Apache Airflow’s Github repository (code simplified to fit within
diagram). EXE sources tasks from 1,000 Python repositories, generates test cases for them, and
compares the LLM’s ability to execute code against python’s interpreter.

1,000 GitHub Repos), novelty (program inputs can be continually generated) and scalability (initial
release containing 30,000+ problems at a cost of $33).

EXE also holds theoretical inspiration. (Fowler et al., 2022) et al have replicated positive peda-
gogical correlations found by (Lopez et al., 2008) between the abilities of CS1 students to ”trace”
programs (i.e. manually predict outputs and write the internal state out line by line) and their abili-
ties to pass code writing and explanation exams. This is mirrored in CRUX-Eval’s (Gu et al., 2024)
findings, where they observe a moderate correlation between a model’s ability to execute a block of
code and a model’s HumanEval (Chen et al., 2021) code writing Pass@1 rate.

2 EVALUATION FRAMEWORK

As seen in Figure 1, an EXE task is to predict a function’s return value or error from: a) a code
snippet and b) a set of input arguments. Code snippets are extracted from PyPi’s most popular 1,000
python projects hosted on GitHub, we select our snippets to be pure (i.e. deterministic, no side
effects), language model generatable (i.e. arg types of ints, lists, ...) and to only require
builtins (local imports and external libraries are inlined for the snippet). To realise this we follow
the following three stage pipeline 2:

Figure 2: Three stage EXE task generation pipeline. Detailed example tasks and generated inputs
can be found in Appendix A.1.

1. Repo Selection and Code Scraping. We first select the top 1,000 most popular pypi packages
and collate the corresponding github repos where possible, similar to (Jimenez et al., 2023). Repos-
itories are filtered to include only those with permissive licences that allow derivative works with
attribution. These repos are then pulled down locally and filtered based on a static Abstract Syntax
Tree (AST) analysis determining which repositories contain type-annotated code.

2. Function Selection and Dependency Collation. We perform a static AST analysis to filter
to functions with LLM generatable argument and return type annotations. Further AST analysis

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

then recursively identifies dependent elements (modules, functions, classes, variables, ...) across
files, builds a dependency graph, and inlines them into a base task. Finally, base tasks containing
side effects or non-deterministic code such as environment variables, process calls, randomness or
network requests are filtered out. See Appendix A.3 for step-by-step methodology and A.5 for detail
on acceptable type annotations and filtering.

3. Test Case Generation. Using the argument type annotations we construct a LLM function
calling schema that generates a diverse set of inputs. The base task code is then executed with each
generated input and the result with runtime statistics are logged. This forms the test case (base task
code + generated input), output (returned result or error from executed code) and statistics (runtime
statistics + static AST analysis statistics). See Appendix A.2 for step-by-step methodology and
Appendix A.6 for details on statistics.

Figure 3: We observe task counts per repository to have a near logarithmic falloff. Note: Based
on manual observations, several repositories are removed from EXE due to thousands of similar
functions with only single modifications, for example changing a url address.

Through these stages of filtering, the original top 1,000 repositories are filtered down to the 33,875
task instances which comprise EXE. A high level breakdown of these task instances across reposito-
ries is presented in Figure 3. We note some repositories are overrepresented primarily due to being
more modern (using type annotations) and the style of code (shorter deterministic pieces).

2.1 TASK FORMATION

Model input. The model is given a complete snippet of code alongside the input state to be executed.
The model is then tasked to predict the resulting return value, or in the case that an exception is raised
the model is instructed to generate an exception type and value. In practice, we prompt models
with an odata json representation and use a parser to ensure valid generations. We do append one
additional user reply with the parsing error if the model’s response fails to parse. Examples of input
instances can be found in Appendix A.1.

Evaluation metrics. To evaluate a proposed solution, we use the pass@k metric (Chen et al., 2021),
comparing the ground truth and the generated prediction as json objects (set and frozenset
are sorted before conversion to json lists). If the original code produced an exception, we compare
the type and message (excluding stacktrace) using a language model comparison. See detailed
methodology in Appendix A.7 and see examples of generated outputs in Appendix A.1.

2.2 FEATURES OF EXE

Diversity of inputs and outputs. Unlike many benchmarks focused on a particular subject matter
area, a task in this eval may require a model to perform mathematical reasoning, logical inference,
bit manipulation, string operations, loop execution, or to maintain multiple internal variables during
computation. Furthermore, these may only form part of an algorithm that the model has to exe-
cute. Our random human inspection has uncovered algorithmic time complexities spanning from
O(1) to O(xn) and structured analysis has found tasks with code context lengths ranging from 440
to 311,000 tokens. Ensuring this broad diversity reduces the risk of hitting a local maxima and
increases our opportunity to measure internal capabilities across a range of difficulties.

Continually updatable. Both our code collection and task input generation processes can create
new tasks with minimal human oversight. Simply re-running our code collection to pull the latest

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

commits or directing it towards an uncollected Python GitHub repository will create new task in-
stances. Furthermore we can continue to generate new test cases for existing tasks, our test case
generator automatically avoids generating seen inputs. Hence, EXE can be extended continually
with new task instances, ensuring answers were not included in training corpuses of models for
evaluation.

Cost effective scalability. With generation of new tasks requiring an average of 1,112 input tokens
(batch of 15) and evaluation of tasks typically requiring 1,123 tokens, ExecEval can be generated,
tested and continually updated at a fraction of the cost of human-curated benchmarks. Our initial
dataset of 33,875 cases has only incurred an approximate costing of $33 to produce and $95 to test
on.

Long multi-step problems with smooth difficulty scaling. We provide a continuous spectrum
of task difficulties, ranging from 1-step, one-line functions to multi-file, multi-class, multi-100-
step tasks. Our most complex tasks include function call depths (non-recursive) of up to 13 levels
(median: 2), separate identifier counts (i.e. variable names, function names, . . .) of up to 823
(median: 16) and up to 63 if statements (median: 1). This smooth scaling of difficulty allows for
a more detailed measurement of model coherence along multi-step problems than what is typically
seen in traditional evaluations. However, as language models continue to advance rapidly, even this
wide range of difficulties may eventually face saturation.

To address this, we observe a mechanism inspired by the SKILL-MIX evaluation (Yu et al., 2023)
that leverages the typed nature of our function selection process. This approach allows us to cre-
ate even more complex tasks by chaining functions where the output type of one matches the input
type of another, or by combining multiple outputs into a composite input. The number of poten-
tial new tasks can be upper bounded by n2 · (Tmax)

k · C,, where n is the total number of types,
Tmax = maxi,j Ti,j is the maximum number of existing tasks between any two types, k is the num-
ber of functions to chain, and C is the average number of test cases per task. While this is an upper
bound and the actual number of valid composite tasks would be lower due to specific type compat-
ibility constraints, it still represents a significant expansion of our task space. We view this as an
opportunity to trade some of the ’realism’ of using 100% real-world code for the ability to probe the
upper bounds of model capabilities. For constant compute models, this approach allows us to test
their internal mechanistic capabilities in handling increasingly complex, multi-step problems. And
for chain-of-thought models, it provides a test of increasingly long-term agentic coherency.

Error prediction. To test the full spectrum of code execution we further generate test cases designed
to trigger exceptions. Many of these require in-depth analysis to see ahead of time, for example
predicting an invalid array index through multiple functions. While debugging exceptions is one
of the more challenging software engineering tasks, we are yet to see it commonly evaluated in
benchmarks.

3 RESULTS

We report our evaluation results across different SOTA models alongside our findings across differ-
ent task statistics below.

Table 1: EXE Pass@1 results

Model EXE dataset (Pass@1) Errors (Pass@1)
GPT-4o 72.4 49.5
GPT-4o-mini 60.9 32.0
Llama3.1-8B 37.4 2.1
Llama3.1-405B 71.4 34.3
Claude3.5-Sonnet 76.1 45.8
Mistral-Large-2407 71.5 33.7

LLMs can execute real-world code, achieving results in-line with code generation benchmarks.
We find EXE shows similar relative model performance between models as seen in coding bench-
marks such as HumanEval (Chen et al., 2021) and as seen in benchmarks requiring logical inference

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

such as (Lu et al., 2023). Furthermore we find a similar diversity of performance across packages as
seen in agentic benchmarks such as (Jimenez et al., 2023). We show our findings in Figure 4.

Figure 4: Left - We show the relative accuracy of different models across the top 20 packages by task
count. Both the relative differences between models and the relative differences between packages
are within expectations from other coding benchmarks (Jimenez et al., 2023). Right - We show the
magnitude of diversity across packages (mean performance across all models).

Prior works such as Learning To Execute (Zaremba & Sutskever, 2014) and CRUX-Eval (Gu et al.,
2024) have placed justifiable limitations on code complexity; removing mathematical operations,
limiting line count, disallowing custom classes and only having one singular function to name a few.
We hypothesised that these are no longer necessary, and to understand the true internal capabilities
of a constant compute model (i.e. no Chain of Thought) we must test on real-world code, only
applying limitations where forced (i.e. no arbitrary object inputs, as LLMs can’t generate them).
Our results as seen in table 1 provide initial evidence towards our hypothesis.

ExecEval provides a smooth curve of task difficulties. We set out to ensure a) our evaluation
does not induce saturation from a bounded distribution of task difficulties, b) our evaluation does
not induce an ”AI overhang” by not having a smooth transition between difficulties and, c) the
correlated factors affecting difficulty are human interpretable.

As shown in Figure 5 several task statistics such as ”lines of code”, ”processing time” and ”number
of function calls” all correlate log-linearly with a model’s achieved pass@1 score. These correlations
provide preliminary evidence towards c) as they align with simplistic human intuition, i.e. more lines
of code, more compute cycles, higher difficulty. Furthermore, we view the log-linear relationships
as evidence towards b), i.e. EXE provides a smooth transition between difficulties. And finally, we
view the relationships as a demonstration of difficulty being affected by factors within our control,
i.e. number of function calls - providing empirical evidence towards a).

Beyond evaluation-wide difficulty scaling, EXE also demonstrates diversity and varying difficulty
levels within individual task sets. Each function has up to 15 generated test cases, allowing us to
analyse variance per task set. To measure execution path diversity, we collect runtime statistics
(detailed in Appendix A.6) and find a mean Coefficient of Variation (CV) of 0.61 for ”Count of
conditionals executed”, indicating substantial variation in code paths taken. Furthermore we find
a CV of 0.20 for ”lines executed”, showing significant diversity in the number of steps required
to answer. Finally, we measure diversity in generated task difficulty through model performance -
GPT-4o achieves a mean pass rate of 0.742 (σ = 0.293) per function, providing empirical evidence
test cases present a difficulty scale.

ExecEval’s test case generation scales. While EXE today includes up to 15 test cases per task, our
analysis demonstrates EXE’s generation pipeline can scale significantly further without plateauing.
As shown in Figure 6, generation of novel test case continues well beyond 300 cases per task while
maintaining all quality controls (detailed in Appendix A.2) - implying a potential dataset scale-up
lower bound of 20x. Growth rates vary across specific functions - for example, langchain-core’s
image formatting function, which requests a base64 encoded image string, shows the lowest growth

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 5: Pass@1 for all tasks across four of our code metrics. The shaded area represents variance,
and the opacity is scaled with count of samples. Processing time is measured in microseconds.

rate. This aligns with intuition - generating novel, base64 images poses significantly more difficulty
than generating diverse string or numeric inputs.

Importantly, our token efficiency analysis (right plot) reveals that significant scaling is possible
without proportional prompt growth. By randomly selecting and injecting just 60 prior cases into
the generation prompt, we can effectively generate over 1,000 novel cases. This sublinear token
growth suggests the potential for substantial dataset expansion without incurring prohibitive costs.
Detailed examples of tasks and their generated test cases are provided in Appendix A.8.

Figure 6: Test case generation analysis across eleven diverse Python functions sourced from pop-
ular libraries including Azure, PyTorch, Langchain, and NLTK. Functions range from geometric
computations (torchvision) to SQL regex (snowflake-python-connector). Left: Cumulative unique
validated test cases per generation batch. Right: Same data plotted against token usage, showing
generation cost is largely constant per batch (primary factor is initial task code length). Further
methodology and source code for tested functions are provided in Appendix A.8.

Stylistic coding patterns shape the metrics. As can be seen in Figure 5 the pass@1 rate of function
calls hits an elbow and then surprisingly improves as the call count increases. During our investi-
gation we found several of these occurrences, and not only with call count. These were found to be
largely driven by specific coding patterns and complex tasks that LLMs excel at. We show in Figure
7 below three example tasks, and more specifically coding patterns driving this anomaly.

LLMs struggle with certain coding features. As EXE contains a diverse set of tasks, we are
able to observe model performance differing greatly based on coding features used in any task.
To illustrate: floating point math operations such as multiplications (GPT-4o: 43 mean Pass@1)
significantly increase task difficulty, however bit manipulation and boolean operations only showed
a minor negative impact. Iterative operations such as compound assignment operations i.e. ”i += 1”
(56 Pass@1), list slicing (65 Pass@1) and list comprehensions (68 Pass@1) all increased difficulty,
however for loops on (73 Pass@1) on average did not have a significant impact.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 7: Three examples of high pass@1 rate tasks that contain large amounts of function calls.
Left - Charset-normaliser performs 300+ function calls to define ranges of unicode characters upon
initialisation; this constant has little effect on task difficulty but is used frequently and hence appears
in many tasks. Middle - Langchain’s Unparser class traverses an AST and regenerates source code.
The calling method in our dataset is ”add last line print(str) → str” which takes in code, parses it
and then uses Unparse(...) to unparse it; this is a prime example of a ”directly predictable task”,
i.e. one not requiring line by line code execution to predict a result. Right - Similar to Charset-
normaliser, AWS’s Sagemaker has a module level constant with 10s of calls; not creating a large
impact on task difficulty but frequent in its use.

With the above metrics, and those seen in Figure 7, their mean Pass@k decreases as their count
increases. To reduce the risk of our metrics being a proxy for longer problems we show the effects
can still be seen below in Figure 8 after normalisation by lines of code (only lines with executable
syntax tokens are counted).

Figure 8: Pass@1for all tasks across four of our code metrics normalised by line of code count
(limited to GPT models for readability). All four of the above metrics previously showed a negative
impact as they increased, interestingly we now observe branching statements having little to no
impact and return statements surprisingly driving an increase in Pass@1 score. Our strong negative
factors i.e. function calls and identifiers created, still are seen increasing task difficulty as they take
up ever greater percentages of the task.

4 RELATED WORK

There is a rich history of work on evaluating language models’ abilities in reasoning, execution,
and multi-step problem-solving across various domains. These efforts span from natural language
processing to mathematical reasoning, and from code generation to program execution. Our work,
EXecution-Eval (EXE), builds upon this foundation while addressing key challenges in benchmark
design and evaluation.

Code generation benchmarks have been the foundation of evaluating the coding abilities of language
models. Works like HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) established
standardised datasets for assessing code synthesis from natural language descriptions. These efforts
have expanded to cover multiple programming languages (Cassano et al., 2022; Khan et al., 2023)
and more complex domains such as algorithmic problem solving (Huang et al., 2023). While these
benchmarks focus primarily on the task of code generation, we believe additional focus on the tasks
of code execution and error prediction have been overlooked and may offer additional insight into
the internal capabilities of frontier models.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

The concept of ”learning to execute” itself has a long history, Zaremba & Sutskever (2014) explored
neural networks’ ability to learn and execute simple programs. Graves et al. (2014) constructed the
first Neural Turing Machines with (Kaiser & Sutskever, 2015; Reed & de Freitas, 2015; Dehghani
et al., 2018) all building further into this domain. This line of research has evolved, with recent
works like Bieber et al. (2020); Nye et al. (2021) and Gu et al. (2024) applying graph and language
models to execute synthetic or simplistic Python programs. EXE builds upon these foundations by
evaluating execution capabilities on complex, messy, real-world code from diverse GitHub reposi-
tories, providing a more challenging, scaleable and realistic test bed.

Recent trends in benchmark design have emphasised the importance of diverse, multi-step problems
and agentic capabilities. Works like Jimenez et al. (2023) have introduced benchmarks that require
solving real world software engineering problems while Zhou et al. (2023) has enabled evaluation
of complex instruction following and performing multi-step reasoning. In the mathematical domain,
benchmarks like those by Hendrycks et al. (2021) and Lu et al. (2023) have pushed models to solve
intricate, multi-step problems.

The challenge of benchmark saturation and the need for continually updated evaluations has been
recognized in recent works (Ott et al., 2022). Live benchmarks such as those proposed by Li et al.
(2024), (Chiang et al., 2024) and Kiela et al. (2021) aim to address this issue. Skill-Mix (Yu et al.,
2023) takes a novel approach, combining separate skills required to solve a problem they are able
to increase task difficulty non-linearly with k skills. EXE has been inspired by both these concepts,
hence the focus on enabling continual generation of new coding tasks and test cases, as well as the
potential extension into chaining functions.

While many existing benchmarks use curated or synthetic datasets, EXE leverages real-world code
from popular Python repositories. This approach is inspired by works like CodeNet (Puri et al.,
2021) and The Stack (Kocetkov et al., 2022) which demonstrated the value of diverse, real-world
data in training and evaluating language models.

5 EXTENSIONS

Expanding the scope and diversity We believe scaling EXE to include more repositories by as
much as 100x would significantly reduce the noise seen in our coding metrics and provide a more
resilient baseline for future frontier models. By incorporating additional Python functions — po-
tentially using language models to predict missing type annotations — and including a diversity
of other programming languages such as C++, Go and JavaScript, we believe there is even further
opportunity to scale. This would offer further insights into the generalisability of a model’s code
understanding, pose new challenges for analysis such as pointers, macros and type-free codebases.

Probing code execution mechanisms with simple functions We believe there is an opportunity
to align code execution with mechanistic interpretability, to gain an understanding of how constant
compute language models can execute complex multi-step instructions. To illustrate, if we select
the simplest function that a language model can not directly predict the outcome of, a hash function
for example (one that doesn’t use floating point math in this case), one requiring compute at each
iteration. This would force the network to perform the computation step by step, and for a constant
compute feed-forward network, layer by layer. Hence, performing a single iteration that may not
lead to anything interesting, however as we increase the iteration count one by one, the model now
must find a repeated circuit to perform the same computation in the later layers. For every increase it
must find another circuit or a more optimal way of performing its work until it fails. We believe this
would present an interesting approach alongside standard mechanistic interpretability techniques for
circuit discovery and understanding of control flow, variable tracking and computational logic at the
mechanistic level.

Breakpoint analysis for validating code execution granularly Rather than evaluating the final
return value, including multiple evaluation points within code execution may assist verification of if
models are performing the step-by-step computations to reach a return value. Furthermore by insert-
ing ’breakpoints’ throughout the execution process, we can transform a single return state prediction
task into numerous intermediate state prediction tasks. To illustrate, given a code snippet with a
breakpoint at a specific line, a model would be tasked to determine the values of the local variables
when the breakpoint is triggered. This mirrors common human debugging practices and may reveal

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

discrepancies between final output accuracy and intermediate state understanding, offering further
resistance against tasks where their final outcome can be directly predicted.

Connection to cybersecurity threat model. Software vulnerability research techniques are largely
1 enabled by the ability to predict and reason about expected program outcomes. For example,
code injection, path resolution and memory buffer attacks are often found through manual human
analysis; tracing inputs through the control flow, predicting output states and reasoning if there
are opportunities to exploit. As EXE contains parsers such as seen in Appendix A.1 we see an
opportunity to select a subset of EXE where prediction of error would imply language models have
the internal capability to comprehend and aid humans with crafting vulnerabilities.

6 CONCLUSIONS

In this paper, we introduced EXecution-Eval (EXE), a benchmark designed to evaluate whether lan-
guage models can execute real-world code. By collecting over 30,000 tasks from 1,000 popular
Python repositories, EXE presents a diverse range of problems requiring computational operations
such as mathematical reasoning, logical inference, and state maintenance. Our evaluations suggest
that while language models demonstrate some capability in executing code, they often struggle with
complex, multi-step tasks—particularly those involving many identifiers, function calls and iterative
operations. Our findings indicate that although current models have limitations in accurately rea-
soning about and executing real-world code, they perform surprisingly well on average, prompting
several opportunities extending this investigation.

EXE aims to address limitations of existing benchmarks by providing a scalable, diverse, and con-
tinually updatable framework. Its design targets a smooth difficulty scale and easy generation of
new tasks with minimal human oversight with the goal to reduce the risk of models ”training on the
test set.”

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models. August 2021.

David Bieber, Charles Sutton, Hugo Larochelle, and Daniel Tarlow. Learning to execute programs
with instruction pointer attention graph neural networks. October 2020.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, Arjun Guha,
Michael Greenberg, and Abhinav Jangda. MultiPL-E: A scalable and extensible approach to
benchmarking neural code generation. August 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saun-
ders, Christopher Hesse, Andrew N Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. July 2021.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E Gonzalez, and Ion Stoica.
Chatbot arena: An open platform for evaluating LLMs by human preference. March 2024.
1Some techniques such as random fuzzing may not rely on any internal program knowledge. However,

to find actionable results within realistic computational bounds, fuzzers are often augmented based on this
knowledge to limit their generatable space.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
transformers. July 2018.

Max Fowler, David IV, Mohammed Hassan, Seth Poulsen, Matthew West, and Craig Zilles. Reeval-
uating the relationship between explaining, tracing, and writing skills in cs1 in a replication study.
Computer Science Education, 32:1–29, 06 2022. doi: 10.1080/08993408.2022.2079866.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. October 2014.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I
Wang. CRUXEval: A benchmark for code reasoning, understanding and execution. January 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. March
2021.

Yiming Huang, Zhenghao Lin, Xiao Liu, Yeyun Gong, Shuai Lu, Fangyu Lei, Yaobo Liang, Yelong
Shen, Chen Lin, Nan Duan, and Weizhu Chen. Competition-Level problems are effective LLM
evaluators. December 2023.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. SWE-bench: Can language models resolve real-world GitHub issues? October
2023.

Łukasz Kaiser and Ilya Sutskever. Neural GPUs learn algorithms. November 2015.

Mohammad Abdullah Matin Khan, M Saiful Bari, Xuan Long Do, Weishi Wang, Md Rizwan
Parvez, and Shafiq Joty. XCodeEval: A large scale multilingual multitask benchmark for code
understanding, generation, translation and retrieval. March 2023.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie
Vidgen, Grusha Prasad, Amanpreet Singh, Pratik Ringshia, Zhiyi Ma, Tristan Thrush, Sebastian
Riedel, Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mohit Bansal, Christopher Potts, and Adina
Williams. Dynabench: Rethinking benchmarking in NLP. April 2021.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis,
Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro von
Werra, and Harm de Vries. The stack: 3 TB of permissively licensed source code. November
2022.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gon-
zalez, and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-Hard and
BenchBuilder pipeline. June 2024.

Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. Relationships between
reading, tracing and writing skills in introductory programming. In Proceedings of the Fourth
International Workshop on Computing Education Research, ICER ’08, pp. 101–112, New
York, NY, USA, 2008. Association for Computing Machinery. ISBN 9781605582160. doi:
10.1145/1404520.1404531. URL https://doi.org/10.1145/1404520.1404531.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. MathVista: Evaluating mathematical reasoning of
foundation models in visual contexts. October 2023.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Au-
gustus Odena. Show your work: Scratchpads for intermediate computation with language models.
November 2021.

Simon Ott, Adriano Barbosa-Silva, Kathrin Blagec, Jan Brauner, and Matthias Samwald. Mapping
global dynamics of benchmark creation and saturation in artificial intelligence. March 2022.

10

https://doi.org/10.1145/1404520.1404531

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladimir Zolotov,
Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, Veronika Thost, Luca Buratti, Saurabh
Pujar, Shyam Ramji, Ulrich Finkler, Susan Malaika, and Frederick Reiss. CodeNet: A large-scale
AI for code dataset for learning a diversity of coding tasks. May 2021.

Scott Reed and Nando de Freitas. Neural Programmer-Interpreters. November 2015.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,
Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W Ko-
curek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain, Amanda
Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S Iyer, Anders An-
dreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew Dai, Andrew La,
Andrew Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh Gupta,
Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabassum, Arul
Menezes, Arun Kirubarajan, Asher Mullokandov, Ashish Sabharwal, Austin Herrick, Avia Efrat,
Aykut Erdem, Ayla Karakaş, B Ryan Roberts, Bao Sheng Loe, Barret Zoph, Bartłomiej Bo-
janowski, Batuhan Özyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin Inden, Benno
Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Bryan Orinion, Cameron Diao, Cameron
Dour, Catherine Stinson, Cedrick Argueta, and Ramı́rez. Beyond the imitation game: Quantifying
and extrapolating the capabilities of language models. June 2022.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R Bowman. SuperGLUE: A stickier benchmark for general-purpose language
understanding systems. May 2019.

Dingli Yu, Simran Kaur, Arushi Gupta, Jonah Brown-Cohen, Anirudh Goyal, and Sanjeev Arora.
Skill-Mix: a flexible and expandable family of evaluations for AI models. October 2023.

Wojciech Zaremba and Ilya Sutskever. Learning to execute. October 2014.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P Xing, Hao Zhang, Joseph E Gonzalez, and Ion Stoica.
Judging LLM-as-a-judge with MT-bench and chatbot arena. June 2023.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. Instruction-following evaluation for large language models. November 2023.

A APPENDIX

You may include other additional sections here.

A.1 EXAMPLE INPUT & OUTPUT

Below is an example from the evaluation set. It is split into three components:

1. Code Task. The function split_email was found to pass the type requirements, and as such
all modules, classes, functions and attributes required to execute it have been recursively inlined.

2. Test Case Inputs. Based on the type definition (used for setting the function calling schema)
inputs/ output pairs have been generated with the goal of maximising diversity of control flow paths
within the function.

3. Outputs. Based on the type definition (used for setting the function calling schema) inputs/
output pairs have been generated with the goal of maximising diversity of control flow paths within
the function.

Examples

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A.1.1 EXAMPLE A.

Code

Note: The top 1,000 PyPI repos are used to form EXE, this function is from celery, rank 594

def abbr(S: str, max: int, ellipsis: str | bool = '...') -> str:
"""Abbreviate word."""
if S is None:

return '???'
if len(S) > max:

return isinstance(ellipsis, str) and (
S[: max - len(ellipsis)] + ellipsis) or S[: max]

return S

def abbrtask(S: str, max: int) -> str:
"""Abbreviate task name."""
if S is None:

return '???'
if len(S) > max:

module, _, cls = S.rpartition('.')
module = abbr(module, max - len(cls) - 3, False)
return module + '[.]' + cls

return S

Test Case Inputs

Note: For quick groking, only three inputs are shown for this example. Standard tasks contain 15
generated inputs.

[
{

"input": [["module.ClassName",15], {}],
"output": "mod[.]ClassName",

},
{

"input": [["long.module.name.with.many.parts.ClassName",25], {}],
"output": "long.module.n[.]ClassName",

},
{

"input": [["module.ClassName", 3], {}],
"output": "[.]ClassName",

},
]

Generated Outputs

[
{

"input": [["module.ClassName",15], {}],
"output": "mod[.]ClassName",
"prediction": "module[.]ClassName",
"result": false,
"answer_tokens": {"completion": 15, "prompt": 781, "total": 796}

},
{

"input": [["long.module.name.with.many.parts.ClassName",25], {}],
"output": "long.module.n[.]ClassName",
"prediction": "long.module.name[.]ClassName",
"result": false,
"answer_tokens": {"completion": 17, "prompt": 787, "total": 804}

},

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

{
"input": [["module.ClassName", 3], {}],
"output": "[.]ClassName",
"prediction": "[.]ClassName",
"result": true,
"answer_tokens": {"completion": 14, "prompt": 781, "total": 795}

},
]

A.1.2 EXAMPLE B.

Code

This function is from email-validator, rank 345.

from typing import Optional, Tuple
import re
import unicodedata

class EmailNotValidError(ValueError):
"""Parent class of all exceptions raised by this module."""
pass

class EmailSyntaxError(EmailNotValidError):
"""Exception raised when an email address fails validation because

of its form."""↪→
pass

ATEXT = r'a-zA-Z0-9_!#\$%&\'*\+\-/=\?\ˆ`\{\|\}˜'

def safe_character_display(c: str) -> str:
Return safely displayable characters in quotes.
if c == '\\':

return f"\"{c}\"" # can't use repr because it escapes it
if unicodedata.category(c)[0] in ("L", "N", "P", "S"):

return repr(c)

Construct a hex string in case the unicode name doesn't exist.
if ord(c) < 0xFFFF:

h = f"U+{ord(c):04x}".upper()
else:

h = f"U+{ord(c):08x}".upper()

Return the character name or, if it has no name, the hex string.
return unicodedata.name(c, h)

ATEXT_RE = re.compile('[.' + ATEXT + ']') # ATEXT plus dots

def check_unsafe_chars(s: str, allow_space: bool = False) -> None:
Check for unsafe characters or characters that would make the

string↪→
invalid or non-sensible Unicode.
bad_chars = set()
for i, c in enumerate(s):

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

category = unicodedata.category(c)
if category[0] in ("L", "N", "P", "S"):

Letters, numbers, punctuation, and symbols are permitted.
pass

elif category[0] == "M":
Combining character in first position would combine with

something↪→
outside of the email address if concatenated, so they are

not safe.↪→
We also check if this occurs after the @-sign, which would

not be↪→
sensible because it would modify the @-sign.
if i == 0:

bad_chars.add(c)
elif category == "Zs":

Spaces outside of the ASCII range are not specifically
disallowed in↪→

internationalized addresses as far as I can tell, but they
violate↪→

the spirit of the non-internationalized specification that
email↪→

addresses do not contain ASCII spaces when not quoted.
Excluding↪→

ASCII spaces when not quoted is handled directly by the
atom regex.↪→

#
In quoted-string local parts, spaces are explicitly

permitted, and↪→
the ASCII space has category Zs, so we must allow it here,

and we'll↪→
allow all Unicode spaces to be consistent.
if not allow_space:

bad_chars.add(c)
elif category[0] == "Z":

The two line and paragraph separator characters (in
categories Zl and Zp)↪→

are not specifically disallowed in internationalized
addresses↪→

as far as I can tell, but they violate the spirit of the
non-internationalized↪→

specification that email addresses do not contain line
breaks when not quoted.↪→

bad_chars.add(c)
elif category[0] == "C":

Control, format, surrogate, private use, and unassigned
code points (C)↪→

are all unsafe in various ways. Control and format
characters can affect↪→

text rendering if the email address is concatenated with
other text.↪→

Bidirectional format characters are unsafe, even if used
properly, because↪→

they cause an email address to render as a different email
address.↪→

Private use characters do not make sense for publicly
deliverable↪→

email addresses.
bad_chars.add(c)

else:
All categories should be handled above, but in case there

is something new↪→
to the Unicode specification in the future, reject all

other categories.↪→
bad_chars.add(c)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

if bad_chars:
raise EmailSyntaxError("The email address contains unsafe

characters: "↪→
+ ", ".join(safe_character_display(c) for

c in sorted(bad_chars)) + ".")↪→

def split_email(email: str) -> Tuple[Optional[str], str, str, bool]:
Return the display name, unescaped local part, and domain part
of the address, and whether the local part was quoted. If no
display name was present and angle brackets do not surround
the address, display name will be None; otherwise, it will be
set to the display name or the empty string if there were
angle brackets but no display name.

Typical email addresses have a single @-sign and no quote
characters, but the awkward "quoted string" local part form
(RFC 5321 4.1.2) allows @-signs and escaped quotes to appear
in the local part if the local part is quoted.

A `display name <addr>` format is also present in MIME messages
(RFC 5322 3.4) and this format is also often recognized in
mail UIs. It's not allowed in SMTP commands or in typical web
login forms, but parsing it has been requested, so it's done
here as a convenience. It's implemented in the spirit but not
the letter of RFC 5322 3.4 because MIME messages allow newlines
and comments as a part of the CFWS rule, but this is typically

not↪→
allowed in mail UIs (although comment syntax was requested once

too).↪→
#
Display names are either basic characters (the same basic

characters↪→
permitted in email addresses, but periods are not allowed and

spaces↪→
are allowed; see RFC 5322 Appendix A.1.2), or or a quoted string

with↪→
the same rules as a quoted local part. (Multiple quoted strings

might↪→
be allowed? Unclear.) Optional space (RFC 5322 3.4 CFWS) and

then the↪→
email address follows in angle brackets.
#
We assume the input string is already stripped of leading and

trailing CFWS.↪→

def split_string_at_unquoted_special(text: str, specials:
Tuple[str, ...]) -> Tuple[str, str]:↪→

Split the string at the first character in specials (an
@-sign↪→

or left angle bracket) that does not occur within quotes and
is not followed by a Unicode combining character.
If no special character is found, raise an error.
inside_quote, escaped, left_part = False, False, ""
for i, c in enumerate(text):

< plus U+0338 (Combining Long Solidus Overlay) normalizes
to↪→

U+226E (Not Less-Than), and it would be confusing to
treat↪→

the < as the start of "<email>" syntax in that case.
Likewise,↪→

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

if anything combines with an @ or ", we should probably
not↪→

treat it as a special character.
if unicodedata.normalize("NFC", text[i:])[0] != c:

left_part += c

elif inside_quote:
left_part += c
if c == '\\' and not escaped:

escaped = True
elif c == '"' and not escaped:

The only way to exit the quote is an unescaped
quote.↪→

inside_quote = False
escaped = False

else:
escaped = False

elif c == '"':
left_part += c
inside_quote = True

elif c in specials:
When unquoted, stop before a special character.
break

else:
left_part += c

if len(left_part) == len(text):
raise EmailSyntaxError("An email address must have an

@-sign.")↪→

right_part = text[len(left_part):] # The right part is whatever
is left.↪→

return left_part, right_part

def unquote_quoted_string(text: str) -> Tuple[str, bool]:
Remove surrounding quotes and unescape escaped backslashes
and quotes. Escapes are parsed liberally. I think only

backslashes↪→
and quotes can be escaped but we'll allow anything to be.
quoted, escaped, value = False, False, ""
for i, c in enumerate(text):

if quoted:
if escaped:

value += c
escaped = False

elif c == '\\':
escaped = True

elif c == '"':
if i != len(text) - 1:

raise EmailSyntaxError("Extra character(s) found
after close quote: "↪→

+ ",
".join(safe_character_display(c)
for c in text[i + 1:]))

↪→
↪→

break
else:

value += c
elif i == 0 and c == '"':

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

quoted = True
else:

value += c

return value, quoted

Split the string at the first unquoted @-sign or left angle
bracket.↪→

left_part, right_part = split_string_at_unquoted_special(email,
("@", "<"))↪→

If the right part starts with an angle bracket, then the left
part↪→

is a display name and the rest of the right part up to the
final right angle bracket is the email address, .
if right_part.startswith("<"):

Remove space between the display name and angle bracket.
left_part = left_part.rstrip()

Unquote and unescape the display name.
display_name, display_name_quoted =

unquote_quoted_string(left_part)↪→

Check that only basic characters are present in a non-quoted
display name.↪→

if not display_name_quoted:
bad_chars = {

safe_character_display(c)
for c in display_name
if (not ATEXT_RE.match(c) and c != ' ') or c == '.'

}
if bad_chars:

raise EmailSyntaxError("The display name contains
invalid characters when not quoted: " + ",
".join(sorted(bad_chars)) + ".")

↪→
↪→

check_unsafe_chars(display_name, allow_space=True) # Check for
other unsafe characters.↪→

Check that the right part ends with an angle bracket
but allow spaces after it, I guess.
if ">" not in right_part:

raise EmailSyntaxError("An open angle bracket at the start
of the email address has to be followed by a close angle
bracket at the end.")

↪→
↪→

right_part = right_part.rstrip(" ")
if right_part[-1] != ">":

raise EmailSyntaxError("There can't be anything after the
email address.")↪→

Remove the initial and trailing angle brackets.
addr_spec = right_part[1:].rstrip(">")

Split the email address at the first unquoted @-sign.
local_part, domain_part =

split_string_at_unquoted_special(addr_spec, ("@",))↪→

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Otherwise there is no display name. The left part is the local
part and the right part is the domain.
else:

display_name = None
local_part, domain_part = left_part, right_part

if domain_part.startswith("@"):
domain_part = domain_part[1:]

Unquote the local part if it is quoted.
local_part, is_quoted_local_part =

unquote_quoted_string(local_part)↪→

return display_name, local_part, domain_part, is_quoted_local_part

Test Case Inputs

[
{

"input": [["simple@example.com"], {}],
"output": [null,"simple","example.com", false],

},
{

"input": [["user+name@sub.domain.com"], {}],
"output": [null,"user+name","sub.domain.com", false],

},
{

"input": [["user.name@domain.co.uk"], {}],
"output": [null,"user.name","domain.co.uk", false],

},
{

"input": [["\"quoted@local\"@example.com"], {}],
"output": [null,"quoted@local","example.com", true],

},
{

"input": [["display name <user@domain.com>"], {}],
"output": ["display name","user","domain.com", false],

},
{

"input": [["user@localhost"], {}],
"output": [null,"user","localhost", false],

},
{

"input": [["user@[IPv6:2001:db8::1]"], {}],
"output": [null,"user","[IPv6:2001:db8::1]", false],

},
{

"input": [["\"escaped\\\"quote\"@example.com"], {}],
"output": [null,"escaped\"quote","example.com", true],

},
{

"input": [["user.name@longsubdomain.example.com"], {}],
"output": [null,"user.name","longsubdomain.example.com", false],

},
{

"input": [["very.common@example.com"], {}],
"output": [null,"very.common","example.com", false],

},

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

{
"input": [["user@domain-with-dash.com"], {}],
"output": [null,"user","domain-with-dash.com", false],

},
{

"input": [["user@123.123.123.123"], {}],
"output": [null,"user","123.123.123.123", false],

},
{

"input": [["\"much.more unusual\"@example.com"], {}],
"output": [null,"much.more unusual","example.com", true],

},
{

"input": [["user@xn--exmple-cua.com"], {}],
"output": [null,"user","xn--exmple-cua.com", false],

},
{

"input": [["user@domain_with_underscore.com"], {}],
"output": [null,"user","domain_with_underscore.com", false],

}
]

Generated Outputs

[
{

"input": [["simple@example.com"], {}],
"output": [null,"simple","example.com", false],
"prediction": [null,"simple","example.com",false],
"result": true,
"answer_tokens": {"completion": 18,"prompt": 4610,"total": 4628}

},
{

"input": [["user+name@sub.domain.com"], {}],
"output": [null,"user+name","sub.domain.com", false],
"prediction": [null,"user+name","sub.domain.com",false],
"result": true,
"answer_tokens": {"completion": 21,"prompt": 4614,"total": 4635}

},
{

"input": [["user.name@domain.co.uk"], {}],
"output": [null,"user.name","domain.co.uk", false],
"prediction": [null,"user.name","domain.co.uk",false],
"result": true,
"answer_tokens": {"completion": 20,"prompt": 4613,"total": 4633}

},
{

"input": [["\"quoted@local\"@example.com"], {}],
"output": [null,"quoted@local","example.com", true],
"prediction": ["null","quoted@local","example.com",true],
"result": false,
"answer_tokens": {"completion": 20,"prompt": 4615,"total": 4635}

},
{

"input": [["display name <user@domain.com>"], {}],
"output": ["display name","user","domain.com", false],
"prediction": ["display name","user","domain.com",false],
"result": true,
"answer_tokens": {"completion": 19,"prompt": 4615,"total": 4634}

},
{

"input": [["user@localhost"], {}],
"output": [null,"user","localhost", false],

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

"prediction": [null,"user","localhost",false],
"result": true,
"answer_tokens": {"completion": 17,"prompt": 4610,"total": 4627}

},
{

"input": [["user@[IPv6:2001:db8::1]"], {}],
"output": [null,"user","[IPv6:2001:db8::1]", false],
"prediction": "EmailSyntaxError: An email address must have an

@-sign.",↪→
"result": false,
"answer_tokens": {"completion": 24,"prompt": 4620,"total": 4644
}

},
{

"input": [["\"escaped\\\"quote\"@example.com"], {}],
"output": [null,"escaped\"quote","example.com", true],
"prediction": ["null","escaped\"quote","example.com",true],
"result": false,
"answer_tokens": {"completion": 20,"prompt": 4615,"total": 4635}

},
{

"input": [["user.name@longsubdomain.example.com"], {}],
"output": [null,"user.name","longsubdomain.example.com", false],
"prediction":

[null,"user.name","longsubdomain.example.com",false],↪→
"result": true,
"answer_tokens": {"completion": 22,"prompt": 4615,"total": 4637}

},
{

"input": [["very.common@example.com"], {}],
"output": [null,"very.common","example.com", false],
"prediction": [null,"very.common","example.com",false],
"result": true,
"answer_tokens": {"completion": 19,"prompt": 4611,"total": 4630}

},
{

"input": [["user@domain-with-dash.com"], {}],
"output": [null,"user","domain-with-dash.com", false],
"prediction": [null,"user","domain-with-dash.com",false],
"result": true,
"answer_tokens": {"completion": 21,"prompt": 4614,"total": 4635}

},
{

"input": [["user@123.123.123.123"], {}],
"output": [null,"user","123.123.123.123", false],
"prediction": [null,"user","123.123.123.123",false],
"result": true,
"answer_tokens": {"completion": 23,"prompt": 4616,"total": 4639}

},
{

"input": [["\"much.more unusual\"@example.com"], {}],
"output": [null,"much.more unusual","example.com", true],
"prediction": [null,"much.more unusual","example.com",true],
"result": true,
"answer_tokens": {"completion": 20,"prompt": 4615,"total": 4635}

},
{

"input": [["user@xn--exmple-cua.com"], {}],
"output": [null,"user","xn--exmple-cua.com", false],
"prediction": [null,"user","xn--exmple-cua.com",false],
"result": true,
"answer_tokens": {"completion": 24,"prompt": 4617,"total": 4641}

},
{

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

"input": [["user@domain_with_underscore.com"], {}],
"output": [null,"user","domain_with_underscore.com", false],
"prediction": "EmailSyntaxError: The email address contains unsafe

characters: 'U+005F'.",↪→
"result": false,
"answer_tokens": {"completion": 28,"prompt": 4614,"total": 4642}

}
]

A.2 INPUT GENERATION

Test case generation is performed through a three-stage pipeline: schema construction, test genera-
tion, and validation.

A.2.1 SCHEMA CONSTRUCTION

Using our AST analysis’s findings (see Section A.5), we construct OpenAPI-compatible JSON
schemas from identified argument and return types. Consider a type-annotated function from our
dataset:

from typing import Dict, List, Optional, Tuple, Union

def get_tree_starting_at(module: str, edges: List[Tuple[str, str]]) ->
List[Union[str, List[str]]]:↪→
"""
Returns the tree starting at a given module following all edges.

Args:
module (`str`): The module that will be the root of the subtree

we want.↪→
eges (`List[Tuple[str, str]]`): The list of all edges of the

tree.↪→

Returns:
`List[Union[str, List[str]]]`: The tree to print in the

following format: [module, [list of edges↪→
starting at module], [list of edges starting at the preceding

level], ...]↪→
"""
vertices_seen = [module]
new_edges = [edge for edge in edges if edge[0] == module and edge[1]

!= module and "__init__.py" not in edge[1]]↪→
tree = [module]
while len(new_edges) > 0:

tree.append(new_edges)
final_vertices = list({edge[1] for edge in new_edges})
vertices_seen.extend(final_vertices)
new_edges = [

edge
for edge in edges
if edge[0] in final_vertices and edge[1] not in

vertices_seen and "__init__.py" not in edge[1]↪→
]

return tree

This generates the following schema for language model function calling (note: the case below
shows a json schema further wrapped in OpenAI’s specific ”tool” schema):

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

{"tools": [{
"type": "function",
"function": {

"name": "FunctionTestCaseModel",
"description": "Correctly extracted `FunctionTestCaseModel` with

all the required parameters with correct types",↪→
"parameters": {

"$defs": {
"ArgsModel": {

"properties": {
"module": {

"description": "Positional argument 'module' with
type '<class 'str'>'",↪→

"title": "Module",
"type": "string"

},
"edges": {

"description": "Positional argument 'edges' with
type 'typing.List[typing.Tuple[str, str]]'",↪→

"items": {
"items": {"type": "string"},
"type": "array"

},
"title": "Edges",
"type": "array"

}
},
"required": ["module", "edges"],
"title": "ArgsModel",
"type": "object"

},
"KwargsModel": {

"properties": {},
"title": "KwargsModel",
"type": "object"

},
"TestCase": {

"properties": {
"args": {

"allOf": [{"$ref": "#/$defs/ArgsModel"}],
"description": "Positional args."

},
"kwargs": {

"allOf": [{"$ref": "#/$defs/KwargsModel"}],
"description": "Keyword args."

}
},
"required": ["args", "kwargs"],
"title": "TestCase",
"type": "object"

}
},
"properties": {

"test_cases": {
"description": "List of test cases",
"items": {"$ref": "#/$defs/TestCase"},
"title": "Test Cases",
"type": "array"

}
},
"required": ["test_cases"],
"type": "object"

}

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

}
}]}

This schema is then embedded within our test case generation prompt:

You are an expert software tester tasked with generating diverse test
cases for a given function. Your goal is to create a comprehensive
set of tests that cover various scenarios and edge cases.

↪→
↪→

First, let's review the previously generated test cases to ensure we
explore new scenarios:↪→

<previously_generated_test_cases>
{seen or "No test cases have been generated yet."}
</previously_generated_test_cases>

Now, let's examine the context and function details:

<module_code>
{module_code}
</module_code>

Now, let's look at the specific function we need to test:

<function_signature>
{func.signature}
</function_signature>

<function_docstring>
{func.docstring}
</function_docstring>

<function_implementation>
{func.code}
</function_implementation>

Before generating the test cases, let's think through the process:

<test_case_analysis>
1. Analyze the function signature, docstring, and implementation to

understand its purpose and expected behavior.↪→
2. Identify the input parameters and their types.
3. Determine the function's return type and expected output format.
4. Consider the following categories of test cases:

a. Simple and straightforward cases
b. Complex cases with multiple inputs
c. Edge cases with large values or sizes
d. Edge cases with small values or sizes
e. Cases that may require significant processing time
f. Cases that might cause errors or exceptions
g. Cases with invalid inputs that should raise specific exceptions

5. For numerical arguments:
- Include positive and negative integers/floats
- Include zero
- Include prime numbers
- Include maximum and minimum possible integer values
- Include very large floats and very small floats (close to zero)

6. For string arguments:
- Include empty strings
- Include strings with special characters
- Include very long strings
- Include strings in different languages or with Unicode characters

7. For boolean arguments:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

- Include both True and False cases
8. For dynamic containers (e.g., lists, dictionaries):

- Include cases with many elements
- Include cases with no elements
- Include cases with deeply nested objects
- Include cases with mixed data types

9. For each test case, predict the expected output or exception.
10. Ensure that each test case is unique and covers a different

scenario.↪→
11. Consider any specific constraints or requirements mentioned in the

docstring.↪→
</test_case_analysis>

Now, generate 15 diverse test cases based on this analysis. Present each
test case as a Python dictionary with 'args' and 'kwargs' keys, even
if one of them is empty. Do not include any additional text or
formatting.

↪→
↪→
↪→

A.2.2 TEST GENERATION AND EXECUTION

After generation, each test case is executed against the original function in a controlled environment.
We capture:

• Return values or raised exceptions
• Runtime statistics (see Section A.6)

A.2.3 VALIDATION PIPELINE

Generated test cases are tested against seven validators for quality control. Each validator, upon
failure, appends specific feedback as part of a reply to the conversation with the language model:

1. Schema Conformance: Test cases must parse as valid function inputs
2. Duplication: Each test case input must be unique
3. Coverage: Minimum 10 test cases per function
4. Non-triviality: Less than 50% of cases can return unmodified input
5. Output Diversity: No single output as 66% of cases
6. Error Balance: Exception cases limited to 50% of total
7. Runtime Bounds: CPU time under 10 seconds per case

We provide examples of validation feedback messages in Section A.4.

A.2.4 REGENERATION STRATEGY

The system allows two full generation attempts, each permitting three validation/reply/regeneration
cycles. To maximise task breadth while maintaining quality, we may still preserve some test cases
from a task that fails to pass all validators. We do this by relaxing some validator requirements:

• The minimum test case count requirement (criterion 3) is waived for the final generation
attempt

• Test cases that contain duplicates or exceed runtime bounds are individually filtered out
(criteria 2 and 7)

• The task’s remaining test cases must still meet our core quality requirements: non-triviality,
output diversity, and a balanced error rate (criteria 4, 5, and 6)

This approach using GPT-4o-latest (generation spanned multiple versions) yields our current dataset
of 33,875 test cases across 1,000 repositories, with an average generation cost of 1,123 tokens per

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

test case. Failed generations primarily occur due to schema conformance (criterion 1 - schema con-
formance poses an outsized challenge to smaller models i.e. llama3.1-8b; mirroring the execution
prediction task), duplication and output diversity (criterion 2 and 5 - both commonly observed in
functions with a limited input/output domains, i.e. single boolean args/ returns).

A.3 FUNCTION SELECTION AND DEPENDENCY RESOLUTION

The function selection and dependency collation process comprises three main stages: type annota-
tion analysis, dependency graph construction, and code inlining, followed by a final filtering stage.
Here we detail each stage:

A.3.1 TYPE ANNOTATION ANALYSIS

Function selection begins with a recursive AST analysis of type annotations. Each candidate func-
tion must have both its arguments and return type validated as ”LLM-generatable” - meaning they
can be reliably produced by a language model. As detailed in Section A.5, we recursively validate
against a predefined set of acceptable types.

For example, when processing complex nested types like ‘List[Tuple[str, int]]‘, the analyzer first
validates ‘List‘, then ‘Tuple‘, and finally ‘str‘ and ‘int‘. Functions with arguments or return types
containing non-LLM-generatable elements (e.g., file handles, sockets, custom objects) are filtered
out during this stage.

A.3.2 DEPENDENCY GRAPH CONSTRUCTION

Once a function passes type validation, we construct a dependency graph to identify all code ele-
ments required for the function’s execution. This process involves:

1. Symbol Analysis: For each function, we perform an AST walk to identify:

• Local variables: We track symbols defined within the current scope including but not
limited to assignments, function arguments, loop variables, comprehension variables, and
lambda parameters. These are excluded from dependency tracking as they are part of the
function’s internal logic.

• Used symbols: We collect all variable references, function calls, type annotations (e.g., in
‘x: List[Prompt]‘, both ‘List‘ and ‘Prompt‘ need resolving), and attribute accesses (e.g., in
‘library.varname‘, both ‘library‘ and ‘varname‘ need resolving). By comparing against the
local variables, we identify which symbols must be resolved externally. For each symbol,
we walk the AST to find its definition.

• Nested scopes: We handle nested functions and classes by treating their names as local
variables in the outer scope while tracking their internal symbol usage separately.

2. Import Resolution: For each identified external dependency, we:

• Resolve relative imports based on the file’s location in the package and module imports
based on the package structure

• Track aliases and renamed imports, mapping against accessed attributes (e.g. for ‘lib.var‘
where we ‘import x as lib‘, we must find ‘var‘ in ‘x‘)

• Ignore builtin imports, treating them as standard code blocks

• Recursively process imported modules, classes, functions and variables through Step 1.
Symbol Analysis

• Handle special cases such as ‘ init .py‘ files, complex imports ‘from x import *‘ and more

3. Graph Construction: We build a directed graph where nodes represent code blocks (functions,
classes, assignments) and edges represent dependencies between these blocks. The graph maintains
the minimal set of dependencies required for each function while preserving their original relation-
ships.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

4. Symbol Resolution Validation: Before a function is accepted, we verify that every used symbol
has been successfully resolved to a definition. This validation is crucial as it ensures we can create
a complete, self-contained version of the function. Functions using runtime code generation (e.g.,
‘exec‘, ‘eval‘), dynamic attribute access (e.g., ‘getattr‘ with variable names), or other patterns that
prevent static resolution are largely filtered out at this stage.

To illustrate this process with a simple example, consider the following from the Azure SDK Ta-
bles package. The original code was spread across two files in ‘azure-nspkg/sdk/tables/azure-data-
tables/azure/data/tables/‘. The extracted minimal dependency chain (debug output preserved to show
file origins and dependency types) is shown below:

_common_conversion.py | resolved_import_from/defaultlib -> from
datetime import timezone↪→

from datetime import timezone

_common_conversion.py | function -> _to_utc_datetime
def _to_utc_datetime(value):

try:
value = value.astimezone(timezone.utc)

except ValueError:
Before Python 3.8, this raised for a naive datetime.
pass

try:
return value.strftime("%Y-%m-%dT%H:%M:%S.%fZ")

except ValueError:
return value.strftime("%Y-%m-%dT%H:%M:%SZ")

_serialize.py | resolved_import_from/defaultlib -> from datetime
import datetime↪→

from datetime import datetime
_serialize.py | resolved_import_from/defaultlib -> from uuid import

UUID↪→
from uuid import UUID
_serialize.py | resolved_import_from/defaultlib -> from typing import

Dict, Optional, Union↪→
from typing import Dict, Optional
_serialize.py | resolved_import_from/defaultlib -> from binascii

import hexlify↪→
from binascii import hexlify

_serialize.py | function -> _parameter_filter_substitution
def _parameter_filter_substitution(parameters: Optional[Dict[str, str]],

query_filter: str) -> str:↪→
"""Replace user defined parameters in filter.
:param parameters: User defined parameters
:type parameters: dict[str, str]
:param str query_filter: Filter for querying
:return: A query filter replaced by user defined parameters.
:rtype: str
"""
if parameters:

filter_strings = query_filter.split(" ")
for index, word in enumerate(filter_strings):

if word[0] == "@":
val = parameters[word[1:]]
if val in [True, False]:

filter_strings[index] = str(val).lower()
elif isinstance(val, (float)):

filter_strings[index] = str(val)
elif isinstance(val, int):

if val.bit_length() <= 32:
filter_strings[index] = str(val)

else:
filter_strings[index] = f"{str(val)}L"

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

elif isinstance(val, datetime):
filter_strings[index] =

f"datetime'{_to_utc_datetime(val)}'"↪→
elif isinstance(val, UUID):

filter_strings[index] = f"guid'{str(val)}'"
elif isinstance(val, bytes):

v = str(hexlify(val))
v = v[2:-1] # Python 3 adds a 'b' and quotations
filter_strings[index] = f"X'{v}'"

else:
val = val.replace("'", "''")
filter_strings[index] = f"'{val}'"

return " ".join(filter_strings)
return query_filter

Note that these functions have been extracted from much larger source files (indicated by the com-
mented file names) - we only collect the minimal code required for execution.

A.3.3 CODE INLINING

The final stage involves generating a self-contained version of the function with all dependencies in-
lined. Rather than attempting to strip back the original files to their minimal form, we are motivated
to inline as it ensures the language model executes exactly the same code as our interpreter.

The inlining process:

1. Performs a topological sort of the dependency graph to determine the correct order of declarations.

2. Inlines code based on its original structure:

• Most code, including functions, classes, and variables, is inlined directly at the appropriate
scope.

• When an entire module has been imported (e.g., ‘import random‘), we create a namespace
class to maintain proper module-level scoping.

3. Generates the final code by maintaining the original code structure and ensuring all dependencies
are declared before use.

After code inlining, we perform a final filtering pass to remove functions with side effects or non-
deterministic behaviour. This filtering must occur after inlining as many problematic patterns only
become apparent once we have the complete code context. For example, network requests might be
hidden behind multiple layers of function calls, or environment variables might be accessed through
utility functions in separate modules. Functions that use system calls, file I/O, network operations,
random number generation, or environment variables are filtered out at this stage.

While our dependency resolution system handles many common Python patterns, including dynamic
imports and aliased imports, there remain some challenges. Functions with circular dependencies
between modules cannot currently be processed, and certain package initialization patterns that rely
on import-time side effects are not supported. These limitations primarily affect a small percentage
of candidate functions.

A.4 VALIDATOR EXAMPLES

Each validator appends specific feedback to guide the model in correcting errors. Below are the
prompts used for each of these feedback messages:

A.4.1 SCHEMA CONFORMANCE VALIDATOR

Validation Error found while parsing test case JSON:
<exception>

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

{exception}
</exception>
Recall the function correctly, fix these errors and generate a valid

test case following the schema.↪→

A.4.2 DUPLICATION VALIDATOR

Validation Error: Duplicate test case inputs detected
The following test cases have identical inputs:
<duplicate_cases>
{json.dumps(duplicate_cases)}
</duplicate_cases>
Recall the function correctly and generate test cases with unique

input combinations.↪→

A.4.3 COVERAGE VALIDATOR

Validation Error: Insufficient test coverage ({len(cases)}/10 required
minimum cases).↪→

Generate additional unqiue test cases to cover these scenarios.

A.4.4 NON-TRIVIALITY VALIDATOR

Validation Error: Test cases too simple. Greater than 50% of test cases
are returning their inputs as outputs. Inputs must undergo some
transformation during processing.

↪→
↪→

<test_cases_with_results>
{json.dumps(cases)}
</test_cases_with_results>
Fix these errors by generating test cases that:
1. Explore different code paths within the function
2. Trigger transformation of the inputs so that they differ from the

outputs↪→

A.4.5 OUTPUT DIVERSITY VALIDATOR

Validation Error: Insufficient output diversity in test cases. One
output is returned by more than 2/3s of all cases.↪→

<test_cases_counted_outputs>
{json.dumps(output_counter)}
<test_cases_counted_outputs>
<test_cases_with_results>
{json.dumps(cases)}
</test_cases_with_results>
Generate additional test cases that contain differing outputs to the

most popular above.↪→

A.4.6 ERROR BALANCE VALIDATOR

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Validation Error: Too many error-inducing test cases
({len(error_cases)}/{len(cases)})↪→

<test_cases_with_results>
{json.dumps(cases)}
</test_cases_with_results>

A.5 ACCEPTABLE TYPES & FILTERING CRITERIA

Acceptable types. To find functions where the inputs and outputs are LLM generat-
able, we recursively parse both arguments and return types as AST objects i.e. for
list[tuple[str, False]] we first check list is an acceptable type, then recurse down
into tuple, following that we then check str and finally we check False. False isn’t an ac-
ceptable type but it is an acceptable constant and hence accepted. Note: certain acceptable types and
constants are not allowed as return values, i.e. None is not an accepted return constant

acceptable types = { 'int', 'str', 'float', 'bool', 'none', 'list', 'dict',
'tuple', 'set', 'datetime.date', 'date', 'literal', 'optional', 'union',
'sequence', 'iterable', 'frozenset', 'mapping' }

acceptable constants = { 'ellipsis', True, False, None }

Filtering functions. When filtering functions we maintain four separate block lists, 1) a list of
banned imports (including direct and aliases), 2) a list of banned functions (some common libraries
have a limited set of non-deterministic methods, we don’t want to fully exclude them), 3) a list of
banned variables (some variables such as __version__ are likely to be environment based), 4) a
list of banned repos (some repos from cloud providers provide thousands of near identical methods
with different urls, we remove these as they are not a valuable contribution to the evaluation).

A.6 STATIC AND RUNTIME CODE STATISTICS

Given a task from the evaluation set we perform the following static and runtime analyses:

Static Analysis:

1. Lines of Code Count. Total number of lines, excluding blanks and comments.
2. AST Node Types Count. Count of all Python Abstract Syntax Tree (AST) node types

present in the code, e.g. FunctionDef(), AsyncFunctionDef(), Assign(),
For(), ...

3. Cyclomatic Complexity. An estimate of the number of linearly independent paths through
a program’s source code. Note: There are several limitations in the implementation of this
metric as we only parse python source code, and some modern python features such as
pattern matching statements are yet to be supported.

4. Maintainability Index. A estimate of code maintainability and quality incorporating sev-
eral other estimated measures (e.g. Halstead Volume, Cyclomatic Complexity, and lines of
code). Note: Faces the same aforementioned limitations.

Runtime Analysis:

1. CPU Time.
2. Loop Iterations. Including for loops, while loops and list comprehensions.
3. Arithmetic Operations. Including addition, subtraction, multiplication, division and

power operations.
4. Execution Metrics. Including lines executed, library lines executed and conditional state-

ments executed.
5. Function Calls. Including builtin function calls, user-defined function calls and total func-

tion calls.
6. Variable Usage. Including variables declared and variables used

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 9: Top static statistics visualised against Pass@1 rate for all models tested

A.7 OUTPUT COMPARISON AND VALIDATION

When evaluating model outputs against ground truth values, we employ two distinct comparison
strategies depending on whether the output represents a successful execution result or an error case.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Figure 10: Runtime statistics visualised against Pass@1 rate for all models tested

This dual approach is necessary because error messages often contain version or implementation-
specific details while maintaining semantic equivalence.

A.7.1 DIRECT VALUE COMPARISON

For successful execution results, we perform limited preprocessing (unsorted container objects e.g.
set and frozenset are sorted before conversion to json lists, iterable types i.e. tuples are con-
verted to lists, numbers are consistently formatted), then make a direct comparison between the
model output and ground truth as json objects.

A.7.2 ERROR MESSAGE COMPARISON

For error cases, we use a language model-based comparison approach that focuses on specific error
patterns and known version differences. This structured approach is necessary as error messages
have evolved across Python versions while maintaining the same underlying causes.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Stacktrace Handling. We explicitly exclude stacktraces from comparison as they contain
execution-specific information like file paths, and external details that the model is not privy to.

Version-Specific Error Messages. Python has evolved to provide more helpful error messages
in recent versions, with significant changes between major releases. Our comparison system must
handle these variations appropriately. Examples of version-specific differences:

Python 3.9
my_list = [1, 2 3]
SyntaxError: invalid syntax

Python 3.10
my_list = [1, 2 3]
SyntaxError: invalid syntax. Perhaps you forgot a comma?

Both indicate the same missing comma issue

Python 3.11
my_string = f"{x z y}" + f"{1 + 1}"
SyntaxError: f-string: invalid syntax. Perhaps you forgot a comma?

Python 3.12
my_string = f"{x z y}" + f"{1 + 1}"
SyntaxError: invalid syntax. Perhaps you forgot a comma?

While the messages differ, they point to the same syntactic error

To handle these variations, our error comparison system uses a prompt that encourages human-like
reasoning about error equivalence:

You are an expert Python developer looking at two error messages.
Determine if they are describing the same underlying issue, even if
expressed differently. Consider:

↪→
↪→

- Different Python versions might provide different levels of detail for
the same error↪→

- The core issue might be described in more or less helpful ways
- Extra hints or suggestions don't change the fundamental error
- Line numbers and file paths are irrelevant

Message 1: {error1}
Message 2: {error2}

Would a Python developer consider these to be the same error? Answer
only 'True' or 'False'.↪→

This structured approach to error comparison improves consistency in evaluation across different
Python versions and implementation variations while maintaining the ability to identify truly distinct
error cases.

A.8 PER FUNCTION TASK SET DIVERSITY

To measure EXE’s potential to scale in the future, we analyse a model’s ability to continually gen-
erate new test cases given a single function. This is performed by:

1. Sampling functions from EXE’s dataset (samples detailed below).

2. Generating a batch of test cases in accordance with A.2, recording token usage.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

3. Running validators in accordance with A.2, removing cases that are duplicates, fail to exe-
cute, fail to be parsed, or that trigger any validator.

4. Continue generating new batches of test cases, injecting a random selection of (up to 60)
previously generated cases into the prompt (detailed samples of test cases generated can be
seen at the end of this appendix).

A.8.1 INLINED CODE TASKS FOR GENERATION

Example 1. get_origin_link_and_tag from utils.py in azure-nspkg:

from typing import List

def get_origin_link_and_tag(issue_body_list: List[str]) -> (str, str):
link, readme_tag = '', ''
for row in issue_body_list:

if 'link' in row.lower() and 'release request' not in
row.lower() and link == '':↪→
link = row.split(":", 1)[-1].strip()

if 'readme tag' in row.lower() and readme_tag == '':
readme_tag = row.split(":", 1)[-1].strip()

if link and readme_tag:
break

if link.count('https') > 1:
link = link.split(']')[0]
link = link.replace('[', "").replace(']', "").replace('(',

"").replace(')', "")↪→
return link, readme_tag

Example 2. _compute_affine_output_size_python.py from geometry.py in
torchvision:

from typing import List, Tuple

import math

def _compute_affine_output_size_python(matrix: List[float], w: int, h:
int) -> Tuple[int, int]:↪→
Mostly copied from PIL implementation:
The only difference is with transformed points as input matrix has

zero translation part here and↪→
PIL has a centered translation part.
https://github.com/python-pillow/Pillow/blob/11de3318867e43980573 ⌋

73ee9f12dcb33db7335c/src/PIL/Image.py#L2054↪→

a, b, c, d, e, f = matrix
xx = []
yy = []

half_w = 0.5 * w
half_h = 0.5 * h
for x, y in ((-half_w, -half_h), (half_w, -half_h), (half_w,

half_h), (-half_w, half_h)):↪→
nx = a * x + b * y + c
ny = d * x + e * y + f
xx.append(nx + half_w)
yy.append(ny + half_h)

nw = math.ceil(max(xx)) - math.floor(min(xx))
nh = math.ceil(max(yy)) - math.floor(min(yy))
return int(nw), int(nh) # w, h

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Example 3. _format_image.py from _chat_models.py in langchain-core:

from typing import Dict

import re

def _format_image(image_url: str) -> Dict:
"""
Formats an image of format data:image/jpeg;base64,{b64_string}
to a dict for anthropic api

{
"type": "base64",
"media_type": "image/jpeg",
"data": "/9j/4AAQSkZJRg...",

}

And throws an error if it's not a b64 image
"""
regex = r"ˆdata:(?P<media_type>image/.+);base64,(?P<data>.+)$"
match = re.match(regex, image_url)
if match is None:

raise ValueError(
"Anthropic only supports base64-encoded images currently."
" Example: data:image/png;base64,'/9j/4AAQSk'..."

)
return {

"type": "base64",
"media_type": match.group("media_type"),
"data": match.group("data"),

}

Example 4. make_arn_for_alarm.py from utils.py in moto:

REGION_PREFIX_TO_PARTITION = {
(region prefix, aws partition)
"cn-": "aws-cn",
"us-gov-": "aws-us-gov",
"us-iso-": "aws-iso",
"us-isob-": "aws-iso-b",

}

DEFAULT_PARTITION = "aws"

PARTITION_NAMES = list(REGION_PREFIX_TO_PARTITION.values()) +
[DEFAULT_PARTITION]↪→

def get_partition(region: str) -> str:
if not region:

return DEFAULT_PARTITION
if region in PARTITION_NAMES:

return region
for prefix in REGION_PREFIX_TO_PARTITION:

if region.startswith(prefix):
return REGION_PREFIX_TO_PARTITION[prefix]

return DEFAULT_PARTITION

def make_arn_for_alarm(region: str, account_id: str, alarm_name: str) ->
str:↪→
return

f"arn:{get_partition(region)}:cloudwatch:{region}:{account_id}:alarm:{alarm_name}"↪→

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Example 5. number2lowercase_roman_numeral.py from page_labels.py in pypdf2:

from typing import Iterator

def number2uppercase_roman_numeral(num: int) -> str:
roman = [

(1000, "M"),
(900, "CM"),
(500, "D"),
(400, "CD"),
(100, "C"),
(90, "XC"),
(50, "L"),
(40, "XL"),
(10, "X"),
(9, "IX"),
(5, "V"),
(4, "IV"),
(1, "I"),

]

def roman_num(num: int) -> Iterator[str]:
for decimal, roman_repr in roman:

x, _ = divmod(num, decimal)
yield roman_repr * x
num -= decimal * x
if num <= 0:

break

return "".join(list(roman_num(num)))

def number2lowercase_roman_numeral(number: int) -> str:
return number2uppercase_roman_numeral(number).lower()

Example 6. alpha_canonicalize.py from parser.py in opt-einsum:

_einsum_symbols_base =
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"↪→

from typing import Dict

def get_symbol(i: int) -> str:
"""Get the symbol corresponding to int ``i`` - runs through the

usual 52↪→
letters before resorting to unicode characters, starting at

``chr(192)`` and skipping surrogates.↪→

Examples:

```python
get_symbol(2)
#> 'c'

get_symbol(200)
#> 'Ŕ'

get_symbol(20000)
#> ''
```
"""
if i < 52:

return _einsum_symbols_base[i]

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

elif i >= 55296:
Skip chr(57343) - chr(55296) as surrogates
return chr(i + 2048)

else:
return chr(i + 140)

def alpha_canonicalize(equation: str) -> str:
"""Alpha convert an equation in an order-independent canonical way.

Examples

>>> oe.parser.alpha_canonicalize("dcba")
'abcd'

>>> oe.parser.alpha_canonicalize("Ĥěļļö")
'abccd'
"""
rename: Dict[str, str] = {}
for name in equation:

if name in ".,->":
continue

if name not in rename:
rename[name] = get_symbol(len(rename))

return "".join(rename.get(x, x) for x in equation)

Example 7. remove_starting_comments.py from sql_util.py in snowflake-connector-
python:

import re

COMMENT_START_SQL_RE = re.compile(
r"""

ˆ\s*(?:
/*[\w\W]*?*/

)""",
re.VERBOSE,

)

def remove_starting_comments(sql: str) -> str:
"""Remove all comments from the start of a SQL statement."""
commentless_sql = sql
while True:

start_comment = COMMENT_START_SQL_RE.match(commentless_sql)
if start_comment is None:

break
commentless_sql = commentless_sql[start_comment.end() :]

return commentless_sql

Example 8. _pad_version.py from specifiers.py in poetry-core:

import itertools

from typing import List, Tuple

def _pad_version(left: List[str], right: List[str]) -> Tuple[List[str],
List[str]]:↪→
left_split, right_split = [], []

Get the release segment of our versions
left_split.append(list(itertools.takewhile(lambda x: x.isdigit(),

left)))↪→

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

right_split.append(list(itertools.takewhile(lambda x: x.isdigit(),
right)))↪→

Get the rest of our versions
left_split.append(left[len(left_split[0]) :])
right_split.append(right[len(right_split[0]) :])

Insert our padding
left_split.insert(1, ["0"] * max(0, len(right_split[0]) -

len(left_split[0])))↪→
right_split.insert(1, ["0"] * max(0, len(left_split[0]) -

len(right_split[0])))↪→

return (list(itertools.chain(*left_split)),
list(itertools.chain(*right_split)))↪→

Example 9. get_flag_suggestions.py from _helpers.py in absl-py:

_SUGGESTION_ERROR_RATE_THRESHOLD = 0.50

from typing import List, Sequence

def _damerau_levenshtein(a, b):
"""Returns Damerau-Levenshtein edit distance from a to b."""
memo = {}

def distance(x, y):
"""Recursively defined string distance with memoization."""
if (x, y) in memo:

return memo[x, y]
if not x:
d = len(y)

elif not y:
d = len(x)

else:
d = min(

distance(x[1:], y) + 1, # correct an insertion error
distance(x, y[1:]) + 1, # correct a deletion error
distance(x[1:], y[1:]) + (x[0] != y[0])) # correct a wrong

character↪→
if len(x) >= 2 and len(y) >= 2 and x[0] == y[1] and x[1] == y[0]:
Correct a transposition.
t = distance(x[2:], y[2:]) + 1
if d > t:
d = t

memo[x, y] = d
return d

return distance(a, b)

def get_flag_suggestions(
attempt: str, longopt_list: Sequence[str]

) -> List[str]:
"""Returns helpful similar matches for an invalid flag."""
Don't suggest on very short strings, or if no longopts are

specified.↪→
if len(attempt) <= 2 or not longopt_list:
return []

option_names = [v.split('=')[0] for v in longopt_list]

Find close approximations in flag prefixes.
This also handles the case where the flag is spelled right but

ambiguous.↪→

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

distances = [(_damerau_levenshtein(attempt, option[0:len(attempt)]),
option)↪→

for option in option_names]
t[0] is distance, and sorting by t[1] allows us to have stable

output.↪→
distances.sort()

least_errors, _ = distances[0]
Don't suggest excessively bad matches.
if least_errors >= _SUGGESTION_ERROR_RATE_THRESHOLD * len(attempt):
return []

suggestions = []
for errors, name in distances:

if errors == least_errors:
suggestions.append(name)

else:
break

return suggestions

Example 10. valid_contexto.py from core.py in idna:

from types import SimpleNamespace

from typing import Tuple

def _encode_range(start: int, end: int) -> int:
return (start << 32) | end

def _decode_range(r: int) -> Tuple[int, int]:
return (r >> 32), (r & ((1 << 32) - 1))

import bisect

def intranges_contain(int_: int, ranges: Tuple[int, ...]) -> bool:
"""Determine if `int_` falls into one of the ranges in `ranges`."""
tuple_ = _encode_range(int_, 0)
pos = bisect.bisect_left(ranges, tuple_)
we could be immediately ahead of a tuple (start, end)
with start < int_ <= end
if pos > 0:

left, right = _decode_range(ranges[pos-1])
if left <= int_ < right:

return True
or we could be immediately behind a tuple (int_, end)
if pos < len(ranges):

left, _ = _decode_range(ranges[pos])
if left == int_:

return True
return False

class idnadataClass(SimpleNamespace):
def __init__(self):

scripts = {
'Greek': (

0x37000000374,
0x37500000378,
0x37a0000037e,
0x37f00000380,
0x38400000385,
0x38600000387,
0x3880000038b,
0x38c0000038d,

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

0x38e000003a2,
0x3a3000003e2,
0x3f000000400,
0x1d2600001d2b,
0x1d5d00001d62,
0x1d6600001d6b,
0x1dbf00001dc0,
0x1f0000001f16,
0x1f1800001f1e,
0x1f2000001f46,
0x1f4800001f4e,
0x1f5000001f58,
0x1f5900001f5a,
0x1f5b00001f5c,
0x1f5d00001f5e,
0x1f5f00001f7e,
0x1f8000001fb5,
0x1fb600001fc5,
0x1fc600001fd4,
0x1fd600001fdc,
0x1fdd00001ff0,
0x1ff200001ff5,
0x1ff600001fff,
0x212600002127,
0xab650000ab66,
0x101400001018f,
0x101a0000101a1,
0x1d2000001d246,

),
'Han': (

0x2e8000002e9a,
0x2e9b00002ef4,
0x2f0000002fd6,
0x300500003006,
0x300700003008,
0x30210000302a,
0x30380000303c,
0x340000004dc0,
0x4e000000a000,
0xf9000000fa6e,
0xfa700000fada,
0x16fe200016fe4,
0x16ff000016ff2,
0x200000002a6e0,
0x2a7000002b73a,
0x2b7400002b81e,
0x2b8200002cea2,
0x2ceb00002ebe1,
0x2ebf00002ee5e,
0x2f8000002fa1e,
0x300000003134b,
0x31350000323b0,

),
'Hebrew': (

0x591000005c8,
0x5d0000005eb,
0x5ef000005f5,
0xfb1d0000fb37,
0xfb380000fb3d,
0xfb3e0000fb3f,
0xfb400000fb42,
0xfb430000fb45,
0xfb460000fb50,

),

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

'Hiragana': (
0x304100003097,
0x309d000030a0,
0x1b0010001b120,
0x1b1320001b133,
0x1b1500001b153,
0x1f2000001f201,

),
'Katakana': (

0x30a1000030fb,
0x30fd00003100,
0x31f000003200,
0x32d0000032ff,
0x330000003358,
0xff660000ff70,
0xff710000ff9e,
0x1aff00001aff4,
0x1aff50001affc,
0x1affd0001afff,
0x1b0000001b001,
0x1b1200001b123,
0x1b1550001b156,
0x1b1640001b168,

),
}

self.__dict__.update(locals())

idnadata = idnadataClass()

def _is_script(cp: str, script: str) -> bool:
return intranges_contain(ord(cp), idnadata.scripts[script])

def valid_contexto(label: str, pos: int, exception: bool = False) ->
bool:↪→
cp_value = ord(label[pos])

if cp_value == 0x00b7:
if 0 < pos < len(label)-1:

if ord(label[pos - 1]) == 0x006c and ord(label[pos + 1]) ==
0x006c:↪→
return True

return False

elif cp_value == 0x0375:
if pos < len(label)-1 and len(label) > 1:

return _is_script(label[pos + 1], 'Greek')
return False

elif cp_value == 0x05f3 or cp_value == 0x05f4:
if pos > 0:

return _is_script(label[pos - 1], 'Hebrew')
return False

elif cp_value == 0x30fb:
for cp in label:

if cp == '\u30fb':
continue

if _is_script(cp, 'Hiragana') or _is_script(cp, 'Katakana')
or _is_script(cp, 'Han'):↪→
return True

return False

elif 0x660 <= cp_value <= 0x669:

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

for cp in label:
if 0x6f0 <= ord(cp) <= 0x06f9:

return False
return True

elif 0x6f0 <= cp_value <= 0x6f9:
for cp in label:

if 0x660 <= ord(cp) <= 0x0669:
return False

return True

return False

Example 11. exact_match.py from meteor_score.py in nltk:

from typing import Callable, Iterable, List, Tuple

def _match_enums(
enum_hypothesis_list: List[Tuple[int, str]],
enum_reference_list: List[Tuple[int, str]],

) -> Tuple[List[Tuple[int, int]], List[Tuple[int, str]], List[Tuple[int,
str]]]:↪→
"""
matches exact words in hypothesis and reference and returns
a word mapping between enum_hypothesis_list and enum_reference_list
based on the enumerated word id.

:param enum_hypothesis_list: enumerated hypothesis list
:param enum_reference_list: enumerated reference list
:return: enumerated matched tuples, enumerated unmatched hypothesis

tuples,↪→
enumerated unmatched reference tuples

"""
word_match = []
for i in range(len(enum_hypothesis_list))[::-1]:

for j in range(len(enum_reference_list))[::-1]:
if enum_hypothesis_list[i][1] == enum_reference_list[j][1]:

word_match.append(
(enum_hypothesis_list[i][0],

enum_reference_list[j][0])↪→
)
enum_hypothesis_list.pop(i)
enum_reference_list.pop(j)
break

return word_match, enum_hypothesis_list, enum_reference_list

def _generate_enums(
hypothesis: Iterable[str],
reference: Iterable[str],
preprocess: Callable[[str], str] = str.lower,

) -> Tuple[List[Tuple[int, str]], List[Tuple[int, str]]]:
"""
Takes in pre-tokenized inputs for hypothesis and reference and

returns↪→
enumerated word lists for each of them

:param hypothesis: pre-tokenized hypothesis
:param reference: pre-tokenized reference
:preprocess: preprocessing method (default str.lower)
:return: enumerated words list
"""
if isinstance(hypothesis, str):

raise TypeError(

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

f'"hypothesis" expects pre-tokenized hypothesis
(Iterable[str]): {hypothesis}'↪→

)

if isinstance(reference, str):
raise TypeError(

f'"reference" expects pre-tokenized reference
(Iterable[str]): {reference}'↪→

)

enum_hypothesis_list = list(enumerate(map(preprocess, hypothesis)))
enum_reference_list = list(enumerate(map(preprocess, reference)))
return enum_hypothesis_list, enum_reference_list

def exact_match(
hypothesis: Iterable[str], reference: Iterable[str]

) -> Tuple[List[Tuple[int, int]], List[Tuple[int, str]], List[Tuple[int,
str]]]:↪→
"""
matches exact words in hypothesis and reference
and returns a word mapping based on the enumerated
word id between hypothesis and reference

:param hypothesis: pre-tokenized hypothesis
:param reference: pre-tokenized reference
:return: enumerated matched tuples, enumerated unmatched hypothesis

tuples,↪→
enumerated unmatched reference tuples

"""
enum_hypothesis_list, enum_reference_list =

_generate_enums(hypothesis, reference)↪→
return _match_enums(enum_hypothesis_list, enum_reference_list)

A.8.2 GENERATED TEST CASES

Below is a sample of generated test cases (cut down to 3 examples, showing the first 60 cases for
brevity).

First 60 generated cases for alpha_canonicalize

0: {"args": ["a1b2c3->d4e5f6"], "kwargs": {}}
1: {"args": [" -> , -> "], "kwargs": {}}
2: {"args": [" "], "kwargs": {}}
3: {"args": ["AAA BBB CCC"], "kwargs": {}}
4: {"args": ["abcdefghijklmnopqrstuvwxyz"], "kwargs": {}}
5: {"args": ["a\u0000b\u0001c\u0002->d\u0003e\u0004f\u0005"],

"kwargs": {}}↪→
6: {"args": ["abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"],

"kwargs": {}}↪→
7: {"args":

["\ud83d\ude00\ud83d\ude03\ud83d\ude04\ud83d\ude01\ud83d\ude06->\ud ⌋
83d\ude05\ud83d\ude02\ud83e\udd23\ud83d\ude0a\ud83d\ude07"],
"kwargs": {}}

↪→
↪→
↪→
8: {"args": ["a->b,c->d"], "kwargs": {}}
9: {"args": ["\u3053\u3093\u306b\u3061\u306f->\u4e16\u754c,\u4f60\u59 ⌋

7d->\u4e16\u754c,\uc548\ub155\ud558\uc138\uc694->\uc138\uacc4"],
"kwargs": {}}

↪→
↪→
10: {"args": ["\ud83c\udf1f\ud83c\udf20\u2728\ud83d\udcab\u2b50"],

"kwargs": {}}↪→
11: {"args": ["ZYXWVUTSRQPONMLKJIHGFEDCBA"], "kwargs": {}}
12: {"args": ["AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz"],

"kwargs": {}}↪→

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

13: {"args": ["aaa ⌋
aaa"], "kwargs":
{}}

↪→
↪→
14: {"args": ["abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ012 ⌋

3456789!@#$%ˆ&*()_+"], "kwargs":
{}}

↪→
↪→
15: {"args": ["aa"], "kwargs": {}}
16: {"args": [",,,,,->...."], "kwargs": {}}
17: {"args": ["\u03b1\u03b2\u03b3\u03b4\u03b5\u03b6\u03b7\u03b8\u03b9\ ⌋

u03ba\u03bb\u03bc\u03bd\u03be\u03bf\u03c0\u03c1\u03c3\u03c4\u03c5\u ⌋
03c6\u03c7\u03c8\u03c9"], "kwargs":
{}}

↪→
↪→
↪→
18: {"args": ["1234567890"], "kwargs": {}}
19: {"args": ["a->a,b->b,c->c,d->d"], "kwargs": {}}
20: {"args": ["A1->B2,C3->D4,E5->F6"], "kwargs": {}}
21: {"args": ["123456789"], "kwargs": {}}
22: {"args": ["a->b,c->d,e->f,g->h"], "kwargs": {}}
23: {"args": ["a->a,b->b,c->c"], "kwargs": {}}
24: {"args": ["a\nb\tc\rd->e\nf\tg\rh"], "kwargs": {}}
25: {"args": [""], "kwargs": {}}
26: {"args": ["->->->->->"], "kwargs": {}}
27: {"args": ["a->b->c->d->e->f->g->h->i->j->k->l->m->n->o->p->q->r->s ⌋

->t->u->v->w->x->y->z"], "kwargs":
{}}

↪→
↪→
28: {"args": ["\u7532->\u4e59,\u4e19->\u4e01,\u620a->\u5df1"],

"kwargs": {}}↪→
29: {"args": ["\u6df7\u5408\u5b57\u7b26\u4e32with\u82f1\u6587and\u6570 ⌋

\u5b57123"], "kwargs":
{}}

↪→
↪→
30: {"args": ["\u0124\u011b\u013c\u013c\u00f6"], "kwargs": {}}
31: {"args": ["!@#$%ˆ&*()_+"], "kwargs": {}}
32: {"args": ["aaaaabbbbbccccc"], "kwargs": {}}
33: {"args": [".,->.,->.,->.,->.,->."], "kwargs": {}}
34: {"args": ["\u00c4\u00d6\u00dc\u00e4\u00f6\u00fc\u00df"], "kwargs":

{}}↪→
35: {"args": ["a->b->c->d->e->f->g->h->i->j"], "kwargs": {}}
36: {"args": ["A->1,B->2,C->3,D->4,E->5,F->6,G->7,H->8,I->9,J->0"],

"kwargs": {}}↪→
37: {"args":

["\ud83c\udf1f->\ud83c\udf19,\ud83c\udf1e->\ud83c\udf0d"],
"kwargs": {}}

↪→
↪→
38: {"args":

["\u03b1\u03b2\u03b3\u03b4\u03b5->\u03b6\u03b7\u03b8\u03b9\u03ba,\u ⌋
03bb\u03bc\u03bd\u03be\u03bf->\u03c0\u03c1\u03c3\u03c4\u03c5"],
"kwargs": {}}

↪→
↪→
↪→
39: {"args": ["AaAaAa->BbBbBb,CcCcCc->DdDdDd"], "kwargs": {}}
40: {"args": ["\u3053\u3093\u306b\u3061\u306f->\u4e16\u754c"],

"kwargs": {}}↪→
41: {"args": [".,->"], "kwargs": {}}
42: {"args": ["a->b,c->d,e->f"], "kwargs": {}}
43: {"args": ["!@#$%ˆ&*()_+-=[]{}|;:'\",.<>?/˜`"], "kwargs": {}}
44: {"args": ["dcba"], "kwargs": {}}
45: {"args": ["a1->b2,c3->d4,e5->f6"], "kwargs": {}}
46: {"args":

["abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"],
"kwargs": {}}

↪→
↪→
47: {"args": ["AaAaAa->BbBbBb,CcCcCc->DdDdDd,EeEeEe->FfFfFf"],

"kwargs": {}}↪→
48: {"args": ["aaaaaaaaaaaaaaaaaaaa->bbbbbbbbbbbbbbbbbbbb"], "kwargs":

{}}↪→
49: {"args": ["ABCDEFGHIJKLMNOPQRSTUVWXYZ"], "kwargs": {}}
50: {"args": ["a\nb\tc\rd"], "kwargs": {}}
51: {"args":

["\u0124\u011b\u013c\u013c\u00f6->\u0174\u00f4\u0159\u013c\u010f"],
"kwargs": {}}

↪→
↪→

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

52: {"args": ["->"], "kwargs": {}}
53: {"args": ["\u00c4\u00d6\u00dc\u00e4\u00f6\u00fc\u00df->\u00e0\u00e ⌋

1\u00e2\u00e3\u00e4\u00e5\u00e6\u00e7\u00e8\u00e9\u00ea\u00eb\u00ec ⌋
\u00ed\u00ee\u00ef"], "kwargs":
{}}

↪→
↪→
↪→
54: {"args": ["\u0000->\u0001,\u0002->\u0003"], "kwargs": {}}
55: {"args":

["\uff21\uff22\uff23\uff24\uff25->\uff26\uff27\uff28\uff29\uff2a,\u ⌋
ff2b\uff2c\uff2d\uff2e\uff2f->\uff30\uff31\uff32\uff33\uff34"],
"kwargs": {}}

↪→
↪→
↪→
56: {"args":

["\u0124\u011b\u013c\u013c\u00f6->\u0174\u00f4\u0155\u0142\u0111"],
"kwargs": {}}

↪→
↪→
57: {"args": ["a"], "kwargs": {}}
58: {"args":

["\ud83d\ude42\ud83d\ude0a\ud83d\ude00\ud83d\ude01\ud83d\ude02\ud83 ⌋
e\udd23\ud83d\ude03\ud83d\ude04\ud83d\ude05\ud83d\ude06"],
"kwargs": {}}

↪→
↪→
↪→
59: {"args": ["aaa ⌋

aaaaaaaaaaaaaaaaaaaaaaa->bb ⌋
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"], "kwargs":
{}}

↪→
↪→
↪→
60: {"args": ["aaa ⌋

aaaaaaaaaaaaaaaaaaaaaaa"], "kwargs":
{}}

↪→
↪→

First 60 generated cases for _pad_version

0: {"args": [["9", "8", "7", "6", "5", "4", "3", "2", "1"], ["1",
"2", "3", "4", "5", "6", "7", "8", "9"]], "kwargs": {}}↪→

1: {"args": [["1", "2", "3", "a", "b"], ["1", "2", "3", "4", "5"]],
"kwargs": {}}↪→

2: {"args": [["999999999999999999999999999999"], ["1", "0", "0", "0",
"0", "0", "0", "0", "0", "0", "0", "0"]], "kwargs": {}}↪→

3: {"args": [["1", "2", "3", "!@#", "$%ˆ", "&*()"], ["4", "5", "6",
"<>?", ":{}", "[]"]], "kwargs": {}}↪→

4: {"args": [["1", "2", "3"], ["1", "2", "3", "4"]], "kwargs": {}}
5: {"args": [["0.1", "0.2", "0.3", "0.4", "0.5"], ["1.1", "1.2",

"1.3"]], "kwargs": {}}↪→
6: {"args": [["1", "2", "3", "4", "5", "a", "b", "c", "d", "e"],

["5", "4", "3", "2", "1", "e", "d", "c", "b", "a"]], "kwargs": {}}↪→
7: {"args": [["10", "11", "12"], ["9", "10", "11", "12", "13"]],

"kwargs": {}}↪→
8: {"args": [["10", "20", "30", "40"], ["5", "15", "25"]], "kwargs":

{}}↪→
9: {"args": [["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"],

["10", "9", "8", "7", "6", "5", "4", "3", "2", "1"]], "kwargs": {}}↪→
10: {"args": [["0", "0", "1"], ["0", "0", "2"]], "kwargs": {}}
11: {"args": [[], ["1", "2", "3", "4", "5"]], "kwargs": {}}
12: {"args": [["1", "2", "3", "a", "b", "c"], ["1", "2", "3", "4",

"5", "d", "e", "f"]], "kwargs": {}}↪→
13: {"args": [["1.1", "2.2", "3.3"], ["4.4", "5.5", "6.6"]], "kwargs":

{}}↪→
14: {"args": [["1", "2", "3", "4", "5"], []], "kwargs": {}}
15: {"args": [["0"], ["0", "0", "0", "1"]], "kwargs": {}}
16: {"args": [["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"],

["1", "2", "3"]], "kwargs": {}}↪→
17: {"args": [["9999999999"], ["1111111111"]], "kwargs": {}}
18: {"args": [["\u03b1", "\u03b2", "\u03b3"], ["a", "b", "c"]],

"kwargs": {}}↪→
19: {"args": [["1", "a", "2", "b", "3", "c"], ["10", "20", "30"]],

"kwargs": {}}↪→
20: {"args": [["a", "b", "c", "1", "2", "3"], ["x", "y", "z", "7",

"8", "9"]], "kwargs": {}}↪→

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

21: {"args": [["\u4f60\u597d", "\u4e16\u754c"], ["Hello", "World",
"123"]], "kwargs": {}}↪→

22: {"args": [["1", "a", "2", "b"], ["1", "2", "3", "4"]], "kwargs":
{}}↪→

23: {"args": [[], ["1", "2", "3"]], "kwargs": {}}
24: {"args": [["1", "2", "3", "alpha", "beta"], ["1", "2", "3",

"gamma", "delta"]], "kwargs": {}}↪→
25: {"args": [["\u4f60\u597d", "\u4e16\u754c", "123", "456"],

["Hello", "World", "789", "0"]], "kwargs": {}}↪→
26: {"args": [["0", "0", "1"], ["0", "0", "0", "1"]], "kwargs": {}}
27: {"args": [[], []], "kwargs": {}}
28: {"args": [["999999999", "888888888"], ["111111111", "222222222",

"333333333"]], "kwargs": {}}↪→
29: {"args": [["1", "a", "2", "b", "3", "c"], ["4", "d", "5", "e",

"6", "f"]], "kwargs": {}}↪→
30: {"args": [["9999999999"], ["1", "0", "0", "0", "0", "0", "0", "0",

"0", "0", "0"]], "kwargs": {}}↪→
31: {"args": [["2147483647", "a"], ["-2147483648", "b"]], "kwargs": {}}
32: {"args": [["1", "2", "3", "a", "b", "c"], ["4", "5", "6", "7",

"d", "e", "f"]], "kwargs": {}}↪→
33: {"args": [["0", "0", "1", "a", "b", "c"], ["0", "0", "0", "1",

"d", "e", "f"]], "kwargs": {}}↪→
34: {"args": [["0"], ["0", "0", "0", "1", "a", "b", "c"]], "kwargs":

{}}↪→
35: {"args": [["-1", "-2", "-3", "4", "5"], ["1", "2", "3", "-4",

"-5"]], "kwargs": {}}↪→
36: {"args": [["1e10"], ["1e-10", "2e-10", "3e-10"]], "kwargs": {}}
37: {"args": [["-1", "-2", "-3", "a", "b"], ["1", "2", "3", "4",

"5"]], "kwargs": {}}↪→
38: {"args": [["1", "0", "0", "0", "0", "0", "0", "0", "0", "0"],

["9", "9", "9", "9", "9", "9", "9", "9", "9"]], "kwargs": {}}↪→
39: {"args": [["9", "8", "7", "6", "5", "4", "3", "2", "1"], ["9",

"8", "7", "6", "5", "4", "3", "2", "1", "0"]], "kwargs": {}}↪→
40: {"args": [["0.1", "0.01", "0.001"], ["1000", "100", "10"]],

"kwargs": {}}↪→
41: {"args": [["10", "20", "30"], ["1", "2", "3", "4", "5"]],

"kwargs": {}}↪→
42: {"args": [["3.14159265358979323846"], ["2.71828182845904523536"]],

"kwargs": {}}↪→
43: {"args": [["0"], ["0"]], "kwargs": {}}
44: {"args": [["2147483647"], ["2147483648"]], "kwargs": {}}
45: {"args": [["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"],

["1"]], "kwargs": {}}↪→
46: {"args": [["0", "00", "000"], ["0", "00", "000", "0000"]],

"kwargs": {}}↪→
47: {"args": [["1", "a", "2", "b"], ["1", "2", "3", "c"]], "kwargs":

{}}↪→
48: {"args": [["1", "0", "0", "0", "0", "0", "0", "0", "0", "0"],

["9", "9", "9", "9", "9", "9", "9", "9", "9", "9", "9"]], "kwargs":
{}}

↪→
↪→
49: {"args": [["1.1.1", "2.2.2", "3.3.3"], ["4.4.4", "5.5.5",

"6.6.6"]], "kwargs": {}}↪→
50: {"args": [["1", "2", "3", "4", "5"], ["5", "4", "3", "2", "1",

"0", "-1", "-2"]], "kwargs": {}}↪→
51: {"args": [["999999999999999999999999999999"], ["1", "2", "3"]],

"kwargs": {}}↪→
52: {"args": [["5", "4", "3", "2", "1"], ["1"]], "kwargs": {}}
53: {"args": [["9999", "8888", "7777", "alpha"], ["1", "2", "3", "4",

"5", "beta"]], "kwargs": {}}↪→
54: {"args": [["1", "2", "3", "4", "5", "6", "7", "8", "9", "10",

"11", "12"], ["1"]], "kwargs": {}}↪→
55: {"args": [["\u03b1", "\u03b2", "\u03b3"], ["a", "b", "c", "d",

"e"]], "kwargs": {}}↪→
56: {"args": [["1", "2", "3", "4", "5"], ["1", "2", "3", "a", "b"]],

"kwargs": {}}↪→

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

57: {"args": [["a", "b", "c"], ["1", "2", "3"]], "kwargs": {}}
58: {"args": [["100", "200", "300"], ["99", "199", "299"]], "kwargs":

{}}↪→
59: {"args": [["1"], ["1", "0", "0", "0"]], "kwargs": {}}
60: {"args": [["10", "0", "1"], ["9", "9", "9"]], "kwargs": {}}

First 60 generated cases for get_flag_suggestions

0: {"args": ["typo", ["typo1", "typo2", "correct"]], "kwargs": {}}
1: {"args": ["ambiguous", ["ambiguous1", "ambiguous2", "ambiguous3",

"unambiguous", "ambiguous"]], "kwargs": {}}↪→
2: {"args": ["aaaaaaaaaa", ["aaaaaaaaa", "aaaaaaaaaa",

"aaaaaaaaaaa"]], "kwargs": {}}↪→
3: {"args": ["\u3053\u3093", ["\u3053\u3093\u306b\u3061\u306f",

"\u3053\u3093\u3070\u3093\u306f",
"\u3053\u3093\u306a\u306b\u3061\u306f"]], "kwargs": {}}

↪→
↪→
4: {"args": ["", ["option1", "option2", "option3"]], "kwargs": {}}
5: {"args": ["\u65e5\u672c\u8a9e", ["\u65e5\u672c\u8a9e",

"\u4e2d\u6587", "\ud55c\uad6d\uc5b4"]], "kwargs": {}}↪→
6: {"args": ["no_match", ["completely", "different", "options"]],

"kwargs": {}}↪→
7: {"args": ["a", ["apple", "banana", "cherry"]], "kwargs": {}}
8: {"args": ["casesensitive", ["CaseSensitive", "casesensitive",

"CASESENSITIVE"]], "kwargs": {}}↪→
9: {"args": ["prefix", ["prefix_long_option1", "prefix_long_option2",

"different_option"]], "kwargs": {}}↪→
10: {"args": ["typo", ["type", "types", "typescript", "typoo"]],

"kwargs": {}}↪→
11: {"args": ["flag123", ["flag123=value", "flag124=value",

"flag125=value"]], "kwargs": {}}↪→
12: {"args": ["short", ["s", "sh", "sho", "shor", "short", "shorts"]],

"kwargs": {}}↪→
13: {"args": ["very_similar", ["very_similar1", "very_similar2",

"very_similar3", "completely_different"]], "kwargs": {}}↪→
14: {"args": ["!@#$%ˆ&*", ["!@#$%ˆ&*", "special_chars",

"normal_option"]], "kwargs": {}}↪→
15: {"args": ["completelydifferent", ["apple", "banana", "cherry",

"date"]], "kwargs": {}}↪→
16: {"args": ["flag123", ["flag123=value", "flag124=value",

"flag125=value", "flag123"]], "kwargs": {}}↪→
17: {"args": ["abc", ["abcd", "abce", "abcf"]], "kwargs": {}}
18: {"args": ["flag", []], "kwargs": {}}
19: {"args": ["apple", ["apple", "apples", "applesauce"]], "kwargs": {}}
20: {"args": ["verylong", ["verylongoptionname", "anotherlongoption",

"yetanotherlongoption"]], "kwargs": {}}↪→
21: {"args": ["verysimilar", ["verysimilar1", "verysimilar2",

"verysimilar3"]], "kwargs": {}}↪→
22: {"args": ["aaa", ["aaaa", "aaaaa", "aaaaaa", "bbb"]], "kwargs": {}}
23: {"args": ["exact", ["exact", "exactly", "exacting"]], "kwargs": {}}
24: {"args": ["special!@#", ["special!@#", "special$%ˆ",

"special&*()"]], "kwargs": {}}↪→
25: {"args": ["short", ["s", "sh", "sho", "shor", "short"]], "kwargs":

{}}↪→
26: {"args": ["hello", []], "kwargs": {}}
27: {"args": ["hel", ["hello", "help", "health"]], "kwargs": {}}
28: {"args": ["longflagname", ["longflagname1", "longflagname2",

"longflagname3", "shortflag"]], "kwargs": {}}↪→
29: {"args": ["flag=value", ["flag1=value", "flag2=value",

"flag3=value", "flag=othervalue"]], "kwargs": {}}↪→
30: {"args": ["healh", ["health", "help", "hello"]], "kwargs": {}}
31: {"args": ["prefix", ["prefix_option1", "prefix_option2",

"different_option"]], "kwargs": {}}↪→
32: {"args": ["option", ["option1=value", "option2=value",

"option3=value"]], "kwargs": {}}↪→

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

33: {"args": ["completelydifferent", ["apple", "banana", "cherry"]],
"kwargs": {}}↪→

34: {"args": ["hlp", ["help", "hello", "health"]], "kwargs": {}}
35: {"args": ["num123", ["num1234", "num12345", "num123456"]],

"kwargs": {}}↪→
36: {"args": ["verylongflagname", ["verylongflagname1",

"verylongflagname2", "verylongflagname3"]], "kwargs": {}}↪→
37: {"args": ["hel", ["help", "hello", "health", "helmet"]], "kwargs":

{}}↪→
38: {"args": [" whitespace ", ["whitespace", " whitespace ", "

whitespace "]], "kwargs": {}}↪→
39: {"args": ["completelydifferent", ["option1", "option2",

"option3"]], "kwargs": {}}↪→
40: {"args": ["mixed_case", ["MIXED_CASE", "mixed_case", "MixedCase"]],

"kwargs": {}}↪→
41: {"args": [" whitespace ", ["whitespace", " whitespace ", "

whitespace ", "no_whitespace"]], "kwargs": {}}↪→
42: {"args": ["helpp", ["help", "hello", "health"]], "kwargs": {}}
43: {"args": ["option", []], "kwargs": {}}
44: {"args": ["flag=value", ["flag1=value", "flag2=value",

"flag3=value"]], "kwargs": {}}↪→
45: {"args": ["multi\nline", ["multi\nline", "multiline", "multi line",

"multi\tline"]], "kwargs": {}}↪→
46: {"args": ["test-flag", ["test_flag", "test-flag", "testflag"]],

"kwargs": {}}↪→
47: {"args": ["prefix", ["prefix_option1", "prefix_option2",

"different_option", "prefixx"]], "kwargs": {}}↪→
48: {"args": ["ambiguous", ["ambiguous1", "ambiguous2", "ambiguous3",

"unambiguous"]], "kwargs": {}}↪→
49: {"args": ["flag", ["flag1", "flag2", "flag3", "flag4", "flag5",

"flag6", "flag7", "flag8", "flag9", "flag10"]], "kwargs": {}}↪→
50: {"args": ["verylongflagname", ["verylongflagname1",

"verylongflagname2", "verylongflagname3", "shortflag"]], "kwargs":
{}}

↪→
↪→
51: {"args": ["mixed_case", ["MIXED_CASE", "mixed_case", "MixedCase",

"mixedcase"]], "kwargs": {}}↪→
52: {"args": ["\u3053\u3093\u306b\u3061\u306f",

["\u3053\u3093\u306b\u3061\u306f",
"\u3055\u3088\u3046\u306a\u3089", "\u304a\u306f\u3088\u3046"]],
"kwargs": {}}

↪→
↪→
↪→
53: {"args": ["multi\nline", ["multi\nline", "multiline", "multi

line"]], "kwargs": {}}↪→
54: {"args": ["aaa", ["aaaa", "aaaaa", "aaaaaa"]], "kwargs": {}}
55: {"args": ["abc", []], "kwargs": {}}
56: {"args": ["verysimilar", ["verysimilar1", "verysimilar2",

"completelydifferent"]], "kwargs": {}}↪→
57: {"args": ["verylongflagnamewithmorethanfiftycharacterstotest",

["verylongflagnamewithmorethanfiftycharacterstotest1",
"verylongflagnamewithmorethanfiftycharacterstotest2",
"shortflag"]], "kwargs": {}}

↪→
↪→
↪→
58: {"args": ["he", ["hello", "help", "health"]], "kwargs": {}}
59: {"args": ["aa ⌋

aa",
["aaa ⌋
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"aa ⌋
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
"aa ⌋
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"]], "kwargs":
{}}

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
60: {"args": ["typo", ["type", "types", "typescript"]], "kwargs": {}}

47

	Introduction
	Evaluation Framework
	Task Formation
	Features of EXE

	Results
	Related Work
	Extensions
	Conclusions
	Appendix
	Example Input & Output
	Example A.
	Example B.

	Input Generation
	Schema Construction
	Test Generation and Execution
	Validation Pipeline
	Regeneration Strategy

	Function Selection and Dependency Resolution
	Type Annotation Analysis
	Dependency Graph Construction
	Code Inlining

	Validator Examples
	Schema Conformance Validator
	Duplication Validator
	Coverage Validator
	Non-triviality Validator
	Output Diversity Validator
	Error Balance Validator

	Acceptable Types & Filtering Criteria
	Static and Runtime Code Statistics
	Output Comparison and Validation
	Direct Value Comparison
	Error Message Comparison

	Per Function Task Set Diversity
	Inlined Code Tasks for Generation
	Generated Test Cases

