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Abstract

Recent advancements in reasoning optimization have
greatly enhanced the performance of large language models
(LLMs). However, existing work fails to address the com-
plexities of audio-visual scenarios, underscoring the need
for further research. In this paper, we introduce AURE-
LIA, a novel actor-critic based audio-visual (AV) reasoning
framework that distills structured, step-by-step reasoning
into AVLLMs at test time, improving their ability to process
complex multi-modal inputs without additional training or
fine-tuning. To further advance AVLLM reasoning skills, we
present AVReasonBench, a challenging benchmark compris-
ing 4500 audio-visual questions, each paired with detailed
step-by-step reasoning. Our benchmark spans six distinct
tasks, including AV-GeoIQ, which evaluates AV reasoning
combined with geographical and cultural knowledge. Eval-
uating 18 AVLLMs on AVReasonBench reveals significant
limitations in their multi-modal reasoning capabilities. Us-
ing AURELIA, we achieve up to a 100% relative improve-
ment, demonstrating its effectiveness. This performance gain
highlights the potential of reasoning-enhanced data gen-
eration for advancing AVLLMs in real-world applications.
Our code and data will be publicly released at: https:
//github.com/schowdhury671/aurelia.

1. Introduction
Multi-agent AI systems powered by LLMs have excelled in
structured reasoning tasks, including mathematical problem-
solving [113, 125, 139, 143], coding assistance [158], and
drug discovery [114]. These systems often employ system-
atic problem decomposition, as in chain-of-thought (CoT)
reasoning [131]. More advanced approaches optimize rea-
soning through outcome reward models [144, 154], which
refine solutions based on final results, and process reward

∗Equal contribution. †Equal advising.

Figure 1. Effect of injecting reasoning steps. AURELIA enhances
the ZS capabilities of audio-visual models (e.g., VideoLLaMA2).
The conventional pipeline struggles in audio-visual comprehension,
leading to incorrect responses. In contrast, AURELIA systematically
breaks down the problem into intermediate reasoning steps, guiding
the model toward more accurate and interpretable answer.

models [70, 80, 152], which assess and improve intermediate
steps.

Real-world reasoning extends beyond structured text-
based tasks, often requiring multimodal integration, espe-
cially in audio-visual (AV) environments. Identifying a mu-
sic performance’s origin, for instance, involves both visual
cues (e.g., attire, instruments) and audio cues (e.g., melody,
language). AV reasoning is crucial for capturing abstract
nuances that text or images alone cannot convey. Despite
advancements in multimodal LLMs [17, 71, 110, 115, 116,
118, 126, 157], most benchmarks remain image-text focused,
overlooking audio’s role and its interplay with visual signals.
AV reasoning presents unique challenges. Firstly, unlike
static images, AV data unfolds over time, requiring models
to track events, infer temporal relationships, and integrate
multi-frame context. Secondly, audio often lacks direct tex-
tual mappings, making structured interpretation harder. For
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example, a roaring crowd may signal excitement at a concert
or unrest at a protest—context is essential for disambiguation.
Current models often struggle with AV reasoning, relying
on biases rather than deep cross-modal comprehension.

Moreover, current AVLLMs are susceptible to cultural,
contextual, and perceptual biases embedded in their training
data. As illustrated in Fig. 1, an AVLLM might incorrectly
associate a musical instrument with Japan due to the presence
of East Asian musicians and a Japanese track, even when the
actual answer is Italy. This highlights the models’ tendency
to depend on dominant visual or auditory cues rather than
true reasoning. While recent advances in test-time reasoning
[56, 131, 162] have significantly improved text-based LLMs,
these techniques remain largely unexplored for AV models.

To address these shortcomings, we introduce AURELIA,
a test-time multi-agent reasoning distillation framework for
addressing challenges in audio-visual cross-modal compre-
hension by mitigating visual and auditory biases without
the need for additional training. Specifically, AURELIA
employs an interactive LLM-based multi-agent framework
that harnesses the reasoning capabilities of LLMs to iter-
atively generate high-quality reasoning data required for
multimodal audio-video understanding. By leveraging the
reasoning data, our approach distills structured reasoning
into AVLLMs, enhancing their capabilities in multimodal
audio-video commonsense reasoning, geographical under-
standing, music comprehension, and humor understanding.

To rigorously assess AVLLMs’ reasoning capabilities,
we further introduce AVReasonBench, a comprehensive
benchmark comprising 4500 audio-visual questions, each
paired with detailed step-by-step reasoning solutions gener-
ated through our pipeline. Our benchmark suite spans six
distinct tasks, including the novel AV-GeoIQ task for ge-
ographical and cultural reasoning. Evaluating 18 existing
AVLLMs on AVReasonBench reveals significant deficien-
cies in their ability to process dynamic audio-video content.
However, incorporating AURELIA-generated reasoning solu-
tions significantly enhances AVLLMs’ performance, high-
lighting the impact of structured test-time reasoning. We
summarize our contributions below:

• We present AURELIA, a scalable and automated pipeline
for generating high-quality Audio-Visual reasoning data,
serving as both an evaluation resource and to the best of
our knowledge, the first training-free reasoning distillation
framework for Audio Visual LLMs.

• Leveraging our proposed reasoning data generation
pipeline, we introduce AVReasonBench, a comprehensive
AV benchmark featuring 4500 audio-visual samples with
detailed step-by-step reasoning solutions across six diverse
tasks, encompassing multimodal commonsense reasoning,
music comprehension, and humor detection. Addition-
ally, as a part of our benchmark, we introduce a novel
task AV-GeoIQ for geographical understanding and curate

1,000 AV-Compositional and 100 AV-Meme understanding
samples through careful manual inspection.

• Leveraging our curated reasoning dataset, we demonstrate
up to 100% relative improvement in AVLLM performance
through zero-shot reasoning distillation, demonstrating the
effectiveness of our approach in enhancing the reasoning
capabilities of AV models.

2. Related Work
Reasoning in Multimodal LLMs. Researchers have been
exploring ways to optimize CoT reasoning for MLLMs to
handle increasingly complex tasks. The majority of stud-
ies focus on extracting graphical [29, 38, 51, 121], logi-
cal [30, 55, 129, 136, 161] or textual [3, 14, 138] informa-
tion from images and using it to solve mathematical prob-
lems. LLaVA-CoT [138] investigates improved sampling
and search algorithms to identify reasoning paths. Virgo
[32] examines the organization of fine-tuning data and the
transferability of text-based reasoning tasks to image-based
reasoning. Recently, MAmmoTH-VL [44] developed a
large-scale multimodal instruction-tuning dataset to enhance
question-answering performance across various modalities.
In a major departure from these previous bodies of work
AURELIA specifically targets general video understanding
scenarios, where various aspects of AV information are con-
tinuously referenced throughout the reasoning process.
Benchmarks for Audio-Visual LLMs. The rapid advance-
ment of MLLMs [49, 74, 97, 104, 106, 117, 164] has driven
the development of increasingly challenging video under-
standing benchmarks, shifting the focus from basic video de-
scription and perceptual abilities [10, 12, 22, 59, 83, 89, 109]
to reasoning capabilities [24, 34, 36, 64, 66, 76]. Specifically,
NExT-QA [135] emphasizes causal reasoning while Video-
MME [36] features questions that necessitate integrating
both audio and visual cues for effective reasoning. Our pro-
posed AVReasonBench presents more challenging questions
that demand deeper reasoning, extensive world knowledge,
and a more seamless integration of AV information.
Reasoning Benchmarks While text-based benchmarks such
as GSM8K [25] and MMLU [52] evaluate logical and com-
monsense reasoning, multimodal benchmarks remain un-
derdeveloped. Recent efforts, such as MathVista [79] and
VideoQA datasets [35, 61, 130, 137], attempt to introduce
vision-based reasoning tasks, but they often emphasize per-
ception over deeper reasoning. Moreover, existing bench-
marks lack comprehensive challenges that require integration
across multiple modalities, including audio, video, and world
knowledge. Several works have proposed methods to assess
reasoning quality in LLMs, e.g., logical consistency checks
[40, 78, 120] and adversarial reasoning tasks [24, 84]. How-
ever, current benchmarks chiefly measure static performance
rather than adaptive, context-dependent reasoning. Although
multi-agent systems [46, 50, 88, 147] and collaborative rea-



Figure 2. Overview of AURELIA: Our proposed AURELIA consists of a multi-agent interactive framework that functions in sync and
generates reasoning steps that are then distilled inside the target model. The input set consisting of the audio, video, and question is first fed
into the reasoning generator agent, which generates an initial set of reasoning steps that provide a structured pathway to reach the final
answer. These reasoning steps are synthesized into a detailed caption by a Summarizer agent. The Evaluator agent then outputs a score that
measures the relevance of the caption with the input audio and video. A feedback mechanism then provides supervision to the Reasoning
generator based on the evaluation score, which adjusts its output to maximize the evaluation score. This actor-critique framework continues
until the evaluation score exceeds a specific threshold or the number of iterations are exhausted.

soning frameworks [5, 112, 122] have shown promise in
enhancing reasoning abilities, their evaluation remains frag-
mented across different domains.

Our work addresses these gaps by introducing a compre-
hensive reasoning benchmark AVReasonBench that evalu-
ates multimodal reasoning skills in LLMs, integrating text,
vision, audio, and external world knowledge. Unlike purely
visual reasoning tasks, the AVR domain presents unique real-
world challenges, such as temporal synchronization between
audio and visual cues, ambiguity in auditory semantics, and
the need for deeper cross-modal understanding.

3. Method
In this section, we will first provide an overview of audio-
video multi-modal agents in Sec. 3.1, followed by a detailed
description and working of AURELIA in Sec. 3.2.
3.1 Audio-Video Multi-Agent System
Our interactive audio-video multi-agent system is structured
as a tuple ⟨R,S, E ,F⟩, where multiple LLM-based agents
collaboratively operate on the dataset comprising of video,
audio and textual query, represented as ⟨V,A,Q⟩, to en-
hance the performance of the target modelM. As shown in
Fig. 2, the reasoning generator agentR processes the input
video v ∈ V and audio a ∈ A and produces a sequence of
reasoning steps r necessary for answering the given question
q ∈ Q. Leveraging this information, the summarizer agent
S extracts key cues and synthesizes them into a concise cap-
tion s that encapsulates the core content of both the video
v ∈ V and the audio a ∈ A. The relevance of the reason-
ing steps generated by R is assessed by the quality of the
caption produced by S . This assessment is conducted by the

evaluation agent E , a multi-modal model that takes {v, a, c}
as input and assigns a score quantifying the correctness and
coherence of the reasoning steps. Based on this evaluation,
a feedback mechanism (F) iteratively refines the reasoning
process by guidingR toward more effective reasoning paths.
This interaction functions as an actor-critic framework, con-
tinuously optimizing until a satisfactory evaluation score is
achieved. Ultimately, the refined reasoning steps, along with
the original inputs ⟨v, a, q, r⟩, are fed into the target model
M. This process enhances the model’s internal reasoning
mechanism, leading to improved overall performance. We
further present AURELIA mathematically in Algorithm 1.
3.2 AURELIA
Our proposed AURELIA enhances the performance of
AVLLMS through a combination of multi-modal agents that
interact with each other and generate a set of reasoning steps
which distills the knowledge into the model in a training-free
manner. Below, we describe the different components of
AURELIA and their working in detail.
Reasoning Generator. The first component of AURELIA
is a multi-modal reasoning generation agent, denoted asR.
Since our proposed method operates in a zero-shot setting,
let (x, y) ∈ Dtest represent samples from the test set, where
each input x in Dtest is a tuple ⟨v, a, q⟩, comprising a video
v, an audio a, and a question q. The agentR processes this
input tuple and produces three key outputs: a sequence of
reasoning steps, a justification for these steps, and the final
answer to the question. Formally,

r = {r1, r2, r3} = R(v, a, q), (1)

where r1 represents the reasoning steps, r2 provides their
justification, r3 is the final answer to the question q.



Summarizer. The summarizer agent, denoted as S, pro-
cesses the reasoning information r generated in the previous
stage along with the question q and synthesizes them into
a caption c such that c = S(r, q). This caption provides a
comprehensive summary of the video and its corresponding
audio, encapsulating key details in a concise manner. The
accuracy and relevance of the generated caption c depend on
both the reliability of reasoning steps and the final answer
produced by the reasoning generator agent. To ensure con-
sistency and correctness, we introduce an evaluation agent E
that assesses caption in relation to given audio and video.
Evaluator. The reliability of the reasoning steps and the gen-
erated answer directly impact the summarizer agent, which
synthesizes the content into a detailed caption. Consequently,
the quality of the caption is inherently tied to the correctness
of the reasoning process. We hypothesize that an accurate
caption aligns closely with well-formed reasoning steps, ul-
timately leading to a correct final answer.

To assess this alignment, we introduce a multi-modal
evaluation agent E that serves as a judge. This agent receives
the video v, audio a, and the corresponding caption c as input
and assigns an evaluation score e based on their coherence.
The score ranges from 1 to 10, where 1 indicates minimal
alignment between the caption and the input data, while 10
signifies a perfect match.

e = E(v, a, c), (2)

where e ∈ [1, 10] quantifies the relevance of the caption to
the input signals and, by extension, evaluates the effective-
ness of the reasoning steps in deriving the final answer.
Feedback Mechanism. Based on the evaluation score ob-
tained in the previous step, we follow an Actor-Critic frame-
work that facilitates iterative agent improvement through a
feedback loop. In this case, the Actor is the Reasoning gen-
erating agentR which is evaluated by another agent E acting
as a judge and based on the evaluation score, the Critic agent
provides feedback to guide the Actor Agent in regenerating
improved solutions. Let F be the feedback mechanism fa-
cilitating the interaction between the Actor and Critic, then
the goal of the feedback mechanism is to maximize the eval-
uation score e such that e is above a certain threshold τ .

r∗ = argmax
r(t)

e(t), s.t e(t) ≥ τ, t ≤ T. (3)

If e(t) ≥ β at any iteration t, the process terminates and
returns the corresponding reasoning steps r∗. Otherwise, the
system continues iterating, refining r(t) through F until T
iterations are exhausted.
Reasoning Distillation. The optimal reasoning steps r∗,
obtained through the multi-agent interaction process, serve
as a structured sequence of logical inferences and contextual
cues that can enhance the target model (M) response. These
steps encapsulate the essential knowledge relationships and
transformations necessary to bridge the input modalities to
derive an accurate and well-grounded solution. In other

words, the knowledge inside the reasoning information is
distilled in a training-free manner inside the target modelM
which now receives a refined and enriched input containing
reasoning steps, in addition to the raw audio, video and the
question, that highlight key features, intermediate conclu-
sions, and decision pathways. By conditioning the target
modelM on the distilled reasoning steps r∗, we facilitate
a more structured decision-making process, reducing am-
biguity and improving model interpretability. The optimal
solution s∗ is formulates as,

s∗ =M(v, a, q, r∗) (4)

AURELIA is the first multi-agent framework capable
of reasoning distillation in Audio Visual LLMs through an
iterative actor-critique mechanism.

AURELIA systematically mitigates visual and auditory
biases by enforcing a structured reasoning process, leading
to more objective and reliable cross-modal comprehension.

AURELIA can scale and generalize to diverse audio-
visual reasoning tasks due to zero-shot nature, where fine-
tuning methods often fail due to training biases.

4. AVReasonBench: Audio-Visual Reasoning
Benchmark

4.1 Why Designing AV Reasoning Tasks are Difficult?
Limitations in Forming Question-Answer Pairs for AV
Setup. In vision-language tasks, the formation of question-
answer pairs is relatively simple since objects have visible
attributes (e.g., "What color is the book?"). However, in
audio-visual reasoning, many objects do not make an in-
herent sound, making it harder to design meaningful QA
pairs. For instance, "What does the book sound like?" lacks
relevance unless an action (e.g., flipping pages) is involved.
This necessitates carefully crafting interactions where both
audio and visual cues contribute meaningfully.
Ambiguity in Audio-Visual Associations. Interpreting emo-
tional tone in audio-visual tasks is challenging because the
same visual cue, such as laughter, can convey different mean-
ings depending on the accompanying audio. Cheerful mu-
sic may indicate joy, while eerie background sounds might
suggest nervousness or fear. Unlike vision-language tasks,
where textual cues explicitly define emotions, AV models
must infer meaning from the interplay of sound and visuals,
requiring deeper multi-modal understanding. To encompass
these scenarios we incorporate AV compositional understand-
ing, meme understanding and dance matching tasks.
Cultural and Contextual Understanding. Object recog-
nition and language understanding can often be generalised
across cultures. If an image contains sushi, the model can
easily label it as "sushi" using object detection and language
mapping. However, AV tasks require deeper cultural and



contextual awareness. For example, in music-dance match-
ing, Flamenco music should pair with Flamenco dance rather
than Hip-Hop. Similarly, laughter in a scene could indicate
humour, but it could also indicate nervousness, depending on
the visual cues. To address this gap we introduce AV-GeoIQ.

Audio-visual tasks pose additional challenges compared
to only language or vision-language tasks due to the need for
temporal synchronization [23], ambiguity resolution, noise
handling, and cultural grounding. These challenges demand
more sophisticated models that can process and align multi-
modal inputs dynamically over time, making AV reasoning
a significantly harder problem than L/VL reasoning.
4.2 Task Overview
Audio-Visual Question Answering. Audio-visual question
answering (AVQA) focuses on responding to questions that
require both auditory and visual understanding. To construct
our dataset, we gather question-answer pairs from AVSD
[1] and MusicAVQA [60] enhancing them with detailed
reasoning steps. We carefully curate samples which require
strong audio-visual comprehension in terms of their interplay,
association, dependency, etc.
Audio-Visual Captioning. This task involves generating
detailed textual descriptions based on audio-visual inputs.
Unlike image- or audio-only captioning methods, it demands
robust multimodal understanding and advanced reasoning
capabilities. We obtain samples from VALOR [11] for this
task and augment them with reasoning annotations.
Audio-Visual Compositional Attribute Understanding.
Inspired by [24], in this task we ensure each AV pair contains
two separate events which are associated with two different
attributes. For example, ‘a cow is mooing’ and a ‘sheep is
bleating’. Here the answer choices contain the same words
but in a different sequence (‘cow is bleating’ and ‘sheep is
mooing’). An AVLLM must have a strong AV and linguistic
understanding to comprehend the constituent modalities and
semantically align them with the correct attributes.
AV-GeoIQ. We introduce AV-GeoIQ, a novel audio-visual
reasoning task that integrates commonsense understand-
ing with geographical and country-specific knowledge.
This task challenges models to process and reason over
multimodal inputs, requiring the alignment of audio
cues, visual elements, and world knowledge. Unlike
standard audio-visual question-answering tasks, AV-GeoIQ
extends beyond perceptual understanding by incorporating
reasoning over cultural and geographic attributes. For
example, a question like "What is the most famous drink
of the country where the instrument to the left of the
louder sounding instrument originates?" necessitates
multiple reasoning steps: identifying the loudest instrument,
determining the relative position of another instrument,
recognizing its country of origin, and retrieving cultural
knowledge about that country’s famous drinks—leading
to the answer Sangria. Such questions require deep

Algorithm 1 AURELIA

1: Input: Data: Dtest, Reasoning generator R, Summa-
rizer S, Evaluator E , Iterations T , Threshold τ

2: Output: Optimized Reasoning Steps r∗

3: Sample data: ⟨Audio a, Video v, Question q⟩ ⊆ Dtest

4: Set iteration counter, t = 1
5: while e ≤ τ and t ≤ T do
6: Generate Reasoning Steps, r(t) = R(v, a, q)

7: Generate Caption, c(t) = S(r(t), q)

8: Evaluate Generated Caption, e(t) = E(v, a, c(t))

9: Feedback (Repeat Steps 6-8), F(v, a, q, e(t))
10: Update t← t+ 1

11: Select Optimal Reasoning, r∗ = argmaxr(t) e
(t)

12: return r∗

multimodal comprehension, contextual association, and
factual world knowledge. AV-GeoIQ (Fig. 1) serves as
a benchmark to evaluate the reasoning capabilities of
AVLLMs in handling complex, real-world scenarios that go
beyond direct perception.
AV Meme Understanding. Inspired by AV-Odyssey Bench
[42], we include AV-Meme a task that challenges models to
interpret humour, sarcasm, and the context in multimodal
memes by analyzing visual elements, audio cues, and text.
Unlike traditional meme analysis, AV-Meme requires grasp-
ing subtle relationships between sound effects, expressions,
and captions. For example, dramatic music over an ordinary
event or mismatched audio-visual pairings create irony, de-
manding nuanced cultural awareness. This task serves as a
benchmark for evaluating AVLLMs in recognizing implicit
meanings and internet humour.
Dance and Music Matching. We also include Dance-Music
Matching (DM-Match) [42], a task that evaluates a model’s
ability to align dance movements with appropriate musical
styles by analyzing audio-visual correlations. Unlike stan-
dard motion or music classification, DM-Match requires
understanding rhythm, tempo, and movement patterns to
determine whether a given dance sequence matches the ac-
companying music. For instance, a ballet performance set to
fast-paced electronic music may indicate a mismatch, while
a tango paired with traditional tango music would be cor-
rect. This task serves as a benchmark for assessing AVLLMs
in capturing temporal synchronization, genre compatibility,
and expressive coherence between dance and music.
4.3 AVReasonBench Size
We carefully curate 1000 samples each from Music-AVQA,
AVSD, and VALOR which are suitable for AV reasoning. For
the AV compositional understanding task, we collect 1000
samples from the web through careful manual inspection.
For AV-GeoIQ we again tailor-make 200 samples which



AV-QAModels Music-AVQA AVSD AV-Captioning AV-Compositional AV-GeoIQ AV-Meme DM-Match
Closed-Source Models

Gemini 1.5 Pro 70.6 / 68.9 74.7 / 72.5 84.9 / 82.7 38.9 / 36.8 71.2 / 68.0 52.0 / 49.0 43.4 / 41.5
Reka Core 67.9 / 64.3 74.5 / 69.5 83.2 / 80.4 38.6 / 35.3 45.7 / 42.5 24.0 / 19.0 35.8 / 32.5

Open-Source Models in ZS
PandaGPT (13B) 35.8 / 33.7 29.1 / 26.1 67.8 / 64.7 28.8 / 24.1 17.2 / 12.5 25.0 / 21.0 30.2 / 27.0
Macaw-LLM (7B) 34.7 / 31.8 38.4 / 34.3 67.7 / 65.9 26.1 / 24.3 17.2 / 14.0 18.0 / 14.0 24.5 / 20.0
VideoLLaMA (7B) 39.1 /36.6 40.0 / 36.7 68.4 / 66.2 28.8 / 25.8 19.3 / 16.5 18.0 / 16.0 26.6 / 23.0
ImageBind-LLM 44.2 / 43.9 42.7 / 39.2 69.0 / 66.9 28.8 / 25.4 18.0 / 13.0 17.7 / 15.0 26.2 / 22.5
X-InstructBLIP (13B) 47.8 / 44.5 43.9 / 40.1 69.5 / 66.1 27.5 / 25.9 27.6 / 14.5 18.7 / 15.0 27.3 / 24.5
AV-LLM (13B) 48.2 / 45.2 55.4 / 52.6 70.1 / 67.6 29.6 / 26.1 18.0 / 14.5 24.4 / 20.0 29.4 / 27.0
OneLLM (7B) 49.9 / 47.6 52.3 / 49.8 71.6 / 68.1 29.7 / 26.3 20.9 / 17.0 24.5 / 18.0 28.8 / 26.5
AVicuna (7B) 51.6 / 49.6 56.2 / 53.1 71.2 / 67.9 29.6 / 26.6 19.7 / 16.5 28.4 / 23.0 29.6 / 27.0
CREMA (4B) 56.8 / 52.6 62.3 / 58.6 73.8 / 68.4 31.6 / 27.0 23.8 / 19.0 29.0 / 26.0 31.5 / 28.5
VideoLLaMA2 (7B) - - 70.4 / 68.3 29.7 / 26.8 25.7 / 22.0 27.5 / 23.0 28.4 / 25.5
AnyGPT (7B) 53.7 / 50.7 59.2 / 56.9 72.5 / 68.1 28.8 / 26.2 25.7 / 22.5 24.0 / 19.0 28.9 / 25.5
NExT-GPT (7B) 53.5 / 50.9 58.4 / 56.3 68.7 / 67.9 28.0 / 26.4 23.8 / 22.0 19.5 / 16.0 32.3 / 28.0
Unified-IO-2 L (6.8B) 58.3 / 55.1 60.0 / 57.9 73.8 / 70.1 31.8 / 27.2 25.6 / 21.5 26.5 / 22.0 29.3 / 27.5
Unified-IO-2 XL 61.3 / 57.2 59.7 / 58.6 73.7 / 71.8 30.0 / 28.5 24.7 / 22.5 29.0 / 26.0 29.6 / 27.0
Bay-CAT (7B) 55.6 / 53.8 58.3 / 56.5 71.9 / 69.5 31.9 / 28.2 24.4 / 20.5 22.0 / 18.0 29.8 / 27.5
Video-SALMONN (7B) 56.8 / 54.9 58.7 / 57.2 71.1 / 70.2 29.8 / 27.5 24.7 / 22.0 21.0 / 17.0 27.5 / 26.5
VITA (7B) 59.0 / 58.6 61.2 / 60.1 73.8 / 72.9 30.1 / 29.2 26.7 / 25.5 44.0 / 41.0 29.2 / 27.5

Open-Source Models with AURELIA

PandaGPT (13B) 41.9+24.33% 32.7+25.28% 72.9+12.67% 28.6+18.67% 25.0+100% 25.0+19.04% 31.0+14.81%

Macaw-LLM (7B) 41.6+30.81% 38.1+11.07% 73.5+11.53% 29.3+20.57% 25.5+82.14% 24.0+71.42% 28.5+42.5%

VideoLLaMA (7B) 45.8+25.13% 41.5+13.07% 74.2+12.08% 29.6+14.72% 28.5+72.72% 28.0+75.0% 29.0+26.08%

ImageBind-LLM 49.7+13.21% 44.2+12.75% 72.8+8.81% 30.1+18.50% 28.0+100% 23.0+53.33% 31.0+37.77%

X-InstructBLIP (13B) 52.3+17.52% 46.9+16.95% 72.6+9.83% 29.8+15.05% 29.0+100% 27.0+80.0% 30.0+22.45%

AV-LLM (13B) 52.7+16.59% 57.9+10.07% 73.4+8.57% 31.1+19.15% 28.5+83.87% 29.0+45.0% 34.0+25.92%

OneLLM (7B) 54.1+13.65% 55.3+11.04% 73.9+8.51% 30.7+16.73% 29.0+70.58% 29.0+61.11% 33.5+26.41%

AVicuna (7B) 55.3+11.49% 57.8+8.85% 73.1+7.65% 30.4+14.28% 29.5+79.09% 34.0+47.80% 34.5+27.78%

CREMA (4B) 59.8+13.68% 67.2+14.67% 74.2+8.47% 31.9+18.14% 32.5+71.05% 40.0+53.84% 34.0+19.29%

VideoLLaMA2 (7B) - - 74.7+9.37% 31.6+17.91% 38.0+72.72% 35.0+40.0% 34.5+35.29%

AnyGPT (7B) 56.2+10.84% 62.5+9.84% 73.3+7.63% 31.4+19.84% 35.5+57.77% 33.0+73.68% 33.0+29.41%

NExT-GPT (7B) 57.8+13.55% 60.8+7.99% 73.5+8.25% 31.8+20.45% 36.0+63.63% 32.0+100% 33.5+19.64%

Unified-IO-2 L (6.8B) 61.9+12.34% 62.0+7.08% 74.6+6.41% 32.4+19.11% 36.5+69.76% 35.0+59.09% 33.5+21.81%

Unified-IO-2 XL (6.8B) 62.3+8.91% 62.8+7.16% 75.6+5.29% 33.6+17.89% 38.5+71.11% 40.0+53.84% 34.0+25.92%

Bay-CAT (7B) 58.5+8.73% 61.1+8.14% 75.0+7.91% 32.7+15.95% 34.0+65.85% 35.0+94.40% 32.5+18.18%

Video-SALMONN (7B) 59.8+8.92% 61.7+7.86% 75.2+7.12% 32.5+18.18% 37.5+70.45% 32.0+88.23% 33.0+24.52%

VITA (7B) 62.6+6.82% 66.5+10.64% 78.8+8.09% 33.8+15.75% 39.0+52.94% 50.0+21.95% 35.0+27.27%

Table 1. Performance comparison of various models across multiple tasks in AVReasonBench. The lower section highlights the
performance improvement using AURELIA. The numbers in teal denotes relative gains over ZS results. Video-LLamA2 zero-shot is not
reported because the publicly available model is already fine-tuned on the dataset. For ZS evaluation A/B represents best/mean of 3 runs
evaluation. AV-Captioning values denote CIDEr scores.

Model AV-Captioning
BLEU@4 ↑ METEOR ↑ ROUGE ↑

Zero-shot

AVLLM 10.2 18.1 34.6

OneLLM 11.3 19.7 36.1

AVicuna 10.6 19.1 35.4

CREMA 11.5 20.1 36.9

VITA 12.9 22.8 40.3

Zero-shot with AURELIA

AVLLM 12.8 21.9 40.7

OneLLM 14.1 24.3 42.1

AVicuna 12.8 23.7 41.8

CREMA 13.8 24.9 43.3

VITA 14.5 26.0 46.4

Table 2. Evaluation results
of five models on the AV-
Captioning. The top section
indicates ZS inference results
of models. The bottom section
indicates results after reason-
ing distillation with AURELIA.
Clearly, the quality of the cap-
tions improves with our reason-
ing pipeline.

require strong AV reasoning capabilities. We augment more
videos to the original AV-meme set to make a total of 100 test
samples while we adapt 200 samples of DM-Match to make
the total size of our reasoning benchmark, AVReasonBench
to 4500. We add further details in the supplementary.
4.4 Reasoning Data Generation
For each test sample comprising an audio, a video, and a
question, we supplement the input with reasoning informa-

Category

Subset Modality Knowledge Film & Sports Artistic Life Multilingual Overall
Television Competition Performance Record

Short ZS 81.4 87.5 78.7 86.7 85.6 86.7 84.4
+ AURELIA 85.6 91.3 81.2 88.0 88.9 89.4 87.4

Medium ZS 80.2 83.9 72.1 84.3 76.8 100.0 82.8
+ AURELIA 83.3 86.5 75.9 87.1 78.2 100.0 85.16

Long ZS 81.1 73.2 72.6 63.3 66.7 83.3 73.3
+ AURELIA 85.5 77.4 75.7 67.1 69.9 86.3 76.98

Overall ZS 80.9 82.4 74.6 78.8 78.0 89.7 80.7
+ AURELIA 83.4 85.3 77.8 81.0 82.3 92.6 83.73

Table 3. Performance of VITA across Video-MME. Table shows
the performance of VITA on 6 major categories of Video-MME.
The evaluation is done on audio-visual inputs.

tion at inference time before feeding it into the target model
through a structured multi-agent pipeline. This ensures that
model decisions are grounded in logical deductions rather
than implicit associations, enhancing both accuracy and in-
terpretability. For instance, in Fig. 2, the video showcases
people playing musical instruments, accompanied by audio,
and the question to identify the most popular food of the
country through a complex audio-visual referral. To answer



Reason Gen. Summ. Eval. AV-GeoIQ AV-Comp DM-Match
Gemini Gemini Gemini 36.5 30.2 33.0
Gemini GPT-4o Gemini 38.0 31.6 34.5

Table 4. Effect of using a combination of agents. Using a
combination of different closed-source LLMs as agents proves
beneficial compared to using a single type of LLM.

Iteration (T ) AV-Cap AV-Meme AV-GeoIQ AV-Comp DM-Match Time
1 68.8 25.0 27.5 27.3 26.5 16.28
3 73.2 30.0 34.0 32.0 31.5 45.66
5 74.7 35.0 38.0 31.6 34.5 74.01

Table 5. Effect of number of iterations. The results improve as
the number of feedback iterations increase. Time: time required to
generate reasoning steps per sample

Threshold (τ ) AV-Cap AV-Meme AV-GeoIQ AV-Comp DM-Match Time
4 69.6 26.5 28.5 27.9 28.5 23.90
6 72.2 30.0 32.5 29.7 32.0 47.15
8 74.7 35.0 38.0 31.6 34.5 61.28
10 74.8 35.0 38.0 31.4 34.5 65.81

Table 6. Effect of Threshold Value. A larger threshold for the
evaluation score shows positive trend on the performance.

this, the model must first identify the loudest instrument via
audio analysis followed by determining spatial relationships
to locate the musical instrument. Once the instrument is
located, the model must infer the instrument’s origin, and
finally retrieve the corresponding cuisine. This structured
reasoning provided by our AURELIA enforces logical pro-
gression, reducing errors and hallucinations while enhancing
interpretability. We defer more details to supplementary.
5. Experiments and Results
5.1 Baselines
We extensively evaluate VideoLLaMA [153], VideoL-
LaMA2 [18], Reka Core [119], Gemini 1.5 Pro [102],
Unified-IO-2 [77], X-InstructBLIP [92], PandaGPT [106],
OneLLM [48], AnyGPT [151], NExT-GPT [134], VITA
[37], VideoSALMONN [111], ImagebindLLM [49],
MacawLLM [81], CAT [142], AVicuna [117], CREMA
[145]. AVLLM [104] on AVReasonBench.
5.2 Metrics
For AV-QA, AV-Comp, AV-GeoIQ, AV-Meme, and DM-
Match, we report the Top-1 accuracy as the metric by ex-
tracting the model outputs using a choice extraction strategy
outlined in the supplementary. We report the performance of
AV captioning tasks on several established metrics, includ-
ing BLUE@4 [94], METEOR [2], ROGUE [72], and CIDEr
[123]. We employ GPT-based evaluation for AV-GeoIQ and
AVSD which has open-ended answers.
5.3 Main Results
We extensively compare the performance of the baseline
AVLLMs in Tab. 1 across all 6 AV tasks of our AVRea-
sonBench benchmark. The experimental results reveal that
closed-source models consistently outperform open-source
ones in every reasoning task. Specifically, among the two
closed-source models, we observe that Gemini 1.5 Pro sur-
passes Reka Core, likely due to its superior audio compre-
hension capabilities. This suggests that our AVReasonBench

benchmark presents challenging scenarios that require strong
audio-visual joint understanding. By leveraging the zero-
shot reasoning distillation through AURELIA, we observe
consistent boost in the performance of all the AVLLMs as
seen from the experimental results with relative improve-
ments up to 100% for X-InstructBLIP. Furthermore, for
more challenging tasks such as AV-GeoIQ, AV-Meme, and
DM-Match, we observe substantial improvements highlight-
ing the importance of AURELIA’s step by step reasoning
distillation in deriving answers to complex AV queries.

We further note that recent approaches such as Unified-
IO-2 XL and VITA demonstrate improved reasoning abilities
over the other methods due to their stronger LLM backbone,
which is capable of capturing finer multimodal informa-
tion. Models with more robust audio encoders, such as
AVicuna and Video-SALMONN, outperform alternatives
like PandaGPT and Macaw-LLM. This highlights the criti-
cal role of the audio modality in leveraging the strengths of
AVReasonBench.

Tab. 2 presents the AV-captioning results for five
AVLLMs across three additional captioning metrics. As
shown in the table, all models exhibit consistent improve-
ments, highlighting the effectiveness of our reasoning-
enhanced data in the dense captioning task.
Results on other benchmarks. Tab. 3 results demonstrate
that our reasoning pipeline is generalizable across other
benchmarks. We select VideoMME [36] as an alternative
benchmark due to its tasks, which demand advanced rea-
soning abilities. Notably, the greatest improvements are ob-
served in the long video Knowledge assessment categories,
further emphasizing the generalizability of AURELIA.
5.4 Ablation Study
Combination of Agents. The multi-agent framework of
AURELIA offers the flexibility to integrate various existing
multi-modal LLMs as specialized agents. To assess the
impact of different LLMs on reasoning generation, summa-
rization, and evaluation, we conduct an analysis on three
datasets across target model VideoLLaMA-2 ( Tab. 4). Our
findings indicate that leveraging a combination of models,
specifically GPT-4o alongside Gemini yields superior per-
formance compared to employing Gemini alone for all three
agents roles as is evident from the higher accuracy scores in
case of combination of agents. This suggests that while Gem-
ini excels in processing multi-modal inputs such as video
and audio, GPT-4o demonstrates stronger capabilities in tex-
tual comprehension and reasoning. The synergy between
these models enhances the overall effectiveness of AURELIA,
underscoring the advantages of a diversified agent selection.
Number of Generation Attempts. Our analysis reveals that
the choice of T significantly influences overall performance.
To evaluate this impact, we conduct an ablation study on
five datasets across VideoLLaMA-2 model, as presented
in Tab. 5. With just a single iteration, the obtained scores



Figure 3. Qualitative Visualizations. Figure shows the qualitative visualizations of effect of AURELIA’s reasoning distillation on the final
answer across four tasks. Compared to vanilla zero-shot inference, AURELIA augments the target model with reasoning capabilities, leading
to the improved answers.

Figure 4. Examples of Failure Cases. (Left) AURELIA fails to
comprehend audio, focus on single modality i.e. video, leading to
incorrect reasoning chain. (Right) AURELIA fails to comprehend
the dynamics of the video.

are notably low, whereas increasing the iterations to five
yields substantial improvements across most datasets. This
suggests that additional iterations allow AURELIA to progres-
sively enhance its reasoning quality. However, considering
computational efficiency and latency constraints, we cap the
number of iterations at five for the final evaluation. AV-Cap
values are CIDEr scores.
Threshold Value. Evaluation score (τ ) quantifies the consis-
tency of the reasoning steps with multimodal input. To empir-
ically analyze the impact of the threshold (τ ), we present re-
sults in Tab. 6 on five datasets across VideoLLaMA-2 model.
As expected, a higher threshold value indicates stronger
alignment, leading to superior model performance. How-
ever, we observe that a threshold of 8 yields performance
comparable to the highest value, suggesting that setting the
threshold at 8 or above ensures optimal reasoning quality.
The increasing value of time required to generate the sam-
ples indicate to obtain improved reasoning steps we need
more iterations. AV-Cap report CIDEr values.
5.5 Qualitative Results
To visualize the effect of AURELIA’s reasoning distillation,
refer to Fig. 3. We compare the performance of various

AVLLMs on 4 tasks. We notice that in the absence of rea-
soning distillation, the target model faces difficulties in fig-
uring out answers to the given queries. For example, in the
AV-Captioning task, due to the step wise guidance to the
AVLLM, the generated caption is dense and rick of contex-
tual information compared to ZS response. Similarly, for AV-
GeoIQ, powered by the sequence of prompts, the AVLLM is
able to correctly respond to the query whereas, the response
in ZS is wrong. Empirical studies reveal, with the addition
of reasoning information, the decision making capability of
model improves by structuring its response in accordance
with the reasoning steps, thereby leading to correct answers.
We add more qualitative results in the supplementary.
5.6 Failure Cases
Fig. 4 illustrates a few failure cases in our reasoning genera-
tion pipeline. In the first example, an error in interpreting the
animal sounds leads to the assumption that the dog is silent.
This assumption propagates through the reasoning steps, pro-
ducing an incorrect response. In the second example, the
pipeline fails to spot the instrument with the second highest
bass, resulting in an erroneous conclusion. We believe that
fine-grained AV comprehension and refining understanding
of language instructions can help mitigate these issues.
6. Conclusion
In this work, we introduce AURELIA, a novel test-time
framework designed to enhance the reasoning capabilities of
AVLLMs through interactive multi-agent system which dis-
tills structured, step-by-step reasoning into AVLLMs without
any training. To further advance the AVLLMs’ reasoning
abilities, we also present AVReasonBench, a comprehen-
sive benchmark consisting of six diverse tasks including the
novel AV-GeoIQ for geo-cultural knowledge reasoning. The



samples in each task are paired with step-by-step reasoning
data, generated using AURELIA, which facilitates both the
evaluation and enhancement of existing AVLLMs. AURE-
LIA serves as an essential step toward more robust, context-
aware, and reasoning-driven multimodal AI, enabling future
advancements in artificial audio-visual intelligence.
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A. Supplementary Video
In our supplementary video, we provide several audio-visual
examples for each task and compare the performance of
different models before and after introducing the reasoning
steps.

B. More related Works
Multi-Agent Systems with LLMs. Recent advancements
in multi-agent systems [27, 45, 50, 68, 105, 108, 127] un-
derscore the potential of large language models in tack-
ling complex tasks. While some approaches [31] facilitate
answer-sharing among agents for enhanced collaboration,
Mixture-of-Agents [124] employs a hierarchical architec-
ture where agents iteratively refine responses. Comm [9]
proposed problem-solving through structured communica-
tion and role division while Multi-Persona [69] promotes
varied agent behaviours by assigning unique personas. Chat-
Eval [4] investigates various multi-agent debate strategies
for effective interaction and response optimization while
DMAS [13] examines token-efficient multi-agent planning
frameworks to enhance coordination and task performance.
Building on advancements in multi-agent systems, recent
research has investigated fine-tuning independently special-
ized agents that collaborate to produce diverse reasoning
chains [107]. In contrast to these approaches, our method
emphasizes collaborative optimization via a shared experi-
ence library, allowing agents to collectively learn from and
refine effective reasoning trajectories.
Self-improvement. Self-improving models [53, 95, 132,
146, 148, 156] have gained significant attention due to their
potential to enhance reasoning abilities through iterative

feedback and refinement. Various studies [58, 67, 93, 149]
utilize bootstrapping methods by leveraging self-generated
rationales, while other works [16, 43, 101, 148] introduce
self-refinement mechanisms via reinforcement learning.
Multi-modal Learning. Conventional multi-modal methods
incorporating vision-language [8, 15, 21, 41, 54, 62, 63, 65,
73, 87, 98–100, 140], audio-visual [19, 20, 23, 39, 41, 163],
audio-language [28, 33, 47, 133, 150] have developed over
the recent years with a focus to solve a variety of coarse-
grained (question-answering, captioning, retrieval, etc.) and
fine-grained (detection, segmentation, phrase grounding,
etc.) understanding as well as generation tasks. However,
these traditional models do not typically solve reasoning
based tasks (with the exception of NLVR). With the advent
of multi-modal LLMs [6, 7, 17, 22, 26, 37, 49, 57, 74, 77,
81, 82, 85, 86, 90–92, 96, 97, 103, 111, 117, 128, 134, 141–
143, 151, 155, 159, 160, 164], although some recent efforts
have been made to leverage reasoning capabilities of LLMs
to solve complex visual question answering tasks, multi-step
reasoning with complex questions in the audio-visual space
remains underexplored.

C. GPT based evaluation
C.1. Choice Extraction
Choice extraction strategy. We utilize a two-step choice
extraction strategy, detailed next. While humans can easily
extract choices from free-form predictions, rule-based match-
ing may struggle with this task. To address this, we develop
a universal evaluation strategy applicable to all AVLLMs,
regardless of their varying instruction-following capabilities.
Step 1. Prediction matching: We first apply heuristic match-
ing to extract choice labels (e.g., ‘A’, ‘B’, ‘C’, ‘D’) from
AVLLM predictions. If successful, the extracted label is
used as the final prediction. If heuristic matching fails, we
employ GPT-4 to extract the choice label instead.
Step 2. GPT-4 processing: Prior benchmarks [75] validate
GPT-4’s effectiveness as a choice extractor. If step 1 fails,
we input the question, choices, and model prediction into
GPT-4, instructing it to align the prediction with one of the
provided choices and return the corresponding label. If no
match is found, GPT-4 outputs ‘No match found.’

We also employ the best-of-N (3) evaluation strategy to
ensure a rigorous evaluation and effectively demonstrate the
performance gap across various models.

Response matching. To apply the matching algorithm to
the options, we follow these rules: If an option is represented



solely by a letter (e.g., ‘A‘) or formatted as ‘A) <response>‘,
‘A. <response>‘, ‘A, <response>‘, or ‘(A) <response>‘, with-
out embedding other choices within ‘<response>‘, it is inter-
preted as a prediction of option ‘A‘.

Where does heuristic matching fail? The heuristic match-
ing strategy usually fails in the following scenarios: (i) when
the AVLLM is unable to provide an answer and requests
clarification, such as ‘Apologies, can you please clarify ...‘
or similar phrases, and (ii) when the AVLLM responds with
multiple option choices (A, B, C, etc.). In such cases, we
proceed to Step 2, which involves GPT-4 based choice ex-
traction. A sample prompt for GPT-4 is provided below.

Choice extraction prompt for GPT-4

Can you help me match an answer with a set of
options for a single correct answer type question? I
will provide you with a question, a set of options,
and a response from an agent. You are required
to map the agent’s response to the most similar
option from the set. You should respond with a
single uppercase character in ‘A’, ‘B’, ‘C’, ‘D’, and
‘E’ depending on the choice you feel is the most
appropriate match. If there are no similar options
you might output ‘No match found’. Please refrain
from being subjective while matching and do not use
any external knowledge. Below are some examples:
Example 1:
Question: What color is the man’s shirt who is
sitting left of the object making this sound?
Options: A. Green B. Red C. Yellow D. Black
Answer: The person sitting next to the record player
is wearing a black color shirt
Your output: D
Example 2:
Question: What does the audio-visual event
constitute?
Options: A. A dog barking at a cat B. A dog barking
on being hit by a stick C. The dog is hungry D. The
dog is chasing another dog
Answer: It is a wolf
Your output: No match found

Change in template for GPT-4 evaluation. Next, to iden-
tify the model’s prediction, we utilize GPT-4, following
the approach in MMBench [75]. We prompt GPT-4 with a
template that includes the question, options, and the corre-
sponding AVLLM prediction. Additionally, we incorporate
task-specific options to help GPT-4 recognize the model’s
predictions.

Figure 5. Performance comparison across tasks. The distillation
of reasoning information in the VITA model via AURELIA enhances
its performance across all the tasks.

C.2. Open-ended Answer Evaluation
To evaluate open-ended question answers with given ground
truth answers using GPT, we design a prompt that instructs
the model to assess the accuracy and relevance of the model’s
answer in comparison to the ground truth. The prompt might
be structured as: "Given the question, the model’s answer,
and the ground truth answer, determine whether the model’s
answer is correct or incorrect. If the model’s answer is factu-
ally accurate and appropriately aligns with the ground truth,
even if expressed differently (e.g., ‘plane’ vs. ‘aeroplane’),
output ‘Correct’. If the answer is incorrect or significantly
deviates from the ground truth, output ‘Incorrect’." This en-
sures that GPT understands that synonymous or contextually
equivalent terms (such as ‘plane’ for ‘aeroplane’) should be
considered correct. Additionally, the evaluation will focus
on factual accuracy and contextual alignment, and it will
mark answers as ‘Correct’ if they are deemed effectively
equivalent to the ground truth, despite minor wording differ-
ences.

D. Examples of Prompts

We use a combination of closed-source LLMs as specialized
agents in AURELIA. To enable these LLM agents to interact
with the input and with each other, we prompt them with
appropriate instructions. We list these instruction prompts in
Table 7.

E. Radar plot

The radar plot Fig. 5 illustrates the performance of the best
performing open-source model VITA [37] on all 7 datasets
before and after reasoning distillation is performed. We
note that, upon ZS finetuning leveraging AURELIA the per-
formance on each task is improved significantly with the
maximum performance gain of 12.6% observed in the AV-
captioning task. This underlines the efficacy of our pro-



Task Instruct Prompt

Reasoning generation Given the video and the audio and the question: question
Task 1: generate detailed reasoning steps for solving the given question
without revealing the answer.
Task 2: provide detailed answers to each of these above reasoning steps
generated in Task 1.
Task 3: provide a final answer for the question.
Your output should be in the form of a dictionary which looks like:
Task_1: Task 1 answers, Task_2: Task 2 answers, Task_3: Task 3
answers.

Summarization Given the reasoning steps, the answer to the reasoning steps, and the
final response for the question, generate (come up with / guess) a detailed
caption which is able to define the contents of the video and the audio.
In the questions and the answers there may be things that might be
outside the video and the audio context and needs world knowledge. You
have to keep this in mind while generating the caption and you have to
discard these information from the caption."

Evaluation Given video and audio inputs, can you rate the following caption between
1 to 10 (1 being the lowest) based on its similarity with the corresponding
inputs. Strictly output the numerical score only.
Caption: summary

Feedback The reasoning steps you previously generated: {reasoning_steps}
to answer the question: {question} were evaluated and received a
score of {score} out of 10. This score suggests that the reasoning
steps may not be fully appropriate for answering the question correctly.
Now, given the video, audio, and the question, carefully generate the
correct reasoning steps to answer the question: {question} while
strictly adhering to the following response format:
Task 1: generate detailed reasoning steps for solving the given question
without revealing the answer.
Task 2: provide detailed answers to each of these above reasoning steps
generated in Task 1.
Task 3: provide a final answer for the question.
Your output should be in the form of a dictionary which looks like:
Task_1: Task 1 answers, Task_2: Task 2 answers, Task_3: Task 3
answers.

Table 7. Details of Instruct Prompts. Table presents the instruction prompts utilized by different agents in various stages of AURELIA.

posed reasoning data generation pipeline. AV-captioning
often requires the model to draw intricate conclusions by
critically analysing the audio-visual associations over mul-
timodal temporal signals. A steady improvement in all the
tasks underline the rich contextual understanding our reason-
ing augmented data can inject into a model.

F. Details on Reasoning Data Generation
To facilitate such reasoning generation, our framework, AU-
RELIA, employs a multi-agent system that iteratively refines
reasoning steps. A Reasoning Generator Agent first produces

step-by-step deductions and explanations. The Summariza-
tion Agent then distills these steps into a structured caption
without direct access to video or audio, ensuring reasoning
quality is independent of raw inputs. A Multi-Modal Evalua-
tor Agent assigns a similarity score based on how well the
reasoning aligns with the original content, and a Feedback
Agent iteratively refines the reasoning process to improve
coherence and accuracy. Once the reasoning achieves an
optimal evaluation score, it is integrated into the input be-
fore being fed into the target model. This explicit reasoning
injection significantly enhances the model’s ability to de-



rive accurate, interpretable answers while minimizing errors
and hallucinations. The process begins with the Reasoning
Generator Agent, which analyzes the input set and produces
step-by-step reasoning alongside an explanation for each
step. Following this, the Summarization Agent interacts
with the reasoning steps and generates a detailed caption
crafted solely from the reasoning steps without any direct
knowledge of the video or audio. This ensures that the cap-
tion’s quality and accuracy are entirely dependent on the
correctness of the generated reasoning. Next, a Multi-Modal
Evaluator Agent assesses the alignment between the gener-
ated caption and the original video-audio content, assigning
a similarity score between 1 and 10. A score of 1 indicates
no alignment, while a 10 signifies perfect correspondence.
Based on this evaluation, a Feedback Agent iteratively re-
fines the reasoning steps by guiding the Reasoning Generator
Agent to enhance its output by generating more coherent rea-
soning steps, aiming to maximize the evaluation score. This
iterative loop continues until the reasoning quality surpasses
a predefined threshold. Once the evaluation score pertaining
to the reasoning steps reaches an optimal level, the reason-
ing information obtained at that step is integrated with the
original audio, video, and question before being fed into the
target model. By incorporating structured reasoning through
distillation, AURELIA significantly improves the model’s
reasoning and overall performance.

G. AVReasonBench Statistics

G.1. Data Distribution
Tab. 8 reports different tasks along with various question
categories associated with them. For example, QA pairs for
AV-GeoIQ are collected from diverse categories of scenarios
that require geographical and cultural knowledge combined
with strong audio-visual reasoning. Similarly, samples for
other tasks are also collected from diverse domains that span
various categories. Fig. 6 reports data distribution for AV-
GeoIQ and AV-Compositional understanding.

H. Breakdown results

In this section, we report the performance at a more granular
level on AVReasonBench. We identify samples belonging to
certain categories and consider only them for evaluation.

H.1. Performance on musical videos
We report the performance on musical videos category
in Tab. 9. The samples under consideration require
the AVLLMs to comprehend fine grained audio visual
interactions followed by reasoning them with general
knowledge/geo-cultural understanding. Experimental results
demonstrate – best performance is achieved by VITA pow-
ered by its strong multimodal understanding. On an average,

AV-compositional understanding task achieves most gains
due to the reasoning supplement.

H.2. Performance on commonsense reasoning
videos

Tab. 10 reports similar breakdown on commonsense reason-
ing examples. VITA outperforms other opensource models
to achieve significantly improved performance upon treated
with reasoning enhanced data generated by AURELIA. High-
est performance gains are observed in AV-GeoIQ confirming
the requirement of strong practical understanding of AV
scenarios for this task.

I. Results on other benchmarks
We compare the performance of Video-SALMONN and
Unified-IO-2 on VideoMME and report them in Tab. 11 and
Tab. 12. As can be clearly seen, our synthetic reasoning data
augmentation pipeline is generalizable to other benchmarks.
Employing reasoning enhanced annotations generated by
AURELIA boosts the performance in all the models. In-
stilling strong reasoning capabilities improves the average
performance significantly.

J. Qualitative Results
Fig. 7 - Fig. 12 demonstrate several qualitative examples for
each task. For AV-GeoIQ we design questions which require
the model to reason at multiple levels and go through a se-
ries of derived steps to be able to come up with the correct
response. As seen from these examples, injecting reason-
ing annotations into the AVLLMs significantly improves the
performance in various audio-visual scenarios which require
critical multimodal comprehension. Similar improvements
can be observed for other tasks as well. AURELIA equips the
models with a series of critical reasoning sequences which
enables better decision making through step by step rea-
soning. Powered by reasoning annotated data significant
improvements can be observed in AV-compositional under-
standing, AV-Meme understanding and AV-Dance matching
tasks.

K. Key Observations
This section highlights key insights into the performance of
AVLLMs when injected with reasoning data generated by
AURELIA.
Open-ended evaluations. We observe that AVLLMs in-
jected with the reasoning data generated by AURELIA, in
addition to being effective on AV samples under close ended
MCQ setting, are also effective in case of open-ended an-
swers. The former evaluation has a predefined set of options
out of which only one option is correct while latter is rel-
atively harder to answer as it is not bounded by word vo-
cabulary. We find that employing our reasoning augmented



Task ID Question Category Task Name Class Number

1 Country Recognition AV-GeoIQ 17 21
2 Famous Landmark AV-GeoIQ 18 23
3 Popular Dish/Food AV-GeoIQ 16 19
4 Currency AV-GeoIQ 12 13
5 Continent AV-GeoIQ 5 17
6 Flag Specifics AV-GeoIQ 10 15
7 Popular Dance Form AV-GeoIQ N/A 20
8 Geographical AV-GeoIQ N/A 31
9 Language AV-GeoIQ 11 13
10 Commonsense Reasoning AV-GeoIQ, AV-Meme, AV-Dance Match N/A 165
11 Musical Performances Music-AVQA, AV-GeoIQ N/A 1014
12 Dynamic Scene AVSD N/A 931
13 Meme and Humor AV-Meme N/A 50
14 Dance Performances AV-Dance Match N/A 100
15 Indoor/Kitchen Scenarios VALOR N/A 945
16 Compositional AV-Comp N/A 968
17 Miscellaneous AV-GeoIQ, AVSD, VALOR N/A 159

Table 8. Task Statistics. Table shows detailed task statistics in AVReasonBench.

AV-QA AV-Captioning AV-Compositional AV-GeoIQ AV-Meme DM-Match
Models

Music-AVQA AVSD
Open-Source Models in ZS

NExT-GPT 53.5 52.1 62.5 27.7 25.3 17.5 26.2
Unified-IO-2 XL 53.6 52.6 76.7 29.4 23.4 23.1 28.3
Bay-CAT 55.7 54.2 68.2 26.5 22.8 23.3 28.7
Video-SALMONN 57.6 58.8 73.4 25.5 23.0 23.0 24.5
VITA 59.2 62.3 74.6 27.4 26.6 46.4 28.8

Open-Source Models with AURELIA

NExT-GPT 56.8 55.3 66.5 30.1 29.2 22.0 30.5
Unified-IO-2 XL 56.3 57.7 79.6 32.6 28.5 27.2 33.0
Bay-CAT 57.6 59.1 73.2 29.6 27.0 26.0 32.5
Video-SALMONN 61.8 62.6 76.8 29.1 28.6 28.0 29.0
VITA 61.4 65.3 78.3 32.5 30.7 49.2 33.9

Table 9. Breakdown results on musical videos. Performance comparison of various models before and after applying AURELIA.

data also improves the open-ended evaluation of existing
AVLLMs.

Emphasis on one modality. It is observed that existing
AVLLMs occasionally prioritizes one modality over the
other, introducing biases in its decision-making process.
Since AURELIA works on the synergy of AV input through
the interaction of multiple agents, in such cases, our ap-
proach can mitigate the bias induced due to the model’s
focus on one modality by providing additional cues about
the other modality through reasoning steps. However, we
also notice occasionally (such as in Fig. 4 (left) of main
paper), reasoning distillation becomes less effective in such
extreme cases, as the model remains biased towards the dom-

inant modality, neglecting the valuable information from
the other. In this specific example, the AVLLM incorrectly
assumes the dog is silent, even when audio information is
present. We hypothesize that the error in such cases can
propagate through the reasoning stages due to model being
biased in initial step itself, ultimately resulting in a flawed
conclusion.

Suboptimal Comprehension. AURELIA systematically dis-
tills the reasoning information in the AVLMMs to advance
their AV comprehension capability. Leveraging strong multi-
agent LLMs, AURELIA has an advanced comprehension of
intricate AV relationships, which can help mitigate the weak
reasoning comprehension in AVLLMs. Even though based



AV-QA AV-Captioning AV-Compositional AV-GeoIQ AV-Meme DM-Match
Models

Music-AVQA AVSD
Open-Source Models in ZS

NExT-GPT 51.2 50.3 59.6 25.7 22.7 16.9 24.7
Unified-IO-2 XL 50.4 51.7 73.2 28.0 22.2 22.0 25.3
Bay-CAT 51.7 52.2 66.4 24.9 20.3 21.1 25.2
Video-SALMONN 53.7 52.2 70.1 22.7 21.3 20.2 21.9
VITA 55.7 59.7 71.2 24.0 22.3 43.5 26.5

Open-Source Models with AURELIA

NExT-GPT 55.2 54.8 63.1 29.6 26.7 21.0 28.3
Unified-IO-2 XL 54.3 55.2 76.8 32.1 27.4 26.3 29.5
Bay-CAT 55.6 56.1 70.2 28.6 25.8 25.4 29.5
Video-SALMONN 58.8 57.6 74.8 27.1 26.6 25.0 26.2
VITA 60.4 64.7 74.7 29.5 27.7 48.1 31.2

Table 10. Breakdown results on commonsense reasoning videos. Table shows the performance comparison of various models before and
after applying AURELIA specifically on commensense reasoning related videos.

Subset Modality
Category

Knowledge Film & Television
Sports Artistic Life

Multilingual Overall
Competition Performance Record

Short ZS 78.6 84.2 75.1 82.9 82.0 83.6 81.2
+ AURELIA 82.1 88.3 78.4 85.7 85.2 86.4 84.8

Medium ZS 77.3 80.7 69.0 80.6 72.6 96.8 78.5
+ AURELIA 80.1 83.7 72.8 84.7 75.8 97.1 82.7

Long ZS 78.6 70.8 69.4 60.3 63.0 80.9 70.2
+ AURELIA 82.8 74.7 72.1 64.4 66.6 83.8 73.7

Overall ZS 77.5 79.6 71.7 75.8 75.9 85.7 77.1
+ AURELIA 80.5 82.7 74.9 78.4 78.7 89.0 80.0

Table 11. Performance of Video SALMONN across Video-MME. The evaluation is done on audio-visual inputs.

Subset Modality
Category

Knowledge Film & Television
Sports Artistic Life

Multilingual Overall
Competition Performance Record

Short ZS 76.2 82.8 73.9 80.7 79.9 81.9 79.0
+ AURELIA 78.9 84.1 74.9 82.9 81.0 83.1 81.1

Medium ZS 75.6 78.9 67.9 78.1 70.7 94.4 76.4
+ AURELIA 78.9 81.8 70.4 82.8 73.8 95.3 80.5

Long ZS 76.7 68.8 67.3 58.5 61.9 78.0 68.2
+ AURELIA 80.8 72.6 70.4 62.6 64.6 81.7 71.6

Overall ZS 75.7 77.7 68.9 73.4 73.8 82.8 75.8
+ AURELIA 79.5 80.4 72.6 76.5 76,8 87.4 77.6

Table 12. Performance of Unified-IO-2 across Video-MME. The evaluation is done on audio-visual inputs.

on strong closed-source LLMs, AURELIA can also incur
errors sometimes in AV comprehension. Since AURELIA
relies on a synergy of multi-modal agents, making any mis-

understanding of audio-video input could be detrimental to
the entire reasoning pipeline. Fig. 4 (right) of main paper
illustrates such a case, where AURELIA struggles to grasp



(a) Distribution of AV-GeoIQ task.

(b) Distribution of AV-Compositional Understanding task.

Figure 6. Distribution of AV-GeoIQ and AV-Compositional Understanding tasks. (a) The pie chart shows the distribution of samples
from our proposed AV-GeoIQ task. The collected samples exhibit diverse geographical and cultural characteristics. (b) The pie chart shows
the distribution of samples from the AV-Compositional Understanding task. As seen from the pie chart, the data samples are collected from a
diverse range of practical audio visual scenarios.

the interplay between video and audio.

L. Future Work
Currently, the multi-agent framework of AURELIA leverages
a combination of closed-source LLMs as agents. A promis-
ing future direction would be to replace these proprietary
models with open-source alternatives, enhancing accessi-
bility and transparency. Additionally, another avenue for
improvement lies in integrating reasoning directly into the
training or instruction-tuning phase, rather than generating it
dynamically at inference time. This would enable AVLLM
to inherently develop step-by-step reasoning capabilities,
allowing it to derive answers more naturally and effectively.

M. Societal Impact
In this work, we perform an extensive analysis of reason-
ing capabilities of existing AVLLMs. Our study reveals that
models lack sufficient audio-visual comprehension skills and
most often fail to address scenarios that require common-
sense reasoning. We believe our work can be useful to
the community, and our findings can reveal the potential
threats associated with deploying these models in real-time
or accuracy-critical setups. We employ existing public
datasets and in some cases, collect samples to curate the
benchmark. We don’t use any personal/human subject data
without consent during data preparation and experiments.
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Figure 7. Qualitative visualization of AURELIA’s reasoning distillation across AV-GeoIQ task.
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Figure 8. Qualitative visualization of AURELIA’s reasoning distillation across AV-Meme task.
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Figure 9. Qualitative visualization of AURELIA’s reasoning distillation across DM-Match task.
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Figure 10. Qualitative visualization of AURELIA’s reasoning distillation across AV-QA task.
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Figure 11. Qualitative visualization of AURELIA’s reasoning distillation across AV-Compositional task.
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Figure 12. Qualitative visualization of AURELIA’s reasoning distillation across AV-Captioning task.
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