
Temporary Goals for Exploration

Haoyang Xu Jimmy Ba Silviu Pitis* Harris Chan∗

University of Toronto, Vector Institute
ericc.xu@mail.utoronto.ca, {hchan, spitis}@cs.toronto.edu

Abstract

Exploration has always been a crucial aspect of reinforcement learning. When
facing long horizon sparse reward environments modern methods still struggle
with effective exploration and generalize poorly. In the multi-goal reinforcement
learning setting, out-of-distribution goals might appear similar to the achieved
ones, but the agent can never accurately assess its ability to achieve them without
attempting them. To enable faster exploration and improve generalization, we
propose an exploration method that lets the agent temporarily pursue the most
meaningful nearby goal. Through experiments in four multi-goal environments,
including a 2D PointMaze, an AntMaze, and a foraging world, we show that
our method can improve an agent’s ability to estimate the achievability of out-of-
distribution goals as well as its frontier exploration strategy.

1 Introduction

In online reinforcement learning, the agent collects its own training data via exploration. More often
than not, effective exploration requires deviations from the agent’s greedy policy, as the reward
function alone does not guide the agent to obtain sufficient coverage of the state and policy space.
This is particularly true in the multi-goal and multi-task reinforcement learning settings [22, 24],
where the agent must achieve a wide range of different goals.

There exist many methods to tackle this problem such as parameter space noise [23], curiosity by
self-supervised prediction [19], entropy gain [21], and hierarchical exploration [17, 18, 14]. But even
these methods can fail to achieve sufficient coverage of the full goal/task space, which may result in
goal misgeneralization [6] and overconfidence when pursuing goals that lie outside of the agent’s
achieved goal distribution. This is because none of these methods explicitly direct the agent toward
goals that are never seen by the agent.

An intuitive way to resolve the overconfidence issue is to have the agent attempt goals that lie
beyond its known goal distribution so that the agent gathers the data necessary to determine their
achievability. However, the naive pursuit of out-of-distribution goals can waste valuable environment
interactions. To avoid this, we note that an agent often has significant buffer room when it is pursuing
in-distribution goals (e.g., it achieves a goal mid-way through an episode in an undiscounted task).
In such cases, exploring nearby, out-of-distribution goals can quickly inform the agent as to their
achievability and provide effective exploration into the unknown region, whilst not compromising the
agent’s ability to achieve its current task.

We leverage this observation to propose a new method that utilizes temporary goals throughout a
single rollout to improve goal generalization and exploration efficiency. We show how our method
can be integrated with existing multi-goal reinforcement learning methods, and demonstrate empirical
improvements over baseline algorithms in four multi-goal environments.

∗Equal supervision.

NeurIPS 2022 Deep Reinforcement Learning Workshop

s

1

2

3

G

B

Figure 1: A diagram of our algorithm in a 2d navigation environment. The grey region is the
navigable area with the small yellow circle labeled with “s” representing the start and the yellow
diamond (labeled “B”) being the agent’s behavioral goal. The environment’s goal is the Triangle.
The green dashed arrow represents the baseline MEGA algorithm [21], where the agent goes to its
behavioral goal and explores randomly around it (the big green circle). Light blue and yellow arrows
demonstrate a potential route an agent with temporary goals would take, with the temporary goals
being the three blue stars labeled 1 to 3. Here the agent first pursues the temporary goal 1 for several
steps before switching back to the behavioral goal (yellow path). It then continues to explore by
pursuing temporary goals 2 and 3. Temporary goals here allow the agent to learn that the white
region (lower left) is unachievable, and also to explore more effectively at the frontier.

2 Preliminaries

We consider the multi-goal reinforcement learning setting. It can be described by a generalized
Markov Decision ProcessM = 〈S,A, T,G, [pdg]〉, where S is the state space, A is the action, T
is the transition function, G is the goal space and [pdg] is an optional desired goals distribution as
introduced in [21]. We will demonstrate that our method can provide further benefit for state-of-
the-art exploration algorithms in long-horizon sparse reward environments by integrating it into the
Maximum Entropy Gain exploration strategy (MEGA) [21], which explores by setting a behavioral
goal for the agent. In our continuous control examples we use the DDPG algorithm [15], which uses
Q-learning for the critic [28] and deterministic policy gradients for the actor [26]. We also utilize
Hindsight Experience Replay (HER) [2] to relabel the states stored in the replay buffer and then use
them to train the actor and the critic.

Aside from integration with MEGA, our proposed method can be employed in multitask environments
such as discrete navigation and resource collection environments that are not explicitly conditioned
on a goal state. For these environments, we use deep Q-learning [16] as the baseline.

2.1 The Overconfidence and Ineffective Exploration Problem

Though algorithms such as MEGA [21] can solve long-horizon environments, they can fail at
recognizing unachievable goals, especially when they are out-of-distribution. Such agents often
sample their behavioral goals from their own buffer. While effective for discovering achievable goals,
the agent never explicitly pursues any goal that is theoretically unachievable. As a result, the agent
assumes that all nearby goals of an achieved goal are similarly achievable. This is also the case with
exploration methods that rely on action space noise [15] or parameter space noise [23], as using noise
to explore cannot inform the agent whether a state is unachievable or simply has not been explored.

Algorithms that focus on exploring at the frontier of the agent’s capabilities [19, 7, 21] also face
the issue of ineffective exploration at the frontier. All of the methods mentioned above essentially
explore randomly after arriving at the frontier. This means it becomes exponentially unlikely for the
agent to consistently move in any one direction, and therefore they don’t explore as effectively as
methods that provide temporally-extended exploration at the frontier.

We also observe that the frontier of achievable goals as determined by the agent is typically not
optimal, and while en route to such a frontier there are many adjacent states that if pursued would
provide the agent with more effective exploration.

2

3 Methods

We propose a method that periodically checks if there are meaningful goals nearby and then potentially
pursues them for N steps. The method is flexible and can serve as an add-on module for many
modern reinforcement learning algorithms. The temporary goal swapping serves 3 purposes: (1) it
allows the agent to have a more accurate estimate of the achievability of out-of-distribution goals,
(2) it helps to identify and pursue potentially more informative frontier goals and, (3) it provides
temporally-extended exploration at the frontier.

Our method has variations that can be utilized in different ways depending on the environment and
the base algorithm. When the environment is conditioned on a goal and has clearly defined step
sizes, then Algorithm 1 can be implemented, and the function TEMPORARY_GOAL_SWAP can be run
periodically to find potential goals that will provide better exploration.

Our method first samples C goals {gi}Ci=1 approximately N steps away. We generate each of these
goals gi according to the Equation 1:

gi = ga +Nσε(i), ε
(i)
k

i.i.d.∼ U(−1.5, 1.5) ∀ k ∈ {1, . . . , D} (1)

First, we sample a random uniform vector ε(i) with the same number of dimensions as the goal,
where each element ε(i)k is independently sampled from a uniform distribution from −1.5 to 1.5. We
compute a scalar step size σ = ‖ga − g′a‖2 defined as the Euclidean distance between the current
achieved goal, ga, and the goal achieved one time step earlier, g′a. Then we take the product of the
random vector ε(i) with the number of steps N and the step size σ, and add this vector to our current
achieved goal ga to get a goal that is approximately N steps away.

Out of the C sampled goals, it chooses the one with the lowest density in the agent’s past experience:

ĝ = argmin
g′∈{gi}Ci=1

pθ(g
′) (2)

The density pθ(g) can be estimated with a kernel density estimator fitted to the experience buffer of
achieved goals.

The lowest density goal has the potential to provide more efficient exploration as demonstrated in
MEGA [21]. To summarize, low-density goals are a natural objective to expand the support of the
achieved goal distribution in all directions as fast as possible. By pursuing low-density goals, the
agent increases the entropy of its achieved goal distribution, and will eventually cover the support of
the desired distribution, thus allowing the agent to achieve the desired objective.

When the temporary goal method is used in conjunction with a value-based method like DDPG [15],
we can also consider some form of Q-value cutoff as used in MEGA[21], where we reject the goals

Algorithm 1 Temporary Goal Swap (TGS)

function TEMPORARY_GOAL_SWAP (current_achieved_goal ga ∈ RD , current_behavioral_goal gb ∈ RD ,
number_of_candidates C ∈ N, number_of_steps N ∈ N, step_size σ ∈ R+):

Sample C candidates {gi}Ci=1, where gi = ga +Nσε(i), ε
(i)
k

i.i.d.∼ U(−1.5, 1.5) ∀ k ∈ {1, . . . , D}
ĝ = argming′∈{gi}Ci=1

pθ(g
′) # Choose goal with lowest probability density in replay buffer

if pθ(ĝ) < pθ(gb) then
Collect experience (sk, ak, rk(sk, ĝ)) for N steps using ak ∼ π(·|sk, ĝ)

else return

Algorithm 2 Temporary Weight Swap (TWS)
function TEMPORARY_WEIGHT_SWAP (valid_minimum_weight a ∈ R,valid_maximum_weight b ∈ R):

Sample a random new weight ŵ, where ŵi
i.i.d.∼ U(a, b) ∀ i ∈ {1, . . . , D}

Collect experience (sk, ak, rk(sk, ŵ)) for N steps using ak ∼ π(·|sk, ŵ)

3

with Q-values below a certain threshold. This can prevent repeated attempts toward regions the agent
has already learned to be unachievable.

After finding a new low-density goal we compare it with its current behavioral goal gb and if the
temporary goal ĝ has a lower density then it will be pursued for the next N steps before switching
back to the original behavioral goal. This process can be repeated every kN steps until the end of
an episode. So in a reversible environment, the temporary goal swap would take a detour of at most
2kN .

If the behavioral goal is achieved before the end of an episode, then the process can be repeated every
N steps to provide temporally extended exploration at the frontier.

The temporary goal method can also be incorporated into multitask environments such as resource
management and navigation tasks [1]. By temporarily altering the weight of the resources, the agent
would explore different options and acquire resources that it would not have collected under normal
conditions. This can be accomplished by Algorithm 2.

In these environments, by pursuing a different set of resources, the agent naturally comes up with a
temporally extended course of action to explore. Therefore temporary goals can provide temporally
extended exploration at the frontier for both navigation and resource management environments.

In previous work, temporally extended exploration at the frontier is achieved by using temporally
extended ε-greedy [5], which picks a random action and repeats it for several steps. However by
temporarily altering the goal the agent is able to gain experience actually pursuing out-of-distribution
goals and therefore can have a better estimate of their achievability, in addition, by picking a low-
density goal we steer the agent in the most promising direction. Furthermore, in environments that
require resource management, temporally extended ε-greedy does not provide a temporally extended
course of action. For example in foraging world [3] continuously moving left means the agent is
collecting any random resources it happens to come by, which is practically equivalent to ε-greedy.
In contrast, by altering the resources’ values the agent would naturally conduct temporally extended
exploration by pursuing a different set of resources.

The temporary nature of the goals provides an upper limit on the amount of potentially wasted
environment steps and also allows the method to be integrated into a continued learning setting
[25]. The addition of temporary goals allows the agent to explore nearby states of interest while still
following the main strategy, thus allowing it to perform satisfactorily on the main goal while further
exploring the environment.

4 Experiments

We compare the proposed method against a baseline reinforcement learning agent that utilizes
maximum entropy gain for exploration [21] in three continuous navigation environments. First a 2D
PointMaze [27] with an unachievable region. Second, we propose a new environment, MOAT, to
demonstrate the issue caused by the lack of temporally extended exploration at the frontier. Improved
exploration is also shown in a third, larger-scale AntMaze experiment. Finally, we demonstrate the
exploration improvement our method provides in resource management and navigation tasks against
a DQN [16] baseline in a modified foraging world environment originally proposed in [3].

4.1 Temporary Goals Provide Better Estimate of Out-of-distribution States’ Achievability

To demonstrate that the introduction of temporary goals can help achieve better classification of
unachievable goals, we compare the baseline method MEGA [21] and MEGA combined with
temporary goals in a maze environment. We blocked off a small portion in the middle from the rest
of the maze which will not be achievable by the agent. The maze is also surrounded by walls on all
sides, the outside of which is also unachievable. The environment is continuous and the agent can
move in any direction. The agent starts at the bottom left corner.

After training both agents for the same amount of steps, they learned to solve the environment at the
same rate (Appendix, Figure 7). We can then examine the Q-values of the states in the map. Figure
2b shows that the baseline agent overestimates its ability: inside the inaccessible region, the Q-values
do not differ significantly when compared to the surrounding regions. Similarly, the agent is also
confident in its ability to achieve goals that lie beyond the boundary of the map.

4

(a) Maze Environment
0 2 4 6 8 10

x

0

2

4

6

8

10

y

25

20

15

10

5

0

(b) MEGA

0 2 4 6 8 10
x

0

2

4

6

8

10

y

25

20

15

10

5

0

(c) MEGA + Temp Goals (Ours)

Figure 2: (a) A top-down view of the modified PointMaze [27] environment with a unreachable area.
The agent observes s = (x, y) coordinate in the maze and is given goal location g = (gx, gy). (b-c)
Value function V (s, g) with fixed state on the bottom left corner and varying goal locations for an
agent trained with (b) MEGA [21], compared to an agent trained with MEGA with Temporary Goals
(Ours) (c). The unreachable area in the maze is accurately captured with our method.

In contrast, when temporary goals are introduced, the agent pursues goals inside the blocked off
region and is able to achieve more appropriate Q-values, as shown in Figure 2c. The agent also
learns about the boundary of the map and the low Q-values outside of the boundary indicate that the
agent is aware that those goals are not achievable.

4.2 Temporary Goals Provide Temporally Extended Exploration at the Frontier

To demonstrate the benefits of temporally extended goals at the frontier we conduct experiments in a
novel MOAT environment, which captures a failure case of MEGA, and AntMaze environment.

Moat We created the environment MOAT to illustrate the importance of temporally extended
exploration at the frontier. The MOAT is a 2D continuous navigation environment shown in Figure
3a. The blue circle at the bottom left is where the agent starts and the black star is the goal. The blue
patch represents the moat and slows the agent’s movement speed down by a factor of 10.

While algorithms such as MEGA and “first return, then explore" [7] can provide a temporally extended
course of action for the agent to return to the frontier and explore from there, once at the frontier the
agent performs random actions to explore further. Therefore in the MOAT environment, the agent

(a) MOAT environment

0 25 50 75 100 125 150 175 200
Episode

100

90

80

70

60

50

40

30

Re
wa

rd

Moat
MEGA
MEGA + Temp Goals

(b) Test rewards (5 seeds)

0 25 50 75 100 125 150 175 200
Episode

2.0

1.5

1.0

0.5

0.0

Bu
ffe

r e
nt

ro
py

Moat

MEGA
MEGA + Temp Goals

(c) Agent buffer entropy (5 seeds)

Figure 3: (a) A top-down view of the MOAT environment. The agent observes s = (x, y) coordinate
in the MOAT and is given goal location g = (gx, gy). (b) Test time reward achieve by MEGA [21],
compared to an agent trained with MEGA combined with Temporary Goals (Ours). (c) The entropy
of the agent’s replay buffer while attempting to navigate the environment. The shaded region is the
standard deviation over 5 seeds.

5

cannot get far past the boundary of the moat since while performing ε-greedy exploration at the
frontier the agent moves slowly and does not deviate far past its current state.

Here we compare the performance of MEGA and MEGA with the addition of temporary goals. In
Figure 3b the green line represents the test time reward of MEGA without modification, and the
shaded region is the standard deviation over 5 seeds.

In this environment, the baseline agent does not make any progress past the frontier of the moat, and
therefore cannot solve the environment given a significant amount of time as shown in Figure 3b.
The introduction of temporary goals that are a few steps away from the agent’s current state allows
the agent to explore in one direction consistently, which allows it to make progress in the moat and
eventually solve the environment.

The temporary goals also introduce variation in the path the agent takes to get to the frontier, further
increasing the entropy of the achieved goal buffer and the effectiveness of exploration. As shown in
Figure 3c the agent with temporary goals has higher entropy in its achieved goal buffer, indicating
that it has visited a more diverse set of states.

AntMaze These benefits also apply to the more complicated AntMaze [17, 27], where a simulated
ant is tasked to navigate to different locations in a A-shaped corridor. The version of AntMaze
we used is 16 times larger by area than the one in [8] and takes around 500 steps to complete.

0 500000 1000000 1500000 2000000
Environment Stpes

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

AntMaze
MEGA
MEGA + Temp Goals

Figure 4: AntMaze test time success
(3 seeds)

Our baseline MEGA agent performs random actions after
reaching the frontier, even when the agent has the basic skills
to navigate toward a nearby location. Additionally, since the
state and action spaces in this environment are higher dimen-
sional, random actions are not very effective at moving the
ant a significant distance. Here the temporary goals continue
to provide guidance for the ant towards a useful direction after
it has reached its behavioral goal, resulting in faster learning
progress, as illustrated in Figure 4.

4.3 Temporary Goals Improve Exploration in Resource Management Tasks

To demonstrate exploration improvement of our method in a resource management and navigation
task, we will measure the performance of DQN [16] as a baseline in a modified foraging world
environment proposed in [3] and compare that against DQN with temporary goals.

The foraging world environment is a 2D grid-based environment, where the agent can move in all
four directions by one grid at a time. The setting we used includes three types of fruits and two types
of nutrients. Each type of fruit has a different combination of nutrients. A nutrient’s value depends
on the amount and type of nutrients the agent has collected.

We adopt the Scenario 1 setting in [3] where nutrient 1 is worth 1 point until the agent collects more
than 10 of nutrient 1, then it will have a -1 value. Nutrient 2 is worth -1 point unless the agent has
between 5 and 15 nutrient 2s, then nutrient 2 is worth 5 points. This is captured in the desirability
function di(xi) which depends on the amount of nutrient xi for each nutrient i:

d1(x1) =

{
+1 x1 ≤ 10

−1 x1 > 10

d2(x2) =

−1 x2 ≤ 5

+5 5 < x2 < 25

−1 x2 ≥ 25

The amount of nutrients (x1, x2) also decays as the agent makes a move. This is the default setting
of foraging world, and for a more detailed description see [3]. The only modification we made is that
we appended the nutrient values (d1(x1), d2(x2)) to the observation space so that the agent can see
how much each type of nutrient is worth.

6

The optimal strategy here would be to collect 10 nutrient 1 and 25 nutrient 2s with an emphasis
of collecting nutrient 2. The baseline algorithm does not do this. It mainly focuses on nutrient 1
and never learns to switch to nutrient 2. We hypothesize that this is due to the lack of a temporally
extended exploration strategy. After initially learning to not collect any fruit with nutrient 2, the
ε-greedy exploration strategy is not enough to test that hypothesis at different phases of exploration.
Because performing a random move intermittently is very unlikely to result in the agent collecting a
fruit containing nutrient 2 while having the correct amount of nutrient 2s, especially when the agent
is only attempting to collect nutrient 1. Therefore the agent can only receive a total reward of around
20 as shown in Figure 5.

Figure 5: Foraging world test rewards
with the default nutrient values (5
seeds).

In this environment, the Temporary Weight Swap method
(Algorithm 2) is employed by switching to a random nu-
trient weight ŵ for N = 10 steps every k = 100 steps.
We independently sample a new ŵ uniformly where each
ŵi

i.i.d.∼ U(−10, 10) ∀ i ∈ {1, . . . , 2}, and set di(xi) = ŵi.
The environment is set to 300 steps per episode. The tem-
porary goal method improves exploration by first providing
a strong connection between the nutrient values and reward.
This is because the agent can now learn how a different nu-
trient value would affect its reward. Temporary goals also
provide a temporally extended exploration strategy. By mod-
ifying the nutrient values, the agent is given an incentive to
try collecting different types of fruits even though they could
be further away.

Figure 5 demonstrates that the agent can overcome the “local
optimum” strategy of only collecting fruits with nutrient 1, and thus is able to achieve a much greater
reward.

5 Related work

Curiosity The temporary goals method is related to curiosity in non multi-goal reinforcement
learning algorithms that maximized the entropy in its state space [11, 13]. These algorithms reward
observing novel states, thus suffer from the “noisy-TV” problem [4]. In contrast, since the temporary
goals method is focused on the goal space it does not have this issue. The agent employing temporary
goals can also learn about its abilities, whereas the curiosity-driven agents cannot.

Goal Relabeling The temporary goals could be compared with goal relabeling [12], which Hind-
sight Experience Replay (HER) [2] is a form of. Both HER and temporary goals provide the agent
with imagined experiences, which allow it to learn about other goals than the one it is pursuing.
In navigation environments, temporary goals can be employed with HER simultaneously, as is
demonstrated in our experiments. In our modified foraging world HER could help the agent form
a connection between nutrient weights and its reward just like temporary goals, by relabeling the
nutrient weights. However since HER does not explicitly guide the agent’s movement, it alone is not
able to help the agent discover the optimal strategy.

Hierarchical reinforcement learning The temporary goals method could behave similarly to a
Hierarchical reinforcement learning agent [17, 18] that uses its low-level policy to intermittently
pursue unconventional goals. Goal-conditioned hierarchical reinforcement learning algorithm HESS
[14] does this by probabilistically utilizing an exploration strategy to pursue a novel subgoal for a
predetermined amount of steps. But by directly conditioning the agent on those goals, temporary
goals allow the agent to accurately assess the achievability of those goals. Furthermore, temporary
goals guide the main policy to explore novel goals and thus forgoes the need for a separate explore
policy.

Generative Methods The idea of generating goals for a multi-goal reinforcement learning agent
has previously been used in Goal Generative Adversarial Network [8], which is a modified version of
generative adversarial network [10]. It employs a goal generator to generate the agent’s behavioral
goals and a discriminator that is trained to determine if the goals are of appropriate difficulty. In our

7

method since we only need to generate goals that are nearby, there is no need to train two complex
models to capture the intricacies of the environment dynamics. The density of the agent’s past
experience provides a fast and effective heuristic to generate nearby goals. Furthermore, due to the
goal’s temporary nature, the cost of an unachievable goal is much lower, while some of the temporary
goals can potentially be unachievable, the agent will pursue a baseline line policy such as MEGA
[21] where the goal is guaranteed to be achievable.

6 Conclusion

This work proposes a method to improve exploration and generalization in a variety of multi-goal
reinforcement learning environments by injecting temporary goals that guide the agent to test the
achievability of nearby out-of-distribution goals. This provides a temporally extended course of action
for exploration even at the frontier of the agent’s capability. We achieve these benefits by temporarily
changing the agent’s goal, which when combined with the entropy gain heuristic, guides the agent
towards previously under-explored states. The strategy solves environments that baseline agents are
unable to solve and discovers better strategies than the baseline algorithm in several long-horizon
multi-goal environments.

This work has some limitations that should be addressed by future works. Firstly is the issue of safety
[9]. The temporary goals method is primarily only applicable in environments that are reversible. In
non-reversible environments, the temporary goals can put the agent in a state from which it can no
longer achieve the main objective, thus nullifying the benefits. This might be addressed with some
form of reversibility detection (something that humans do quite naturally). Second, our experiments
are conducted in environments where the goal spaces are predefined and semantically meaningful. It
would be interesting to see the performance of temporary goals on a latent goal space learned by the
agent.

References
[1] A. Abels, D. Roijers, T. Lenaerts, A. Nowé, and D. Steckelmacher. Dynamic weights in

multi-objective deep reinforcement learning. In International Conference on Machine Learning,
pages 11–20. PMLR, 2019.

[2] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
P. Abbeel, and W. Zaremba. Hindsight experience replay. arXiv preprint arXiv:1707.01495,
2017.

[3] A. Barreto, D. Borsa, S. Hou, G. Comanici, E. Aygün, P. Hamel, D. Toyama, S. Mourad,
D. Silver, D. Precup, et al. The option keyboard: Combining skills in reinforcement learning.
Advances in Neural Information Processing Systems, 32, 2019.

[4] Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by random network distillation.
arXiv preprint arXiv:1810.12894, 2018.

[5] W. Dabney, G. Ostrovski, and A. Barreto. Temporally-extended ε-greedy exploration. arXiv
preprint arXiv:2006.01782, 2020.

[6] L. L. Di Langosco, J. Koch, L. D. Sharkey, J. Pfau, and D. Krueger. Goal misgeneralization
in deep reinforcement learning. In International Conference on Machine Learning, pages
12004–12019. PMLR, 2022.

[7] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune. First return, then explore.
Nature, 590(7847):580–586, 2021.

[8] C. Florensa, D. Held, X. Geng, and P. Abbeel. Automatic goal generation for reinforcement
learning agents. In International conference on machine learning, pages 1515–1528. PMLR,
2018.

[9] J. Garcıa and F. Fernández. A comprehensive survey on safe reinforcement learning. Journal of
Machine Learning Research, 16(1):1437–1480, 2015.

8

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial networks. Communications of the ACM, 63(11):139–144,
2020.

[11] E. Hazan, S. Kakade, K. Singh, and A. Van Soest. Provably efficient maximum entropy
exploration. In International Conference on Machine Learning, pages 2681–2691. PMLR,
2019.

[12] L. P. Kaelbling. Learning to achieve goals. In IJCAI, volume 2, pages 1094–8. Citeseer, 1993.

[13] L. Lee, B. Eysenbach, E. Parisotto, E. Xing, S. Levine, and R. Salakhutdinov. Efficient
exploration via state marginal matching. arXiv preprint arXiv:1906.05274, 2019.

[14] S. Li, J. Zhang, J. Wang, Y. Yu, and C. Zhang. Active hierarchical exploration with stable
subgoal representation learning. arXiv preprint arXiv:2105.14750, 2021.

[15] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. nature, 518(7540):529–533, 2015.

[17] O. Nachum, S. S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.
Advances in neural information processing systems, 31, 2018.

[18] O. Nachum, H. Tang, X. Lu, S. Gu, H. Lee, and S. Levine. Why does hierarchy (sometimes)
work so well in reinforcement learning? arXiv preprint arXiv:1909.10618, 2019.

[19] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-
supervised prediction. In International conference on machine learning, pages 2778–2787.
PMLR, 2017.

[20] S. Pitis, H. Chan, and S. Zhao. mrl: modular rl. https://github.com/spitis/mrl, 2020.

[21] S. Pitis, H. Chan, S. Zhao, B. Stadie, and J. Ba. Maximum entropy gain exploration for long
horizon multi-goal reinforcement learning. In International Conference on Machine Learning,
pages 7750–7761. PMLR, 2020.

[22] M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker, G. Powell, J. Schneider, J. Tobin,
M. Chociej, P. Welinder, et al. Multi-goal reinforcement learning: Challenging robotics
environments and request for research. arXiv preprint arXiv:1802.09464, 2018.

[23] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen, T. Asfour, P. Abbeel, and
M. Andrychowicz. Parameter space noise for exploration. arXiv preprint arXiv:1706.01905,
2017.

[24] T. Schaul, D. Horgan, K. Gregor, and D. Silver. Universal value function approximators. In
International conference on machine learning, pages 1312–1320. PMLR, 2015.

[25] J. Schwarz, W. Czarnecki, J. Luketina, A. Grabska-Barwinska, Y. W. Teh, R. Pascanu, and
R. Hadsell. Progress & compress: A scalable framework for continual learning. In International
Conference on Machine Learning, pages 4528–4537. PMLR, 2018.

[26] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic policy
gradient algorithms. In International conference on machine learning, pages 387–395. PMLR,
2014.

[27] A. Trott, S. Zheng, C. Xiong, and R. Socher. Keeping your distance: Solving sparse reward
tasks using self-balancing shaped rewards. Advances in Neural Information Processing Systems,
32, 2019.

[28] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3):279–292, 1992.

9

https://github.com/spitis/mrl

A Implementation Details

We used the modular RL code base [20] for all of our continuous navigation experiments with the
default hyper-parameters for all of the environments. The only modification is the introduction of
temporary goals. The scoring of the temporary goals is based on the density module as detailed in
[21].

For the foraging world environment, our experiment is based on the Option Keyboard code base [3]
with default hyper-parameters in the default setup with 3 fruits and 2 nutrients. We ran scenario 1 as
detailed in [3] and the only modification is that we made the weight/value of each nutrient part of the
observation. When the weights are temporarily swapped, the weights in the observation are swapped
to the same values as well. When implementing Algorithm 2 for this experiment, we chose a valid
minimum weight of −10 and a valid maximum weight of 10.

All the experiments have been conducted with 5 different seeds, except for AntMaze where 3 seeds
are used.

B Low-density Prioritization

0 500000 1000000 1500000 2000000
Environment Stpes

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

AntMaze
MEGA
MEGA + Temp Goals
MEGA + Random Temp Goals

Figure 6: Antmaze test success (3 seeds)

The prioritization of low density goals as temporary goals
provides meaningful benefits. We compare with using
random nearby goals (i.e., setting number of candidates
C = 1) as temporary goal:

g̃ = ga +Nσε, εk
i.i.d.∼ U(−1.5, 1.5) ∀ k ∈ {1, . . . , D}

In the AntMaze environment, using random nearby goals
g̃ as temporary goals results in slower learning progress as indicated by the green line in 6. The
random goals are drawn from the same distribution as detailed in Algorithm 1, but in this experiment,
except that we always replace the goal with a random nearby goal.

C PointMaze learning progress

0 200000 400000 600000 800000 1000000
Environment Stpes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

PointMaze

MEGA
MEGA + Temp Goals

Figure 7: PointMaze test success with
and without temporary goals. (5 seeds)

In PointMaze pursuing temporary goals does not appear
to affect learning progress, as shown in Figure 7. We
hypothesize the reason is that the temporary goals did
not distract from the maze exploration due to our cutoff
mechanism. And since the maze is fairly small, taking only
50 steps to complete, temporally extended exploration at
the frontier is not as important.

10

	Introduction
	Preliminaries
	The Overconfidence and Ineffective Exploration Problem

	Methods
	Experiments
	Temporary Goals Provide Better Estimate of Out-of-distribution States' Achievability
	Temporary Goals Provide Temporally Extended Exploration at the Frontier
	Temporary Goals Improve Exploration in Resource Management Tasks

	Related work
	Conclusion
	Implementation Details
	Low-density Prioritization
	PointMaze learning progress

