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ABSTRACT

This study investigates hallucinations in Large Language Models (LLMs), partic-
ularly in Nigerian and Western contexts. We study how hyperparameters, cultural
background, and prompt language (particularly, Nigerian Pidgin) affect halluci-
nation rates. Using semantic entropy as an indicator of hallucination, we exam-
ine response variability in Llama 3.1 outputs and cluster them using the entail-
ment model microsoft/deberta-base-mnli to identify semantic similarity. We then
use these clusters to calculate semantic entropy (the variation in meanings of the
LLM’s responses) using a variant of Shannon entropy to quantify hallucination
likelihood. Our findings shed light on ways to improve LLM reliability and con-
sistency across linguistic and cultural situations.

Keywords:Language Models (LLMs), Hallucination Detection, Semantic Entropy, Natural Lan-
guage Processing (NLP), Pidgin Language, Cross-Lingual Analysis, Hyperparameters

1 INTRODUCTION
Large Language Models (LLMs) like ChatGPT, Gemini, and Claude are changing how people find
and interact with information. Many users now prefer them over traditional search engines. How-
ever, a major challenge remains: hallucinations—when these models generate responses that sound
correct but are actually false or misleading. Researchers have defined hallucinations in different
ways. Rawte et al. (2023) describes them as instances where an LLM produces information that
deviates from reality or includes fabricated content. Others, like Huang et al. (2024), classify hal-
lucinations into two types: factual and faithful. Factual hallucinations happen when a response
contradicts real-world facts, while faithfulness hallucinations occur when an answer strays from the
user’s intent. How we define hallucinations shapes how we try to fix them.

Measuring hallucinations is tricky, especially with open-ended questions. Unlike yes/no questions
that test memory, open-ended ones assess reasoning and decision-making—areas where LLMs still
struggle. But comparing an LLM’s response to a ”ground truth” in these cases isn’t straightforward.
To tackle this, Duan et al. (2024) explored uncertainty-based methods using LLMs’ hidden states
to detect hallucinations. But these techniques don’t always work, especially with closed-source
models. Inspired by Farquhar et al. (2024), who used semantic entropy to detect hallucinations, we
take this a step further. We examine how hyperparameters, prompt language (especially Nigerian
Pidgin), and cultural context affect semantic entropy in LLM responses. Our goal is to understand
how these factors influence hallucination rates in Nigerian and Western settings. By doing this,
we hope to offer practical insights into making LLMs more reliable across different languages and
cultures.

2 RELATED WORKS
Hallucinations in Large Language Models (LLMs) have become a hot topic as these models play
an increasingly central role in how people access and generate information. Although LLMs like
ChatGPT, Gemini, and Claude can produce impressively fluent responses, they sometimes generate
content that sounds convincing yet is factually incorrect or misleading. Researchers have been
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working hard to understand why this happens and how to reduce it. Hallucination is touted to be
introduced to LLMs through flaws in data, training and inference. Issues like misinformation and
biases, knowledge shortcut and knowledge recall failures, architecture flaws and suboptimal training
objectives, capability misalignment and belief misalignment are the go-to factors. Some researchers
argue that hallucinations should be considered as a natural component of the generating process
rather than a flaw to be fixed. According to Rawte et al.(2023), the diversity of LLM outputs,
commonly referred to as hallucinations, may indicate the model’s creativity. However, this trait is
not applicable in every case. As a result, it is crucial to understand what circumstances affect it the
most and how to control them.

One common way to frame the problem is by looking at two key aspects: factual accuracy and
faithfulness to the input. For example, Rawte et al. (2023) describes hallucinations as moments
when a model’s output deviates from reality or even invents information. In a similar vein, Huang
et al. (2024) splits hallucinations into two types: factual hallucinations, where responses con-
flict with known facts, and faithfulness hallucinations, where the answer does not properly reflect
the question’s intent. These distinctions are important because they suggest different strategies for
reducing errors. Traditionally, researchers have tackled hallucinations in big language models by
directly comparing the generated outputs to some predetermined ground truth. This strategy is ef-
fective for jobs with clear, organized solutions, such as factual question-answering, but it falls short
when used to more open-ended tasks, such as summarizing, creative writing, or reasoning. In these
situations, because there is no single ”correct” solution, focusing simply on ground truth may over-
simplify the situation and overlook more subtle sorts of hallucinations.

To address these issues, some academics have turned to uncertainty estimation as a method of detect-
ing hallucinations. For instance, Duan et al. (2024) proposes leveraging language models’ hidden
states as inputs to regression models that assess uncertainty. The idea is that the model’s internal
representations might reveal how confident it is in its output. However, this method might be trou-
blesome in black-box models because these concealed states are difficult to obtain. As a solution,
other studies have investigated using simpler indicators as proxies for uncertainty, such as answer
length or distance between embeddings in a semantic space. The underlying idea is that an unusually
extended or semantically distant response to the prompt could indicate that the model is ”making
things up.” However, these methods are not foolproof; for example, a lengthy response does not
always indicate a mistake, and embedding-based measurements frequently rely on valid reference
points.

Overall, uncertainty estimating techniques, particularly those based on regression or classification,
perform best in closed-ended tasks with clear correct or erroneous outputs. Classification models are
frequently developed to distinguish between true and false responses using annotated data. However,
for free-form text generation, when there is no one ”right” response and the evaluation must reflect
more complex thinking, standard systems face considerable challenges.

To fill this gap, Farquhar et al. (2024) introduced a method with semantic grounding. This involved
using semantic entropy, which evaluates the randomness of a model’s replies. The idea is simple:
if a model is uncertain, it will offer a variety of responses with different meanings when given the
same prompt multiple times. As a result, high semantic entropy can be used to detect hallucinations
in the model. Unlike regression-based approaches, which rely on hand-crafted features, semantic
entropy provides a more adaptable and model-agnostic approach that works even when the model’s
inner workings are obscured.

Our research extends these theories by looking into how hyperparameter settings, language, and
cultural context influence hallucination detection. We focus on Nigerian Pidgin, a language with
its distinct structure and idiosyncrasies, to examine how existing uncertainty-based algorithms work
when applied to a low-resource language. By adding these linguistic and cultural aspects, we want
to improve the robustness and usefulness of uncertainty estimating strategies for detecting halluci-
nations across a broader range of languages and real-world circumstances.
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3 METHODOLOGY

3.1 DATASETS

We used two datasets, each consisting of 20 questions:

• Western-based questions: The first twenty questions from TriviaQA (Joshi et al., 2017).

• Nigerian-based questions: A set of questions designed to be culturally and contextually
relevant to Nigeria, mirroring the domains found in the Western dataset.

The questions cover a variety of domains, including literature and arts, history, geography, music and
entertainment, religion and culture, law and governance, sports, science and technology, economics
and resources, and miscellaneous trivia. The average question length is 51.95 characters.

3.2 EXPERIMENTAL DESIGN

We conducted several experiments with the Large Language Model (LLM) to observe its behavior
under different conditions. In the first batch of experiments, we queried the LLM with questions
from the Western-based dataset and then the Nigerian-based one in Nigerian Pidgin under certain
conditions. Each question in the dataset was asked multiple times in each experiment. The condi-
tions were a varied random seed while keeping the temperature constant at 0 and 1 respectively in
different experimental runs. The aim was to investigate the impact of the random seed on semantic
entropy and, by extension, hallucination, when an LLM is queried in Nigerian Pidgin at both temper-
ature extremes. In the second batch of experiments, we queried the LLM in English with questions
from the Western-based dataset and then the Nigerian-based one, under similar conditions. This
aimed to investigate the impact of the random seed on semantic entropy and, by extension, halluci-
nation, when an LLM is queried in English at both temperature extremes. We used the Spearman
rank correlation to figure out the relationship between our control variable and semantic entropy in
the first and second batches of experiments. This was important to determine how well the rankings
of the random seed and semantic entropy match, even if the connection is not linear. This is great for
our data, as the relationship between variables may not be a clear, straight-line trend. Finally, in the
third experiment, to isolate the effect of prompt language (English and Nigerian Pidgin). We varied
the prompt language while keeping other variables constant at two different temperature settings: 0
and 1. Here, we used the point-biserial correlation instead of Spearman rank. This is because we
represented the prompt language with categorical variables and that particular type of correlation
assesses the strength and direction of the association between one continuous variable and one bi-
nary categorical variable. These experiments allowed us to explore how different factors, such as
temperature, language, and random seed, influence the model’s output.
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Figure 1: Experimental Design Overview

3.3 SEMANTIC ENTROPY COMPUTATION

Semantic entropy quantifies uncertainty in LLM responses:

H = −
N∑
i=1

pi log pi (1)

where N is the number of meaning clusters, and pi is the probability of the i-th meaning. Higher
entropy indicates more varied responses, suggesting increased hallucination risk.

4 RESULTS

4.1 EFFECT OF SEED ON SEMANTIC ENTROPY (PIDGIN PROMPTS)

Western-based dataset (T = 1.0, Pidgin prompts):
Here, we prompted the LLM in Pidgin using questions in the Western-based dataset at T=1. After
doing so, we observed a moderate negative Spearman correlation (r = −0.600, p = 0.005) between
the seed and semantic entropy. This suggests that as the seed value increases, the semantic entropy
tends to decrease, indicating that higher seeds consistently produce responses with lower variability.
Conversely, lower seed values tend to generate more varied or uncertain responses. Western-based
dataset (T = 0.1, Pidgin prompts):
Here, we prompted the LLM in Pidgin from questions in the Western-based dataset at T=0.1. After
doing so, a weak positive correlation (r = 0.204, p = 0.388) was observed, suggesting that some-
times as seed increases the semantic entropy increases. However, the p-value is quite high meaning
that this emergent relationship is very likely down to chance. So at low temperatures changing the
seed doesn’t significantly increase hallucination even in Pidgin.

Nigerian-based dataset (T = 0.1, Pidgin prompts):
Here, we prompted the LLM in Pidgin from questions in the Nigerian-based dataset at T=0.1. After
doing so, a moderate positive Spearman correlation (r = 0.504, p = 0.002) was observed suggesting
that seed changes have a non-trivial effect on entropy at low temperatures. So, unlike the Western
dataset where no relationship emerges between seed and semantic entropy at low temperatures, we
have the opposite here. When prompting LLMs with questions from the Nigerian context at low
temperatures, increasing the seed can lead to semantic entropy rising.
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Table 1: Western Context: Varying Seed in Pidgin

(a) Temp = 1.0

Sem Ent Seed Temp Lang Context
0.00 3197 1.0 0 Western
2.32 18 1.0 0 Western
0.46 3372 1.0 0 Western
1.37 1654 1.0 0 Western
0.53 1029 1.0 0 Western
0.97 1997 1.0 0 Western
0.72 191 1.0 0 Western
0.00 4675 1.0 0 Western
0.00 3117 1.0 0 Western
1.44 3389 1.0 0 Western
1.23 213 1.0 0 Western
2.32 1202 1.0 0 Western
2.32 2122 1.0 0 Western
0.00 3834 1.0 0 Western
0.00 4737 1.0 0 Western
0.46 1617 1.0 0 Western
0.53 4686 1.0 0 Western
1.19 2921 1.0 0 Western
0.00 4410 1.0 0 Western
1.41 2215 1.0 0 Western

(b) Temp = 0.1

Sem Ent Seed Temp Lang Context
0.00 4473 0.1 0 Western
2.32 1400 0.1 0 Western
0.00 541 0.1 0 Western
0.72 686 0.1 0 Western
0.00 1288 0.1 0 Western
0.00 2323 0.1 0 Western
0.00 2028 0.1 0 Western
0.00 4355 0.1 0 Western
0.00 2022 0.1 0 Western
0.00 1040 0.1 0 Western
0.72 4791 0.1 0 Western
2.32 3838 0.1 0 Western
0.00 3166 0.1 0 Western
0.26 4570 0.1 0 Western
0.00 705 0.1 0 Western
0.26 4144 0.1 0 Western
0.00 1489 0.1 0 Western
0.00 2221 0.1 0 Western
0.00 3473 0.1 0 Western
0.00 3986 0.1 0 Western

Nigerian-based dataset (T = 1.0, Pidgin prompts) Here, we prompted the LLM in Pidgin using
questions in the Nigerian-based dataset at T=1.0. After doing so, a moderate positive Spearman cor-
relation (r = 0.29, p = 0.2) was observed. Despite the discovered positive relationship, the effect of
seed alterations on entropy was minor and statistically negligible. At high temperatures, the LLM’s
output fluctuation is already large, thus seed modifications have little impact. This contradicts our
findings from the Western dataset, which indicated that seed changes had a bigger influence at lower
temperatures.

Table 2: Nigerian context in Pidgin (Temper-
ature = 0.1)

Sem. Ent. Seed Temp Lang Context
0.44 3534 0.1 0 Nigerian
1.16 4040 0.1 0 Nigerian
1.50 4822 0.1 0 Nigerian
0.97 920 0.1 0 Nigerian
0.44 3493 0.1 0 Nigerian
2.32 3347 0.1 0 Nigerian
0.00 1076 0.1 0 Nigerian
0.72 1026 0.1 0 Nigerian
2.32 2571 0.1 0 Nigerian
2.32 4670 0.1 0 Nigerian
1.37 2701 0.1 0 Nigerian
0.97 205 0.1 0 Nigerian
2.32 2015 0.1 0 Nigerian
0.00 2105 0.1 0 Nigerian
0.00 3327 0.1 0 Nigerian
0.00 385 0.1 0 Nigerian
0.00 614 0.1 0 Nigerian
0.97 2493 0.1 0 Nigerian
2.32 4590 0.1 0 Nigerian
1.52 3635 0.1 0 Nigerian

Table 3: Nigerian context in Pidgin (Temper-
ature = 1.0)

Sem. Ent. Seed Temp Lang Context
0.00 2614 1.0 0 Nigerian
1.92 1782 1.0 0 Nigerian
0.72 4089 1.0 0 Nigerian
1.44 587 1.0 0 Nigerian
0.97 2917 1.0 0 Nigerian
2.32 2985 1.0 0 Nigerian
0.44 1858 1.0 0 Nigerian
0.00 4452 1.0 0 Nigerian
0.26 179 1.0 0 Nigerian
2.32 3535 1.0 0 Nigerian
1.92 3354 1.0 0 Nigerian
0.26 344 1.0 0 Nigerian
1.37 447 1.0 0 Nigerian
0.00 2890 1.0 0 Nigerian
2.45 4680 1.0 0 Nigerian
0.79 102 1.0 0 Nigerian
0.99 3993 1.0 0 Nigerian
0.97 570 1.0 0 Nigerian
0.97 381 1.0 0 Nigerian
1.44 3221 1.0 0 Nigerian

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

4.2 EFFECT OF SEED ON SEMANTIC ENTROPY (ENGLISH PROMPTS)

In an attempt to isolate the effect of the prompt language on hallucination by treating it like another
variable. So we ask the LLM questions from the Western-based dataset and Nigerian-based dataset
in different experimental runs respectively to see if there are differences in LLM behaviour between
contexts. We represent the prompt languages with categorical variables (Nigerian Pidgin:0 and
English:1).

Western-based dataset: We asked the LLM in English questions from the Western dataset at T =
0.1. A weak negative Spearman correlation (r = −0.09, p = 0.71) was discovered, indicating
that the relationship between seed and semantic entropy is most likely due to random chance. This
finding is congruent with the findings of prompting in Nigerian Pidgin at low temperatures. At
T = 1.0, a weak positive relationship (r = 0.23,p = 0.33) was discovered. Although this result is
statistically more significant than the previous one, the effect remains minor and is most likely due to
random chance. When asking LLMs in English with Western-context questions, modifying the seed
does not appear to have a substantial impact on semantic entropy or hallucinations, demonstrating
that seed variants are ineffective in this environment.

Table 4: Western Context in English (Tempera-
ture = 0.1)

Sem Ent Seed Temp Lang Context

0.0 4695 0.1 1 Western
0.0 2878 0.1 1 Western

2.3219 2839 0.1 1 Western
0.0 550 0.1 1 Western

2.3219 2222 0.1 1 Western
0.0 3187 0.1 1 Western

2.3219 1445 0.1 1 Western
2.3219 3739 0.1 1 Western

0.0 1330 0.1 1 Western
2.3219 456 0.1 1 Western

0.0 3922 0.1 1 Western
2.3219 2547 0.1 1 Western
2.3219 332 0.1 1 Western
2.3219 3903 0.1 1 Western
2.3219 3612 0.1 1 Western

0.0 696 0.1 1 Western
2.3219 4137 0.1 1 Western
2.3219 424 0.1 1 Western

0.0 1409 0.1 1 Western
0.4422 4543 0.1 1 Western

Table 5: Western Context in English (Tempera-
ture = 1.0)

Sem Ent Seed Temp Lang Context

0.44218 45 1.0 1 Western
0.0 3410 1.0 1 Western

2.32193 4744 1.0 1 Western
0.0 1332 1.0 1 Western

2.32193 3368 1.0 1 Western
0.52871 127 1.0 1 Western

0.0 4615 1.0 1 Western
0.44218 1211 1.0 1 Western
0.46439 2925 1.0 1 Western
2.32193 639 1.0 1 Western
1.52193 2643 1.0 1 Western
2.32193 3586 1.0 1 Western
2.32193 682 1.0 1 Western
0.72193 2572 1.0 1 Western

0.0 2185 1.0 1 Western
0.0 1074 1.0 1 Western
0.0 1092 1.0 1 Western

2.32193 3619 1.0 1 Western
0.0 530 1.0 1 Western

0.44218 1634 1.0 1 Western

Nigerian-based dataset: We asked the LLM in English questions from the Nigerian-based dataset
at T = 0.1, and a weak negative correlation (r = −0.01, p = 0.96) was observed indicating a trivial
relationship between both variables.

At T = 1, a weak negative correlation (r = −0.26, p = 0.27) was observed indicating a trivial
relationship between both variables.

4.3 EFFECT OF PROMPT LANGUAGE ON SEMANTIC ENTROPY

4.4 WESTERN-BASED DATASET

At T = 0.1, a weak positive correlation (r = 0.218, p = 0.177) was observed. This suggests
that the relationship between language and semantic entropy is likely due to random variation rather
than any meaningful pattern. However, at T = 1, a moderate negative correlation (r = −0.476,
p = 0.002) was found, indicating a more substantial relationship between the prompt language and
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Table 6: Nigerian Context in English at Tem-
perature 0.1

Sem Ent Seed Temp Lang Context

0.0 3331 0.1 1 Nigerian
0.0 2059 0.1 1 Nigerian

2.3219 613 0.1 1 Nigerian
0.0 1324 0.1 1 Nigerian
0.0 2530 0.1 1 Nigerian
0.0 3180 0.1 1 Nigerian
0.0 377 0.1 1 Nigerian
0.0 3207 0.1 1 Nigerian

2.3219 2973 0.1 1 Nigerian
0.0 4649 0.1 1 Nigerian

2.3219 4649 0.1 1 Nigerian
2.3219 2711 0.1 1 Nigerian
2.3219 4168 0.1 1 Nigerian
2.3219 2370 0.1 1 Nigerian

0.0 2129 0.1 1 Nigerian
0.0 608 0.1 1 Nigerian
0.0 199 0.1 1 Nigerian

0.9705 1011 0.1 1 Nigerian
0.0 2555 0.1 1 Nigerian

Table 7: Nigerian Context in English at Tem-
perature 1.0

Sem Ent Seed Temp Lang Context

2.3219 2489 1.0 1 Nigerian
2.3219 2359 1.0 1 Nigerian
0.9710 901 1.0 1 Nigerian
0.7219 3047 1.0 1 Nigerian

0.0 1643 1.0 1 Nigerian
2.3219 3641 1.0 1 Nigerian

0.0 1474 1.0 1 Nigerian
0.0 4547 1.0 1 Nigerian
0.0 1897 1.0 1 Nigerian

2.3219 2209 1.0 1 Nigerian
1.3710 3417 1.0 1 Nigerian
2.3219 373 1.0 1 Nigerian
2.3219 2958 1.0 1 Nigerian
2.3219 916 1.0 1 Nigerian

0.0 3153 1.0 1 Nigerian
0.0 4838 1.0 1 Nigerian

1.4997 3610 1.0 1 Nigerian
0.2575 4029 1.0 1 Nigerian

0.0 3225 1.0 1 Nigerian
0.0 3030 1.0 1 Nigerian

entropy. This suggests that as temperature increases, the language used in the prompt has a more
pronounced effect on semantic entropy.

Figure 2: Table 1: Lang. Infl. (T=0.1, Seed=c)

Sem. Entropy Temp. Lang. Context

1.628 0.1 1 Western
1.371 0.1 1 Western
0.258 0.1 1 Western
1.186 0.1 1 Western
1.371 0.1 1 Western
0.258 0.1 0 Western
0.722 0.1 0 Western
2.322 0.1 0 Western
1.371 0.1 0 Western
0.464 0.1 1 Western
0.722 0.1 0 Western
1.922 0.1 0 Western
1.900 0.1 1 Western
1.628 0.1 1 Western
1.922 0.1 0 Western
0.613 0.1 1 Western
0.464 0.1 1 Western
1.186 0.1 1 Western
1.628 0.1 1 Western
0.722 0.1 0 Western

Figure 3: Table 2: Lang. Infl. (T=1.0)

Sem. Entropy Temp. Lang. Context

2.386 1.0 0 Western
1.715 1.0 0 Western
2.364 1.0 0 Western
1.922 1.0 1 Western
0.000 1.0 1 Western
1.835 1.0 0 Western
2.322 1.0 1 Western
0.258 1.0 1 Western
2.322 1.0 0 Western
2.322 1.0 1 Western
1.922 1.0 1 Western
0.722 1.0 1 Western
0.722 1.0 1 Western
0.258 1.0 1 Western
1.371 1.0 1 Western
1.835 1.0 0 Western
1.779 1.0 0 Western
1.371 1.0 1 Western
1.715 1.0 0 Western
2.000 1.0 1 Western
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4.5 NIGERIAN-BASED DATASET

At T = 1, the correlation between language and semantic entropy was negligible (r ≈ 0, p = 1.0),
implying that prompt language had no significant effect on entropy within this context. However,
at T = 0.1, a weak negative correlation (r ≈ −0.212, p = 0.188) was observed. Although this
correlation was more significant than at higher temperatures, it was still not strong enough to rule
out the possibility that the observed relationship was due to random chance.

5 CONCLUSION

Our findings indicate that seed selection, temperature, and cultural context affect hallucination rates
differently across datasets. There seems to be a broadly negative correlation between semantic
entropy and, seed and prompt language (at least the statistically significant ones) on the Western
context. However, the relationship between semantic entropy and, seed and prompt language only
seems to emerge at high temperatures and with Pidgin prompts in Nigerian context. Conversely,
any relationship between semantic entropy and, seed and prompt language only seems to emerge at
low temperatures and with Pidgin prompts. The relationship is however a moderate positive correla-
tion. This means that to immprove model reliability when dealing with Western context and Pidgin
prompts we make our temperature values as low as possible. Conversely, to achieve the same with
Nigerian context and Pidgin prompts we make the temperature as high as possible. Pidgin prompts
exhibit distinct entropy patterns, highlighting linguistic influences on model reliability. Further work
could extend the analysis to additional African languages, improving LLM adaptation across diverse
linguistic landscapes.
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