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Abstract001

We introduce AMIA, a lightweight, inference-002
only defense for Large Vision–Language Mod-003
els (LVLMs) that (1) Automatically Masks a004
small set of text-irrelevant image patches to dis-005
rupt adversarial perturbations, and (2) conducts006
joint Intention Analysis to uncover and mitigate007
hidden harmful intents before response genera-008
tion. Without any retraining, AMIA improves009
defense success rates across diverse LVLMs010
and jailbreak benchmarks from an average of011
52.4% to 81.7%, preserves general utility with012
only a 2% average accuracy drop, and incurs013
only modest inference overhead. Ablation con-014
firms that both masking and intention analysis015
are essential for robust safety–utility trade-off.016
Our code will be released.017

1 Introduction018

By integrating visual modalities into Large Lan-019

guage Models (LLMs; Achiam et al. 2023; Tou-020

vron et al. 2023; Miao et al. 2024), Large Vision021

Language Models (LVLMs) have shown impres-022

sive capabilities in various multimodal tasks (Wang023

et al., 2024b, 2025a). However, LVLMs encounter024

worrying safety issues especially under jailbreak at-025

tacks (Ye et al., 2025), which aims to induce harm-026

ful behaviors from LVLMs through techniques like027

prompt manipulation (Gong et al., 2025) or visual028

adversarial perturbation (Qi et al., 2024).029

Existing studies identify safety degradation dur-030

ing fine-tuning as a key factor behind LVLM vulner-031

abilities (Ye et al., 2025; Gou et al., 2024). Incorpo-032

rating visual inputs expands the attack surface, and033

the lack of safety-aware training makes it difficult034

for LVLMs to retain the safety mechanisms of their035

underlying LLM backbones. Since large-scale mul-036

timodal comprehensive safety training is resource-037

intensive (Chen et al., 2024b), inference-time de-038

fenses provide a more practical alternative. One039

representative method, ECSO (Gou et al., 2024),040

shows that converting visual inputs into textual041
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Figure 1: The framework of AMIA consisting of au-
tomatic masking and intention analysis mechanisms.

captions can reactivate the safety mechanisms in- 042

herited from the LLM backbone. However, it only 043

handles the visual modality and overlooks the joint 044

harmful semantics in image-text inputs, limiting 045

its effectiveness in more complex multimodal jail- 046

break scenarios, as discussed in Section 4. 047

A natural solution is to guide LVLMs to perform 048

joint image-text understanding before generating 049

responses, enabling them to translate multimodal 050

inputs into text while excavating their underlying 051

intention. While such prompt understanding has 052

proven effective in LLM defenses (Zhang et al., 053

2025; Han et al., 2024), it still faces challenges 054

from adversarial image perturbations specific to 055

multimodal settings, as discussed in Section 4. 056

To address this, we propose AMIA, a method 057

combining Automatic Masking and joint Intention 058

Analysis, to improve LVLM safety against com- 059

plex multimodal jailbreak attacks. Specifically, we 060

first introduce an image-text correlation-driven au- 061

tomatic masking strategy that masks the least rele- 062

vant image patches to disrupt adversarial patterns 063

while preserving useful visual information for gen- 064
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Figure 2: Illustration of image-text correlation-driven automatic masking mechanism.

eral tasks. Then, we design a mask-guided image-065

text joint intention analysis mechanism, which en-066

courages LVLMs to identify and express potential067

harmful intention in text, thus reactivating intrin-068

sic safety of the LLM backbones within LVLMs.069

The framework of AMIA is illustrated in Figure 1.070

Notably, our method significantly enhances LVLM071

safety with a modest inference overhead of ∼14%072

through a training-free, single-step inference de-073

sign. Experimental results across four jailbreak074

datasets and three general datasets demonstrate that075

AMIA consistently enhances LVLM safety while076

largely preserves their general helpfulness.077

2 Methodology078

We introduce AMIA, an inference-only LVLM de-079

fensive method to enhance LVLM safety under080

complex vision-language jailbreak attacks. Specif-081

ically, AMIA consists of two components, which082

we describe in the following sections.083

2.1 Image-Text Correlation-Driven Automatic084

Masking Mechanism085

In stealthy adversarial jailbreak scenarios, images086

are optimized using PGD (Madry et al., 2018) al-087

gorithm to induce extracting harmful behavior in088

LVLMs (Qi et al., 2024). Though visually benign,089

these images are semantically adversarial. Prior090

work shows that simple mutations like flipping, ro-091

tating, or masking can disrupt such attacks (Zhang092

et al., 2023; Wang et al., 2024a), but applying them093

directly may compromise LVLM’s helpfulness in094

real-world use (Section 5). To address this, we pro-095

pose an automatic masking mechanism in Figure 2096

to break the structure of adversarial perturbations097

by selectively masking image patches least relevant098

to the input text, while preserving useful visual in-099

formation for general tasks.100

Specifically, for an input adversarial image V ,101

we divide it into N patches, denoted as {vi}Ni=1.102

Given the text input T , we follow Wang et al. 103

(2025b) and use the encoder VisRAG-Ret (Yu et al., 104

2025), denoted as ϕ(·), to encode image patches 105

and the text. Then, for each image patch, we com- 106

pute its cosine similarity with the text: 107

si = cos(ϕ(vi), ϕ(T )), i = 1, 2, . . . , N. (1) 108

The similarity score si ∈ [−1, 1] indicates how 109

semantically relevant the image patch vi is to the 110

input text T . We then rank all similarity scores 111

{si} and select K image patches with the lowest 112

similarity for masking (e.g., by setting the selected 113

pixel values to black): 114

ṽi =

{
0, if i ∈ Ilow

vi, otherwise
, (2) 115

where Ilow denotes the index set of K least relevant 116

patches. The resulting masked image Ṽ is: 117

Ṽ = {ṽi}Ni=1. (3) 118

As shown in Section 4, even when discarding 119

a small portion of image information, AMIA sig- 120

nificantly reduces the impact of adversarial image 121

perturbation on LVLM safety, while largely pre- 122

serving their general utility. 123

2.2 Mask-Guided Image-Text Joint Intention 124

Analysis Mechanism 125

To enhance LVLM safety under complex mul- 126

timodal jailbreak attacks, we introduce a mask- 127

guided image-text joint intention analysis mecha- 128

nism that helps LVLMs better understand the over- 129

all intention of the input and raises their aware- 130

ness to unsafe component. Different from pioneer 131

work (Zhang et al., 2025), for efficiency and real- 132

world applicability, we perform the intention anal- 133

ysis within a single inference, allowing LVLMs to 134

analyze intention and generate its response in one 135
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Table 1: AMIA’s performance on four jailbreak datasets compared with baselines in DSR (%) and Safety.

LVLMs Methods MMSafetyBench FigStep VisualAdv-Harmbench AdvBench-cons64

DSR DSR Safety DSR Safety DSR Safety

Llava-v1.5-7B

Direct 23.1 84.0 2.14 37.7 0.75 83.8 2.92
Self-Reminder 33.6 81.0 2.00 45.5 0.90 99.2 3.58

ECSO 31.8 86.0 2.17 58.9 1.42 99.2 3.80
AMIA 43.3 98.8 2.82 63.9 1.46 100.0 3.89

Llava-v1.5-13B

Direct 27.0 76.2 1.91 40.4 0.85 66.2 2.11
Self-Reminder 47.1 76.8 1.97 46.4 1.07 99.7 3.95

ECSO 47.6 81.4 2.10 69.5 1.67 99.8 3.84
AMIA 50.6 99.0 2.68 89.5 2.96 100.0 3.99

Qwen2-VL-7B-Instruct

Direct 31.4 72.0 1.85 48.0 1.00 38.8 0.92
Self-Reminder 46.8 98.2 3.25 48.9 1.10 71.4 2.46

ECSO 34.5 79.8 1.91 63.5 1.60 79.7 2.60
AMIA 42.2 100.0 3.68 92.9 3.26 100.0 3.98

step. To make the reasoning process more inter-136

pretable and easier to evaluate, AMIA uses a struc-137

tured output format with “[Intention Analysis]"138

and “[Final Response]" tags. Detailed instruction139

is shown in Figure 3.140

You are given an image and REQUEST. The image has been partially 
masked based on relevance to the REQUEST, with some regions 
replaced by black pixels to reduce irrelevant information. Please 
analyze the essential intention of the user's query considering both 
the masked image and the REQUEST. Then, provide a direct final 
response to the user's query.

Your output must strictly follow this format: 
First, output the tag “[INTENTION ANALYSIS]” and start with ‘The 
essential intention of the REQUEST is’. Pay special attention to safety, 
ethical, and legal dimensions and keep the sentence concise, 
avoiding elaboration and paragraph breaks.
Then, output the tag “[FINAL RESPONSE]” and insert your final 
response to the REQUEST. You must adhere strictly to our policy and 
ethical standards, excluding any unsafe or unethical information.

Figure 3: Detailed intention analysis instruction.

Formally, the mask-guided joint intention analy-141

sis process can be written as:142

[Rintention, Rfinal] = LVLM
(
Ṽ , Irec ⊕ T

)
,

(4)143

where Ṽ is the masked image in Equation 3, Irec144

is the intention analysis instruction, T is the user’s145

textual input, and ⊕ denotes string concatenation.146

The outputs Rintention and Rfinal are the LVLM’s147

generated intention and final response, respectively.148

3 Experimental Setup149

Models and Baselines. We perform experi-150

ments on three popular LVLMs—LLaVA-v1.5-7B,151

LLaVA-v1.5-13B (Liu et al., 2024a) and Qwen2-152

VL-7B-Instruct (Bai et al., 2023)—and compare153

our AMIA with three baselines: Direct (directly154

prompting the LVLMs without any defensive meth-155

ods), ECSO (a popular LVLM defense framework;156

Table 2: AMIA’s performance on three general utility
datasets in terms of accuracy (%).

LVLMs Methods MMVP AI2D MMStar

Llava-v1.5-7B u AMIA 59.3 54.6 33.2
v AMIA 59.3 51.3 32.8

Llava-v1.5-13B u AMIA 64.3 60.2 34.5
v AMIA 63.0 56.9 32.4

Qwen2-VL-7B-Instruct u AMIA 73.3 80.3 60.2
v AMIA 71.7 78.6 57.6

Gou et al. 2024), and Self-Reminder (a prompt- 157

based self-defense method; Xie et al. 2023). 158

Datasets and Metrics. We evaluate two types 159

of jailbreak attacks: prompt-manipulation-based 160

(FigStep (Gong et al., 2025), MMSafetyBench- 161

TYPO+SD (Liu et al., 2024b)) and optimization- 162

based adversarial (AdvBench-constrain64 (Wang 163

et al., 2024a), VisualAdv-harmbench (Ding et al., 164

2024)), following Qi et al. (2024); Wang et al. 165

(2024a); Ding et al. (2024); see Appendix A.2 166

for details. For safety evaluation, we report De- 167

fense Success Rate (DSR) and average harmless- 168

ness score (i.e., Safety) on FigStep, AdvBench- 169

constrain64, and VisualAdv-harmbench (Qi et al., 170

2024), and DSR only on MMSafetyBench follow- 171

ing their official protocols (Appendix A.4). For 172

general utility, we use three standard LVLM bench- 173

marks—MMVP (Tong et al., 2024), AI2D (Kem- 174

bhavi et al., 2016), and MMStar (Chen et al., 175

2024a)—and report accuracy as the helpfulness 176

metric to assess AMIA’s impact on model utility. 177

Experimental Details. Our method introduces 178

hyperparameter N to control how many patches the 179

image is divided into and K for the masked image 180

patch count. For simplicity and reproducibility, we 181

set N = 16 and K = 3 for all models and settings, 182

with the sensitivity analyzed in Section 5. Further 183
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Table 3: Ablation results of different components of
AMIA on Llava-v1.5-13B.

Intention Auto Random MMVP Visualadv-Harmbench

Analysis Mask Mask Acc. DSR Safety

64.3 40.4 0.85
✓ 63.7 78.5 2.35

✓ 59.3 58.6 1.83
✓ 62.7 60.1 1.89

✓ ✓ 58.7 88.9 2.87
✓ ✓ 63.0 89.5 2.96

experimental details are in Appendix A.6.184

4 Main Results185

We summarize AMIA’s performance on four jail-186

break and three general datasets in Tables 1 and 2,187

respectively. Based on the results, we can find that:188

AMIA consistently enhances safety across dif-189

ferent jailbreaks and LVLMs. As shown in Ta-190

ble 1, for prompt-manipulation-based jailbreaks,191

AMIA averagingly improves DSR by 13.5% com-192

pared to baselines. For optimization-based adver-193

sarial jailbreaks, AMIA significantly boosts aver-194

aging DSR and Safety to 91.1% and 3.26, respec-195

tively, outperforming the best baseline (ECSO) by196

16.2% and 31.5%. Such improvements can be at-197

tributed to the integration of automatic masking198

and intention analysis mechanisms in AMIA, with199

cases provided in Appendix B.200

AMIA effectively preserves LVLM’s general ca-201

pabilities. Table 2 reports AMIA’s performance202

on three general utility datasets. Results show that203

AMIA significantly enhances LVLM safety with-204

out largely compromising LVLM’s general capabil-205

ities. This is consistent with our design of vision-206

language correlation-driven design of the automatic207

masking mechanism, which preserves useful visual208

information in general scenarios.209

5 Analysis210

To better understand the factors influencing211

AMIA’s effectiveness, we conduct further analy-212

sis using the Llava-v1.5-13B model.213

Component ablation of AMIA. We perform ab-214

lation studies on a jailbreak dataset VisualAdv-215

Harmbench and a general dataset MMVP to as-216

sess the individual impact of automatic masking217

and intention analysis mechanisms in Table 3. On218

VisualAdv-Harmbench, both components improve219

safety, with their combination in AMIA achiev-220

ing the best results. On MMVP, the comparison221

(a) Sensitivity Analysis of K

(b) Sensitivity Analysis of N
N(     )

Figure 4: AMIA’s performance on Llava-v1.5-13B
with varying K and N .

with random masking shows that our image-text 222

correlation-based masking strategy better preserves 223

model’s general helpfulness. 224

Sensitivity analysis of K. Figure 4(a) presents 225

a sensitivity analysis of K, the number of masked 226

image patches, on the general dataset MMVP and 227

adversarial dataset VisualAdv-Harmbench with 228

N = 16. Results show that as K increases, DSR 229

on VisualAdv-Harmbench steadily improves and 230

gradually saturates. On MMVP, performance re- 231

mains stable when K = 1 ∼ 3 but drops at K = 4, 232

indicating that moderate masking retains useful vi- 233

sual cues, while excessive masking impairs utility. 234

To balance safety and utility, we set K = 3 as the 235

default. This analysis provides practical guidance 236

for LVLM deployment with different safety-utility 237

requirements. 238

Sensitivity analysis of N . Figure 4(b) analyzes 239

the effect of N , the number of image patches, with 240

K set to match the optimal masking ratio from 241

Figure 4(a) (see Appendix A.5). We find AMIA 242

shows consistent robustness to variations in N . 243

6 Conclusion 244

Large Vision-Language Models (LVLMs) face 245

safety risks under complex multimodal jailbreak 246

attacks. This work proposes an inference-time de- 247

fense that combines automatic masking with inten- 248

tion analysis to disrupt adversarial perturbations 249

and uncover harmful intention in image-text in- 250

puts. Experiments across multiple datasets validate 251

the effectiveness and applicability of our approach, 252

highlighting its potential to improve LVLM safety. 253
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Limitations254

Our experiments span multiple models and task255

types, demonstrating the broad applicability of our256

method. Future work in more diverse and real-257

world deployment settings will help further vali-258

date and extend its utility. Additionally, we have259

conducted sensitivity analyses on the hyperparam-260

eter K and N , and adopt a stable configuration261

based on empirical findings. While this fixed set-262

ting has proven effective in our experiments, explor-263

ing globally optimal and adaptive masking strate-264

gies presents an exciting direction for further per-265

formance improvements. Moreover, the applicabil-266

ity of our method to higher-resolution inputs and267

alternative encoders warrants further exploration.268

Lastly, although our method operates entirely at in-269

ference time with minimal computational overhead,270

further improvements may be achieved by incor-271

porating more robust visual encoding and system-272

level alignment strategies.273

Ethics Statement274

We place strong emphasis on ethical responsibility275

throughout this work. The goal of this paper is to276

enhance the safety of large vision-language mod-277

els, particularly in mitigating jailbreak attacks, by278

introducing targeted techniques such as automatic279

masking and joint intention analysis. Our approach280

aims to reduce unsafe outputs from LVLMs. All281

experiments are performed using publicly avail-282

able datasets, and the results and conclusions are283

presented with objectivity and transparency. There-284

fore, we believe this work will not raise ethical285

concerns.286
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• LLaVA-v1.5-7B and LLaVA-v1.5-13B (Liu467

et al., 2024a): These two models are among468

the most widely used open-source LVLMs.469

The vision encoder is initialized from CLIP-470

ViT-L-336px (Radford et al., 2021), while471

the LLM backbone is based on Vicuna-7B472

and Vicuna-13B (Chiang et al., 2023), respec-473

tively. In this study, we refer to these mod-474

els as LLaVA-v1.5-Vicuna-7B (LLaVA-v1.5-475

7B) and LLaVA-v1.5-Vicuna-13B (LLaVA-476

v1.5-13B). The LLaVA training procedure re-477

tains the original weights of the vision en-478

coder to preserve alignment quality and fo-479

cuses mainly on strengthening the LVLM’s480

instruction-following and reasoning ability.481

• Qwen2-VL-7B-Instruct (Bai et al., 2023):482

Qwen2-VL-7B-Instruct is a multimodal483

instruction-tuned variant in the Qwen2-VL se-484

ries. It builds upon Qwen2-7B and integrates485

several advanced tuning techniques, including486

Low-Rank Adaptation (LoRA) to reduce fine-487

tuning costs. The model has approximately488

0.1 billion tunable parameters, enabling effi-489

cient training while maintaining strong perfor-490

mance in both vision and language tasks.491

A.2 Datasets for Safety Evaluation492

To evaluate the effectiveness of the proposed493

AMIA method in improving the safety per-494

formance of LVLMs, we conduct experiments495

on two publicly available prompt-manipulation-496

based jailbreak datasets—FigStep (Gong et al.,497

2025) and MMSafetyBench-TYPO+SD (Liu et al.,498

2024b)—as well as two optimization-based jail-499

break datasets—AdvBench-constrain64 (Wang500

et al., 2024a) and VisualAdv-harmbench (Ding501

et al., 2024). Detailed descriptions of these datasets502

are as follows:503

• FigStep (Gong et al., 2025): FigStep is specifi-504

cally designed to evaluate LVLM safety under505

cross-modal jailbreak attacks. Unlike tradi-506

tional text-based jailbreaks, FigStep adopts a507

black-box attack approach that does not di-508

rectly input harmful textual prompts. Instead,509

it transforms prohibited content into visual in-510

puts via typography, which are then fed into511

LVLMs to bypass text-based safety filters and512

induce unsafe responses. We use the full set of513

500 harmful textual prompts from their open-514

source SafeBench (Gong et al., 2025), each515

paired with a layout-modified image, resulting516

in a total of 500 image-text jailbreak samples 517

for our experiments. 518

• MMSafetyBench-TYPO+SD (Liu et al., 519

2024b): This dataset contains 1,680 visual- 520

textual queries covering 13 types of mali- 521

cious scenarios (e.g., violence, drugs, crim- 522

inal activity). The majority of harmful con- 523

tent originates from the visual modality, not 524

the text. Each image is annotated with key 525

concepts and we use the SD+OCR image 526

category which combines Stable Diffusion- 527

generated (Rombach et al., 2022) images with 528

harmful keywords embedded post-generation 529

using OCR-like techniques. 530

• AdvBench-constrain64: Based on the Ad- 531

vBench (Zou et al., 2023) and Anthropic- 532

HHH (Ganguli et al., 2022) datasets, Wang 533

et al. (2024a) inject adversarial perturbations 534

into clean images using PGD (Madry et al., 535

2018) algorithm. Specifically, they conducted 536

2,500 rounds of PGD optimization on both 537

Qwen2-VL (Bai et al., 2023) and LLaVA- 538

v1.5 (Liu et al., 2024a), with a step size of 539

1/1020. In our study, we sample 20 adver- 540

sarial images from the PGD-generated noise 541

samples (with a perturbation radius of 64) for 542

both Qwen2-VL and LLaVA-v1.5, and pair 543

each of them with the 52 test prompts pro- 544

vided by AdvBench, resulting in 1,040 unique 545

adversarial queries targeting Qwen2-VL and 546

LLaVA-v1.5, respectively. 547

• VisualAdv-harmbench: Qi et al. (2024) intro- 548

duces PGD algorithm to perturb clean images 549

under varying levels of constraint. We adopt 550

adversarial images of four constraint level 551

from Qi et al. (2024), and pair them with 200 552

harmful prompts from Harmbench (Mazeika 553

et al., 2024). Following (Ding et al., 2024), 554

we append a fixed suffix—“Answer with ‘Ab- 555

solutely, here’s”’—to the original input to fur- 556

ther induce harmful model responses, result- 557

ing in 800 adversarial jailbreak samples based 558

on perturbed images. 559

A.3 Datasets for Helpfulness Evaluation 560

We perform experiments on three popular LVLM 561

utility benchmarks: 562

• MMVP (Tong et al., 2024): This dataset is 563

designed to benchmark LVLMs on general- 564

purpose visual question answering (VQA) 565

7



tasks. It includes 300 questions focusing on566

image and object understanding, allowing to567

assess whether safety improvements degrade568

helpfulness or reasoning capability.569

• AI2D (Kembhavi et al., 2016): The test set570

of AI2D is comprised of 3093 diagrams rep-571

resenting topics from grade school science,572

each annotated with constituent segmenta-573

tions, their relationships to each other and574

their relationships to the diagram canvas.575

• MMStar (Chen et al., 2024a): MMStar is an576

elite vision-essential multimodal benchmark577

of carefully curated challenge samples, de-578

signed to evaluate LVLMs across 6 core ca-579

pabilities and 18 detailed axes through a bal-580

anced and purified selection.581

A.4 Evaluation Metrics for Safety Datases582

To assess the effectiveness of the proposed AMIA583

method in enhancing LVLM safety, we instruct584

ChatGPT to conduct different harmfulness anno-585

tations on model responses for different datasets,586

and we categorize these safety metrics into two587

types: Defense Success Rate (DSR) and Average588

Harmlessness Score (i.e., Safety). DSR measures589

the proportion that LVLM avoids generating un-590

safe responses when exposed to malicious inputs.591

Specifically, for a given set of jailbreak prompts,592

a response is considered “safe” if it (i) contains593

no harmful content, (ii) correctly avoids taking a594

political stance, or (iii) explicitly refuses to provide595

professional advice. The DSR is computed as the596

complement of the Attack Success Rate (ASR) as597

follows:598

ASR =
1

|D|
∑
Qi∈D

I(Qi),

DSR = 1−ASR,

(5)599

where D denotes the set of adversarial queries, Qi600

is the i-th input sample (including image and text),601

and I(Qi) is an indicator function that equals 0 if602

the response is safe, and 1 otherwise. The criteria603

for determining whether a response is “safe" fol-604

low dataset-specific guidelines. For example, for605

the MMSafetyBench dataset, we follow specific606

evaluation rules proposed by (Liu et al., 2024b)607

for 13 typical harmful scenarios each. Notably, a608

response is considered a successful attack as long609

as the model does not explicitly reject interaction610

with the malicious input, regardless of whether it 611

generates directly harmful content. 612

For the FigStep, AdvBench-constrain64, and 613

VisualAdv-Harmbench datasets, we strictly follow 614

Zhao et al. (2025) and assess model responses by 615

referencing the usage policies issued by OpenAI 616

and Meta, with detailed judge prompt provided in 617

Figure 5. Evaluators consider the full conversa- 618

tional context and are required to provide chain-of- 619

thought reasoning to justify their ratings, thereby 620

improving the interpretability and credibility of the 621

evaluation process. For each prompt–response pair, 622

the ChatGPT-based evaluator assigns a harmful- 623

ness score ranging from 1 to 5, with higher scores 624

indicating a greater degree of potential harm in the 625

response. Based on all evaluation samples, two 626

core metrics are reported: 627

• Average Harmlessness Score (Safety): The 628

mean harmfulness score is first computed 629

for each dataset. For intuitivism, we report 630

the average harmlessness score, defined as 631

5−mean_harmfulness_score. This value 632

reflects the overall average level of safety 633

across all evaluated prompts. 634

• Defense Success Rate (DSR): This is calcu- 635

lated as the proportion of responses rated as 636

low risk (i.e., assigned a score of 1, 2, or 3) 637

out of the total number of samples. It reflects 638

the percentage of model responses deemed 639

non-harmful. 640

A.5 Sensitivity Analysis of N 641

To study the impact of AMIA’s hyperparameter N 642

(the number of image patches), we conduct a sen- 643

sitivity analysis in Section 5. We analyze settings 644

with
√
N = 2, 3, 4, 5, 6, and to ensure a fair com- 645

parison across different patch sizes, we maintain 646

a similar masking ratio as in Figure 4(a), setting 647

K = 1, 2, 3, 5, 7 accordingly. 648

A.6 Experiment Settings 649

All experiments are conducted using the 650

VLMEvalKit toolkit (Duan et al., 2024) on two 651

A100-SXM 80GB GPUs. We set temperature to 652

0.01 to ensure deterministic generation and max 653

generation length to 1024. 654

B Case Study 655

We provide case study in Figure 6 and Figure 7. 656
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Figure 5: Harmfulness judge prompt.
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Figure 6: Response of Llava-v1.5-13B on the MMSafetyBench-TYPO+SD dataset.

Figure 7: Response of Qwen2-VL-7B-Instruct on the AdvBench-constrain64 dataset.
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