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ABSTRACT

A significant portion of real-world data is inherently represented as textual graphs,
and integrating these graphs into large language models (LLMs) is promising to
enable complex graph-based question answering. However, a key challenge in
LLM-based textual graph QA systems lies in graph retrieval, i.e., how to retrieve
relevant content from large graphs that is sufficiently informative while remain-
ing compact for the LLM context. Existing retrievers suffer from poor perfor-
mance since they either rely on shallow embedding similarity or employ inter-
active retrieving policies that demand excessive data labeling and training cost.
To address these issues, we present Graph-S3, an agentic textual graph reasoning
framework that employs an LLM-based retriever trained with synthetic stepwise
supervision. Instead of rewarding the agent based on the final answers, which
may lead to sparse and unstable training signals, we propose to closely evaluate
each step of the retriever based on offline-extracted golden subgraphs. Our main
techniques include a data synthesis pipeline to extract the golden subgraphs for
reward generation and a two-stage training scheme to learn the interactive graph
exploration policy based on the synthesized rewards. Based on extensive experi-
ments on three common datasets in comparison with seven strong baselines, our
approach achieves an average improvement of 8.1% in accuracy and 9.7% in F1

score. The advantage is even higher in more complicated multi-hop reasoning
tasks. Our code will be open-sourced.

1 INTRODUCTION

Textual graphs are graphs with text-attributed nodes and edges, which are widely used for structured
knowledge representation with many applications in question answering, recommendation, and sci-
entific discovery (Peng et al., 2024; Procko & Ochoa, 2024; Zhang et al., 2025a). By explicitly
modeling multi-hop relations and semantic constraints, textual graphs enable interpretable and com-
positional reasoning that is difficult to achieve with unstructured text corpora (Chen et al., 2020;
Hogan et al., 2021; Zou, 2020).

The early approaches to reasoning over textual graphs relied on costly annotations and inflexible
symbolic inference (Yih et al., 2016). The emergence of large language models (LLMs) has al-
leviated these limitations through strong semantic understanding (Chang et al., 2024), inspiring a
growing body of work that combines LLMs with textual graphs for general-purpose graph under-
standing and question answering (QA) (Lewis et al., 2020; Peng et al., 2024; Procko & Ochoa, 2024;
Zhang et al., 2025a; Jin et al., 2024; Chai et al., 2023).

A key step in LLM-based textual graph QA systems is graph retrieval, i.e., retrieving the relevant
content from the target graph based on the natural language query. Most existing retrievers en-
code graph nodes and edges as vector embeddings and perform similarity-based matching with the
query (Chen et al., 2024b;a; Tang et al., 2024). This approach has the advantage of efficiency, but it
often produces noisy or incomplete results due to the coarse-grained matching process. Moreover,
these methods usually retrieve a large neighborhood in a single step and then flatten all candidate
triples into text for the LLM (Edge et al., 2024; Guo et al., 2024b; He et al., 2024). Such flattening
discards the relational structure of the graph and obscures reasoning trajectories, which degrades
performance on long multi-hop reasoning tasks.
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Figure 1: An illustration of agentic textual graph retrieval and question answering.

Another line of work employs LLM-based agents that access graph information through tool
calls (Jiang et al., 2024; Yang et al., 2024; Ji et al., 2024). Although these methods have the po-
tential to surpass simple similarity retrieval, their training is typically bootstrapped using supervised
fine-tuning (SFT). This strategy causes the action space of the model to collapse (Chu et al., 2025; Li
et al., 2024), leading it to memorize patterns from the training data rather than learning generalizable
policies. As a result, such agents struggle to locate optimal reasoning trajectories. Moreover, con-
structing these trajectories requires substantial expert annotations, making such approaches difficult
to scale.

To this end, we propose Graph-S3, an agentic retrieval framework that equips an LLM-based re-
triever with the ability to perform interactive, structure-aware exploration of textual graphs. Fig-
ure 1 provides an example of agentic retrieval, showing how the retriever agent iteratively performs
actions to collect the necessary information to solve the given query.

To train such an LLM-based agent system, a straightforward approach is to employ outcome-
supervised reinforcement learning (Lightman et al., 2023; Paolo et al., 2024), i.e., rolling out lots
of reasoning trajectories in the graphs with a policy and optimize the policy with reward signals
computed from the final answers. However, this approach is difficult to apply in practice for textual
graph reasoning, since the outcome-based rewards are often sparse and unstable: The action space
for real-world textual graphs is often too large to efficiently discover the optimal retrieval path, while
redundant or erroneous retrieval steps may still lead to the correct final answer, making outcome su-
pervision an unreliable signal of reasoning quality (Liu et al., 2023; Rengarajan et al., 2022). This
challenge hinders the direct adoption of standard RL algorithms to the problem of textual graph
reasoning.

To overcome this limitation, we introduce a synthetic stepwise supervision scheme that provides ex-
plicit feedback at every decision step, ensuring that the model is guided not only by the correctness
of the final answer but also by the quality of intermediate actions. The key idea is to guide each
graph retrieval step with golden subgraphs offline extracted from the target graph. Specifi-
cally, we propose an automated pipeline to construct the golden subgraphs for reward computation.
We first generate a large amount of subgraph candidates through random and LLM-guided explo-
ration, and filter the candidates based on information sufficiency, i.e. whether they are able to
produce correct answers with LLMs. These successful exploratory trajectories are used for SFT,
providing the retriever with basic navigation ability as a warm-up stage. Then we further refine the
subgraphs to enhance information conciseness by iteratively pruning redundant content while pre-
serving answer consistency. With these refined subgraphs, each online graph retrieval action can be
associated with an explicit stepwise reward based on its contribution to the golden subgraphs. The
combined two-step training pipeline guides the retriever to improve reasoning decisions over long
action chains.

Extensive experiments have demonstrated the effectiveness of our synthetic stepwise supervision
approach. For example, while retrieving only 11.44% of the triples, Graph-S3 achieves an average
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improvement of 8.1% in accuracy and 9.7% in F1 score across the WebQSP, CWQ, and MetaQA
benchmarks.

In summary, the main contributions of this work are as follows:

(1) We propose an automatic pipeline for synthesizing high-quality stepwise supervision data for
interactive graph retrieval, addressing the scarcity of fine-grained training signals in this field.

(2) We design a two-stage training paradigm tailored for graph reasoning: supervised fine-tuning on
raw synthetic trajectories to bootstrap basic navigation ability, followed by reinforcement learning
with synthetic stepwise rewards on refined trajectories to provide explicit feedback and strengthen
reasoning strategies.

(3) Experimental results demonstrate that Graph-S3 achieves state-of-the-art performance on the
WebQSP, CWQ, and MetaQA datasets with accurate and compact graph retrieval.

2 RELATED WORK

2.1 GRAPH RETRIEVAL METHODS

Graph retrieval approaches include similarity-based, GNN-based, and LLM-based methods (Peng
et al., 2024; Procko & Ochoa, 2024; Zhang et al., 2025a; Zhu et al., 2025; Han et al., 2024), but most
perform one-shot retrieval and often return redundant or incomplete subgraphs. Recent interactive
frameworks (Jiang et al., 2024; Ji et al., 2024; Yang et al., 2024) allow iterative exploration, yet their
training predominantly relies on imitation of language patterns or outcome-based supervision, which
provides only coarse feedback and limits stable multi-hop reasoning. In contrast, our work employs
reinforcement learning with synthetic stepwise rewards and a scalable data synthesis pipeline to
provide supervision for interactive retrieval.

2.2 STEPWISE REINFORCEMENT LEARNING FOR GRAPH REASONING

Recent advances such as OpenAI o1 and DeepSeek-R1 (Jaech et al., 2024; Guo et al., 2025) demon-
strate the effectiveness of reinforcement learning in strengthening multi-step reasoning, enabling
models to perform longer chains of thought with improved reliability in domains like mathematics
and programming (Guo et al., 2024a; El-Kishky et al., 2025). In contrast, applying RL to textual
graphs remains limited, partly due to the lack of fine-grained supervision data (Zhang et al., 2025a;
Yao et al., 2025; Liu et al., 2025). RL-based graph agents (Das et al., 2017; Cui et al., 2025) relied on
sparse outcome rewards, making credit assignment across reasoning trajectories difficult. Although
recent efforts have introduced reasoning-structured datasets (Pahilajani et al., 2024), high-quality
stepwise supervision for graph-based RL remains scarce and difficult to construct at scale. These
observations highlight the need for scalable approaches that can provide fine-grained supervision
signals and support stable optimization for interactive graph retrieval.

3 METHOD

We present our agentic retrieval framework, designed to equip large language models with robust
graph reasoning capabilities through stepwise supervision, a two-stage training paradigm, and an
interactive retrieval strategy. As illustrated in Figure 2, the framework comprises three main com-
ponents. First, we construct an automatic data synthesis pipeline that leverages GPT-4o (OpenAI,
2024) to generate diverse exploratory trajectories, which are subsequently refined into high-quality
stepwise supervision data. This addresses the scarcity of fine-grained training signals for graph-
based reinforcement learning. Second, we adopt a two-stage training paradigm: SFT on raw syn-
thetic trajectories provides a warm-up initialization for basic graph navigation, while RL with syn-
thetic stepwise rewards on refined trajectories supplies explicit feedback at each decision step, sta-
bilizing optimization and strengthening reasoning strategies. Finally, during inference, the retriever
operates under an interactive retrieval mechanism that conducts stepwise, structure-aware explo-
ration of the textual graph, thereby reducing redundancy and mitigating incomplete retrieval.
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Figure 2: An Overview of our data synthesis pipeline and training scheme.

3.1 DATA SYNTHESIS

Existing LLMs are not pretrained on graph-structured data (Zhang et al., 2025b), which signifi-
cantly limits their performance on graph reasoning tasks. As a result, effective training requires
high-quality supervision to cultivate graph comprehension and reasoning capabilities. However,
constructing such datasets is notoriously expensive, since it often relies on manual annotation by
domain experts (Choubey et al., 2024), leading to a persistent scarcity of high-quality graph reason-
ing data. To address this issue, we design a pipeline that automatically synthesizes graph reasoning
trajectories. Specifically, we first define a set of actions that enable structured interaction with the
graph. Then, we leverage GPT-4o to perform these actions and collect valid action–response pairs,
which form exploratory trajectories. The raw trajectories are directly used for SFT to provide the
model with basic navigation ability, while a refinement step prunes redundant detours and preserves
all answer-consistent trajectories, producing high-quality stepwise supervision data for RL.

3.1.1 ACTION SPACE FOR GRAPH EXPLORATION

Given a textual graph G = {ti}mi=1, where each triple ti = (eih, r
i, eit) ∈ E×R×E consists of a head

entity eih ∈ E , a relation ri ∈ R, and a tail entity eit ∈ E . Here, E and R denote the sets of entities
and relations, respectively. To enable stepwise exploration over G, we define the retriever’s action
space as consisting of three types of operations. For clarity, we use (x, r, y) to denote a generic triple
in G, where x, y ∈ E and r ∈ R.

Explore Entity: This operation expands the local neighborhood of a given entity by retrieving all
directly connected triples in G. Formally, for a target entity x ∈ E , the operation is defined as

Explore(x) = {(x, r, y) | (x, r, y) ∈ G} ∪ {(y, r, x) | (y, r, x) ∈ G}, (1)

where r ∈ R and y ∈ E denote relations and neighboring entities, respectively. The retrieved triples
are added to the perception window Gp for subsequent reasoning steps.

Choose Relation: The perception window Gp obtained from the EXPLORE action may still contain
many irrelevant triples. To avoid introducing redundant context into the LLM, this operation prunes
Gp into a query-relevant subgraph Gsub:

Choose(q,Gp) = {(x, r, y) ∈ Gp | F (q, (x, r, y)) = 1}. (2)

Here, q is the query, (x, r, y) denotes a triple in Gp, and F (q, (x, r, y)) is the relevance function
learned by the retriever to decide whether the triple should be preserved. F outputs 1 if the triple is
judged relevant to the query and 0 otherwise.
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Finish: This operation indicates that the retriever has gathered sufficient evidence in the current sub-
graph Gsub to answer the query q. Once invoked, the exploration process terminates, and (q,Gsub)
is used to produce the final answer:

Finish(q,Gsub) = Answer(q,Gsub), (3)

where Answer(q,Gsub) denotes answering query q based on the retrieved subgraph.

3.1.2 GRAPH REASONING DATA SYNTHESIS

Given the defined action space, we synthesize reasoning trajectories by letting a behavior model
(GPT-4o) interact with the graph. We formalize the generation process as a Markov decision process
(MDP) with deterministic transitions defined by the graph action space. Each trajectory consists of
multiple decision steps, and is later decomposed into step-level training instances for SFT and RL.

State. We define each state as a tuple of four components: st =
(
q, Gp

t , Gsub
t , ht

)
, where q

is the query, Gp
t the perception window aggregated by EXPLORE, and Gsub

t the focused subgraph
maintained by CHOOSE, and ht = (a1, . . . , at−1) the action history up to step t. Including ht

allows the retriever to condition its decisions not only on the current graph view but also on the
reasoning trajectory already taken.

Action. The parameterized action space is A, defined in 3.1.1. During the synthesis phase, the
behavior model selects at ∈ A given st, and additionally produces a natural language reasoning
trace that explains the choice of action.

Transition. Executing at updates the state via graph action space:

st+1 =


(
q, Gp

t ∪ EXPLORE(xt), Gsub
t , ht∪{at}

)
, at = EXPLORE(xt),(

q, Gp
t , {(x, r, y)∈Gp

t | FB(q, (x, r, y)) = 1}, ht∪{at}
)
, at = CHOOSE,(

q, Gp
t , Gsub

t , ht∪{at}
)
, at = FINISH,

(4)
An episode terminates when at = FINISH or when t reaches a preset limit Tmax.

Answer and retention. Upon termination at step T , we produce an answer ŷ = Answer
(
q,Gsub

T

)
and keep the trajectory τ =

{
(st, at)

}T

t=1
only if ŷ matches the set of ground-truth answers. After

that, we use the raw action labels for SFT dataset: DSFT =
{
(st, at)

}
τ, t

. In the next subsection,
we further refine trajectories to obtain stepwise supervision signals for RL.

3.1.3 TRAJECTORY REFINEMENT FOR REINFORCEMENT LEARNING

While supervised fine-tuning directly benefits from raw trajectories, reinforcement learning requires
more concise training signals (Yue et al., 2025). Filtering trajectories only by final answer correct-
ness often produces redundant exploration steps, introducing noise and inefficiency during policy
optimization. To address this, we introduce a refinement procedure that removes unnecessary de-
tours while preserving all answer-consistent trajectories, thereby yielding shorter and cleaner trajec-
tories for RL.

Let the set of retained raw trajectories be T = {τi}Ni=1, where each τi = {(st, at)}Ti
t=1 is a sequence

of state–action pairs terminating at step Ti. We define a refinement operator R that maps the raw set
T into a refined set T ∗:

T ∗ = R(T ). (5)

For each τi, the refinement identifies the shortest feasible subsequence τ∗i that still leads to the same
correct final answer:

τ∗i = arg min
τ∈Fi

|τ |, (6)

where Fi is the set of all feasible answer-consistent trajectories equivalent to τi:

Fi = {τ | FinalState(τ) = FinalState(τi), CorrectAnswer(τ) = CorrectAnswer(τi)} . (7)

Thus, the refined dataset T ∗ retains trajectories that are semantically equivalent to the originals
but stripped of redundant exploration steps. Each refined trajectory τ∗i is then decomposed into

5
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step-level supervision signals by attaching a rule-based stepwise reward ℓt ∈ [0, 1] to each action
at, indicating its correctness within the reasoning trajectory. Formally, the RL training dataset is
constructed as DRL =

{
(st, at, ℓt)

}
τ∗, t

. This ensures that reinforcement learning receives concise
stepwise supervision signals, improving both stability and efficiency of training.

3.2 TRAINING STAGE

To enhance the model’s graph comprehension and reasoning capabilities, we adopt a two-stage fine-
tuning approach. The first stage uses SFT with synthesized data to establish foundational abilities.
The second stage employs GRPO with trajectory refinement, leveraging RL’s proven effectiveness
in enhancing reasoning and exploration efficiency (Yue et al., 2025).

3.2.1 STAGE I: SUPERVISED FINE-TUNING

For each step t, let st = (q,Gp
t ,Gsub

t , ht) be the serialized state, and let yt = (y1t , . . . , y
Lt
t ) be

the target token sequence that concatenates the natural-language thought process and the action
specification. Denote by I(st) the textual serialization of the state. The training loss of SFT is
defined as

LSFT(θ) = −E(st,yt)∼DSFT

[
Lt∑
l=1

log πθ

(
y l
t

∣∣ I(st), y<l
t

)]
, (8)

where πθ(y
l
t | I(st), y<l

t ) denotes the probability assigned by the model to the l-th token given the
serialized state and the previously generated tokens.

3.2.2 STAGE II: REINFORCEMENT LEARNING WITH STEPWISE REWARDS

For reward design, existing approaches predominantly rely on outcome-based reward signals, which
have demonstrated remarkable effectiveness in domains such as mathematical reasoning and code
generation. However, prior studies (Wang et al., 2025; Choudhury, 2025; Deng et al., 2024) have
shown that in relatively complex scenarios such as graph retrieval, conventional outcome-based
reward signals tend to be overly sparse. This sparsity hampers effective credit assignment to early-
stage actions, ultimately resulting in inefficient learning over long action chains. This observation
motivates our adoption of process-level rewards in the training process, where the reward signal is
determined by the contribution of each current action to the golden subgraphs.

Specifically, each step t is associated with a process-level rule-based reward ℓt that provides graded
feedback according to the quality of the predicted action:

ℓt =



0, if Invalid(at),

c1, if Format(at) = 1 ∧ ActionCorrect(at) = 0,

c2, if Partial(at) = 1,

1.0, if at = a∗t .

(9)

Here Invalid(·), Format(·), and Partial(·) are deterministic rule-based functions that check output
validity, format correctness, and partial correctness, respectively, and c1, c2 are dataset-specific hy-
perparameters. Consequently, we adopt the reward function shown in Eq. 9 to train our model using
the GRPO method.

3.3 INTERACTIVE RETRIEVER

At inference time, Graph-S3 interacts with the textual graph through the defined action space. Un-
like single-pass retrieval methods that return large subgraphs, our approach performs stepwise ex-
ploration by balancing EXPLORE and CHOOSE actions, terminating with FINISH when sufficient
evidence is gathered. This interactive process enables precise control over retrieval depth while
minimizing redundancy, producing concise subgraphs for reasoning.
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4 EXPERIMENTS

Retriever + Generator WebQSP CWQ MetaQA 1-hop MetaQA 2-hop MetaQA 3-hop
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

No graph + Qwen3-8B 5.16 8.11 6.26 7.35 2.00 2.88 0.07 0.95 0.20 1.19
No retriever + Qwen3-8B 0.25 1.83 0.37 1.29 0.00 0.29 0.00 0.49 0.00 1.25
RAG/1hop + Qwen3-8B 27.89 38.57 12.55 16.18 75.93 86.36 0.77 1.74 4.13 11.99
RAG/2hop + Qwen3-8B 14.07 24.47 7.00 10.55 42.03 55.59 10.07 21.65 2.60 9.42
RAG/3hop + Qwen3-8B 1.54 7.94 0.99 3.12 0.37 3.03 0.13 2.21 0.13 3.45

ToG + Qwen3-8B 6.14 9.79 7.01 9.61 1.37 1.75 0.00 0.00 0.00 0.20
LightRAG + Qwen3-8B 18.39 31.67 16.20 23.09 1.13 1.76 0.00 0.19 0.07 0.40
G-retriever + Qwen3-8B 25.74 35.45 15.38 18.62 0.63 1.60 0.10 0.77 0.03 1.87
KG-Agent + Qwen3-8B 29.66 38.02 15.64 22.45 75.80 85.92 28.41 33.66 4.07 10.89
Graph-S3 + Qwen3-8B 36.24 47.88 17.87 23.29 81.50 90.22 53.73 65.60 12.73 29.49

No graph + Llama3.1-8B 8.97 15.69 9.40 11.58 12.20 17.60 1.27 7.77 1.23 8.86
No retriever + Llama3.1-8B 0.18 1.97 0.14 1.29 0.00 0.58 0.00 1.11 0.00 2.94
RAG/1hop + Llama3.1-8B 24.82 35.28 13.85 17.26 60.17 70.84 2.40 5.98 4.03 15.46
RAG/2hop + Llama3.1-8B 11.06 22.94 6.29 10.68 29.07 42.47 4.50 15.06 1.80 11.30
RAG/3hop + Llama3.1-8B 1.04 6.67 0.65 3.43 0.33 3.67 0.17 3.37 0.07 5.76

ToG + Llama3.1-8B 8.85 14.28 8.42 12.33 12.40 15.88 0.00 0.63 1.43 6.10
LightRAG + Llama3.1-8B 15.85 36.66 8.33 15.01 13.13 21.47 0.93 4.33 1.00 6.38
G-retriever + Llama3.1-8B 22.67 32.26 13.91 17.47 0.67 1.56 0.10 0.83 0.10 1.77
KG-Agent + Llama3.1-8B 32.04 41.99 10.82 13.75 65.55 75.03 32.51 44.52 3.85 8.29
Graph-S3 + Llama3.1-8B 32.31 43.26 17.11 21.17 67.50 76.56 40.17 55.49 10.73 29.55
No graph + Finetuned-8B 9.21 14.88 10.17 12.31 1.63 2.49 0.43 2.64 0.33 4.60

No retriever + Finetuned-8B 0.37 2.26 0.68 1.76 0.00 0.29 0.00 0.34 0.00 1.05
RAG/1hop + Finetuned-8B 28.87 41.48 19.85 26.01 59.50 69.54 1.83 7.44 3.30 18.61
RAG/2hop + Finetuned-8B 14.93 27.76 8.89 14.56 35.83 52.03 7.70 21.21 3.07 14.04
RAG/3hop + Finetuned-8B 1.54 7.81 0.93 4.36 0.57 2.99 0.43 2.31 0.13 4.23

ToG + Finetuned-8B 5.04 9.43 7.54 9.79 2.23 3.44 0.00 0.12 0.10 2.80
LightRAG + Finetuned-8B 17.38 32.59 13.85 19.96 13.77 20.60 0.97 3.71 0.53 4.28
G-retriever + Finetuned-8B 30.34 43.49 22.68 28.38 8.93 11.51 2.33 4.80 0.40 3.31
KG-Agent + Finetuned-8B 42.60 55.38 13.77 16.29 75.99 86.02 30.19 43.95 2.64 7.20
Graph-S3 + Finetuned-8B 44.29 58.45 23.62 30.44 82.77 92.04 63.17 76.18 14.70 36.29

Table 1: Overall results on graph-based QA benchmarks. The best results are highlighted in bold
and the second performance results are indicated by an underscore.

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate Graph-S3 on three widely used textual graph QA benchmarks. WebQSP (Yih
et al., 2015) consists of real-world questions annotated with SPARQL queries against Freebase, pri-
marily involving one- or two-hop reasoning. CWQ (Talmor & Berant, 2018) extends WebQSP
with more complex multi-hop questions, posing a greater challenge for long reasoning chains.
MetaQA (Zhang et al., 2018) is a movie-domain benchmark containing 135k triples and 43k en-
tities, designed to evaluate multi-hop reasoning in a closed domain. Following prior work (Chen
et al., 2024b), we report accuracy (Acc) and F1 score as evaluation metrics.

Baselines. To validate the effectiveness of our approach, we compare with several representative
graph retrieval methods. We additionally evaluate the model’s inherent graph understanding capa-
bility through two configurations: (1) the no graph setting, where the model processes the query
without any graph input, and (2) the no retriever setting, where the model receives the entire graph
structure directly as input. For traditional RAG, we implemented a multi-hop method where the
model retrieves the most relevant graph nodes for the current query and then performs a k-hop ex-
pansion to collect information for answer generation. We further compare with representative graph
retrievers, including Think-on-Graph (ToG) (Sun et al., 2023), LightRAG (Guo et al., 2024b), G-
Retriever (He et al., 2024) and agentic graph retrieval system KG-Agent (Jiang et al., 2024).
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Implementation Details. In our experiments, we primarily employed the Llama3.1-8B (Dubey
et al., 2024) and Qwen3-8B (Yang et al., 2025) models. Our data synthesis pipeline produced 9,035
SFT and 3,504 RL training instances; with this data, the Qwen3-8B model was trained for 3 SFT
and 15 RL epochs on 8 A100 GPUs, requiring 32 hours in total. Further training details are provided
in the Appendix A.3.

4.2 MAIN RESULTS

The results of WebQSP, CWQ, and MetaQA are summarized in Table 1. In general, our frame-
work achieves the best performance among all compared methods, demonstrating the effectiveness
of combining two-stage training with interactive retrieval. Compared with the no-retriever config-
uration, where the entire graph is directly fed into the LLM, retrieval-based methods consistently
achieve higher accuracy, confirming that selective subgraph retrieval is essential since full graphs
exceed the effective processing capacity of LLMs. Relative to k-hop expansion approaches, Graph-
S3 yields clear improvements, particularly on multi-hop benchmarks, showing that interactive re-
trieval can effectively filter relevant relations while avoiding redundant context. Furthermore, against
training-free baselines such as ToG and LightRAG, our model delivers substantial gains, highlight-
ing the importance of stepwise synthetic supervision and reinforcement learning in enhancing the
reasoning ability of the retriever. Compared with trained retrievers such as G-Retriever and existing
agentic graph retrieval frameworks like KG-Agent, our approach further improves multi-hop reason-
ing performance, indicating that the introduction of reinforcement learning and stepwise supervision
enables the retriever to acquire stronger reasoning ability beyond representation learning.

4.3 IN-DEPTH ANALYSIS

Methods

Dataset

WebQSP CWQ MetaQA
1hop 2hop 3hop

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Graph-S3 44.29 58.45 23.62 30.44 82.77 92.04 63.17 76.18 14.70 36.29
Graph-S3 w/o SFT 31.64 44.41 7.74 8.77 81.27 89.38 46.30 54.12 2.07 4.98
Graph-S3 w/o RL 41.77 53.02 13.39 15.97 71.97 80.09 35.93 45.25 5.73 11.46

Graph-S3 w/o interactive 28.87 41.48 19.85 26.01 59.50 69.54 1.83 7.44 3.30 18.61
Graph-S3 w/o trajectory refinement 16.46 19.24 4.12 4.87 39.47 41.06 4.01 6.10 1.34 1.80

Table 2: Results of abalation studies.

4.3.1 ABLATION STUDY

Our framework consists of four key components: supervised fine-tuning (SFT), reinforcement learn-
ing (RL) with stepwise rewards, interactive retrieval at inference time, and trajectory refinement
during data synthesis. To assess the contribution of each component, we remove one module at a
time and evaluate the resulting performance degradation. The results are reported in Table 2.

Ablation of SFT. Removing the SFT stage leads to a clear drop in Accuracy and F1 across all
benchmarks. This confirms that SFT provides the retriever with essential navigation ability, com-
pensating for the lack of graph-specific training during upstream pretraining and establishing a stable
foundation for subsequent RL optimization.

Ablation of RL. Eliminating the RL stage results in consistent performance degradation, with par-
ticularly large declines on CWQ and MetaQA, which require longer reasoning chains. This demon-
strates that RL with stepwise rewards substantially strengthens the retriever’s reasoning capability,
especially on complex multi-hop tasks.

Ablation of interactive inference. Disabling interactive retrieval causes significant performance
drops on 2-hop and 3-hop questions, where results approach those of conventional k-hop RAG.
This shows that interactive retrieval is crucial for adaptively controlling retrieval depth, effectively
filtering redundant neighbors while preserving critical relations.
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Figure 3: Number of retrieved graph triples in Graph-S3 and baselines on correct answers.

Ablation of trajectory refinement. Removing trajectory refinement during data synthesis leads
to the largest degradation among all ablations. The results indicate that without refinement, syn-
thetic trajectories contain redundant detours, which produce noisy reward signals and undermine the
stability of RL optimization.

Retriever Train Method

Dataset

WebQSP CWQ MetaQA
1hop 2hop 3hop

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Graph-S3 w/o step supervision 41.83 53.87 13.47 16.40 72.63 81.12 34.97 45.14 6.43 11.34
Graph-S3 44.29 58.45 23.62 30.44 82.77 92.04 63.17 76.18 14.70 36.29

Table 3: Performance comparison of process-level rewards and outcome-based rewards training
methods.

4.3.2 EFFECTIVENESS OF STEPWISE SUPERVISION

To further validate the effectiveness of our proposed stepwise supervision, we conducted an ablation
study. Specifically, starting from the SFT-trained model, we ablated the stepwise reward signals and
modified the setup to rely solely on outcome-based rewards. The results of this ablation study are
shown in Table 3. Experimental results indicate that without stepwise rewards, model performance
experiences a significant decline across all benchmarks, particularly on CWQ and MetaQA which
involve longer reasoning chains. This confirms that fine-grained stepwise supervision enables more
stable optimization and better generalization on complex multi-hop reasoning tasks.

4.3.3 EFFECTIVE INFORMATION QUANTIFICATION ANALYSIS

To evaluate the efficiency of Graph-S3 in retrieving concise yet effective information, we com-
pare it with baseline approaches by measuring the number of triples required to produce correct
answers (see Figure 3). Unlike traditional methods that often retrieve large amounts of redundant
information, our approach significantly reduces retrieval size while maintaining higher accuracy. In
particular, our experiments show that Graph-S3 requires only 11.44% of the triples retrieved by G-
Retriever on average, yet still achieves superior accuracy. These results highlight the framework’s
ability to balance search depth with precision, thereby reducing redundancy.

5 CONCLUSION

We investigated the limitations of existing retrieval-augmented generation methods on textual
graphs, highlighting their reliance on outcome-based supervision and their tendency to produce
redundant or incomplete subgraphs. To overcome these challenges, we proposed a framework that
integrates three key innovations: (1) A pipeline for high-quality, stepwise-supervised data synthesis;
(2) Two-stage training (SFT then RL) with process-level rewards; (3) Fine-grained, interactive re-
trieval over textual graphs. Extensive experiments on WebQSP, CWQ, and MetaQA demonstrate that
our approach consistently improves both accuracy and F1, validating the effectiveness of synthetic
stepwise supervision and the proposed training strategy for enhancing interactive graph retrieval.

9
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A APPENDIX

A.1 TRAINING DETAILS

Implementation Details. For data generation, we apply our proposed data synthesis pipeline, pro-
ducing a total of 9,035 training instances for SFT and 3,504 instances for RL. In the SFT stage, we
fine-tune the Qwen3-8B with a learning rate of 1×10−4 for 3 epochs. In the RL stage, we adopt the
GRPO algorithm with a batch size of 512, 15 training epochs, a learning rate of 1 × 10−5, a value
clipping range of 0.5, and a KL divergence coefficient of 0.001. The entire RL training phase takes
approximately 32 hours on 8 NVIDIA A100 80GB GPUs.

Hyperparameter Value

Learning rate 1× 10−5

Batch size 512
Epochs 15
Clip ratio 0.2
Gradient clipping 1.0
KL coefficient 0.001
PPO mini-batch size 16

Table 4: Key hyperparameters for RL training (GRPO).

A.2 PROMPT OF INTERACTIVE GRAPH RETRIEVAL

Prompts for Interactive Graph Retriever

You are an intelligent agent skilled in exploring Knowledge Graphs,
with strong reasoning abilities. Your task is to perform question
answering over a Knowledge Graph by gradually exploring it. You
should start from the entities mentioned in the question and explore
the graph step by step until you gather enough information to answer
the question.

Your task follows these steps:

1. Understand the Question

2. Analyze the Action History and Current Graph State

3. Choose the Next Action** from the following options:

"Explore Entity": Explore all triples directly connected to a given
entity in the Knowledge Graph.

"Choose Relation": Select the triple(s) from the explored information
that are most relevant to the question.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Attention: Only the triples included in the "Objects" field of the
"Choose Relation" step will be retained in the future "Current Graph
State". So You must filter and retain the information useful for
answering the question or for further exploration.

"Finish": Choose this action when you believe you have gathered
sufficient information to answer the question. Your final answers
should be included in the "Objects" field.

4. Select the Objects: Depending on the action, provide the relevant
entity or triple(s). Attention: All objects must come from the
"Entities in Question" or the current "Current Graph State". Do not
create new entities or relations.

If the action is "Explore Entity", "Objects": ["EntityA", "EntityB"]

If the action is "Choose Relation", "Objects": ["(Subject1,
Relation1, Object1)", "(Subject2, Relation2, Object2)"]

If the action is "Finish", "Objects": ["Answer1", "Answer2"]

5. Output your response in JSON format, and include a **detailed
thought process explaining your reasoning at this step.

---

Question:

Entities in Question:

Current Graph State:

Action History:

---

Please respond using the following format:

Thought Process: <Provide a step-by-step analysis>

Action Decision: ‘‘‘json "Action": "<The type of action you are
taking: ’Explore Entity’ | ’Choose Relation’ | ’Finish’>", "Objects":
[<The entities or triples>]

A.3 AN EXAMPLE OF THE REASONING PROCESS OF Graph-S3

{
{

"step": 0,
"question": "the films that share directors with the film [The

Life of Oharu] were in which genres",
"question_entities": [

"The Life of Oharu"
],
"now_state": [],
"action_history": [],
"extract_res": {

"Action": "Explore Entity",
"Objects": [

"The Life of Oharu"
]

}
},
{

"step": 1,
"question": "the films that share directors with the film [The

Life of Oharu] were in which genres",
"question_entities": [

"The Life of Oharu"
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],
"now_state": [

"(The Life of Oharu, starred_actors, Kinuyo Tanaka)",
"(The Life of Oharu, directed_by, Kenji Mizoguchi)",
"(The Life of Oharu, release_year, 1952)",
"(The Life of Oharu, written_by, Kenji Mizoguchi)",
"(The Life of Oharu, has_tags, kenji mizoguchi)",
"(The Life of Oharu, in_language, Japanese)"

],
"action_history": [

"step 1, Explore Entity, Objects: [’The Life of Oharu’]"
],
"extract_res": {

"Action": "Choose Relation",
"Objects": [

"(The Life of Oharu, directed_by, Kenji Mizoguchi)"
]

}
},
{

"step": 2,
"question": "the films that share directors with the film [The

Life of Oharu] were in which genres",
"question_entities": [

"The Life of Oharu"
],
"now_state": [

"(The Life of Oharu, directed_by, Kenji Mizoguchi)"
],
"action_history": [

"step 1, Explore Entity, Objects: [’The Life of Oharu’]",
"step 2, Choose Relation, Objects: [’(The Life of Oharu,

directed_by, Kenji Mizoguchi)’]"
],
"extract_res": {

"Action": "Explore Entity",
"Objects": [

"Kenji Mizoguchi"
]

}
},
{

"step": 3,
"question": "the films that share directors with the film [The

Life of Oharu] were in which genres",
"question_entities": [

"The Life of Oharu"
],
"now_state": [

"(Ugetsu, directed_by, Kenji Mizoguchi)",
"(Sansho the Bailiff, directed_by, Kenji Mizoguchi)",
"(The Crucified Lovers, directed_by, Kenji Mizoguchi)",
"(The 47 Ronin, directed_by, Kenji Mizoguchi)",
"(The Life of Oharu, directed_by, Kenji Mizoguchi)",
"(Osaka Elegy, directed_by, Kenji Mizoguchi)",
"(The Life of Oharu, written_by, Kenji Mizoguchi)",
"(Sisters of the Gion, directed_by, Kenji Mizoguchi)",
"(The Life of Oharu, has_tags, kenji mizoguchi)",
"(Utamaro and His Five Women, directed_by, Kenji Mizoguchi)"

],
"action_history": [

"step 1, Explore Entity, Objects: [’The Life of Oharu’]",
"step 2, Choose Relation, Objects: [’(The Life of Oharu,

directed_by, Kenji Mizoguchi)’]",
"step 3, Explore Entity, Objects: [’Kenji Mizoguchi’]"
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],
"extract_res": {

"Action": "Choose Relation",
"Objects": [

"(Ugetsu, directed_by, Kenji Mizoguchi)",
"(Sansho the Bailiff, directed_by, Kenji Mizoguchi)",
"(The Crucified Lovers, directed_by, Kenji Mizoguchi)",
"(The 47 Ronin, directed_by, Kenji Mizoguchi)",
"(Osaka Elegy, directed_by, Kenji Mizoguchi)",
"(Sisters of the Gion, directed_by, Kenji Mizoguchi)",
"(Utamaro and His Five Women, directed_by, Kenji

Mizoguchi)"
]

}
},
{

"step": 4,
"question": "the films that share directors with the film [The

Life of Oharu] were in which genres",
"question_entities": [

"The Life of Oharu"
],
"now_state": [

"(Ugetsu, directed_by, Kenji Mizoguchi)",
"(Sansho the Bailiff, directed_by, Kenji Mizoguchi)",
"(The Crucified Lovers, directed_by, Kenji Mizoguchi)",
"(The 47 Ronin, directed_by, Kenji Mizoguchi)",
"(The Life of Oharu, directed_by, Kenji Mizoguchi)",
"(Osaka Elegy, directed_by, Kenji Mizoguchi)",
"(Sisters of the Gion, directed_by, Kenji Mizoguchi)",
"(Utamaro and His Five Women, directed_by, Kenji Mizoguchi)"

],
"action_history": [

"step 1, Explore Entity, Objects: [’The Life of Oharu’]",
"step 2, Choose Relation, Objects: [’(The Life of Oharu,

directed_by, Kenji Mizoguchi)’]",
"step 3, Explore Entity, Objects: [’Kenji Mizoguchi’]",
"step 4, Choose Relation, Objects: [’(Ugetsu, directed_by,

Kenji Mizoguchi)’, ’(Sansho the Bailiff, directed_by,
Kenji Mizoguchi)’, ’(The Crucified Lovers, directed_by,
Kenji Mizoguchi)’, ’(The 47 Ronin, directed_by, Kenji
Mizoguchi)’, ’(Osaka Elegy, directed_by, Kenji Mizoguchi)
’, ’(Sisters of the Gion, directed_by, Kenji Mizoguchi)’,
’(Utamaro and His Five Women, directed_by, Kenji

Mizoguchi)’]"
],
"extract_res": {

"Action": "Explore Entity",
"Objects": [

"Ugetsu",
"Sansho the Bailiff",
"The Crucified Lovers",
"The 47 Ronin",
"Osaka Elegy",
"Sisters of the Gion",
"Utamaro and His Five Women"

]
}

},
{

"step": 5,
"question": "the films that share directors with the film [The

Life of Oharu] were in which genres",
"question_entities": [

"The Life of Oharu"
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],
"true_answer": [

"Drama"
],
"now_state": [

"(Ugetsu, directed_by, Kenji Mizoguchi)",
"(Sansho the Bailiff, directed_by, Kenji Mizoguchi)",
"(The Crucified Lovers, directed_by, Kenji Mizoguchi)",
"(The 47 Ronin, directed_by, Kenji Mizoguchi)",
"(The Life of Oharu, directed_by, Kenji Mizoguchi)",
"(Osaka Elegy, directed_by, Kenji Mizoguchi)",
"(Sisters of the Gion, directed_by, Kenji Mizoguchi)",
"(Sisters of the Gion, has_genre, Drama)",
"(Ugetsu, has_genre, Drama)",
"(Ugetsu, starred_actors, Masayuki Mori)",
"(Utamaro and His Five Women, directed_by, Kenji Mizoguchi)"

],
"action_history": [

"step 1, Explore Entity, Objects: [’The Life of Oharu’]",
"step 2, Choose Relation, Objects: [’(The Life of Oharu,

directed_by, Kenji Mizoguchi)’]",
"step 3, Explore Entity, Objects: [’Kenji Mizoguchi’]",
"step 4, Choose Relation, Objects: [’(Ugetsu, directed_by,

Kenji Mizoguchi)’, ’(Sansho the Bailiff, directed_by,
Kenji Mizoguchi)’, ’(The Crucified Lovers, directed_by,
Kenji Mizoguchi)’, ’(The 47 Ronin, directed_by, Kenji
Mizoguchi)’, ’(Osaka Elegy, directed_by, Kenji Mizoguchi)
’, ’(Sisters of the Gion, directed_by, Kenji Mizoguchi)’,
’(Utamaro and His Five Women, directed_by, Kenji

Mizoguchi)’]",
"step 5, Explore Entity, Objects: [’Ugetsu’, ’Sansho the

Bailiff’, ’The Crucified Lovers’, ’The 47 Ronin’, ’Osaka
Elegy’, ’Sisters of the Gion’, ’Utamaro and His Five
Women’]"

],
"extract_res": {

"Action": "Choose Relation",
"Objects": [

"(Ugetsu, has_genre, Drama)",
"(Sisters of the Gion, has_genre, Drama)"

]
}

},
{

"step": 13,
"question": "the films that share directors with the film [The

Life of Oharu] were in which genres",
"question_entities": [

"The Life of Oharu"
],
"true_answer": [

"Drama"
],
"now_state": [

"(Ugetsu, directed_by, Kenji Mizoguchi)",
"(Sansho the Bailiff, directed_by, Kenji Mizoguchi)",
"(The Crucified Lovers, directed_by, Kenji Mizoguchi)",
"(The 47 Ronin, directed_by, Kenji Mizoguchi)",
"(The Life of Oharu, directed_by, Kenji Mizoguchi)",
"(Osaka Elegy, directed_by, Kenji Mizoguchi)",
"(Sisters of the Gion, directed_by, Kenji Mizoguchi)",
"(Sisters of the Gion, has_genre, Drama)",
"(Ugetsu, has_genre, Drama)",
"(Utamaro and His Five Women, directed_by, Kenji Mizoguchi)"

],
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"action_history": [
"step 1, Explore Entity, Objects: [’The Life of Oharu’]",
"step 2, Choose Relation, Objects: [’(The Life of Oharu,

directed_by, Kenji Mizoguchi)’]",
"step 3, Explore Entity, Objects: [’Kenji Mizoguchi’]",
"step 4, Choose Relation, Objects: [’(Ugetsu, directed_by,

Kenji Mizoguchi)’, ’(Sansho the Bailiff, directed_by,
Kenji Mizoguchi)’, ’(The Crucified Lovers, directed_by,
Kenji Mizoguchi)’, ’(The 47 Ronin, directed_by, Kenji
Mizoguchi)’, ’(Osaka Elegy, directed_by, Kenji Mizoguchi)
’, ’(Sisters of the Gion, directed_by, Kenji Mizoguchi)’,
’(Utamaro and His Five Women, directed_by, Kenji

Mizoguchi)’]",
"step 5, Explore Entity, Objects: [’Ugetsu’, ’Sansho the

Bailiff’, ’The Crucified Lovers’, ’The 47 Ronin’, ’Osaka
Elegy’, ’Sisters of the Gion’, ’Utamaro and His Five
Women’]",

"step 6, Choose Relation, Objects: [’(Ugetsu, has_genre,
Drama)’, ’(Sisters of the Gion, has_genre, Drama)’]"

],
"extract_res": {

"Action": "Finish",
"Objects": [

"Drama"
]

}
}

}

A.4 THE USE OF LARGE LANGUAGE MODELS

In this work, large language models (LLMs) were utilized solely to assist in polishing the academic
writing. Specifically, the LLM (e.g., [DeepSeek]) was used to improve the fluency and clarity of the
textual descriptions in Section 3 (Method) and Section 4 (Experiments). All technical content, in-
cluding the core ideas, algorithms, experimental results, and analyses, was conceived and developed
solely by the authors. The LLM acted strictly as a writing tool and did not contribute to the scientific
reasoning or intellectual substance of the research.
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