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Abstract
Pricing algorithms have demonstrated the capability to learn tacit collusion that is largely1
unaddressed by current regulations. Their increasing use in markets, including oligopolis-2
tic industries with a history of collusion, calls for closer examination by competition3
authorities. In this paper, we extend the study of tacit collusion in learning algorithms4
from basic pricing games to more complex markets characterized by perishable goods5
with fixed supply and sell-by dates, such as airline tickets, perishables, and hotel rooms.6
We formalize collusion within this framework and introduce a metric based on price7
levels under both the competitive (Nash) equilibrium and collusive (monopolistic) opti-8
mum. Since no analytical expressions for these price levels exist, we propose an efficient9
computational approach to derive them. Through experiments, we demonstrate that10
deep reinforcement learning agents can learn to collude in this more complex domain.11
Additionally, we analyze the underlying mechanisms and structures of the collusive12
strategies these agents adopt.13

1 Introduction14

Algorithms are increasingly replacing humans in pricing decisions, offering improved revenue man-15
agement and handling of complex dynamics in large-scale markets such as retail and airline ticketing.16
These algorithms, whether programmed or self-learning, can engage in tacit collusion charging supra-17
competitive prices (i.e., above the competitive level) or limiting production without explicit agree-18
ments. For example, algorithmic pricing in Germany led to a 38% increase in fuel retailer margins19
after adoption (Assad et al., 2024). Our study is primarily motivated by airline revenue management20
(ARM), a market with $800 billion in annual revenue and thin profit margins. Airlines have already21
been under regulatory scrutiny (European Union, 2019) due to evidence of tacit collusion even before22
the introduction of algorithmic pricing (Borenstein & Rose, 1994) but the current trend of moving to-23
wards algorithmic pricing (Koenigsberg et al., 2004; Razzaghi et al., 2022) could lead to further cases.24

Tacit collusion is maintained without explicit communication or agreement between sellers, therefore25
it eludes detection and often falls outside the scope of current competition laws. These concerns26
and potential negative effects on social welfare have been recognized both by regulators (Ohlhausen,27
2017; Bundeskartellamt & Autorité de la Concurrence, 2019; Directorate-General for Competition28
(European Commission) et al., 2019) and scholars (Harrington, 2018; Beneke & Mackenrodt,29
2021; Brero et al., 2022). To develop comprehensive legislation on algorithmic pricing, a thorough30
understanding of the factors that influence the emergence of collusive strategies is required under31
assumptions that align with real markets (Calvano et al., 2020a).32

Previous research has already shown that reinforcement learning (RL) algorithms can engage in33
tacit collusion in pricing games with infinite time-horizon (Asker et al., 2022; Calvano et al., 2020b;34
Musolff, 2022; Klein, 2021). However, most markets follow some form of periodicity, e.g., seasonality35
in retail or fiscal years for public companies, which breaks the continuity of the interactions between36
sellers. In the markets of perishable goods, hotels, or tickets, the markets only persist until the given37
sell-by dates and sellers are aware of the finite nature of competition. Importantly, in the previously38
investigated infinite time-horizon settings the collusive equilibrium is maintained via punishment39
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strategies, e.g., grim-trigger, but it is not an equilibrium in the finite-horizon case. This is because these40
strategies are only credible if sufficient time remains for the punishment to offset short-term gains41
from deviating from collusion. In the finite-horizon setting, such punishments become unmaintainable42
as the sell-by date approaches. However, RL algorithms show the potential to learn collusion through43
their memory over several episodes interacting against the same opponents. Additionally, in finite44
time-horizon markets supplies are often predetermined and limited, therefore, pricing strategies have45
to consider additional constraints and anticipate future demand to avoid expiring inventory while46
maximizing total profit. Both aspects are crucial in many real-world markets. For example, airlines47
selling tickets between two cities on a certain day have to fill their planes’ capacity before departure.48
However, selling tickets too quickly could lead to a missed opportunity to sell tickets closer to49
departure time to less price-sensitive consumers, while selling tickets too slowly could result in empty50
seats. The added complexity of finite time horizon and inventory constraints results in more complex51
strategies and interactions between pricing algorithms; therefore, previous results do not immediately52
hold and further investigation is necessary to develop comprehensive collusion mitigation approaches.53

In this work, we aim to contribute to these efforts by extending the analysis of tacit collusion between54
pricing algorithms to episodic markets with inventory constraints.55

2 Related work56

Our work is related to a line of research into competitive and collusive dynamics that emerge between57
reinforcement learning algorithmic pricing agents in economic games. We refer to Abada et al. (2024)58
for an excellent survey on this topic, and to Appendix C for a more detailed literature review.59

Recent research most relevant to us focuses on the Bertrand oligopoly, where agents compete by60
setting prices and using Q-learning. The main line of research uses Bertrand competition with61
an infinite time horizon (Calvano et al., 2020b), with follow-up work using DQN (Hettich, 2021),62
varying the demand model (Asker et al., 2022), modeling sequential rather than simultaneous agent63
decisions (Klein, 2021), or an episodic setting with contexts (Eschenbaum et al., 2022). Findings64
reveal frequent, though not universal, collusion emergence, often explained by environmental65
non-stationarity preventing theoretical convergence guarantees. Agents consistently learn to66
charge supra-competitive prices, punishing deviating agents through ’price wars’ before reverting67
to collusion. The robustness of collusion emergence to factors like agent number, market power68
asymmetry, and demand model changes underscores the potential risks posed by AI in pricing.69

Factors supporting and impeding the emergence of learned collusion remain debated. Some (Waltman70
& Kaymak, 2008; Abada & Lambin, 2023) argue collusion results from agents ‘locking in’ on71
supra-competitive prices early on due to insufficiently exploring the strategy space, suggesting a72
dependence on hyperparameter choice. Most studies identifying collusion used Q-learning, with73
others showing competitive behavior, raising questions about algorithm specificity (Sanchez-Cartas74
& Katsamakas, 2022). However, recent work (Koirala & Laine, 2024; Deng et al., 2024) using PPO75
in ridesharing markets and infinite Bertrand competition respectively, suggests otherwise. We expand76
on this in a more realistic episodic, finite horizon market with inventory constraints using deep RL77
algorithms (PPO and DQN), to manage our model’s larger state spaces and dynamic environments.78

3 Problem statement79

We introduce a multi-agent market model for inventory-constrained goods with a sell-by date, such80
as perishable items, hotel rooms, or tickets, using airline revenue management (ARM) as an example.81
We show how to model such markets as a Markov game and define a collusion metric based on the82
profits achieved under perfect competition and collusion.83

3.1 Episodic Markov games84

An episodic Markov game (Littman, 1994) is a tuple (S,A, P,R, T ) where S represents the common85
state space shared by all agents, A = A1 × · · · × An denotes the joint action space for n agents,86
P : S ×A → P(S) is the stochastic state transition function, Ri : S ×A → R defines the reward87
received by agent i, and T specifies the episode length in discrete timesteps. At each time step88
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t, agents in state st ∈ S select actions via policies πi,t : S → P(Ai) to maximize their total89
episodic reward

∑T
t=1 Ri(st, at). The main challenge in finding optimal policies in a Markov game90

is that agent i’s optimization problem depends on the actions chosen by all other agents. In a91
learning context, where agents optimize their policies simultaneously, this optimization becomes92
non-stationary and convergence is not guaranteed. For a detailed discussion on the challenges of93
multi-agent reinforcement learning we refer the reader to a number of surveys Buşoniu et al. (2010);94
Yang & Wang (2021); Gronauer & Diepold (2022); Wong et al. (2023).95

3.2 Markets as episodic Markov games96

We extend the Bertrand competition (Bertrand, 1883) model, where agents compete to sell a common97
good. In its simplified one-shot setting, sellers choose prices, and consumers react, deciding which98
quantity to buy from each seller based on some demand function of those prices. In contrast, we model99
markets where goods can be sold in multiple timesteps t = 1, . . . , T over a finite episode. The Markov100
game’s action space A consists of the prices agents can set, and an agent’s policy πi represents their101
pricing strategy. Each timestep t, agents observe the state st and simultaneously use their policy πi to102
choose an action in the form of a price pi,t = πi(st), forming the price vector pt = (p1,t, . . . , pn,t).103
In the following, we use pi,t for actions instead of ai,t to emphasize that the actions represent prices.104

Additionally, we assume that each agent has a finite capacity Ii ∈ N of goods that they can105
sell throughout the episode. At each time t, each agent has a remaining inventory of tickets106
xi,t ∈ {0, . . . , Ii}, resulting in an inventory vector xt = (x1,t, . . . , xn,t). We define the state of107
the game at time t as the most recent price vector and current inventory, i.e., st = (pt−1, xt). We108
motivate this definition of the state by the fact that in the non-episodic setting, most recent prices109
provide agents sufficient information to learn various strategies including perfect competition and110
collusion (Calvano et al., 2020b; Eschenbaum et al., 2022). However, investigating the effect of111
longer recall is an interesting direction for future research.112

With prices chosen, a state transition from time t to t + 1 occurs: For each agent i, the market113
determines a demand di,t, the agent sells a corresponding quantity qi,t = min(di,t, xi,t) bounded by114
their inventory, and their inventory is updated to xi,t+1 = xi,t − qi,t. With our choice of demand115
function (cf. Section 3.4), this transition to the next period’s state st+1 = (pt, xt+1) is deterministic.116
Finally, each agent receives their profit as a reward Ri,t := Ri(st, pt) = (pi,t − ci)qi,t, with ci their117
constant marginal cost per good sold.118

3.3 Application to airline revenue management119

To motivate the episodic Markov game framework, we consider the Airline Revenue Management120
(ARM) problem. In ARM, agents represent airlines competing to sell a fixed number of seats on121
a direct flight (also called a single-leg flight) between two cities on the same day. The problem is122
naturally episodic; episodes start when the flight schedule is announced and end at departure, i.e., the123
sell-by date of the tickets. Furthermore, each airline is constrained by the capacity of their respective124
aircraft. We consider each route on each day to form a single independent market. Expanding our125
model to connecting (multi-leg) flights, several flights on the same day, cancellations, and overbooking126
promises interesting future work. This market is a great example with fierce competition, a history127
of tacit collusion (Borenstein & Rose, 1994), real-time public information on offered ticket prices128
and inventories via Global Distribution Systems (GDS), and early adoption of dynamic pricing129
algorithms (Koenigsberg et al., 2004)1.130

3.4 Demand model131

We employ a modified multinomial logit (MNL) demand model, commonly used in Bertrand price132
competition (Calvano et al., 2020b; Eschenbaum et al., 2022; Deng et al., 2024), to simulate the prob-133
ability of a customer choosing each agent’s product, ensuring demand distribution among all agents134

1Adoption of dynamic pricing algorithms in this industry has historically been limited to low-cost carriers, due to established
carriers heavily depending on legacy systems and data-driven forecasting models. See lit. review in Appendix C.
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rather than clustering on the best offering. The normalized demand for agent i’s good in period t is135

di,t =
exp
(
(αi − pi,t)/µ

)∑
j∈Na

t
exp
(
(αj − pj,t)/µ

)
+ exp(α0/µ)

∈ (0, 1),

where Na
t := {j ∈ N | xj,t > 0}, αi is agent i’s good’s quality, α0 is the quality of an outside good136

for vertical differentiation, and µ is the horizontal differentiation scaling parameter. The quantity137
demanded from agent i at time t is then defined as qi,t = min{⌊λdi,t⌋, xi,t}, scaling demand with138
a factor λ ∈ N and rounding to the nearest integer to account for the sale of goods in whole numbers.139
We incorporate choice substitution, or demand adaptation, by summing only over agents with140
available inventory Na

t . If an agent is sold out, demand shifts to those with remaining inventory,141
preventing the sold-out agent’s actions from affecting the demand and rewards of others.142

3.5 Measuring collusion and competition143

We measure the collusion of an observed episode and agent strategies on a scale from 0 (competitive)144
to 1 (collusive). First, we establish the two extremes in the Markov game as the competitive Nash145
equilibrium and the monopolistic optimum that we can later use as reference points for collusion.146

Definition 3.1 (Competitive & collusive solutions). We call a collection of agent policies (π1, . . . , πn)147

• Competitive, or Nash equilibrium, if no agent i can improve their expected episode profit148
Eπ[Σ

T
t=1Ri,t] by unilaterally picking a different policy given fixed opponent policies.149

• Collusive, or monopolistic optimum, if it maximizes expected collective profits, Eπ[Σ
n
i=1Σ

T
t=1Ri,t].150

As we argue theoretically in Section 4 and show experimentally in Section 5.1, both admit solutions151
that feature constant prices across an episode, which we call pN and pM for the Nash and monopoly152
cases, respectively. In our model, the collusive prices pM are higher than the competitive prices pN ,153
and the same holds for the correspondingly achieved profits RM and RN . At the Nash equilibrium,154
both unilaterally increasing or decreasing one’s price reduces profits. However, if all agents jointly155
increase prices, the increase in margin outpaces the decrease in (MNL) demand, leading to increased156
profits for everyone. Building on these two solutions, we define a measure for collusion.157

Definition 3.2 (Collusion measure). We define agent i’s episodic profit gain as

∆i,e :=
1

T

T∑
t=1

R̄i,t −RN
i,t

RM
i,t −RN

i,t

.

The episodic collusion index is the generalized mean of the individual episodic profit gains

∆e :=

(
1

n

n∑
i=1

∆γ
i,e

) 1
γ

,

indicating a competitive or collusive outcome at 0 or 1, respectively.158

4 The collusive strategy landscape159

In this section, we discuss how our model’s episodic nature and finite inventory significantly affect160
the strategies for establishing and maintaining learned tacit collusion compared to the previously161
considered infinite horizon setting. It is common economic intuition (e.g., (Harrington, 2018)) that in162
order to maintain collusive agreements, agents need to remember past actions and have mechanisms163
to punish those who deviate from the agreed-upon strategy2. Standard punishment strategies include164
a temporary or permanent shift to a competitive price level after the deviation is detected which165

2Recent work (Arunachaleswaran et al., 2024) suggests that there can exist stable, collusive equilibria of strategies that do not
encode threats. They show that near-monopoly prices can arise if a first-moving agent deploys a no-regret learning algorithm,
and the second agent subsequently picks a non-responsive pricing policy.
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results in lower profits for all firms. It has been well documented that learning algorithms converge166
to these strategies in the infinite horizon setting (Calvano et al., 2020b; Hettich, 2021; Deng et al.,167
2024). Such strategies are only credible as long as sufficient time and supply is available for the168
punishment to offset the short-term gains from a deviation. These conditions are not always met169
in our settings that lead to new collusive strategies.170

Infinite horizon games These settings allow for deriving unique competitive and collusive equi-171
librium price levels through implicit formulas with the most commonly used Bertrand competition172
models. They provide the most room for collusive strategies to emerge and sustain since there is173
no time constraint for a punishment strategy’s credibility. Typically, stable collusion manifests in174
two forms. First, reward-punishment schemes: Agents cooperate by default and punish deviations.175
A deviating agent is punished by others charging competitive prices, thereby removing the benefits176
of collusion temporarily, until the supra-competitive prices are reinstated. This dynamic involves177
agents synchronizing over rounds to restore higher price levels after a deviation. This pattern can be178
observed as fixed, supra-competitive prices and verified by forcing one agent to deviate and recording179
everyone else’s responses. Second, Edgeworth price cycles: This pattern involves agents sequentially180
undercutting each other’s prices until one reverts to the collusive price, prompting others to follow,181
restarting the undercutting cycle (Klein, 2021).182

Episodic games The finite time horizon in episodic games presents a puzzle for collusion. Standard183
game theory suggests collusion should be unstable: a backward induction argument from the final,184
punishment-free timestep (t = T ) implies that the only Nash equilibrium is to compete throughout185
the entire episode. Yet, learning agents consistently overcome this challenge, establishing collusion186
in two distinct ways. The first is through intra-episode signaling, where agents gradually raise prices187
within a single episode. The second is by learning across many episodes to develop policies that188
begin new episodes at supra-competitive prices. This latter form can be remarkably robust; agents189
overfit to familiar opponents but can re-establish collusion with new ones after a period of continued190
learning (Eschenbaum et al., 2022). Surprisingly, our experiments show that agents can learn stable191
collusive strategies even without cross-episode memory. We observe them colluding for most of192
the episode before defecting near the end, suggesting that discovering the full backward induction193
argument is sufficiently unlikely during exploration in long episodes.194

Episodic, inventory-constrained model Inventory constraints significantly complicate the state and195
strategy space by making the reward achieved from a pricing strategy dependent on inventory levels.196
Determining the competitive and collusive price levels becomes more complex because the solution197
formulas from the Bertrand or Cournot settings require smoothness or convexity assumptions that no198
longer hold, preventing the standard uniqueness proofs. We approach finding a Nash equilibrium by199
modeling each episode as a simultaneous-move game where agents set entire price vectors before200
the episode starts for the complete episode. We provide further details in Section 5.1. We solve201
the resulting generalized Nash equilibrium problem numerically and prove that its solutions are202
Nash equilibria in our Markov game. We find that in our model, both the competitive and collusive203
solutions consist of repeating their prices from the one-period equivalents T times. If agents discount204
future rewards, both equilibria shift to lower prices and higher profits early in the episode and vice205
versa toward its end. In addition, price levels remain distinct even with strict inventory constraints.206
Due to the difficulty in predicting or interpreting observed behavior in this complex setting, we see207
value in analyzing different types of learners as part of future work.208

5 Experiments209

In Section 5.1 we first show how to find the competitive and monopolistic price levels needed to210
calculate the collusion measure defined in Definition 3.2, and how they change under different211
inventory constraints. Then, we show that PPO (Schulman et al., 2017) and DQN (Mnih et al., 2015),212
two commonly used deep RL algorithms, can learn to collude in our episodic model. Finally, we213
analyze their learned strategies and their dependence on hyperparameters.214
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5.1 Obtaining competitive and collusive equilibrium prices215

Unlike standard Bertrand settings, our model lacks an analytical solution for equilibrium prices,216
necessitating a numerical approach to find the competitive and collusive solutions required for our217
collusion metric (Def. 3.2). For details, see Appendix A. We find the monopolistic optimum by218
solving for the joint-profit maximizing price vector. For the competitive Nash equilibrium, we model219
the episode as a simultaneous-move game (SMG) where each agent i commits to an entire price vector220
pi = (pi,1, . . . , pi,T ) at the start. The solution is a Generalized Nash Equilibrium:221

Definition 5.1. The Generalized Nash Equilibrium Problem (GNEP) consists of finding the price222
vector p∗ = (p∗1, . . . , p

∗
n) such that for each agent i, given p∗−i, the vector p∗i solves the following223

inventory-constrained revenue maximization problem224

max
p(i)

T∑
t=1

(pi,t − ci)⌊λdi,t⌋

subject to
T∑

t=1

⌊λdi,t⌋ ≤ I, pi ≥ 0.

The solution price vector p∗ can be interpreted as the actions of a set of agent policies playing an225
episode of the Markov game. The following lemma shows that a set of policies that result in the226
price vector p∗ form a Nash Equilibrium in the Markov Game.227

Lemma 5.2. Given a Markov Game with deterministic transitions, let p∗ = (p∗1, . . . , p
∗
n) be the228

solution to Definition 5.1 and define π∗ = (π∗
1 , . . . , π

∗
n), as π∗

i (st) = p∗i,t for all i, t, and st ∈ S.229
Then π∗ is a Nash equilibrium in the Markov Game.230

The proof and details of our numerical GNEP solving approach are found in Appendices A.1 and D.231

Without discounting, the episodic equilibrium price vectors repeat the single-period equilibrium with232
the same parameters T times. Figure 4 shows how inventory constraints affect market dynamics.233
When inventories exceed the demand at the competitive equilibrium, the equilibria correspond to the234
unconstrained setting. As inventories shrink, the competitive price level rises, as it is harder for firms to235
undercut and profit from the increased demand. When inventory size matches the demand at the collu-236
sive price, the collusive and competitive price levels converge. Further tightening of constraints pushes237
both coinciding prices higher. In our experiments we choose the constraint’s value between the two238
extremes to allow for differentiation between competitive and collusive behavior and a well-defined239
collusion index, and investigate the effect of the inventory size on learned collusion in Appendix E.9.240

5.2 Experiment setup241

We evaluate our model in a symmetric duopoly (n = 2), where agents have identical quality, costs,242
and initial inventory. Solid lines and shaded areas in our plots represent the averages and standard de-243
viations of their metrics. We train pairs of independent Deep Q-Networks (DQN) (Mnih et al., 2015)244
and Proximal Policy Optimization (PPO) (Schulman et al., 2017) agents against each other. For evalu-245
ation, we freeze the agents’ policies after training and analyze their behavior in a new episode. Agents246
choose from a discretized price range spanning the competitive and collusive price points. Specific247
model parameters, the training setup and the price discretization scheme are detailed in Appendix B.248

5.3 Analysis of learning process249

As shown in Figure 1, both algorithms initially converge to competitive play. High initial exploration250
(epsilon-greedy for DQN, entropy for PPO) leads agents to learn a competitive best-response to a251
random opponent. As exploration anneals, agents adapt to each other’s emerging policies, and prices252
rise jointly toward collusion. PPO converges much faster and is more collusive, with an average253
collusion index of ∆e = 0.43 over the last 10% of episodes, compared to DQN’s ∆e = 0.23. These254
values, lower than in prior studies in the standard Bertrand setting (Calvano et al., 2020b; Hettich,255
2021; Deng et al., 2024), highlight the greater challenge of collusion in our more complex model.256
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Figure 1: Training dynamics for DQN and PPO. Plots show average agent actions and the collusion
index over episodes. Dashed lines indicate competitive (red) and collusive (green) levels. Both
algorithms initially learn competitive policies before gradually converging toward collusion.

Regulatory efforts could focus on the gradual increase in prices to mitigate algorithmic collusion,257
which we consider to be an interesting direction for future work.258

5.4 Analysis of collusive strategies259

After training, we simulate the agents in an evaluation episode (Figure 2). We focus on DQN here,260
discussing PPO in Appendix E.1. Our DQN agents show behavior that slowly rises in collusiveness261
until both agents defect near the end of the episode. This suggests that the agents are capable of262
learning that late defection cannot be punished, while not fully applying the backward induction263
argument from Section 4. The rise in collusion at the beginning of the episode suggests a capability264
of establishing intra-episode collusion, with the gradual, mutual price increase acting as a form of265
signaling. In Appendix E.7, we show results without inventory constraints, where the agents’ price266
curve is flatter, suggesting a strategy more based on solidified collusion over multiple episodes.267

Figure 2: Response to forced deviation at t=1 and t=9 for a trained DQN agent. Dotted lines show the
trajectory without deviation. Agents quickly punish the deviation, then return to a collusive path.
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Following Calvano et al. (2020b), we analyze the learned strategy by forcing one agent to deviate268
and observing the response.. Interestingly, deviation produces only a small reaction by the competing269
agent, while the deviating agent quickly returns to near their collusive level. With a deviation at270
time t = 1 or at t = 9, the impact on overall episode profits is negligible for both agents, with the271
deviating agent breaking even and the non-deviating agent losing only 0.2% profit overall. We refer272
the reader to Appendix E.8 for details.273

Figure 3 shows the best-response surfaces of the first agent at different points in the episode, with274
a remaining inventory linearly interpolated from full to none over the episode (corresponding to275
the agents’ evaluated strategy) and averaged over 100 trained agent pairs. We make two observations.276
First, the agent always punishes opponent deviations by pricing lower than the previous price level.277
Second, at the beginning and end of the episode, the agent’s best-response surface shows some278
symmetry indicative of more competitive behavior. There, the agent will react to their own deviations279
by pricing even lower in consecutive periods, anticipating a ‘price war’. During the middle of the280
episode, the agent instead returns to previous or even higher collusion levels after own defections,281
signaling cooperation, and punishes opponent deviations with slight undercutting. Near the end282
of the episode, they shift to more competitive behavior, punishing deviations more strongly. This283
response topology creates a dynamic where agents starting near the competitive equilibrium will284
jointly ’climb’ towards collusion, leveling out at an action of roughly 7 as indicated by the flat285
top. The second agent behaves similarly. These results suggest that DQN agents are well aware286
of competitive strategies and choose to collude in a robust way reliant on rewards and punishments.287
Appendices E.3 and E.4 contain results for uneven inventory constraints and limiting observability288
of opponent inventory and time, neither of which significantly hinder the emergence of collusion.289

6 Conclusion290

We formulate price competition between producers as an episodic Markov game motivated by Airline291
Revenue Management (ARM) and facilitating the analysis of tacit collusion within a finite time292
horizon and inventory-constrained markets. We propose numerical methods to find competitive and293
collusive solutions in our model due to the lack of analytical solutions and define a collusion metric294
based on the total profit achieved in a full episode. Our analysis shows that collusion consistently295
emerges between independent DQN and PPO algorithms after a brief period of competition and296
that trained agents quickly revert back to collusive prices after a forced deviation. The proven297
collusive potential of RL agents in our setting covering many real markets reinforces the call for298
the development of mitigation strategies and regulatory efforts (Calvano et al., 2020a). We see299
our work as a first step toward understanding pricing competition in markets like airline tickets,300
hotels, and perishable goods with future research directions in extending our Markov Game model301
to domain specifics. Additionally, we see a need to consider multi-agent specific algorithms, e.g.,302
opponent-shaping agents (Souly et al., 2023), that could establish stronger collusion or even exploit303
market participants, significantly harming social welfare.304

Figure 3: Learned best-response surface for a DQN agent at different timesteps, showing its next
action based on the previous actions of both agents.
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Supplementary Materials448

The following content was not necessarily subject to peer review.449450

A Details on equilibrium computation and collusion measures451

A.1 Numerical solution strategy for Nash & monopolistic prices452

To solve the GNEP for competitive equilibrium prices, we use a Gauss-Seidel-type iterative method453
(Facchinei & Kanzow, 2007). We start with an initial price vector guess and proceed through a loop454
where each iteration updates each agent’s price by solving their subproblem. For agent i at iteration k,455
it uses the fixed opponent prices from the latest estimate. The process repeats until convergence to p∗.456
Each agent’s subproblem is a mixed-integer, nonlinear optimization problem (MINLP), with neither457
convex objectives nor constraints. We use Bonmin, a local solver capable of handling larger instances458
at the risk of missing global optima. We mitigate this by initiating the solver from multiple different459
starting points. For the collusive optimum, we simulate a scenario where one agent sells n items, aim-460
ing to maximize the total episodic revenue under n inventory constraints. This problem is again a non-461
convex MINLP. Our implementation uses the open-source COIN-OR solvers via Pyomo in Python.462

Figure 4: One-period equilibrium price levels as a function of inventory capacity for two equally
constrained agents.

A.2 Choice of collusion measure463

The generalized mean interpolates the arithmetic mean (i.e., average) and geometric mean, which464
are obtained by setting γ = 1 and γ = 0 respectively. We use γ = 0.5 for our collusion index. Our465
reason is that the geometric mean has an advantage against the simple average used in previous466
studies (Calvano et al., 2020b; Eschenbaum et al., 2022), as it more strongly penalizes unilateral467
competitive defections in a collusive arrangement. However, it interprets any outcome where at468
least one agent achieves only competitive, or even sub-competitive profits (defining the measure469
via clamping negative profit gains to zero) as fully competitive, even if others prices above the470
competitive level and achieve considerable supra-competitive profits. The generalized mean provides471
a good middle ground. To better interpret negative values, we replace ∆γ

i,e with sgn(∆i,e)|∆i,e|γ .472

Figure 5 compares the arithmetic, geometric and generalized means. We vary the generalized mean’s473
parameter γ between 0 and 1, showing that it interpolates the arithmetic and generalized means,474
providing a balance between the former’s ability to deal with negative values, and the latter’s ability475
to weigh outcomes with supra-competitive total profits, but a disparity in profit gain between agents,476
as less collusive than symmetrical ones.477

Ultimately, how to aggregate the individual profit gains is a subjective question with trade-offs478
that depend on which outcomes one wants to differentiate the best. E.g., the following outcomes479
(∆1,e,∆2,e) of (0.1, 0.1), (0, 0.2) or (−0.1, 0.3) have the same average episodic profit gain, but480
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Figure 5: Showing how the generalized mean interpolates between the arithmetic and geometric
means for choices of parameter γ ∈ [0, 1], in the context of the collusion index measure.

quite different agent behavior and implications on consumer welfare, especially if agents’ qualities,481
costs, and thus equilibrium profits, are not symmetric. Exploring alternative measures, which could482
be inspired by social choice theory, is a promising avenue for future research.483

B Parameters used for model, training, environment, DQN and PPO484

B.1 Model parameters485

We evaluate the potential for RL algorithms to collude in our model using a duopoly situation with486
two agents. Two agents suffice to demonstrate learned collusion in the finite horizon game and the487
impact of inventory constraints. A duopoly is a reasonable assumption in the ARM domain, as488
many routes are dominated by 2-3 airlines. For n > 2 agents, Abada & Lambin (2023); Hettich489
(2021) show collusion indeed diminishes due to exponential growth in joint policy space hindering490
joint exploration, but does not fully disappear. We use either of two popular algorithms, namely491
Deep Q-Networks (DQN) (Mnih et al., 2015) and Proximal Policy Optimization (PPO) (Schulman492
et al., 2017) for learning without weight-sharing between agents. Agents represent identical firms,493
sharing the same qualities αi = 2, marginal costs c = ci = 1 ∀i, a horizontal differentiation factor494
of µ = 0.25, an outside good quality of α0 = 0, and a demand scaling factor of λ = 1000. For the495
main results presented in Section 5.3 and Section 5.4, we set the inventory constraints to 440 · T and496
the episode length T = 20.497

Due to the symmetry between agents, Nash and monopolistic price levels are identical for both498
of them, and the price levels and the corresponding demands are pN = 1.693, pM = 1.925 and499
dN = 440dM = 365 for our inventory constrained case. Agents choose prices from a discretized500
interval [pN − ξ(pM − pN ), pM + ξ(pM − pN )] with 15 steps and ξ = 0.2, such that the competitive501
and collusive actions correspond to aN = 2 and aM = 12 respectively. In particular, the price range502
for our setting is [1.693, 1.925]. In Appendix E.2, we provide further results on experiments with503
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a price range defined with the unconstrained Nash equilibrium prices to demonstrate that agents504
are still capable of learning collusion and their actions quickly converge to the price range defined505
with the constrained Nash equilibrium prices.506

B.2 Environment and agent parameters507

All our experiments use identical parameter values for both agents.508

Parameter Value

Product quality αi 2
Outside good quality α0 0
Marginal cost ci 1
Horizontal differentiation µ 0.25
Time horizon T 20
Demand scaling factor λ 1000
Inventory capacity Ii 440 ∗ T
Nash price pN (unconstrained) 1.471
Nash price pN (constrained) 1.693
Monopolistic price pM 1.925
Number of prices in interval 15
Price interval parameter ξ 0.2

Table 1: Environment and agent parameters

B.3 DQN and PPO hyperparameters509

We used the same neural network architecture for both DQN and PPO, of 2 hidden layers with 64510
neurons each. These hyperparameters were found by starting with generally accepted values from511
reference implementations and refined by doing grid searches over up to three parameters at a time.512

DQN’s epsilon-greedy strategy’s epsilon parameter is annealed via an exponential decay from an513
initial value of ϵmax = 1 to ϵmin = 0.015 at the end of the training run.514

At training episode e ∈ {0, . . . , E}, epsilon’s value is ϵmax ∗
(
ϵmax
ϵmin

)e/E
.

Parameter Value

Training episodes E 50 000
Learning rate 0.001
Adam epsilon 0.001
Epsilon-greedy (annealed) ϵmin 0.015
Replay buffer size 200 000
Replay buffer batch size 64
Gradient norm clipping 25
Initial episodes without training 5000
Train agent every ... episodes 4
Target network update every ... episodes 200
Network layer sizes [64, 64]

Table 2: DQN hyperparameters

515

PPO’s entropy coefficient parameter is annealed via an exponential decay from an initial value of516
entmax = 0.03 to entmin = 0.0001 at 75% of the training run (and is clipped to entmin afterwards).517

At training episode e ∈ {0, . . . , E}, the coefficient’s value is entmax ∗
( entmin

entmax

)e/0.75E
.518
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Parameter Value

Training episodes E 1000
Learning rate 2.5× 10−4

Adam epsilon 1× 10−5

Number of minibatches 10
Number of training epochs 20
GAE-lambda 0.95
Value coefficient (with clipping) 0.5
Gradient norm clipping 0.5
Network layer sizes [64, 64]

Table 3: PPO hyperparameters

B.4 Training setup519

We train our algorithms by playing 1000 and 50, 000 episodes for PPO and DQN, respectively, and520
updating weights after every episode for PPO or every fourth for DQN. We train 100 pairs of PPO521
or DQN on unique random seeds (40 for the boxplots). After training, we analyze each agent pair522
by observing their play in a single episode. This joint training aligns with previous work Calvano523
et al. (2020b); Koirala & Laine (2024) and real market situations, where firms learn while competing,524
updating pricing strategies based on market success. Solid lines and shaded areas in our plots525
represent the averages and standard deviations of their metrics. For our DQN agent, we use epsilon-526
greedy exploration with an exponentially decaying epsilon, while the PPO agent anneals its entropy527
coefficient to similarly reduce exploration over time. For evaluation episodes, DQN uses a fully greedy528
action selection. We normalize the rewards during training to the interval [0, 1] based on minimum529
and maximum possible values. This makes training slightly more stable. However, collusion is still530
achieved with unnormalized rewards. A full description of the hyperparameters used for DQN and531
PPO can be found in Appendix B.3. We use the JAX framework on a custom codebase built on (Willi532
et al., 2023). Our experiments were run on a compute cluster on a mix of nodes with each run using533
at most four vCPU cores, 8GB of RAM, and either a NVIDIA T4 or NVIDIA V100 GPU. However,534
a single run can be done on a consumer laptop (Apple M1 Max, 32GB RAM) in under one hour.535

C Literature review536

Examples and description of tacit collusion Firms across various sectors, from insurance to flight537
tickets, employ algorithmic pricing to maximize revenue by leveraging data on market conditions,538
customer profiles, and other factors. These algorithms’ growing complexity raises challenges for539
maintaining fair competition and detect firms that tacitly collude, ones which jointly set supra-540
competitive prices (i.e., above the competitive level) or limit production without explicit agreements541
or communication. Recently, evidence has emerged that companies are already using algorithmic542
pricing to inflate prices market-wide at the cost of consumers. For instance, Assad et al. (2024)543
showed that German fuel retailer margins increased by 38% following the widespread adoption of544
algorithmic pricing. Other examples are found in setting credit card interest rates (Ausubel, 1991)545
and consumer goods markets (Genesove & Mullin, 2001).546

Legal developments around algorithmic collusion Current anti-collusion policies mainly address547
explicit agreements, making tacit collusion inferred from company behaviors rather than evidence548
of an agreement, more elusive to prove. There is growing concern among regulators (Ohlhausen,549
2017; Bundeskartellamt & Autorité de la Concurrence, 2019; Directorate-General for Competition550
(European Commission) et al., 2019) and researchers (Harrington, 2018; Beneke & Mackenrodt,551
2021; Brero et al., 2022) that AI-based pricing algorithms might evade competition laws by colluding552
tacitly, without direct communication or explicit instruction during learning. This highlights the need553
for better strategies to prevent collusion or mitigate its negative effects on the market.554
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Reinforcement learning (RL) background Reinforcement learning (Sutton & Barto, 2018) is555
an advanced segment of machine learning where agents learn to make sequential decisions by556
interacting with an environment. Unlike traditional machine learning methods which rely on static557
datasets, RL emphasizes the development of autonomous agents that improve their behavior through558
trial-and-error, learning from their own experiences. This approach enables agents to understand559
complex patterns and make optimized decisions in scenarios with uncertain or shifting underlying560
dynamics. Multi-agent RL extends this concept to scenarios involving multiple decision-makers, each561
optimizing their strategies while interacting with others and the environment (Buşoniu et al., 2010).562
In MARL settings, agents can be incentivized to behave competitively, as seen in zero-sum games563
like Go (Silver et al., 2017; 2018), cooperatively, like in autonomous vehicle coordination (Dinneweth564
et al., 2022) or a mix of the two that includes our problem, i.e., markets and pricing games. MARL,565
while posing challenges such as non-stationarity and scalability, enables agents to adapt to and566
influence competitors’ strategies, facilitating tacit collusion.567

Collusion & regulation in airline revenue management (ARM) Originally a strictly regulated568
sector with price controls, ARM was deregulated in 1978 in the US and Europe, leading to a competi-569
tive landscape of private carriers whose pricing strategies are subject only to general laws against570
anti-competitive behavior (European Union, 2012)(Art. 101-109). However, this deregulation has571
caused market consolidation, prompting regulatory responses to protect competition (European Union,572
2019). Even prior to algorithmic pricing, regulators have identified pricing behaviors suggestive of573
tacit collusion (Borenstein & Rose, 1994), underscoring the challenge of distinguishing between574
collusive behavior and independent but parallel responses to market conditions.575

Background on the field of revenue management (RM) Each of the agents that we model576
is individually maximizing their revenue, relating our work to the field of revenue management577
(RM) (Talluri & Van Ryzin, 2004). As a competitive market with slim net margins, airlines are578
increasingly turning to dynamic pricing (Koenigsberg et al., 2004) beyond traditional quantity-579
based and price-based RM, replacing the hugely popular expected marginal seat revenue (EMSR)580
models (Belobaba, 1987). Our problem falls into the price-based RM category, even though we do581
model aspects of capacity management with our inventory constraints. In quantity-based RM, agents582
decide on a production quantity with the price for their good being the result of a market-wide fixed583
function of that decision, and models often impose no limit on the offered quantity. In our model,584
agents decide their price, and demand results from a market-wide function. Our aim is that agents585
learn to predict the impact of their pricing choices on the demand and thus sold quantity, in order to586
optimally use their constrained inventory.587

Learning in general RM In recent years, reinforcement learning agents have seen increased use588
in revenue management outside of the airline context. Examples include learning both pricing and589
production quantity strategies in a market with perishable goods (Wang et al., 2021), producing a590
pricing policy by learning demand (Rana & Oliveira, 2014; 2015) and analyzing the performance591
of different popular single-agent RL in various market settings (Kastius & Schlosser, 2022) (here592
Q-learning and Actor-Critic). The use of largely uninterpretable learned choice or pricing models593
introduces new challenges, such as deriving economic figures like the elasticity of demand with594
respect to price (Acuna-Agost et al., 2023).595

Learning in ARM While early work used e.g. heuristically solved linear programming formula-596
tions (Bront et al., 2009) or custom learning procedures (van Ryzin & McGill, 2000; Bertsimas &597
de Boer, 2005), recent studies have explored single-agent reinforcement learning in ARM to learn598
optimal pricing (Razzaghi et al., 2022). These model the problem as a single-agent Markov decision599
problem (MDP) (Gosavi et al., 2002; Lawhead & Gosavi, 2019) and consider realistic features like600
cancellations and overbooking (Shihab & Wei, 2022). The application of deep reinforcement learning601
(deep-RL) (Mnih et al., 2015) is growing in this complex market (Bondoux et al., 2020; Alamdari &602
Savard, 2021), but these models often overlook the multi-agent nature of the airline market. We model603
the market as a multi-agent system with individual multi-agent learners, a critical yet unexplored604
aspect in current research (Razzaghi et al., 2022).605
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D Proof of Lemma 1606

Proof. Let us introduce some terminology first.607

Definition D.1. Fix an agent i with policy πi or price vector p(i), and fix opponent policies π(−i) or608
prices p(−i).609

• A useful deviation is a policy π′
i or price vector p(i)

′
that strictly increases i’s revenue over the610

whole episode compared to playing πi or p(i). We use this term in both the Markov game and611
SMG.612

• We call a price vector p(i) = (pi,1, . . . , pi,T ) feasible in the GNEP if it fulfills the inventory613
constraint of i’s revenue maximization problem in Definition 5.1, and infeasible in the GNEP if it614
does not.615

• We call a policy πi simple, if at each time t, it outputs the same value for all states st, i.e.616
∀t ∀st : πi(st) ≡ constt.617

Intuitively, we construct a set of simple policies where each agent always plays their GNEP solution,618
no matter the state, and show that this set of policies is a Nash equilibrium.619

First, observe that those simple policies result in the same set of price vectors p∗ in every evolution620
of the Markov game. In particular, fixing opponent strategies π(−i)∗ results in agent i facing the621
same fixed opponent price vectors p(−i)∗ (from the GNEP solution) in every evolution of the Markov622
game. Therefore, to prove that π∗ is a Nash equilibrium in the Markov game it is enough to prove623
that for any agent i and fixed opponent price vectors p(−i)∗, there does not exist a useful deviation624
price vector p(i)

′ ̸= p(i). If a useful deviation policy π′
i existed for i, in at least one timestep t it625

would have to pick a price p′i,t ̸= pi,t, so by ruling out a useful price vector deviation we also rule out626
a useful policy deviation.627

Claim: Let p(−i) be fixed opponent price vectors. Given any price vector p(i) for agent i, there628
always exists a price vector p̄(i) that is feasible in the GNEP and such that playing p̄(i) results in629
revenue for i that is as great as or greater than that from playing p(i).630

Given opponent prices p(−i)∗, if a useful deviation p(i)
′ ̸= p(i)∗ exists for agent i, it must be631

infeasible in the GNEP (otherwise p(i)∗ wouldn’t be a revenue-maximizing solution to agent i’s632
GNEP’s subproblem). However, since the claim implies that we could construct a p̄(i) that is feasible633
in the GNEP and has equivalent revenue for i as the infeasible p(i)

′
, it would be a useful deviation for634

agent i in the SMG to play p̄(i) given p(−i)∗, contradicting the assumption that p∗ is a NE.635

Proof of Claim: Let opponent prices be fixed p(−i). Let p(i) a price vector in the Markov game636
that’s infeasible in the GNEP (otherwise we’re trivially done). Let i’s inventory at t be xt. Let637
t̂ ∈ {1, . . . , T} be the sell-out time, i.e., the last timestep in which i has nonzero inventory, meaning638
t̂ := max{t ∈ {1, . . . , T}|xt̂ > 0} such that xt̂ = 0 and ∀t > t̂ : xt = 0. Let d(pi,t, p(−i),t) :=639
⌊λdi,t⌋ be the scaled, truncated MNL demand of agent i at time t given price vector p, which is a640
decreasing function in pi,t.641

Define642

p̄i,t̂ := sup{q | d(q, p(−i),t̂) = xt̂}

p̄i,t ∈ {q | d(q, p(−i),t) = 0} ∀t > t̂.

Then, let p̄(i) := (pi,1, . . . , pi,t̂−1, p̄i,t̂, p̄i,t̂+1, . . . , p̄i,T ).643

Given the other agents’ fixed price vectors p(−i), the vector p̄(i) is feasible in the GNEP. To see this,644
consider that every price vector has a sell-out time t̂. At any point in time before t̂, the accumulated645
demand up until that time is lower than inventory, otherwise t̂ wouldn’t actually be the sell-out time.646
The GNEP’s feasibility constraint is only violated if at t̂, demand is larger than remaining inventory647
xt̂, or if at any t > t̂, demand is larger than 0. The construction of p̄(i) ensures that it has the same648
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sell-out time t̂, and the construction of p̄i,t for t ≥ t̂ ensures that demand at t̂ matches inventory left,649
and that demand at t > t̂ is zero, meaning that p̄(i) cannot violate the feasibility constraint.650

Now we just need to prove that given fixed opponent prices p(−i), agent i’s reward in the Markov651
game when playing p̄(i) is as great as or greater than their reward when playing p(i). Their reward652
when playing p(i) is given by653

Σt̂−1
t=1(pi,t − c)min

(
d(pi,t, p(−i),t), xt

)
+ (pi,t̂ − c)min

(
d(pi,t̂, p(−i),t̂), xt̂

)
+ΣT

t=t̂+1
(pi,t − c)min

(
d(pi,t, p(−i),t), xt

)
We now replace p(i) with p̄(i) and compare each term.654

In the first term, as we know that for t < t̂ i’s demand is always lower than their inventory by655
definition of t̂, the term reduces to656

Σt̂−1
t=1(pi,t − c)d(pi,t, p(−i),t).

Since pt = p̄t, we see that the first revenue term’s value stays equal:657

Σt̂−1
t=1(pi,t − c)min

(
d(pi,t, p(−i),t), xt

)
= Σt̂−1

t=1(pi,t − c)d(pi,t, p(−i),t)

= Σt̂−1
t=1(p̄i,t − c)d(p̄i,t, p(−i),t).

In the second term, by definition of t̂, we know that658

min
(
d(pi,t̂, p(−i),t̂), xt̂

)
= d(pi,t̂, p(−i),t̂) = xt̂,

thus the term reduces to659
(pi,t̂ − c)d(pi,t̂, p(−i),t̂).

Since d(pi,t̂, p(−i),t̂) ≥ xt̂, and by construction d(p̄i,t̂, p(−i),t̂) = xt̂, and d(·, p(−i),t̂) decreasing, we660
get p̄i,t̂ ≥ pi,t̂. We also know that i will always choose a price ≥ c to ensure non-negative revenue.661
Thus, we see that the second revenue term’s value can only increase:662

(pi,t̂ − c)min
(
d(pi,t̂, p(−i),t̂), xt̂

)
= (pi,t̂ − c)d(pi,t̂, p(−i),t̂)

≤ (p̄i,t̂ − c)d(p̄i,t̂, p(−i),t̂).

In the third term, by definition of t̂, we know that ∀t > t̂ : xt = 0, and since by construction of p̄(i)663
we also know that ∀t > t̂ : d(p̄i,t, p(−i),t) = 0, we see that the term’s value remains zero:664

ΣT
t=t̂+1

(pi,t − c)min
(
d(pi,t, p(−i),t), xt

)
= ΣT

t=t̂+1
(p̄i,t − c)d(p̄i,t, p(−i),t)

= 0

Putting all three terms together, agent i’s revenue from playing p̄(i) is as great as, or greater than that665
from playing p(i).666

19



Under review for RLC 2025, to be published in RLJ 2025

E Supplementary experiments667

E.1 PPO behavior analysis668

Like in Section 5.4, we analyze PPO’s learned strategies from its behavior during an eval episode in669
Figure 6 and from its response surfaces. The evaluation episode shows that PPO has learned to collude670
over multiple episodes, with both agents starting off highly collusive and gradually undercutting671
each other, ending up at the collusive level at the end of the episode. This contrasts DQN’s tendency672
to rise in collusion during the episode, before defecting toward the end. PPO does not seem to673
punish collusion strongly. Its reaction surface (Figure 7) suggests that it instead relies on a mutual674
understanding of collusion as a slow price war, undercutting if the opponent prices higher but675
preferring to reset the price after an opponent’s deviation.676

Figure 6: Behavior of two PPO agents during an episode after forcing one agent to deviate at time
t = 1 and t = 9 respectively. Dotted lines indicate evolution without deviation. Deviations provoke a
competitive reaction, with both agents quickly returning to collusion.

Figure 7: “PPO response surface”. The surfaces show a PPO agent 1’s learned response to a state
given by both agent’s prices (x- and y-axes), timestep and symmetric remaining inventory level.

E.2 Choice of price-action grid677

In the constrained setting, we define the available actions to be a discretized grid in the interval678
between (and extending slightly beyond) the constrained Nash equilibrium and monopolistic optimum679
prices. This interval is narrower than in the unconstrained case, as the Nash equilibrium price680
increases, while the monopolistic price level stays the same. In an episodic setting, agents are681
effectively unconstrained at the beginning of an episode, so by doing this we are restricting some of682
their ability to strategize. However, as Figure 10 shows, agents quickly learn to only price between683
the constrained competitive and collusive interval, suggesting that restricting the price grid does not684
cut off a relevant part of the strategy space.685

E.3 Asymmetric inventory constraints686

We have assumed symmetric inventory constraints so far. Illustrated in Figure 11, PPO agents with687
asymmetric inventory constraints of 440 and 400 per timestep respectively (compared to 440 for both688
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agents in the main paper), obtain a collusion index of 0.44 compared to the 0.43 of the symmetric689
case. Both agents price collusively, although the chosen price levels now differ: the agent with the690
tighter inventory constraint chooses an even higher action than before. This suggests that small691
asymmetries do not impact the emergence of collusion.692

E.4 Observability693

So far, we have assumed full observability. To test that assumption’s impact, we perform additional694
experiments. Figure 12 shows the evolution for DQN, qualitative results are identical for PPO.695

First, we remove the opponent’s inventory from an agent’s observation. This has little impact on696
DQN’s performance, with the collusion index dropping from 0.43 to 0.41 for PPO, and from 0.23697
to 0.21 for DQN. Second, we do not allow agents to observe time within an episode. We see only a698
small impact on DQN’s performance. The collusion index drops to 0.36 for PPO, and to 0.19 for699
DQN.700

E.5 Geometric intuition on impact of inventory constraints on collusion701

Figure 13 shows the normalized reward (profit) surfaces of agent 1 (green) and 2 (red) of the one-702
period game as functions of the prices both agents choose. We compare the surface under symmetric703
inventory capacities of different sizes, namely unconstrained (i.e., infinitely large inventory), lightly704
constrained (capacity 470) and strongly constrained (capacity 380). One can observe that the peak of705
each agent’s reward surface lies on the opposite side of the diagonal through the price grid as their706
opponent’s, namely on the side where they undercut their opponent’s price and profit from capturing707
additional demand. Introducing an inventory constraint limits agents’ profits from undercutting as708
they cannot capture the additional demand past their inventory limit. This pushes the peaks of both709
agents’ reward surfaces closer to the diagonal, and each other. Further tightening the constraints710
while keeping the number of actions between the Nash and collusive optima equal and thus ’zooming711
in’ on the price grid to an area near the peaks makes the peaks appear further apart. As mentioned in712
the main paper, we can imagine the duopoly dynamic as both learning agents trying to climb toward713
the peak of their respective reward surface. Collusion is achieved if agents climb the ridge along the714
diagonal. The closer the peaks are to each other and thus the monopolistic optimum on the diagonal,715
the smaller each agent’s incentive to deviate and the smaller the negative impact of a deviation on716
their opponent, which eases cooperation. Tightening inventory constraints thus complicates the717
coordination problem, making collusion less likely.718

E.6 Steering PPO toward competitive behavior719

By increasing the noise in agents’ learning targets, they can only learn best-response strategies, driving720
convergence toward competition. This is achieved by setting the “number of environments” parameter721
very high. PPO trains on a batch of data gathered from playing one or more parallel episodes against722
the same opponent, but with different random seeds. While our model has deterministic transitions,723
PPO has a stochastic policy, such that these episodes have different evolutions. With many different724
episodes in the learning batch, the PPO agents are likely not able to discern the opponent’s underlying725
policy well and adapt to it, instead learning the (Nash) best response of competition. Figure 14a726
shows the quick initial convergence to competition that is then never deviated from. Figure 14b727
shows an evaluation episode of the trained learners, who play (imperfect) competition throughout the728
episode.729

E.7 Unconstrained DQN learners730

We analyze the setup of two DQN learners in an environment where inventory constraints are not731
simulated. Figure 15a shows the evolution of the training run. The learners show stronger collusion732
and keep increasing collusion throughout the entire run. This is different to the constrained setting,733
where collusion stops increasing once a stable level is hit (even if training time is extended).734

Figure 15b shows the behavior of the trained agents during an evaluation episode. Unlike in the735
constrained setting, where collusion was built intra-episode, the unconstrained learners start the736
episode by already behaving collusively. Their response to forced deviation is stronger than in the737
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constrained case, reacting more competitively. They display the same backward induction-type738
behavior, having learned that deviation toward the end of the episode is unable to be punished and739
therefore less risky.740

E.8 Impact of agent deviation on episode profits741

Figure 16 shows the evolution of two DQN agents’ profits when forcing one agent to deviate. We742
observe that the deviating agent’s temporary profit is tempered by the punishment in response, with743
both agents quickly returning to their normal strategy. The end-of-episode total profit is merely 0.2%744
lower than without the deviation, with the deviating agent only breaking even and the non-deviating745
agent taking a slight loss.746

E.9 Hyper- and environment parameter comparisons747

We analyze the impact of changing agent hyperparameters and environment characteristics on the748
convergence and collusive tendencies of DQN and PPO agents. To judge the convergence of two749
agents toward each other throughout the training run, we use the following metric:750

1

0.1E

E∑
e=0.9E

1

T

T∑
t=1

|p0,t − p1,t|
pM − pN

adapted from Deng et al. (2024), where E is the number of training episodes. It takes the average751
difference of both agents’ prices across an episode relative to the width of the Nash-monopolistic752
price interval. Values below 0.2 are interpreted as converged.753

In our analysis, we vary single parameters from the reference setup described in Section 5.2, train754
agents on 40 different seeds, and for each parameter value, record the distribution of convergence755
metric and collusion index over those seeds, averaged over the last 10% of training run episodes.756

Learning rate is perhaps the most important agent parameter, as it regulates the impact of all757
other agent parameters. Appendix E.9 demonstrates that both PPO and DQN agents achieve better758
convergence and increased tendency to compete at lower learning rates. The reduced ability to adapt759
to an opponent’s strategy still allows agents to learn the opponent-independent best-response of760
competition at initial training episodes, but attempts to establish the gradual, mutual increase in price761
seen in Figure 1 happen more rarely and revert to competition more often. A higher learning rate762
does not translate to more likely collusion, as the increased ability to adapt to an opponent is balanced763
by the potential to overreact to the opponent’s random actions. Overall, collusion and convergence764
appear to be robust to moderate changes in learning rate.765

We compare metrics among different initial inventory sizes in Figure 9a. Inventory sizes shown766
are per-timestep; a value of 440 represents a total inventory size of 440 · T , which we use for the767
other results. Smaller inventories show better convergence and more competitive behavior for both768
PPO and DQN. This has geometric intuition (cf. Appendix E.5): visualize each agent’s reward769
landscape as a surface over the grid of both agents’ prices. Each agent tries to climb toward their770
peak on the side of the grid’s diagonal where they undercut their opponent. Steps toward their peak771
along their axis harm their opponent. To achieve collusion, agents must jointly climb the ridge along772
the diagonal of the grid where their landscapes intersect. The closer the two agent’s peaks are to773
the monopolistic optimum on the diagonal, the smaller their incentive to deviate and the smaller774
the negative impact on their opponent from deviation, easing cooperation. Decreasing inventory775
capacities reduces the range of prices that agents are incentivized to use as the Nash equilibrium776
price approaches the monopolistic price. In this “zoomed in” part of the price grid, the peaks now777
appear further away from each other, making the coordination problem harder.778

Figure 9b shows the effect of changing episode lengths. As conjectured in Section 4, longer episodes779
increase collusion tendencies for both types of learners by providing more opportunities to punish780
deviations. While PPO’s convergence is unaffected, DQN’s convergence suffers. This is expected,781
as DQN generally scales worse to larger state spaces than PPO. It relies on accurately estimating the782
expected reward for each state-action pair and sufficiently exploring the state space, which becomes783
harder as that space grows.784
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Figure 8: Convergence and collusion metrics for DQN and PPO training runs with varied learning
rate. Collusion is robust against varying (yet sufficiently large) learning rate.

We identified additional hyperparameters affecting collusion, such as PPO’s number of training785
epochs (higher increases collusion) and DQN’s buffer size (larger increases collusion), shown in786
Appendix E.9. It is possible to hinder collusion by introducing instability in learning targets, e.g.,787
by filling DQN’s buffer or PPO’s rollouts with experiences gathered from ‘parallel environments’.788
This parallelization is commonly done to increase training speed on accelerator hardware, but has a789
concrete impact in this model. We demonstrate this with PPO in Appendix E.6.790

We show some additional plots of agent hyperparameter behavior in Figure 17 for PPO and Figure 18791
for DQN.792

Beginning with PPO, scaling the amount of initial entropy has a marginal effect on both convergence793
and collusiveness. The number of epochs, on the other hand, has a much bigger impact. More794
epochs of training per training step on the same batch of data allows PPO to fit their strategy to their795
opponent’s much more effectively, increasing collusiveness while slightly reducing convergence.796
Lastly, increasing the number of minibatches and thus frequency of gradient updates helps PPO797
converge, but it does hurt collusiveness, which could be explained from the increased noise from798
smaller batches. A very low number of minibatches sees very stable training – perhaps too stable to799
effectively explore collusion.800

DQN behaves similarly with regards to exploration and stable targets. A larger buffer size reduces801
convergence due to the increased variance in experiences that can be sampled (which are less up-to-802
date as buffer size increases). Larger buffers do help with establishing collusion, though, perhaps803
precisely because singular opponent deviations are less likely to be included in the next gradient804
step. We further observe that there is no strong dependence on initial exploration epsilon for either805
convergence or collusion. On the other hand, the interval between training episodes (as opposed to806
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(a)

(b)

Figure 9: Convergence and collusion metrics for DQN and PPO training runs with varied inventory
sizes (a), and episode time horizons (b). Initial inventory size is the value shown, times the time
horizon T . Longer episodes show less reliable convergence, higher potential collusion due to more
effective punishment strategies.

episodes where experience is gathered without a gradient update, i.e. only filling the replay buffer)807
does matter. Decreasing training frequency, and thus likelihood of immediate response to an opponent808
deviation increases collusive tendencies, but there is a limit – training too infrequently increases809
instability in the targets again and leaves DQN unable to react to positive exploratory moves.810
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Figure 10: Choice of price-action grid: Training run evolution of two DQN learners using a price
grid spanning the interval between the unconstrained Nash and monopolistic prices rather than the
narrower constrained ones. Agents show the same pattern of learning competition and collusion.

Figure 11: Asymmetric inventory constraints: Training run evolution of two PPO learners with
asymmetric constraints of 440 · T and 400 · T respectively. Both agents settle at their now different
collusive equilibrium price levels, but the overall collusion level remains the same.
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Figure 12: Observability: Evolution of training runs of two DQN learners that are prevented from
observing their opponent’s inventory (top) or the current timestep (bottom). We do not see a significant
difference in behavior and collusive tendency.

(a) Unconstrained inventory (b) Light constraint (c) Strong constraint

Figure 13: Geometric intuition on impact of inventory constraints on collusion: Normalized reward
surfaces of agent 1 (green) and 2 (red) in a single period as functions of the prices both agents choose,
with symmetric inventory capacities of different sizes (left to right: infinite, 470, 380). Introducing
an inventory constraint pushes the peaks of both reward surfaces closer to each other, but tightening
the constraints and thus ’zooming in’ on the area near the peaks makes the peaks appear further apart,
hindering collusion.

811
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(a) Training run evolution

(b) Evolution within episode

Figure 14: Competitive PPO: The evolution of a training run (a) and, once trained, within an episode
(b) of two PPO learners trained with a very high “number of environments” parameter. They quickly
converge to competition, and behave competitively throughout the entire episode.
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(a) Training run evolution

(b) Forced deviation within episode

Figure 15: Unconstrained inventory: We train two DQN learners with an unconstrained inventory
and plot the evolution of a training run (a) and the dynamics within an episode where one agent is
forced to deviate to competition at time t = 1 and t = 9 (b). We observe stronger collusion than in
the constrained case, and larger reactions to forced deviations.
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(a) Deviation at time t=1. End-of-episode total profit vs non-deviation: 99.81%

(b) Deviation at time t=9. End-of-episode total profit vs non-deviation: 99.76%

Figure 16: “Profit impact of deviation”. Two trained DQN agents play an evaluation episode, with one
agent being forced to deviate at different timesteps. We show the effect on individual and cumulative
agent profit per single timestep, and over the entire evaluation episode. Total episode profit remains
virtually unchanged by single deviations.
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Figure 17: Convergence and collusion metrics for PPO training runs with varied starting entropy
coefficient (top), number of epochs per training step (middle) and number of minibatches per training
step (bottom). Collusion is robust against starting entropy and increases with more epochs or
minibatches per training step.

30



Learning Collusion in Episodic, Inventory-Constrained Markets

Figure 18: Convergence and collusion metrics for DQN training runs with varied buffer size in
thousands (top), exploration epsilon (middle) and length of interval between training episodes
(bottom). Larger buffer sizes increase collusion but reduce convergence, lower epsilon slightly
worsens convergence without affecting collusion, and longer intervals improve convergence and
collusion up to a point before becoming too sparse for learning.
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