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Figure 1: Illustration of our novel, versatile layout generation task: AnyLayout (with four subtasks).
ABSTRACT

Layout design is a fundamental aspect of visual communication, widely used
in advertising, publishing, and digital media. Recent datasets and methods, in-
cluding content-agnostic and content-aware approaches, have advanced automatic
layout generation, and large language models (LLMs) and multi-modal LLMs
(MLLMs) have further improved performance. However, most existing methods
focus on predicting bounding boxes for limited design elements on fixed back-
grounds, which restricts their capability to tackle diverse instruction-driven tasks
in real-world applications. To address these limitations, we introduce AnyLayout-
120K, a large-scale instruction-driven dataset for multimodal layout generation.
It offers: (1) Task Diversity—comprising four instruction-driven sub-tasks that
encompass multimodal design elements such as multi-lingual text, visual/textual
product, logos and background underlays; (2) Rich Annotations—including user
instructions, multimodal inputs and spatial annotations; (3) Downstream Compat-
ibility—where, in addition to the layout of individual elements, we propose com-
posite layouts that capture the overall design, integrating both details and seman-
tics. These composite layouts can be seamlessly incorporated into text-to-image
(T2I) models for end-to-end generation. Alongside this dataset, we develop 7
geometry-aware evaluation metrics that assess spatial precision and adherence to
design principles, ensuring a more comprehensive evaluation. Furthermore, uti-
lizing this dataset, we establish a strong baseline based on MLLMs, achieving
state-of-the-art performance. The dataset, metrics, and baseline will be released
to support future research in instruction-driven layout design.

1 INTRODUCTION

Layout design serves as a fundamental element of visual communication, with essential applications
across various domains, including advertising, publishing, digital media, and information design
(Yang et al., 2016). Advancements in this field have been marked by the development of notable
datasets such as CGL and PKU (Zhou et al., 2022; Hsu et al., 2023), alongside a variety of methods
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that encompass both content-agnostic (Li et al., 2019; Chakraborty et al., 2022; Melendez & Havas,
2025) and content-aware (Zheng et al., 2019; Zhang et al., 2025b; Pu et al., 2025) approaches.
Recently, there has been an increasing trend toward utilizing LLMs or MLLMs (Hurst et al., 2024;
Chu et al., 2024; Chen et al., 2025b; Lu et al., 2024) for automatic layout design (Hsu & Peng, 2025;
Cheng et al., 2024; Qu et al., 2025), leading to remarkable improvements in performance.

Despite these advancements, existing methods primarily focus on one single task: predicting bound-
ing boxes for a limited set of design elements on a given background image. Consequently, they
struggle to handle various user design requirements in real-world applications. For instance, user
instructions such as “Given an image of a face cream product, design a poster featuring the product
on a pink background with a ‘best-seller’ slogan” still present great challenges. Such open-ended
user instructions that specify multiple design elements — including product images, slogans, and
background specifications — highlight the necessity for more versatile layout generation.

In this paper, we extend the field of layout design to more flexible and practical settings, and intro-
duce AnyLayout-120K, a large-scale instruction-driven layout dataset. This dataset advances the
field through three key innovations as shown in Tab. 1: (1) Task Diversity. It encompasses four
distinct sub-tasks represented by user instructions, which incorporates multiple interleaved multi-
modal design elements (e.g., text, logos in two languages, and underlays). (2) Rich Annotations.
In addition to the instructions, multimodal design elements, and traditional spatial annotations (e.g.,
bounding boxes for individual elements), it also provides structured natural language descriptions of
composite layouts — capturing both element-level details and overall design semantics. (3) Down-
stream Compatibility. The structured layout descriptions can be seamlessly integrated with T2I
models, facilitating end-to-end content generation. Based on this dataset, we develop an enhanced
evaluation system comprising 7 geometry-aware evaluation metrics that move past conventional
IoU-style scoring. These metrics quantify both spatial precision and adherence to design principles
(e.g., utilization, non-occlusion), thus ensuring a more comprehensive evaluation.

Furthermore, engaging with AnyLayout-120K presents challenges that require deep multi-modal
understanding: the model must effectively align visual and textual semantics, adhere geometric con-
straints, and produce coherent and appealing layouts under diverse conditions. To address these
challenges, we propose a unified MLLM-based layout model that generates layouts in natural lan-
guage formats, simultaneously optimizing composite and individual elements, ensuring geometric
plausibility and visual harmony.

In summary, our main contributions are as follows.

(i) We introduce AnyLayout-120K, a large-scale instruction-driven layout dataset that features four
sub-tasks composed of user instructions and interleaved multimodal design elements. Alongside
this dataset, we propose 7 geometry-aware metrics to ensure a more comprehensive assessment.

(i1) In addition to providing placements for individual design elements, we propose composite lay-
outs that describe the overall design layout. These composite layouts can be seamlessly integrated
into T2I models, facilitating the effective rendering of the generated designs.

(iii) We establish a strong baseline that achieves state-of-the-art performance across tasks, providing
a foundation for future research in instruction-driven layout design.

2 RELATED WORK

Content-Agnostic Layout Generation. Early work abstracts layouts into elements with categorical
labels and geometric parameters, focusing on structural and spatial alignment while ignoring seman-
tic context. Representative models include GAN-based LayoutGAN (Li et al., 2019), VAE-based
LayoutVAE (Jyothi et al., 2019), and Transformer—VAE hybrids such as VTN (Arroyo et al., 2021)
and bidirectional masked BLT (Kong et al., 2022), which balance global alignment with diversity.
Beyond diffusion models, Flow Matching approaches like LayoutFlow (Guerreiro et al., 2024) and
discrete diffusion with external correction as in Layout-Corrector (Iwai et al., 2024) improve conver-
gence stability and geometric controllability. While these paradigms provide strong structural priors,
they lack multimodal semantic adaptation needed in real-world advertising and poster design.

Content-Aware Visual-Textual Layout. Content-aware methods tailor layouts to specific inputs
such as products, slogans, and backgrounds. CGL-GAN (Zhou et al., 2022) generates design lay-
outs from image composition and introduces metrics aligned with aesthetic intuition. PosterLay-
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out (Hsu et al., 2023) models non-empty canvases and design order, establishing benchmarks and
evaluation criteria. AutoPoster (Lin et al., 2023) explores human—Al co-creation workflows for
advertising posters. LayoutFormer++ (Jiang et al., 2023) unifies multiple conditional tasks via con-
straint serialization, while DETR-based LayoutDETR (Yu et al., 2024) demonstrates the strength
of detection-style representations for multimodal conditional layouts. Although these works have
enriched datasets and metrics, most assume fixed or partially pre-filled canvases, limiting general-
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ization to common scenarios like “pure slogan”, “single product”, or “background-only” inputs.

Layout Generation with MLLMs. Recent work leverages LLMs and MLLMs to convert layouts
into structured, executable formats (e.g., HTML/JSON), enhancing interpretability and consistency.
LayoutNUWA (Tang et al., 2023) pioneered “code-based” layouts with improved semantic align-
ment via instruction tuning. PosterLlama (Seol et al., 2024) and PosterLLaVA (Yang et al., 2024)
adapt layout generation into LLM/MLLM pipelines, enabling natural language constraints, editable
SVGs, and multimodal interaction. VASCAR (Zhang et al., 2024) iteratively refines layouts through
visual self-correction in LVLMs. Strong multimodal base models such as Qwen2.5-VL (Bai et al.,
2025)—with fine-grained localization and document/graph parsing capabilities—form the infras-
tructure for end-to-end instruction-to-layout training and evaluation. Aligned with our work, these
approaches advocate a unified task interface plus executable structural outputs, paving the way for
cross-task alignment and downstream renderability.

3 ANYLAYOUT DATASET

We extend layout generation from fixed-canvas settings to a versatile, instruction-driven formu-
lation that supports multimodal inputs (slogan-only, textual product, visual product, visual back-
ground). Specifically, we contribute: (i) a unified task interface covering the four sub-tasks
(Fig. 1), (ii) AnyLayout-120K, a large-scale instruction-driven dataset and (iii) geometry-aware,
task-conditioned metrics that enhance the prior assessments used in CGL/PKU. This section is orga-
nized as follows: Sec. 3.1 introduces the four sub-tasks; Sec. 3.2 presents product-centered metrics
and Sec. 3.3 outlines a four-stage data construction pipeline.

3.1 PROPOSED TASK

Given an optional pair of images (product/background) and the instructions input, the task is re-
quired to output not only the placement of individual design elements, but also the composite layout
to support downstream T2I model to generate poster. We therefore cast layout generation as an
instruction-driven design problem, closer to real practice than fixed-canvas formulations. As illus-
trated in Fig. 1, we define four sub-tasks: (1) Slogan Layout, (2) Textual Product Layout, (3) Visual
Product Layout, and (4) Visual Background Layout.

Slogan Layout. This task aims to generate optimal poster layouts from textual slogans, particularly
for cases containing only text, such as exhibition themes or cultural promotion posters. The task
requires the text’s position, scale, and arrangement solely based on the given slogan.

Textual Product Layout. This task addresses practical poster-generation needs where layouts are
derived solely from textual descriptions of a product, complemented by slogans or other elements.
For example, it may involve creating a face cream-selling poster featuring a green-scene background
and a specific slogan. Effective design in such cases requires accurately interpreting the concepts in
the text and arranging the elements with precise spatial organization.

Visual Product Layout. Building on the product-description task, a more constrained and practical
scenario incorporates the product image alongside the text slogan as input. The task requires a
poster layout that seamlessly integrates visual and textual elements, aligning layout geometry with
semantic content. This necessitate reasoning about relative positioning, scale, and visual hierarchy
under the constraints of real image inputs.

Visual Background Layout. A common application scenario involves incorporating a text slogan
layout frame into a poster image that already contains a primary product and background. In our
proposed task, the input consists solely of the slogan, without specifying the dimensions of the text
layout or providing category and size information for any additional layout elements to be predicted.
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Dataset Instr. Driven Input Design Elements Output Slogan Lang. Aspect Ratio
CGL X Back.Img(Op) & Cate/Size Layout CN (2:3)

AP X Back.Img(Op) & Cate/Size Layout CN (2:3)
PKU X Back.Img(Op) & Cate/Size Layout CN (2:3)
AnyLayout-120K v Back/Prod.Img(Op) & Instruction Layout & Composite CN, EN (2:3),(1:1)

Table 1: Comparison of AnyLayout-120K with existing poster layout datasets. Instr. Driven de-
notes support for explicit, user instruction—driven generation. Input Design Elements describes the
optional or required inputs: Back.Img means a poster background with product already placed, Op
= optional, Cate/Size = assigned category or bounding-box size, Back/Prod.Img(Op) = poster back-
ground or product image provided optionally, plus instructions, categories, and slogans. Output lists
what the model generates: conventional layouts or extended composite layouts combining semantic
and geometric information. Slogan Lang. shows supported languages for slogans. Aspect Ratio lists
available layout aspect ratios.

3.2 PRODUCT-CENTERED METRICS

We introduce new evaluation metrics from a product-centered perspective, as existing content-layout
benchmarks do not involve product placement and interaction. Drawing inspiration from typo-
graphic and layout studies (Ma et al., 2024; Rebelo et al., 2024) as well as established graphic design
principles (Ngo et al., 2000; Harrington et al., 2004), we propose task-conditioned, geometry-aware
metrics. These metrics aim to provide a more comprehensive assessment of layout designs, specifi-
cally focusing on the effective integration of products within the overall composition.

Each metric is a geometry functional that operates solely on predicted and ground-truth box coor-
dinates. The metrics include: Centrality Score (C'S), Size Ratio Norm (S RNorm), Overlap Score
(0S), Vertical Position Score (V P.S), Pair Distance Score (PD.S), Dispersion Consistency Score
(DC'SS), and Size Consistency Score (SC'S). Together, these metrics effectively capture both aes-
thetic alignment (e.g., balance and hierarchy) and functional positioning (e.g., occlusion avoidance
and scale consistency).

The C'S measures how close the product’s center is to the poster’s center, with higher scores awarded
for more central placements:

d
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where (cg, ¢,) is the product-box center. If d=0, then C'S=1; if d=d 42, then C'S=0.

The S Rnorm €ncourages a product area within a desirable range; overly small boxes are penalized
linearly, while overly large boxes are saturated at the upper bound:
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here (x1,y1) and (z2,y2) are the top-left and bottom-right corners of the product box, and Sy,ax is
the upper-area threshold.

The OS penalizes occlusion between the product and other elements (text, underlay, etc.):
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Figure 2: Our data processing pipeline for image and text modality inputs, along with the model
training framework.

For multi-product cases, promotes reasonable spacing by averaging pairwise center distances—P DS
(normalized by the image diagonal):

PDS = &)

Z\/W

where d;; is the Euclidean distance between centers of boxes 4 and j, and the sum runs over all
unordered pairs (the 1/N factor denotes averaging).

The DC'S measures the uniformity of inter-product spacing via the coefficient of variation:

DCS =1-CV({—2=—1)), (6)

\/W
where CV = o/ is the coefficient of variation. More uniform distances (smaller CV) yield higher
scores.

The SC'S encourages comparable product scales by penalizing variation in area ratios:
Ai N

SCS =1-Cv({ %)

3.3 DATA PIPELINE

To support the four instruction-driven tasks in Sec. 3.1, we build a systematic, mutually validating
dataset pipeline (Fig. 2) with five stages: (1) Data Filtering, (2) Comprehensive Caption Gener-
ation, (3) Layout Generation, (4) Composite & Instruction Generation, and (5) Quality Check.
This structure mirrors our product-centered metrics in Sec. 3.2, ensuring that data construction, val-
idation, and evaluation use consistent geometry-aware criteria.

To this end, we address the scarcity of instruction-driven resources for controllable poster layout by
converting four heterogeneous datasets—PKU (Hsu et al., 2023), AutoPoster (AP) (Lin et al., 2023),
CGL (Li et al., 2023), and CreatiDesign (CD) (Zhang et al., 2025a)—into a unified dataset tailored
for multimodal instruction-driven fine-tuning. Beyond raw coordinates, each sample is augmented
with a complete instruction—driven pair: natural-language task description, multimodal context, and
a machine-verifiable structured answer.

Data Filtering. To remove annotation noise in multi-product posters from PKU/AP/CGL, we re-
tained 60K single-product samples via Data Filtering. For the multi-product, 60K samples were ran-
domly selected from CD. These two subsets were then combined to form the original 120K-poster
layout dataset. Furthermore, Data Filtering employs a simultaneous filtration process on the data
subsequent to Quality Check, ensuring the establishment of a high-quality dataset.

Comprehensive Caption Generation & Layout Generation. Following GoT (Fang et al., 2025),
we pair boxes with descriptive captions encoding spatial and semantic layout information. We im-
plement captioning with Qwen2.5-VL (Bai et al., 2025) using a prompt that covers: (1) fine-grained
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product description, (2) background composition/style, (3) typography/decorations, and (4) slogan
content/placement. To correct occasional slogan errors, we align generated captions to ground-truth
slogans via semantic similarity matching, repair mismatches, and filter low-alignment cases (Fig. 2).

For Layout Generation, text/background boxes are taken from original labels. For visual-product
localization, we compute model-agnostic saliency and convert it to boxes via morphology and con-
nected components: apply Grad-CAM (Selvaraju et al., 2017) on a product-recognition encoder
and cross-validate with RISE (Petsiuk et al., 2018) to reduce model-specific bias; threshold the
consensus map, extract the maximal connected component, and fit a tight box. Low-confidence
or multi-peak cases fall back to attention-rollout via AttnLRP (Chefer et al., 2021) to preserve re-
call. We binarize with Otsu+area priors, generate candidates, and select the top-confidence box with
non-maximum suppression. This yields accurate product localization (Fig. 2), and—together with
refined captions—forms a compact, executable multimodal annotation.

Composite & Instruction Generation. After captioning and layout generation, we refine
captions with Qwen3 (Yang et al., 2025) to inject explicit layout references then gain the
Layout-Aware Composite. The module aligns caption spans to regions by semantic simi-
larity and replaces matched phrases with structured placeholders < |boz_start| > ... <
|box_end| > ((product/logo/text/underlay/embellishment)) (Fig. 2), enabling pre-
cise text—geometry linkage.

For instruction generation, we collected high-quality user input based on actual design requirements
and had Qwen3 refine it based on the composite. This refinement retained the necessary visual prod-
uct and slogan layout elements, as well as the poster aspect ratio, within the instructions. The layout
elements were then matched with the special symbols < |product_start| > ... < |product_end| >
and < |text_start| > ... < [text_end| >, respectively, to complete the different instruction set for
four task scenarios (see the Appendix for more instruction set examples).

Both Composite generation and Instructions generation will undergo similarity check for the vi-
sual product and slogan first. Then we quantify quality via human check under a stratified proto-
col. We sample n=400 items from AnyLayout-120K, stratified by the four tasks (4 x 100) and by
single/multi-product (50/50). The reviewer judges (i) box correctness (product/text/underlay accept-
able if IoU to intended region > 0.7 or justified tightness) and (ii) caption—box alignment.

Quality Check. To estimate datasets quality including VLM/LLM generation results and visual
product layout generation results, we deploy a deterministic validator consisting of Similarity Check,
IoU Check and Human Check:

e Similarity Check: we apply it on Comprehensive Caption Generation and Composite &
Instruction Generation. It is used to check the VLM/LLM generated slogan and the visual
product whether match the ground-truth.

* loU Check: we mainly utilize it on Layout Generation. Then, we check the visual product
location quality by requiring IoU (>0.6) agreement between Grad-CAM and RISE other-
wise fall back to attention-rollout AttnL.RP.

* Human Check: we let human reviewer to check a gold sample of Composite and Instruction
generated by LLM whether the layout element match the correct slogan or visual product.

Across Quality Check, the Similarity Check and IoU check accepts 92.5% (+2.1%) of samples;
among these, the Human Check confirms 95.1% (+1.9%) box correctness and 96.4% (+2.0%)
caption—box alignment. Combining (i) Similarity & IoU pass and (ii) Human Check pass yields an
end-to-end clean-label estimate of 93.7% (£2.9%).

4 METHOD

4.1 UNIFIED LAYOUT MODEL

Recent MLLM studies report emergent layout understanding and the ability to interpret spatial co-
ordinates for coherent layout generation (Seol et al., 2024; Zhang et al., 2024; Chen et al., 2025a;
Tang et al., 2023). To validate our task design and the utility of AnyLayout-120K, we build an SFT
baseline on Qwen2.5VL-7B.



Under review as a conference paper at ICLR 2026

Single-task SFT. We first fine-tune four single-task models. Each output is a JSON-like sequence
containing category, short description, and bbox for every element. Training minimizes the next-
token cross-entropy:
N
Lop ==Y yilog(pi) ®)
i=1
computed over the serialized instruction—response.

Unified multi-task SFT. We then train a single model across all four tasks using a balanced
1:1:1:1 sampler with randomized batch shuffling. This exposes the model to heterogeneous in-
put regimes (slogan-only, textual/visual product, visual background) and encourages transfer of
geometry—semantics priors across tasks. In practice, joint training yields consistently better average
performance than isolated training, indicating useful cross-task synergies.

4.2 COMPOSITE LAYOUT PREDICTION

Layout prediction requires reasoning over what (semantics) and where/how (geometry, scale, hierar-
chy) jointly. Rather than designing task-specific heads, we serialize an executable composite layout
that captures element types, semantic attributes, and inter-element geometric relations in a single
sequence. This reframes the problem from independent coordinate regression to autoregressive joint
geometry—semantics reasoning. For example, two elements—a visual product “face cream” and a
slogan “Double points for luxury formal wear”—are emitted as a compact description with their
bboxes embedded at the points where they are referenced.

Compared with composite-oriented frameworks such as PosterLlama (Seol et al., 2024), Poster-
LLaVA (Yang et al., 2024), and LayoutNUWA (Tang et al., 2023), our formulation differs in two
geometric aspects: (i) we merge textual semantics and coordinates into one executable sequence that
encodes cross-element constraints, enabling stepwise reasoning in a single state space; (ii) the same
composite space is instruction-compatible across all input modalities (slogan-only, textual/visual
product, visual background), avoiding fixed-canvas or placeholder-only assumptions and eliminat-
ing task-specific decoders.

All four subtasks are projected into this common composite space, allowing the unified model to
learn transferable design priors. The representation serves as a binding contract to downstream
renderers: predicted sequences can be directly executed to produce layouts. While our baseline
uses Qwen2.5-VL-7B with instruction tuning, the formulation is model-agnostic and invites future
architectures tailored for composite layout reasoning.

5 EXPERIMENT

5.1 EXPERIMENT SETTINGS

Datasets. We evaluate on AnyLayout, comprising five element types—logo, text, product, un-
derlay, and embellishment. The dataset contains 126,131 annotated poster—layout pairs, split into
118,450 for training and 7,681 for testing. Following our data pipeline, AnyLayout aggregates four
sources: CGL (train 20,851 / test 1,026), AutoPoster (train 31,495 / test 3,655), PKU (train 6,726),
and CreatiDesign (train 59,378 / test 3,000). Training data covers four novel tasks with product/-
text annotations (including product and background images), while the test set contains annotated
samples for each task.

Evaluation Metrics. We adopt: (1) PKU (Hsu et al., 2023) and CGL (Li et al., 2023) content-
aware layout benchmarks; (2) a new single-/multi-product benchmark. PKU metrics include ali,
undy, undg, ove, and val; CGL metrics comprise Roye, Runds Rali, and Roce. Roce / val measure
unused or invalid layout space, R,;; / ali assess element alignment, ove / R, (via IoU) quantify
non-decorative element overlap, and R,,,,q / und; / unds evaluate the enhancement from decorative
to non-decorative elements.

Baseline. Our goal is to validate the AnyLayout task, dataset, and unified benchmarks. We
benchmark mainstream multimodal layout predictors—PosterLlama (Seol et al., 2024), Poster-
LLaVA (Yang et al., 2024)—in zero-shot mode (due to mismatched I/O formats) and compare with
Qwen2.5VL-7B (Bai et al., 2025) zero-shot outputs, serving as a baseline for our SFT and SFT w/
C approaches.
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Tasks | PKU Metrics | CGL Metrics
Methods | Tasks | alil wund;t wndst ovel walt | Rovel Runa? Rail Roce?

Zero-shot Slogan Layout | 0.0236 0.8451 0.3485 0.2778 1.0 0.4637 0.8523 0.0264 0.7139
SFT w/ C Slogan Layout | 0.0241 0.9863 0.9775 0.0038 0.9998 | 0.0093 0.9896 0.0148 0.9644

SFT w/ C Mix 0.0208  0.9951  0.9900 0.0021 0.9998 | 0.0050 0.9965 0.0098 0.9644
SFT 0.0160 0.9901 0.9875 0.0023 0.9997 | 0.0042 0.9922 0.0030 0.9621
PosterLlama 0.0229 0.8681 0.5550 0.2677 0.9995 | 0.4526 0.8613  0.0252 0.8250
PosterLLaVA 0.0214 0.8857 0.5679 0.2523 0.9996 | 04482 0.8766 0.0241 0.8357

Zero-shot Txt Prod Layout | 0.0225 0.9334 0.9301 0.0222 1.0 0.0486  0.9336 0.0046 0.8848
SFT w/ C Txt Prod Layout | 0.0168 0.9818 0.9688 0.0123 0.9998 | 0.0277 0.9813 0.0050 0.9869

SFT w/C Mix 0.0229 0.9829 0.9787 0.0021 0.9999 | 0.0043 0.9844 0.0039 0.9836
SFT 0.0195 0.9803 0.9767 0.0032 0.9997 | 0.0056 0.9928 0.0040 0.9712
PosterLlama 0.0218 0.9002 0.8915 0.0206 0.9996 | 0.0469 0.8987 0.0063 0.8991
PosterLLaVA 0.0210 0.9018 0.8874 0.0194 0.9999 | 0.0435 0.9011 0.0051 0.9008

Zero-shot Vis Prod Layout | 0.1000 0.7860 0.6407 0.2759 1.0 0.3797 0.7912  0.0325 0.8410
SFT w/ C Vis Prod Layout | 0.0243 0.9777 0.9701 0.0104 0.9999 | 0.0149 0.9777 0.0070 0.9817

SFT w/ C Mix 0.0224  0.9916 0.9886 0.0024 0.9999 | 0.0052 0.9917 0.0062 0.9823
SFT 0.0193 0.9877 0.9852 0.0032 0.9997 | 0.0054 0.9915 0.0069 0.9689
PosterLlama 0.0872 0.8016 0.6527 0.2431 0.9995 | 0.3369 0.8054 0.0258 0.8722
PosterLLaVA 0.0695 0.8136 0.6473 0.2289 0.9996 | 0.3077 0.8152 0.0258 0.8814

Zero-shot Vis Bg Layout | 0.0463 0.6442 0.4758 0.2262 1.0 0.3657 0.6462 0.0172 0.8686
SFT w/ C Vis Bg Layout | 0.0126 0.9689 0.9612 0.0140 0.9996 | 0.0206 0.9739 0.0058 0.9802

SFT w/C Mix 0.0134 0.9908 0.9848 0.0039 0.9997 | 0.0069 0.9905 0.0038 0.9802
SFT 0.0131 0.9871 0.9794 0.0060 0.9991 | 0.0091 0.9890 0.0039 0.9745
PosterLlama 0.0461 0.6970 0.5489 0.2127 0.9995 | 0.3599 0.6976 0.0166 0.8710
PosterLLaVA 0.0432 0.7315 0.5264 0.2038 0.9995 | 0.3571 0.7296 0.0170 0.8826

Table 2: Experiment results on AnyLayout-test (w/o product). Txt, Prod, Vis, Bg denote Textual,
Product, Visual, and Background. Best performance per column is in bold.

Tasks | Single Product Metrics | Multi Product Metrics 1

Methods ‘ Tasks ‘ cs SRNorm oS VPS MeanloU CPS ‘ CPS MeanloU PDS DCS SCS CPS,
Zero-shot Vis Prod Layout | 0.7488  0.9987  0.6482 0.7830 0.4233 0.7946 | 0.6182 0.2219 0.1957 0.7821 0.3894  0.4964
SFT w/ C Vis Prod Layout | 0.7847  0.9605  0.9357 0.8876 0.7512 0.8921 | 0.6819 0.4332 0.2479 0.7040 0.3820 0.5040
SFT w/C Mix 0.7850  0.9656  0.9424 0.8880 0.7061 0.8952 | 0.6876 0.3923 0.2375 0.7007 0.3760  0.5005
SFT 0.7835  0.9644  0.9378  0.8947 0.7274 0.8950 | 0.6502 0.3030 0.2258 0.7156 0.4087 0.5001
PosterLlama 0.7415 09940 0.6702 0.7917 0.4259 0.7993 | 0.6257 0.2306 0.1981 0.7124 0.3925 0.4822
PosterLLaVA 0.7541  0.9948  0.6539 0.8002 0.4310 0.8008 | 0.6284 0.2517 0.2005 0.7294 0.3901 0.4871

Zero-shot Txt Prod Layout | 0.8882 1.0 0.7737  0.7940 0.4689 0.8640 | 0.6074 0.1445 0.2593  0.6054 0.4417 0.4785
SFT w/C Txt Prod Layout | 0.7874  0.9543  0.9304 0.8868 0.6264 0.8897 | 0.6348 0.1985 0.2542  0.6864 0.4395 0.5038

SFT w/C Mix 0.7941 09623  0.9293 0.8952 0.5959 0.8953 | 0.6934 0.2643 0.2465 0.6927 03911 0.5059
SFT 0.7901  0.9639  0.9332 0.8903 0.6060 0.8943 | 0.6501 0.2074 0.2247 0.6917 0.4312  0.4994
PosterLlama 0.8820  0.9983  0.7479 0.7825 0.4438 0.8527 | 0.6095 0.1507 0.2588 0.6106 0.4439  0.4807
PosterLLaVA 0.8952 09847 0.7563 0.7801 0.4695 0.8541 | 0.6194 0.1689 0.2653 0.6055 0.4510 0.4853

Table 3: Comparison of Single Product and Multi Product metrics for different methods. Txt,
Prod, Vis denote Textual, Product, and Visual respectively. Best performance per column is in bold.

Implementation Details. Based on Qwen-2.5-VL-7B (Bai et al., 2025), we fine-tune our model
with the following experiment settings: learning rate of 1.0e-5, global batch size of 16, and image
maximum input resolution is set to 1024 x 1024 pixels. We utilize LLaMA-Factory (Zheng et al.,
2024) as our supervised fine-tuning (SFT) codebase. We perform SFT on our proposed AnyLayout-
120K dataset for 3 epochs with 8 NVIDIA H20 GPUs, and the training steps are the same for the
model trained with extra reasoning process.

5.2 MAIN RESULTS

Tab. 2 reports PKU/CGL results for the four sub-tasks; Tab. 3 gives our single-/multi-product metrics
assessing spatial alignment, scale consistency, and inter-object arrangement. Fig. 3 visualizes the
full pipeline: AnyLayout predicts category, bounding box, localized text, product description, and
a composite layout string; the latter conditions Flux-Kontext (Labs et al., 2025) to render layouts
faithful to semantics and spatial constraints.

Relative to zero-shot Qwen2.5VL, all SFT variants achieve substantial gains across PKU (ali |
,und T, ove |, val 1) and CGL (Roye 4, Rund T, Raii 4, Roce T) for every task. Improvements carry
over to product-centric metrics (Tab. 3), where SFT consistently boosts C'S, OS, VPSS, MeanloU,
CPS, and their multi-product counterparts.
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Figure 3: Qualitative results on AnyLayout test set, each sub-task is displayed in a separate column.

Across both PKU and CGL, PosterLlama and PosterLLaVA lag behind any SFT-trained AnyLay-
out; PosterLLaVA generally outperforms PosterLlama (e.g., better und and lower R,,.), with rare

reversals. Under our proposed metrics, the same pattern holds—PosterLLaVA slightly leads in
VPSIMeanIoU/CPS for Vis Prod Layout—yet both are far below SFT models.

System-level ranking is consistent across benchmarks: SFT w/ C =~ SFT > zero-shot Qwen2.5VL
> PosterLLaVA > PosterLlama, with minor variations on columns like OS or SCS. This sta-
bility across legacy and proposed metrics indicates the latter capture capability gaps aligned with
established criteria while being more sensitive to product placement and compositional fidelity.

5.3 ABLATION STUDIES

Mix Training. Multi-task training (SFT w/ C, Mix) surpasses single-task SFT on most metrics, par-
ticularly improving spatial/scale consistency (V PS, MeanloU, CPS, C PS,,) without degrading
category or overlap scores, confirming that shared task structure promotes generalization.

Composite Layout. Compared to plain SFT, SFT w/ C yields consistent PKU gains and dominates
on CGL for Vis Prod Layout and Vis Bg Layout, with improvements in most metrics for Txt Prod
Layout and Slogan Layout. Similar trends appear in Table 3, where composite layouts improve most
single-/multi-product metrics. This suggests composite layout strings provide a strong inductive bias
for coherent interactions among text, product, and background—advantages retained when rendered
with Flux-Kontext (Labs et al., 2025).

6 CONCLUSION

In this paper, we propose AnyLayout-120K, a comprehensive dataset and benchmark for advertis-
ing poster layout generation, which advances the field through four diverse sub-tasks, rich design
varieties, and language-conditioned layout prediction. Based on the proposed dataset, we present an
MLLM-based model as a strong baseline, which unifies composite and fine-grained spatial reason-
ing through natural languages with product or background images as optional visual inputs, enabling
coherent and context-aware layout generation. Extensive experiments demonstrate consistent supe-
riority over existing methods on different tasks and metrics. In short, AnyLayout establishes a new
paradigm for layout modeling by integrating semantic understanding, structural control, and cross-
modal generation with one single model, representing a significant step toward scalable, intelligent
design automation in complex, real-world scenarios.
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7 REPRODUCIBILITY STATEMENT

To ensure the full reproducibility of our findings, we have provided comprehensive implementation
details throughout the paper. Each four tasks I/O examples to describe our datasets at Sec. 3 and
Appendix A.1. Key details of instructions we reformulates them based on four tasks are presented
on Sec. 3.3 and Appendix A.2. Moreover, AnyLayout-120K datasets analysis is discussed at Ap-
pendix A.3 and baseline architecture of AnyLayout framework is described at Sec. 4. In line with
our commitment to open science, AnyLayout-120K dataset and source code will be made publicly
available.

8 ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics in all aspects of its execution, including data
collection, analysis, and dissemination of results. The study does not involve human subjects, animal
experiments, or sensitive personal data. All datasets used are publicly available and were collected
in compliance with applicable laws and licenses. We have reviewed the datasets to the best of our
ability to minimize potential bias, discrimination, or unfairness, and to avoid inclusion of harmful
or offensive content.

The methods proposed pose no foreseeable risk to individuals, groups, or the environment, and are
intended for academic and socially beneficial purposes. Any potential misuse scenarios have been
considered and mitigated through appropriate design choices. No conflicts of interest or sponsor-
ships that could have influenced the results are present. All results are reported honestly, without
fabrication, falsification, or inappropriate manipulation, in line with the principles of research in-
tegrity.

By including this statement, the authors explicitly acknowledge their obligation to comply with the
ICLR Code of Ethics throughout the submission, review, and discussion process.
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