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Abstract

While the recent developments in large language models (LLMs) have success-
fully enabled generative recommenders with natural language interactions, their
recommendation behavior is limited, leaving other simpler yet crucial components
such as metadata or attribute filtering underutilized in the system. We propose an
LLM-based music recommendation system with tool calling to serve as a unified
retrieval-reranking pipeline. Our system positions an LLM as an end-to-end recom-
mendation system that interprets user intent, plans tool invocations, and orchestrates
specialized components—boolean filters (SQL), sparse retrieval (BM25), dense
retrieval (embedding similarity), and generative retrieval (semantic IDs). Through
tool planning, the system predicts which types of tools to use, their execution order,
and the arguments needed to find music matching user preferences, supporting
diverse modalities while seamlessly integrating multiple database filtering meth-
ods. We demonstrate that this unified tool-calling framework achieves competitive
performance across diverse recommendation scenarios by selectively employing
appropriate retrieval methods based on user queries, envisioning a new paradigm
for conversational music recommendation systems.

1 Introduction

Music recommendation has long been shaped by how to filter databases according to user preferences.
Early systems relied on boolean filtering [1]] over listening history logs and metadata such as title,
artist, and release year. The advent of large-scale music item catalogs and user-item feature learning
algorithms [[11]] shifted the field toward retrieval and reranking pipelines driven by large-scale user and
item embeddings [23}[8]]. With advances in representation learning, the field has progressed beyond
listening history to develop deeper content understanding [26, [16]]. Moreover, music representations
for audio [12], lyrics [18], and visual artwork [7]] has enabled example-based recommendation,
while multimodal music representations [[13} 9} 16} 15 29| 28}, |15} 24] has supported natural language
query understanding. Recent advances in large language model (LLM)-based recommendation
systems [4, [17] demonstrate that items can be represented in a semantic space and quantized into
discrete Semantic IDs [[19, [14], enabling both generative recommendation and interactive dialogue
with users. In these methods, users are allowed to engage actively to discover music that matches
their goals and preferences through multi-turn interactions.

However, relying on a single retrieval method has clear limitations in identifying items that satisfy
user needs [27]. Production-level recommenders [3l [10] operate based on multiple stages and routed
retrieval-reranking pipelines and must strictly satisfy operational constraints (e.g., user profile, genre,
mood, activity, newness, etc.), while simultaneously reflecting a listener’s history and text queries.
Without combining multiple types of retrieval methods, it cannot fully capture all the relevant context
of recommendations.
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Figure 1: Overview of Music Recommendation Agents with Tool Calling.

In this paper, we present a conversational music recommender with tool-calling. Our contributions
are: (i) formulating conversational music recommendation with multiple retrieval methods, enabling
the LLM to predict tool types, order, and arguments conditioned on a user profile and a dialogue
context; (ii) designing a unified tool set that composes of boolean filtering (SQL), sparse retrieval
(BM25), dense retrieval across modalities (text-to-item, item-to-item, and user-to-item), and genera-
tive retrieval (Semantic IDs) under a single agent; and (iii) demonstrating zero-shot effectiveness on a
conversational recommendation benchmark with improved Hit@K over strong baselines, together
with detailed analyses of their behaviors.

2 Music Recommendation with Tool Calling

Figure [T] illustrates our framework that consists of two main components. The first component is
the Music Recommendation Agent, comprising the LLM and tools. The second component is the
External Environment that executes the tools and performs the final recommendation through retrieval
and reranking.

2.1 Problem Formulation

Given a user u with profile p,,, a previous conversation state s;_1, and the user query ¢, at the current
turn ¢, the proposed system produces a ranked list of music items m; by (i) generating tool calls
with a LLM and (ii) filtering database D using the predicted tools C;. Finally, the LLM is called
again to generate a natural language response 7; that provides a conversational explanation of the
recommendations while maintaining dialogue context.

C = LLM(qt, St—1, Pu; Proot, T) D
my; = ToolEnv(Cy; D) (2
ry = LLM(my, G, St—1, Du; Presponse) S

Let 7 denote the available tools, P the prompt, and C; = [(tooln, argsn)} 521 the LLM-predicted
sequence of tool calls with the number of tools N. The tool environment executes each and every
(tool,,, args,,) pair to retrieve and rerank results into a final ranked list m;.

The tool execution environment operates as a sequential pipeline where each tool’s output directly
influences the subsequent tool’s input space, i.e., each tool filters and refines the track pool for
downstream tools. Therefore, the order of the tools significantly affects the final recommendation
quality. Through the prompt Py, we guide the LLM to perform recommendations not as a single
operation, but as a staged process consisting of retrieval and reranking phases, ensuring that the tool
execution follows a sequential pipeline.



Table 1: Comparison of capabilities across different tools. Gray text indicates tools activated by
in-context information rather than direct natural language user queries.

Tools Capabilities Environments Query Examples

SQL Numeric Filtering SQL Server “Recent songs over 130 BPM"

BM25 Lexical Matching BM25 Index “Songs from Adele’s 21"

Text-to-Item  Semantic Matching Qwen3, CLAP, SigLIP2 “Play a calm piano piece"

Item-to-Item  Multimodal Matching ~ CLAP, SigLIP2, BPR “Ok, more similar voices"

User-to-Item  Personalization BPR user_id:10021

Semantic ID  Multimodal In-Context Residual VQ Tables audio:semantic_id:[63, 36, 44, 3]
2.2 Tools

Our framework incorporates diverse tools that enable precise and flexible music recommendation
through structured filtering and semantic retrieval approaches. Table [I|summarizes their capabilities,
environments, and usage examples.

SQL (Boolean Retrieval): The SQL tool enables precise and structured queries on relational music
metadata. We construct a single table with fields including title, artist, album, release date, tempo,
key, and popularity. Tool arguments include query for SQL statements and topk for result limits. e.g.,
sql(query="SELECT * FROM tracks WHERE date>=2020 ORDER BY tempo", topk=100).

BM25 (Sparse Retrieval): This tool provides classic token-based text retrieval using the BM25
ranking function [21]]. BM25 offers lexical matching, making it particularly effective for text queries
where typos are common and exact string matching is difficult. We construct five text corpora: title,
artist, album, lyrics, and attributes (semantic tags). Tool arguments include query, corpus, and topk,
e.g., bm25(query="taylor swift songs", corpus="artist", topk=100).

Text-to-Item (Dense Retrieval): This tool enables semantic music discovery through nat-
ural language descriptions by mapping text queries to musical content across multiple
modalities.  Utilizing pretrained text [30] and multimodal encoders [29, 25], the tool re-
trieves the most similar items based on cosine similarity in the corresponding embed-
ding space. Tool arguments include query, item modality type, vector database type,
and topk, e.g., text_to_item(query="Tracks with an album cover that shows a baby
swimming underwater.", item_modality="image", vector_db="image", topk=20).

Item-to-Item (Dense Retrieval): This tool supports example-based recommendation by find-
ing similar items using dense representations. The LLM generates track IDs based on pre-
viously recommended tracks or user-provided examples in multi-turn conversations, then we
look up the corresponding embeddings [29, 25| 20] from pre-extracted vector databases to per-
form similarity-based retrieval. Tool arguments include track ID, item modality type, vec-
tor database type, and topk, e.g., item_to_item(track_id="22L7bfCiAkJo5xGSQgmiI0",
item_modality="audio", vector_db="audio", topk=20).

User-to-Item (Dense Retrieval): This tool provides personalized recommendations using user
embeddings trained through listening history [20]. Unlike other tools activated by user queries, this
tool is activated using the user ID from the user profile information. Tool arguments include user_Id
and topk, e.g., user_to_item(user_id=10021, topk=200).

Semantic IDs (Generative Retrieval): Semantic IDs are discrete representations derived from item
content features [19}|14]. Content is encoded into dense embeddings, then quantized into discrete code-
book indices using Residual Vector Quantizer (RVQ). Semantic IDs serve as in-context information to
help the LLM understand the multimodal properties of music. We build inverted indexes from code po-
sitions to item IDs for fast lookup by exact code match or small edit distance. Tool arguments include
item modality type, Semantic ID indices, and topk, e.g., semantic_id(item_modality="audio",
indices=[52, 42, 5, 9], topk=20).



Table 2: Conversational music recommendation results. QU, RG, TC indicate query understanding,
response generation, tool calling capabilities, respectively.

Models Methods QU RG TC Hit@l1(1) Hit@10(1) Hit@20(T)
BM25 Sparse v X X 0.017 0.073 0.107
Qwen3-LM + BM25 Generative v/ v X 0.018 0.076 0.110
Qwen3-LM + Tool (Ours) Generative v v v 0.022 0.082 0.111
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Figure 2: Tool Calling Frequency at First Attempt.
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Figure 3: Tool Calling Success Rate at First Attempt.
3 Experiments

We use TalkPlayData 2 [2], a synthetic dataset designed for multimodal conversational music
recommendation. The dataset contains diverse user profiles with demographic information (gender,
age, country) from LFM-2b [22]]. It also provides comprehensive multimodal music representations
including listening history, metadata, semantic tags, lyrics, album art, and audio. We evaluate different
conversational recommendation systems on 1000 test conversations, each consisting of 8 turns. For
conversational recommendation, we measure Hit@K as our primary metrics with k={1,10,20}. We
compare our tool-calling approach against several baseline methods: (1) BM25, a classic sparse
retrieval method; (2) Qwen3-LM + BM25, which combines language model generation with fuzzy
matching; and (3) our proposed Qwen3-LM + Tool Calling approach that leverages multiple tools.
We use Qwen3-LM-4B [30] as our base model, El leveraging its strong reasoning capabilities for
complex tool calling and query decomposition. We set the generation parameters to temperature=0.6
and top_p=0.95. We represent all identifiers (User IDs, Track IDs, Semantic IDs) as natural language
strings rather than special tokens with vocabulary expansion.

4 Discussion

Our tool-calling based conversational recommender outperforms prior methods in zero-shot settings.
As shown in Table 2] Hit@1 improves over Qwen3-LM + BM25 (0.022 vs 0.018), underscoring the
effectiveness of multi-tool retrieval-reranking framework. When an individual tool call fails during
inference, the system automatically retries, ensuring the pipeline completes. The first-attempt analysis
in Figures [2) and [3] further shows higher invocation frequencies for natural language-friendly tools
(SQL, BM25), while item-specific modalities (item-to-item, Semantic ID) are used less often. This
likely reflects pretraining exposure: universal operators like SQL/BM25 are common in IR corpora,
whereas item-to-item and Semantic ID tools have domain-specific function names and interfaces,
making them less familiar to pretrained LLMs. In terms of success rates, more complex tools present
challenges. SQL queries achieve only 27.4% due to syntactic complexity, invalid column names, and
metadata—query mismatches caused by synonyms or typos. Item-to-item reaches 68.4%, reflecting
the difficulty of predicting complete track IDs.

As future work, we will improve domain-specific tool calling reliability. Domain-specific tool calling
requires reinforcement learning to optimize tool selection and execution strategies, which we plan to
incorporate through tool-specific instruction tuning and RL-based policy learning to reduce retries
and raise success rates.

“https://huggingface.co/Qwen/Qwen3-4B
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A In-Context Information for Inference

In the proposed framework, the recommendation is made based on the in-context information provided
to the LLM. This conditioning prompt includes four types of information

System Prompt: The two stages of our framework have two distinct prompts: one for tool calling and,
the other for response generation. For tool calling, we design a structured three-stage prompt for tool
calling that decomposes the complex recommendation process into planning, retrieval, and reranking
phases. Stage 1 (Planning) requires the LLM to select the exact retrieval tool and the reranking tool
with a rationale for each choice. Stage 2 (Retrieval) executes the selected retrieval tool to gather at
least topk unique track_ids from the music database. Stage 3 (Reranking) applies the selected
reranking tool to reorder the candidates to improve recommendation quality. The workflow enforces
strict constraints: tools must be used in sequence (retrieval — reranking) with complementary
roles and no functional overlap. The response generation prompt is designed to clearly explain the
recommendation results, ensuring that the recommended track aligns with user queries.

Tool Functions: We provide a comprehensive list of tool functions with their JSON schema that
includes names, descriptions, and parameter data types. Detailed function examples are included in
the Appendix [B]

User Profiles: For personalization, we provide user demographics and recent listening history as
in-context information to the LLM. The demographics include User ID, type, age group, and gender.
The User ID serves as in-context information for inference to properly activate the "User-to-Item"
tool. For recent listening history, we include metadata from the five most recent tracks from the user’s
listening session, where each track’s information includes metadata, attributes, and Semantic IDs.

Previous Conversation History: We provide the previous conversation state as in-context informa-
tion to the LLM. The conversation state includes the user queries, the recommended musics, and the
responses from the LLM. To incorporate multimodal information of music, we include not only track
IDs but also metadata, attributes, and Semantic IDs as in-context information.

B Tool Calling Functions

This appendix specifies the callable tools used by the agent in a Pythonic format. Each block
presents the function signature, purpose, input arguments, and expected return. All tools return
a list of track_id strings (up to topk), and are designed to be composed in sequence within the
retrieval-reranking pipeline.

def sql(sql_query: str, topk: int) -> list[str]:
nmnn
Execute an SQL query for boolean (structured) matching.
Must return results with track_id
(e.g., "SELECT track_id FROM tracks WHERE ...7).
SQL schema (table: tracks):
track_id TEXT PRIMARY KEY
title TEXT
artist TEXT
album TEXT
popularity INTEGER
release_date DATE (YYYY-MM-DD)
tempo REAL
key TEXT

Args:
sql_query: SQL query string to execute.
topk: Maximum number of track_ids to return.

Returns:
List[str]: Up to “topk™ track_ids.

nnn

def bm25(query: str, corpus_type: str, topk: int) -> list[str]:



Perform BM25 retrieval for lexical matching.
Lowercase all input strings.

BM25 corpora:

'title' : lowercase of track name

'artist' : lowercase of artist name

'album' : lowercase of album name

'lyrics' : lowercase of lyrics

'attributes' : lowercase of genre, instrument, mood, theme, usage, etc.

Args:
query: Search query string.
corpus_type:
One of {"title", "artist", "album", "lyrics", "attributes"}.
topk: Maximum number of track_ids to return.

Returns:
List[str]: Up to “topk™ track_ids.

def

text_to_item_similarity(query: str, modality_type: str,
vector_db_type: str, topk: int) -> list[str]:

Perform text-to-item semantic similarity retrieval.

Args:
query: Search query string.
modality_type: One of {"text", "audio", "image"}.
vector_db_type: One of {"metadata", "lyrics",
"attributes", "audio", "image"Z}.
topk: Maximum number of track_ids to return.

Returns:
List[str]: Up to “topk™ track_ids (most similar to the text query).

def

item_to_item_similarity(track_id: str, modality_type: str,
vector_db_type: str, topk: int) -> list[str]:

nmnn

Perform item-to-item similarity retrieval (example-based recommendation) .

Note: “track_id™ is a 22-character string.

Args:
track_id: Unique track identifier.
modality_type: One of {"audio", "image", "cf"}.
vector_db_type: One of {"audio", "image", "cf"}.
topk: Maximum number of track_ids to return.

Returns:
List[str]: Up to “topk™ track_ids similar to the input item.

def

user_to_item_similarity(user_id: str, topk: int) -> list[str]:
nmnn

Perform user-to-item similarity retrieval (personalization).
Use only the “user_id~ from demographic/profile info.

If “user_type” is "cold_start", do not select this tool.

Args:
user_id: Unique user identifier (string).

topk: Maximum number of results to return.

Returns:




List[str]: Up to “topk™ personalized track_ids.

nnn

def semantic_id_matching(modality_type: str, indices: list[int],
topk: int) -> list[str]:

nnn

Perform Semantic ID matching via codebook index lookups.

Args:
modality_type: One of {"audio", "image", "metadata", "lyrics",
— "attributes", "cf_item"}.
indices: List of code indices (e.g., Residual VQ codes).
topk: Maximum number of results to return.

Returns:
List[str]: Up to “topk™ track_ids matched by Semantic IDs.

nnn

C Tool Environment

Our environment consists of an executor and databases for tool calling. For SQL and BM25 [21]],
we use basic metadata (track name, album name, artist name) and last.fm genre/style annotations
from LFM-2b [22]. For dense retrieval tools, we construct multiple vector databases using various
pretrained models: Qwen3-0.6 embedding [30] for text modality, CLAP [29] for audio modality,
SigLIP2 [25] for image modality, and Bayesian Personalized Ranking (BPR) [20]] for user and item
embeddings. Finally, for Semantic IDs [19}14], we train a separate Residual Vector Quantizer (RVQ)
on pre-extracted each representations (listening history, metadata, semantic tags, lyrics, album art, and
audio), and then combine them to generate multimodal semantic identifiers. The RVQ architecture
employs 4 residual quantization layers with 64 codebooks per layer, optimized with commitment
loss. The hyperparameters were selected through validation experiments designed to balance the
commitment loss and codebook utilization. To ensure fair evaluation and prevent data leakage, we
employ chronological data splits for training both the BPR and RVQ models, where trainset strictly
precedes testset.

D Results

Multi-turn Recommendation: Table 2| demonstrates that our tool-calling approach outperforms
baseline methods in zero-shot conversational music recommendation. The improvement in Hit@ 1
performance (0.022 vs 0.018 for Qwen3-LM + BM25) highlights the effectiveness of reranking
through multiple tool integration. When a tool call once fails during inference (as discussed later
in detail), our system automatically retries the call, ensuring that all inference steps are completed
successfully.

Tool Calling Frequency: Figures[2]and [3 analyze tool calling patterns based on the first attempt
before any retry mechanisms. After repeated retries, in our experiment, the system always reaches
to extract a result. The tool frequency distribution reveals that natural language-friendly tools like
SQL and BM25 show higher usage frequencies, while item-specific modalities such as item-to-item
matching and semantic ID tools exhibit lower frequencies. This pattern likely reflects pretraining
exposure: universal operators such as SQL and BM25 commonly appear across information retrieval
corpora, whereas item-to-item matching and Semantic ID tools tend to have domain-specific function
names and interfaces. Consequently, pretrained LLMs are less familiar with these tools and invoke
them less frequently.

Tool Calling Success Rate: However, the success rate analysis reveals performance challenges with
more complex tools. SQL queries achieve only a 27.4% success rate due to their syntactic complexity
and common errors such as incorrect SQL syntax, using invalid column names, and retrieval failures
caused by synonyms or typos leading to metadata-query mismatches. Item-to-item matching shows a
68.4% success rate, which can be attributed to the challenge of predicting a complete track ID, which
represents private information that is related to the music catalog. Unexpectedly, tools that rely on



Table 3: An inference example with the LLM inputs and

Input: User Demograph
UserID: N/A (Cold User), Age group: 20s, Country: Slovenia, Gender: Female, Previous Tracks: N/A (Cold User)

Input: Chat Context (Previous Turns)
User: I'm looking for a German electronic artist, I think they had an album called *Walls’
with some really minimal and melancholic tracks.

Assistant: TrackID: 1KsqDnRQXFdFypQdFkBOwA,

title: not a number, artist: apparat, album: walls, tags: experimental, 00s, post-rock, instrumental, soundtrack
ambient, electronica, electronic, tempo: 130.37, key: C major, release_date: 2007.05.25

‘audio:semanticID’: [0, 39, 63, 53], ‘image:semanticID’: [41, 10, 17, 48], ‘metadata:semanticID’: [15, 49, 15, 36],
‘lyrics:semanticID’: [45, 38, 39, 50], ‘attributes:semanticID’: [20, 55, 58, 51], ‘cf_item:semanticID’: [59, 21, 42, 34]}
Assistant: Oh, absolutely! Apparat from the Walls album is exactly what I was thinking.

For a really minimal and melancholic vibe, you should definitely check out Not A Number.
It perfectly captures that atmospheric, introspective feeling.

User: Yes, this is exactly the artist I was looking for! Perfect, Apparat is the one.
Can you recommend some other tracks from their discography, especially more instrumental or ambient ones?

Okay, the user just confirmed that Apparat is the artist they were looking for and wants more recommendations
from their discography, specifically instrumental or ambient tracks. Let me break down how to approach this.
First, the user is a cold_start user, so I need to use the appropriate tools.

...[Omitted]...

Alternatively, using the ’artist’ corpus_type with BM25 to find tracks by Apparat, then filter for instrumental,ambient.
But the tools available include BM25, which is for lexical matching. Alternatively, using text_to_item with
modality_type ’text’ and corpus_type attributes’, querying for instrumental, ambient.

...[Omitted]...

So the first tool call would be BM25 with query ’Apparat’, corpus_type ’artist’, topk 20.

Then, the second tool call would be text_to_item_similarity with query ’instrumental, ambient’,

modality_type ’text’, corpus_type ’attributes’, topk 20. But the user is looking for tracks from Apparat,

so the initial retrieval is tracks by Apparat, and the reranking is based on attributes.

[{"tool_name": "bm25","tool_args": {"query": "Apparat”,corpus_type": "artist","topk": 20},

{"tool_name": "text_to_item","tool_args": {"query": "instrumental, ambient","modality_type": "text",
"corpus_type": "attributes","topk": 20}]

Assistant: TrackID: 40HHuqH12ssXNpnHkizOfk,
title: tod, artist: apparat, album: krieg und frieden (music for theatre)
tags: experimental, ambient, dance, electronic, soundtrack, tempo: 85.83, key: A major, release_date: 2013.02.19

Okay, the user just confirmed that Apparat is the artist they were looking for and asked for more recommendations,

specifically instrumental or ambient tracks. The track provided is Tod from Krieg und Frieden (Music for Theatre).

I need to verify if Tod is indeed instrumental or ambient. The tags include experimental, electronic, and soundtrack.
The tempo is 85.83, which is slow, and the key is A major. The release date is 2013.

...[Omitted]...

I should present this track as a recommendation, highlighting the genre, mood, and why it’s a good match.

I need to make sure the response is enthusiastic and confident, confirming that this track matches their preferences.

Then, invite them to explore more similar tracks or discuss other preferences.

Assistant: Absolutely! Tod from Krieg und Frieden (Music for Theatre) is a stunning ambient track that perfectly
complements the minimal, introspective vibe you love. It’s a slow, atmospheric piece with a haunting, melancholic
that feels both electronic and deeply emotional. The A major key and steady tempo create a meditative,

immersive experience. Would you like more recommendations or explore other moods?

unseen information types, such as User IDs and Semantic IDs that were never encountered during

LLM pretraining, demonstrate high success rates. User-to-Item personalization achieves a 98.8%

success rate, and Semantic ID retrieval shows a 95.8% success rate. This high performance stems

from the rich in-context information provided through user profiles and previous conversation history.

Qualitative Example Table 3| shows an inference example of TalkPlay-Tools. The inference process
begins with user information and conversational chat context, including previously recommended
tracks and user profile data. The system proceeds through a tool calling stage where the model
analyzes the user query and identifies appropriate retrieval tools. The retrieved results are then used
to generate natural language response. This multi-stage process ensures both retrieval accuracy and
conversational fluency in the final response.
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E Conclusion

We presented a novel tool-calling framework for conversational music recommendation that seam-
lessly integrates multiple modalities and the various components in a retrieval-reranking pipeline. For
successful integration, we proposed orchestrating external executors and models through LLM tool
calling. Using various types of tools, the proposed framework effectively harnessed multimodal infor-
mation spanning text, audio, visual, and behavioral data to deliver enhanced music recommendations
within conversational contexts. Future research directions present several promising avenues: (1)
incorporating reinforcement learning methodologies to optimize tool calling precision and minimize
reliance on retry mechanisms; (2) designing personalized tool calling strategies that extend beyond
track-centric approaches to capture nuanced user preferences and behavioral patterns more effectively.
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