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Abstract

We study the problem of training diffusion models to sample from a distribution
with a given unnormalized density or energy function. We benchmark several
diffusion-structured inference methods, including simulation-based variational ap-
proaches and off-policy methods (continuous generative flow networks). Our results
shed light on the relative advantages of existing algorithms while bringing into ques-
tion some claims from past work. We also propose a novel exploration strategy for
off-policy methods, based on local search in the target space with the use of a replay
buffer, and show that it improves the quality of samples on a variety of target distri-
butions. Our code for the sampling methods and benchmarks studied is made public
at (link) as a base for future work on diffusion models for amortized inference.

1 Introduction

Approximating and sampling from complex multivariate distributions is a fundamental problem in
probabilistic deep learning [e.g., 27, 35, 26, 48, 57] and in scientific applications [3, 52, 38, 1, 32].
The problem of drawing samples from a distribution given only an unnormalized probability density
or energy is particularly challenging in high-dimensional spaces and when the distribution of interest
has many separated modes [5]. Sampling methods based on Markov chain Monte Carlo (MCMC) –
such as Metropolis-adjusted Langevin [MALA; 24, 65, 64] and Hamiltonian MC [HMC; 20, 31] –
may be slow to mix between modes and have a high cost per sample. While variants such as sequential
MC [SMC; 25, 13, 16] and nested sampling [69, 10, 43] have better mode coverage, their cost may
grow prohibitively with the dimensionality of the problem. This motivates the use of amortized
variational inference, i.e., fitting parametric models that sample the target distribution.

Diffusion models, continuous-time stochastic processes that gradually evolve a simple distribution to
a complex target, are powerful density estimators with proven mode-mixing properties [15]; as such,
they have been widely used in the setting of generative models learned from data [70, 72, 28, 50, 66].
However, the problem of training diffusion models to sample from a distribution with a given black-
box density or energy function has attracted less attention. Recent work has drawn connections
between diffusion (learning the denoising process) and stochastic control (learning the Föllmer
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drift [21]), leading to approaches such as the path integral sampler [PIS; 88], denoising diffusion
sampler [DDS; 78], and time-reversed diffusion sampler [DIS; 8]; such approaches were recently
unified by [63] and [79]. Another line of work [42, 86] is based on continuous generative flow
networks (GFlowNets), which are deep reinforcement learning algorithms adapted to variational
inference that offer stable off-policy training and thus flexible exploration [46].

Despite the advances in sampling methods and attempts to unify them theoretically [63, 79], the field
suffers from some failures in benchmarking and reproducibility, with the works differing in the choice
of model architectures, using unstated hyperparameters, and even disagreeing in their definitions of
the same target densities (see §B.1). The first main contribution of this paper is a unified library for
diffusion-structured samplers. The library has a focus on off-policy methods (continuous GFlowNets)
but also includes simulation-based variational objectives such as PIS. Using this codebase, we are
able to benchmark methods from past work under comparable conditions and confirm claims about
exploration strategies and desirable inductive biases, while calling into question other claims on
robustness and sample efficiency. Our library also includes several new modeling and training
techniques, and we provide preliminary evidence of their utility in possible future work (§5.3).

Our second contribution is a study of methods for improving exploration and credit assignment –
the propagation of learning signals from the target density to the parameters of earlier sampling steps
– in diffusion-structured samplers (§4). First, our results (§5.2) suggest that the technique of utilizing
partial trajectory information [44, 55], as done in the diffusion setting by [86], offers little benefit, and
a higher training cost, over on-policy [88] or off-policy [42] trajectory-based optimization. Second,
we examine the utility of a gradient-based variant which parametrizes the denoising distribution as
a correction to a Langevin process [88]. We show that this inductive bias is also beneficial in the off-
policy (GFlowNet) setting despite higher computational cost. Finally, motivated by recent approaches
in discrete sampling, we propose an efficient exploration technique based on local search in the target
space with the use of a replay buffer, which improves sample quality across various target distributions.

2 Prior work

Amortized variational inference approaches use a parametric model 𝑞𝜃 to approximate a given
target density 𝑝target, typically through stochastic optimization [30, 58, 2]. Notably, explicit density
models like autoregressive models and normalizing flows have been extensively utilized in density
estimation [60, 19, 81, 22, 51]. However, these models impose structural constraints, thereby limiting
their expressive power [14, 23, 87]. The adoption of diffusion processes in generative models has
stimulated a renewed interest in hierarchical models as density estimators [80, 28, 76]. Approaches
like PIS [88] leverage stochastic optimal control for sampling from unnormalized densities, albeit
still struggling with scalability in high-dimensional spaces.

Generative flow networks, originally defined in the discrete case by [6, 7], view hierarchical sampling
(i.e., stepwise generation) as a sequential decision-making process and represent a synthesis of
reinforcement learning and variational inference approaches [46, 90, 73, 18], expanding from specific
scientific domains [e.g., 36, 4, 89] to amortized inference over a broader array of latent structures
[e.g., 77, 34]. Their ability to efficiently navigate trajectory spaces via off-policy exploration has been
crucial, yet they encounter challenges in training dynamics, such as credit assignment and exploration
efficiency [45, 44, 55, 59, 68, 39, 37]. These challenges have repercussions in the scalability of these
methods in more complex scenarios, which this paper addresses in the continuous case.

3 Setting: Diffusion-structured sampling

Let E : R𝑑 → R be a differentiable energy function and define 𝑅(x) = exp(−E(x)), the reward or
unnormalized target density. Assuming the integral 𝑍 :=

∫
R𝑑
𝑅(x) 𝑑x exists, E defines a Boltzmann

density 𝑝target (x) = 𝑅(x)/𝑍 on R𝑑 . We are interested in the problems of sampling from 𝑝target and
approximating the partition function 𝑍 given access only to E and possibly to its gradient ∇E.

We describe two closely related perspectives on this problem: via neural SDEs and stochastic control
(§3.1) and via continuous generative flow networks (§3.2).
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3.1 Euler-Maruyama hierarchical samplers

Generative modeling with SDEs. Diffusion models assume a continuous-time generative process
given by a neural stochastic differential equation [SDE; 75, 54, 67]:

𝑑x𝑡 = 𝑢(x𝑡 , 𝑡; 𝜃) 𝑑𝑡 + 𝑔(x𝑡 , 𝑡; 𝜃) 𝑑w𝑡 , (1)

where x0 follows a fixed tractable distribution 𝜇0 (such as a Gaussian or a point mass). The initial
distribution 𝜇0 and the stochastic dynamics specified by (1) induce marginal densities 𝑝𝑡 on R𝑑 for
each 𝑡 > 0. The functions 𝑢 and 𝑔 have learnable parameters that we wish to optimize, using some
objective, so as to make the terminal density 𝑝1 close to 𝑝target. Samples can be drawn from 𝑝1 by
sampling x0 ∼ 𝜇0 and simulating the SDE (1) to time 𝑡 = 1.

The SDE driving 𝜇0 to 𝑝target is not unique. However, if one fixes a reverse-time SDE, or noising
process, that pushes 𝑝target at 𝑡 = 1 to 𝜇0 at 𝑡 = 0, then its reverse, the forward SDE (1), is uniquely
determined under mild conditions and is called the denoising process. For usual choices of the
noising process, there are stochastic regression objectives for learning the drift 𝑢 of the denoising
process given samples from 𝑝target, and the diffusion rate 𝑔 is available in closed form [28, 72].

Time discretization. In practice, the integration of the SDE (1) is approximated by a discrete-time
scheme, the simplest of which is Euler-Maruyama integration. The process (1) is replaced by a
discrete-time Markov chain x0 → xΔ𝑡 → x2Δ𝑡 → · · · → x1, where Δ𝑡 = 1

𝑇
is the time increment and

and 𝑇 is the number of steps:

x0 ∼ 𝜇0, x𝑡+Δ𝑡 = x𝑡 + 𝑢(x𝑡 , 𝑡; 𝜃)Δ𝑡 + 𝑔(x𝑡 , 𝑡; 𝜃)
√
Δ𝑡 z𝑡 z𝑡 ∼ N(0, I𝑑). (2)

The density of the transition kernel from x𝑡 to x𝑡+Δ𝑡 can explicitly be written as

𝑝𝐹 (x𝑡+Δ𝑡 | x𝑡 ) = N(x𝑡+Δ𝑡 ; x𝑡 + 𝑢(x𝑡 , 𝑡; 𝜃)Δ𝑡, 𝑔(x𝑡 , 𝑡; 𝜃)2Δ𝑡I𝑑), (3)

where 𝑝𝐹 denotes the transition density of the discretized forward SDE. This density defines a joint
distribution over trajectories starting at x0:

𝑝𝐹 (xΔ𝑡 , . . . , x1 | x0) =
𝑇−1∏
𝑖=0

𝑝𝐹 (x(𝑖+1)Δ𝑡 | x𝑖Δ𝑡 ). (4)

Similarly, a discrete-time reverse process x1 → x1−Δ𝑡 → x1−2Δ𝑡 → · · · → x0 with transition densities
𝑝𝐵 (x𝑡−Δ𝑡 | x𝑡 ) defines a joint distribution1 via

𝑝𝐵 (x0, . . . , x1−Δ𝑡 | x1) =
𝑇∏
𝑡=1

𝑝𝐵 (x(𝑖−1)Δ𝑡 | x𝑖Δ𝑡 ). (5)

If the forward and backward processes (starting from 𝜇0 and 𝑝target, respectively) are reverses of each
other, then they define the same distribution over trajectories, i.e., for all x0 → xΔ𝑡 → · · · → x1,

𝜇0 (x0)𝑝𝐹 (xΔ𝑡 , . . . , x1 | x0) = 𝑝target (x1)𝑝𝐵 (x0, . . . , x1−Δ𝑡 | x1). (6)

In particular, the marginal densities of x1 under the forward and backward processes are then equal to
𝑝target, and the forward process can be used to sample the target distribution.

Because the reverse of a process with Gaussian increments is, in general, not itself Gaussian, (6) can
be enforced only approximately, but the discrepancy vanishes as Δ𝑡 → 0 (i.e., increments are infinites-
imally Gaussian), an application of the central limit theorem that is key to stochastic calculus [54].

SDE learning as hierarchical variational inference. The problem of learning the parameters 𝜃 of
the forward process so as to enforce (6) is one of hierarchical variational inference. The backward
process transforms x1 into x0 via a sequence of latent variables x1−Δ𝑡 , . . . , x0, and the forward process
aims to match the posterior distribution over these variables and thus to approximately enforce (6).

In the setting of diffusion models learned from data, where one has samples from 𝑝target, one can
optimize the forward process by minimizing the KL divergence 𝐷KL (𝑝target · 𝑝𝐵∥𝜇0 · 𝑝𝐹) between
the distribution over trajectories given by the reverse process and that given by the forward process.

1In the case that 𝜇0 is a point mass, we assume the distribution x0 | xΔ𝑡 to also be a point mass, which has
density 𝑝𝐵 (x0 | xΔ𝑡 ) = 1 with respect to the measure 𝜇0.
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This is equivalent to the typical training of diffusion models, which optimizes a variational bound on
the data log-likelihood (see [71]). However, in the setting of an intractable density 𝑝target, unbiased
estimators of this divergence are not available. Instead, one can optimize the reverse KL:2

𝐷KL (𝜇0 · 𝑝𝐹 ∥𝑝target · 𝑝𝐵)

=

∫
log

𝜇0 (x0)𝑝𝐹 (xΔ𝑡 , . . . , x1 | x0)
𝑝target (x1)𝑝𝐵 (x0, . . . , x1−Δ𝑡 | x1)

𝑑𝜇0 (x0)𝑝𝐹 (xΔ𝑡 , . . . , x1 | x0) 𝑑xΔ𝑡 . . . 𝑑x1. (7)

Various estimators of this objective are available. For instance, the path integral sampler objec-
tive [PIS; 88] uses the reparametrization trick to express (7) as an expectation over noise variables z𝑡
that participate in the hierarchical sampling of xΔ𝑡 , . . . , x1, yielding an unbiased gradient estimator,
but one that requires backpropagation into the simulation of the forward process. The related
denoising diffusion sampler [DDS; 78] applies the same principle in a different integration scheme.

3.2 Euler-Maruyama samplers as GFlowNets

Continuous generative flow networks (GFlowNets) [42] express the problem of enforcing (6) as a
reinforcement learning task. In this section, we summarize this interpretation, its connection to neural
SDEs, the associated learning objectives, and their relative advantages and disadvantages.

The connection between generative flow networks and diffusion models or SDEs was first made
informally by [46] in the distribution-matching setting and by [84] in the maximum-likelihood
setting, while the theoretical foundations for continuous GFlowNets were later laid down by [42].

State and action space. To formulate sampling as a sequential decision-making problem, one must
define the spaces of states and actions. In the case of sampling by 𝑇-step Euler-Maruyama integration,
assuming 𝜇0 is a point mass at 0, the state space is

S = {(0, 0) ∪
{
(x, 𝑡) : x ∈ R𝑑 , 𝑡 ∈ {Δ𝑡, 2Δ𝑡, . . . , 1}

}
,

with the point (x, 𝑡) representing that the sampling agent is at position x at time 𝑡.

Sampling begins with the initial state x0 := (0, 0), proceeds through a sequence of states (xΔ𝑡 ,Δ𝑡),
(x2Δ𝑡 , 2Δ𝑡), . . . , and ends at a state (x1, 1); states (x, 𝑡) with 𝑡 = 1 are called terminal states and their
collection is denotedX. From now on, we will often write x𝑡 in place of the state (x𝑡 , 𝑡) when the time
𝑡 is clear from context. The sequence of states x0 → xΔ𝑡 → · · · → x1 is called a complete trajectory.

The actions from a nonterminal state (x𝑡 , 𝑡) correspond to the possible next states (x𝑡+Δ𝑡 , 𝑡 + Δ𝑡)
that can be reached from (x𝑡 , 𝑡) by a single step of the Euler-Maruyama integrator.3

Forward policy and learning problem. A (forward) policy is a collection of continuous distributions
over the successor states – states reachable by a single action – of every nonterminal state (x, 𝑡). In our
context, this amounts to a collection of conditional probability densities 𝑝𝐹 (x𝑡+Δ𝑡 | x𝑡 ; 𝜃), represent-
ing the density of the transition kernel from x𝑡 to x𝑡+Δ𝑡 . GFlowNet training optimizes the parameters
𝜃, which may be the weights of a neural network specifying a density over x𝑡+Δ𝑡 conditioned on xΔ𝑡 .
A policy 𝑝𝐹 induces a distribution over complete trajectories 𝜏 = (x0 → xΔ𝑡 → · · · → x1) via

𝑝𝐹 (𝜏; 𝜃) =
𝑇−1∏
𝑖=0

𝑝𝐹 (x(𝑖+1)Δ𝑡 | x𝑖Δ𝑡 ; 𝜃).

In particular, we get a marginal density over terminal states:

𝑝⊤𝐹 (x1; 𝜃)=
∫

𝑝𝐹 (x0 → xΔ𝑡 → · · · → x1; 𝜃) 𝑑xΔ𝑡 . . . 𝑑x1−Δ𝑡 . (8)

The learning problem solved by GFlowNets is to find the parameters 𝜃 of a policy 𝑝𝐹 whose
terminating density 𝑝⊤

𝐹
is equal to 𝑝target, i.e.,

𝑝⊤𝐹 (x1; 𝜃) = 𝑅(x1)
𝑍

∀x1 ∈ R𝑑 . (9)

2To be precise, the fraction in (7) should be understood as a Radon-Nikodym derivative, which makes sense
whether 𝜇0 is a point mass or a continuous distribution and generalizes to continuous time [8, 63].

3Formally, the foundations in [42] require assuming reference measures with respect to which the reward and
kernel densities are defined. As we deal with Euclidean spaces and assume the Lebesgue measure, readers need
not burden themselves with measure theory. We note, however, that this flexibility allows easy generalization to
sampling on other spaces, such as any Riemannian manifolds, where other methods do not directly apply.
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However, because the integral (8) is intractable and 𝑍 is unknown, auxiliary objects must be introduced
into optimization objectives to enforce (9), as discussed below.

Notably, if the policy is a Gaussian with mean and variance given by neural networks taking x𝑡 and 𝑡
as input, then learning the policy amounts to learning the drift 𝑢(x𝑡 , 𝑡; 𝜃) and diffusion 𝑔(x𝑡 , 𝑡; 𝜃) of a
SDE (1), i.e., fitting a neural SDE. The SDE learning problem in §3.1 is thus the same as that of
fitting a GFlowNet with Gaussian policies.

Backward policy and trajectory balance. A backward policy is a collection of conditional prob-
ability densities 𝑝𝐵 (x𝑡−Δ𝑡 | x𝑡 ;𝜓), representing a probability density of transitioning from x𝑡 to
an ancestor state x𝑡−Δ𝑡 . The backward policy induces a distribution over complete trajectories 𝜏
conditioned on their terminal state (cf. (5)):

𝑝𝐵 (𝜏 | x1;𝜓) =
𝑇∏
𝑖=1

𝑝𝐵 (x(𝑖−1)Δ𝑡 | x𝑖Δ𝑡 ;𝜓),

where exceptionally 𝑝𝐵 (x0 | xΔ𝑡 ) = 1 as 𝜇0 is a point mass.

Generalizing a result in the discrete-space setting [45], [42] show that 𝑝𝐹 samples from the target dis-
tribution (i.e., satisfies (9)) if and only if there exists a backward policy 𝑝𝐵 and a scalar 𝑍𝜃 such that the
trajectory balance conditions are fulfilled for every complete trajectory 𝜏 = (x0 → xΔ𝑡 → · · · → x1):

𝑍𝜃 𝑝𝐹 (𝜏; 𝜃) = 𝑅(x1)𝑝𝐵 (𝜏 | x1;𝜓). (10)
If these conditions hold, then 𝑍𝜃 equals the true partition function 𝑍 =

∫
x 𝑅(x) 𝑑x. The trajectory

balance objective for a trajectory 𝜏 is the squared log-ratio of the two sides of (10), that is:

LTB (𝜏; 𝜃, 𝜓) =
(
log

𝑍𝜃 𝑝𝐹 (𝜏; 𝜃)
𝑅(x1)𝑝𝐵 (𝜏 | x1;𝜓)

)2
. (11)

One can thus achieve (9) by minimizing to zero the loss LTB (𝜏; 𝜃, 𝜓) with respect to the parameters
𝜃 and 𝜓, where the trajectories 𝜏 used for training are sampled from some training policy 𝜋(𝜏).
While it is possible to optimize (11) with respect to the parameters of both the forward and backward
policies, in some learning problems, one fixes the backward policy and only optimizes the parameters
of 𝑝𝐹 and the estimate of the partition function 𝑍𝜃 . For example, for most experiments in §5, we
fix the backward policy to a discretized Brownian bridge, following past work.

Off-policy optimization. Unlike the KL objective (7), whose gradient involves an expectation over
the distribution of trajectories under the current forward process, (11) can be optimized off-policy, i.e.,
using trajectories sampled from an arbitrary distribution 𝜋. Because minimizing LTB (𝜏; 𝜃, 𝜓) to 0 for
all 𝜏 in the support of 𝜋 will achieve (9), 𝜋 can be taken be any distribution with full support, so as to
promote discovery of modes of the target distribution. Various choices motivated by reinforcement
learning techniques have been proposed, including noisy exploration or tempering [6], replay buffers
[17], Thompson sampling [59], and backward traces from terminal states obtained by MCMC [43].
In the continuous case, [46, 42] proposed to simply add a small constant to the policy variance when
sampling trajectories for training. Off-policy optimization is a key advantage of GFlowNets over
variational methods such as PIS, which require on-policy optimization [46].

However, when LTB happens to be optimized on-policy, i.e., using trajectories sampled from the
policy 𝑝𝐹 itself, we get an unbiased estimator of the gradient of the KL divergence (7) with respect
to 𝑝𝐹’s parameters up to a constant [62, 46, 90], that is:

E𝜏∼𝑝𝐹 (𝜏 ) [∇𝜃 ′LTB (𝜏; 𝜃, 𝜓)] = 2∇𝜃 ′𝐷KL (𝑝𝐹 (𝜏; 𝜃)∥𝑝target (x1)𝑝𝐵 (𝜏 | x1;𝜓)),
where ∇𝜃 ′ denotes the gradient with respect to the parameters of 𝑝𝐹 , but not 𝑍𝜃 . This unbiased
estimator tends to have higher variance than the reparametrization-based estimator used by PIS. On
the other hand, it does not require backpropagation through the simulation of the forward process
and can be used to optimize the parameters of both the forward and backward policies.

Other objectives. The trajectory balance objective (11) is not the only possible objective that can be
used to enforce (9). A notable generalization is subtrajectory balance [SubTB; 44], which involves
modeling a scalar state flow 𝑓 (x𝑡 ; 𝜃) associated with each state x𝑡 – intended to model the marginal
density of the forward process at x𝑡 – and enforcing subtrajectory balance conditions for all partial
trajectories x𝑚Δ𝑡 → x(𝑚+1)Δ𝑡 → · · · → x𝑛Δ𝑡 :

𝑓 (x𝑚Δ𝑡 ; 𝜃)
𝑛−1∏
𝑖=𝑚

𝑝𝐹 (x(𝑖+1)Δ𝑡 | x𝑖Δ𝑡 ; 𝜃) = 𝑓 (x𝑛Δ𝑡 ; 𝜃)
𝑛∏

𝑖=𝑚+1
𝑝𝐵 (x(𝑖−1)Δ𝑡 | x𝑖Δ𝑡 ;𝜓), (12)
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where for terminal states 𝑓 (x1) = 𝑅(x1). This approach has some computational overhead associated
with training the state flow, but has been shown to be effective in discrete-space settings, especially
when combined with the forward-looking reward shaping scheme proposed by [55]. It has also been
tested in the continuous case, but our experimental results suggest that it offers little benefit over
the TB objective in the diffusion setting (see §4.1 and §B.1).

It is also worth noting the off-policy VarGrad estimator [53, 62], rediscovered for GFlowNets by [85].
Like TB, VarGrad can be optimized over trajectories drawn off-policy. Rather than enforcing (10) for
every trajectory, VarGrad optimizes the empirical variance (over a minibatch) of the log-ratio of the
two sides of (10). As noted by [46], this is equivalent to minimizing LTB first with respect to log 𝑍𝜃
to optimality over the batch, then with respect to the parameters of 𝑝𝐹 .

4 Exploration and credit assignment in continuous GFlowNets

The main challenges in training off-policy sampling models are exploration efficiency (discovery
of high-reward states) and credit assignment (propagation of reward signals to the actions that led to
them). We describe several new and existing methods for addressing these challenges in the context
of diffusion-structured GFlowNets. These techniques will be empirically studied and compared in §5.

4.1 Credit assignment methods

Partial energies and subtrajectory-based learning. [86] studied the diffusion sampler learning prob-
lem introduced by [42], but replaced the TB learning objective with the SubTB objective.4 In addition,
an inductive bias resembling the geometric interpolation in [47] was used for the state flow function:

log 𝑓 (x𝑡 ; 𝜃) = (1 − 𝑡) log 𝑝ref
𝑡 (x𝑡 ) + 𝑡 log 𝑅(x𝑡 ) + NN(x𝑡 , 𝑡; 𝜃), (13)

where NN is a neural network and 𝑝ref
𝑡 (x𝑡 ) = N(x𝑡 ; 0, 𝜎2𝑡 𝐼𝑑) is the marginal density of a Brownian

motion with rate 𝜎 at x𝑡 . The use of the target density log 𝑅(x𝑡 ) = −E(x𝑡 ) in the state flow function
was hypothesized to provide an effective signal driving the sampler to high-density states at early
steps in the trajectory. Such an inductive bias on the state flow was called forward-looking (FL) by
[55], and we will refer to this method as FL-SubTB in §5.

Langevin dynamics inductive bias. [88] proposed an inductive bias on the architecture of the drift
of the neural SDE 𝑢(x𝑡 , 𝑡; 𝜃) (in GFlowNet terms, the mean of the Gaussian density 𝑝𝐹 (x𝑡+Δ𝑡 | x𝑡 ; 𝜃))
that resembles a Langevin process on the target distribution. One writes

𝑢(x𝑡 , 𝑡; 𝜃) = NN1 (x𝑡 , 𝑡; 𝜃) + NN2 (𝑡; 𝜃)∇E(x𝑡 ), (14)

where NN1 and NN2 are neural networks outputting a vector and a scalar, respectively. The second
term in (14) is a scaled gradient of the target energy – the drift of a Langevin SDE – and the first term
is a learned correction. This inductive bias, which we name the Langevin parametrization (LP), was
shown to improve the efficiency of PIS. We will study its effect on continuous GFlowNets in §5.

The inductive bias (14) placed on policies represents a different way of incorporating the reward signal
at intermediate steps in the trajectory and can steer the sampler towards low-energy regions. It con-
trasts with (13) in that it provides the gradient of the energy directly to the policy, rather than just using
the energy to provide a learning signal to policies via the parametrization of the log-state flow (13).

Considerations of the continuous-time limit lead us to conjecture that the Langevin parametrization
(14) with NN1 independent of x𝑡 is equivalent to the forward-looking flow (13) in the limit of small
time increments Δ𝑡 → 0, i.e., they induce the same asymptotics of the discrepancy in the SubTB con-
straints (12) over short partial trajectories. Such theoretical analysis can be the subject of future work.

4.2 A new method for off-policy exploration with local search and replay buffer

Local search with parallel MALA. The FL and LP inductive biases both induce computational
overhead: either in the evaluation and optimization of a state flow or in the need to evaluate the
energy gradient at every step of sampling (see §C.3). We present an alternative technique that does
not induce additional computation cost per training trajectory.

4Despite the claimed benefits of FL-SubTB for diffusion samplers, we discovered that [86] modifies critical
experimental variables in comparisons and reports irreproducible results; see §B.1.
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Table 1: Log-partition function estimation errors for unconditional modeling tasks (mean and standard
deviation over 5 runs). The four groups of models are: MCMC-based samplers, simulation-driven
variational methods, baseline GFlowNet methods with different learning objectives, and methods
augmented with Langevin parametrization and local search. See §C.1 for additional metrics.
Energy→ 25GMM (𝑑 = 2) Funnel (𝑑 = 10) Manywell (𝑑 = 32) LGCP (𝑑 = 1600)

Algorithm ↓Metric→ Δ log 𝑍 Δ log 𝑍RW Δ log 𝑍 Δ log 𝑍RW Δ log 𝑍 Δ log 𝑍RW log �̂� log �̂�RW

SMC 0.569±0.010 0.561±0.801 14.99±1.078 See discussion in §B.1
GGNS [43] 0.016±0.042 0.033±0.173 0.292±0.454 N/A

DIS [8] 1.125±0.056 0.986±0.011 0.839±0.169 0.093±0.038 10.52±1.02 3.05±0.46 299.83±0.67 361.15±6.48

DDS [78] 1.760±0.08 0.746±0.389 0.424±0.049 0.206±0.033 7.36±2.43 0.23±0.05 471.64±1.20 489.30±0.62

PIS [88] 1.769±0.104 1.274±0.218 0.534±0.008 0.262±0.008 3.85±0.03 2.69±0.04 381.14±1.42 414.42±2.06

+ LP [88] 1.799±0.051 0.225±0.583 0.587±0.012 0.285±0.044 13.19±0.82 0.07±0.85 471.45±0.18 487.82±2.26

TB [42] 1.176±0.109 1.071±0.112 0.690±0.018 0.239±0.192 4.01±0.04 2.67±0.02 336.70±56.22 379.50±49.99

TB + Expl. [42] 0.560±0.302 0.422±0.320 0.749±0.015 0.226±0.138 4.01±0.05 2.68±0.06 346.10±55.54 389.21±44.13

VarGrad + Expl. 0.615±0.241 0.487±0.250 0.642±0.010 0.250±0.112 4.01±0.05 2.69±0.06 370.37±0.26 410.37±6.70

FL-SubTB 1.127±0.010 1.020±0.010 0.527±0.011 0.182±0.142 3.98±0.07 2.72±0.05 365.20±6.08 402.65±8.36

+ LP [86] 0.209±0.025 0.011±0.024 0.563±0.021 0.155±0.317 4.23±0.12 2.66±0.22 465.44±1.26 483.90±1.95

TB + Expl. + LS (ours) 0.171±0.013 0.004±0.011 0.653±0.025 0.285±0.099 4.57±2.13 0.19±0.29 384.90±0.83 419.55±2.14

TB + Expl. + LP (ours) 0.206±0.018 0.011±0.010 0.666±0.615 0.051±0.616 7.46±1.74 1.06±1.11 452.82±1.50 477.62±1.79

TB + Expl. + LP + LS (ours) 0.190±0.013 0.007±0.011 0.768±0.052 0.264±0.063 4.68±0.49 0.07±0.17 471.14±0.25 489.03±1.38

VarGrad + Expl. + LP + LS (ours) 0.207±0.016 0.015±0.015 0.920±0.118 0.256±0.037 4.11±0.45 0.02±0.21 468.65±0.63 487.34±1.34

Highlight : mean indistinguishable from best in column with 𝑝 < 0.05 under one-sided Welch unpaired 𝑡-test.

Figure 1: Two-dimensional projections of Many-
well samples from models trained by different al-
gorithms. Our proposed replay buffer with local
search is capable of preventing mode collapse.

To enhance the quality of samples during
training, we incorporate local search into the
exploration process, motivated by the success of
local exploration [83, 33, 40] and replay buffer
[e.g., 17] methods for GFlowNets in discrete
spaces. Unlike these methods, which define
MCMC kernels via the GFlowNet policies, our
method leverages parallel Metropolis-adjusted
Langevin (MALA) directly in the target space.

In detail, we initially sample 𝑀 candidates from the sampler: {x(1) , . . . , x(𝑀 ) } ∼ 𝑝⊤
𝐹
(·). Subse-

quently, we run parallel MALA across 𝑀 chains over 𝐾 transitions , with the initial states of the
Markov chain being {x(1) , . . . , x(𝑀 ) }. After the 𝐾burn-in burn-in transitions, the accepted samples are
stored in a local search buffer DLS. We occasionally update the buffer using MALA steps and replay
samples from it to minimize the computational demands of iterative local search. MALA steps are
far more parallelizable than sampler training and need to be made only rarely (as the buffer is much
larger than the training batch size), so the overhead of local search is small.

Training with local search and replay buffer. To train samplers with the aid of the buffer, we draw a
sample x from DLS (uniformly or using a prioritization scheme, §E), sample a trajectory 𝜏 leading to
x from the backward process, and make a gradient update on the objective (e.g., TB) associated with 𝜏.

When training with local search guidance, we alternate two steps, inspired by [43], who alternate
training on forward trajectories and backward trajectories initialized at a fixed set of MCMC samples.
Step A involves training with on-policy or exploratory forward sampling while Step B uses samples
drawn from the local search buffer described above. This allows the sampler to explore both
diversified samples (Step A) and low-energy samples (Step B). See §E for detailed pseudocode of
adaptive-step parallel MALA and local search-guided GFlowNet training.

5 Experiments

We conduct comprehensive benchmarks of various diffusion-structured samplers, encompassing both
GFlowNet samplers and methods such as PIS. For the GFlowNet samplers, we investigate a range of
techniques, including different exploration strategies and loss functions. Additionally, we examine
the efficacy of the Langevin parametrization and the newly proposed local search with buffer.

5.1 Tasks and baselines

We explore two types of tasks, with more details provided in §B: sampling from energy distributions
– a 2-dimensional mixture of Gaussians with 25 modes (25GMM), the 10-dimensional Funnel, the
32-dimensional Manywell distribution, and the 1600-dimensional Log-Gaussian Cox process –
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and conditional sampling from the latent posterior of a variational autoencoder (VAE; [41, 61]).
This allows us to investigate both unconditional and conditional generative modeling techniques.

We evaluate three algorithm categories:

(1) Traditional sampling methods: We consider a standard Sequential Monte Carlo (SMC) imple-
mentation and a state-of-the-art nested sampling method (GGNS, [43]).

(2) Simulation-driven variational approaches: DIS [8], DDS [78], and PIS [88].
(3) Diffusion-based GFlowNet samplers: Our evaluation focuses on TB-based training and the

enhancements described in §4: the VarGrad estimator (VarGrad), off-policy exploration (Expl.),
Langevin parametrization (LP), and local search (LS). Additionally, we assess the FL-SubTB-
based continuous GFlowNet as studied by [86] for a comprehensive comparison.

For (2) and (3), we employ a consistent neural architecture across methods (details in §D).

Learning problem and fixed backward process. In our main experiments, we borrow the modeling
setting from [88]. We aim to learn a Gaussian forward policy 𝑝𝐹 that samples from the target
distribution in 𝑇 = 100 steps (Δ𝑡 = 0.01). Just as in past work [88, 42, 86], the backward process is
fixed to a discretized Brownian bridge with a noise rate 𝜎 that depends on the domain; explicitly,

𝑝𝐵 (x𝑡−Δ𝑡 | x𝑡 )=N
(
x𝑡−Δ𝑡 ;

𝑡 − Δ𝑡
𝑡

x𝑡 ,
𝑡 − Δ𝑡
𝑡

𝜎2Δ𝑡I𝑑
)
, (15)

understood to be a point mass at 0 when 𝑡 = Δ𝑡. To keep the learning problem consistent with past
work, we fix the variance of the forward policy 𝑝𝐹 to 𝜎2. This simplification is justified in continuous
time, when the forward and reverse SDEs have the same diffusion rate. However, in §5.3, we will
provide evidence that learning the forward policy’s variance is quite beneficial for shorter trajectories.

Benchmarking metrics. To evaluate diffusion-based samplers, we use two metrics from past work
[88, 42], which we restate in our notation. Given any forward policy 𝑝𝐹 , we have a variational lower
bound on the log-partition function log 𝑍 =

∫
R𝑑
𝑅(x) 𝑑x:

log
∫
R𝑑
𝑅(x) 𝑑x = log E

𝜏=( ·· ·→x1 )∼𝑝𝐹 (𝜏 )

[
𝑅(x1)𝑝𝐵 (𝜏 | x1)

𝑝𝐹 (𝜏)

]
≥ E
𝜏=( ·· ·→x1 )∼𝑝𝐹 (𝜏 )

[
log

𝑅(x1)𝑝𝐵 (𝜏 | x1)
𝑝𝐹 (𝜏)

]
.

We use a 𝐾-sample (𝐾 = 2000) Monte Carlo estimate of this expectation, log �̂� , as a metric,
which equals the true log 𝑍 if 𝑝𝐹 and 𝑝𝐵 jointly satisfy (10) and thus 𝑝𝐹 samples from the target
distribution. We also employ an importance-weighted variant, which emphasizes mode coverage
over accurate local modeling:

log �̂�RW := log
𝐾∑︁
𝑖=1

[
𝑅(x(𝑖)1 )𝑝𝐵 (𝜏

(𝑖) | x(𝑖)1 )
𝑝𝐹 (𝜏 (𝑖) )

]
,

where 𝜏 (1) , . . . , 𝜏 (𝐾 ) are trajectories sampled from 𝑝𝐹 and leading to terminal states x(1)1 , . . . , x(𝐾 )1 .
The estimator log �̂�RW is also a lower bound on log 𝑍 and approaches it as 𝐾 →∞ [11]. In the uncon-
ditional modeling benchmarks, we compare both estimators to the true log-partition function, which
is known analytically for all tasks except LGCP (leading to discrepancies in past work; see §B.1).

In addition, we include a sample-based metric (2-Wasserstein distance); see §C.1.

5.2 Results

0 0.1 0.2 0.3 0.4 0.5
Exploration rate

2.5

2.0

1.5

1.0

0.5

0.0

lo
gZ

Constant exploration
Decaying exploration
Ground truth

Figure 2: Effect of exploration variance on models
trained with TB on the 25GMM energy. Explo-
ration promotes mode discovery, but should be de-
cayed over time to optimally allocate the modeling
power to high-likelihood trajectories.

Unconditional sampling. We report the metrics
for all algorithms and energies in Table 1.

We observe that TB’s performance is generally
modest without additional exploration and credit
assignment mechanisms, except on the Funnel
task, where variations in performance across
methods are negligible. This confirms hypothe-
ses from past work about the importance of off-
policy exploration [46, 42] and the importance
of improved credit assignment [86]. On the
other hand, our results do not show a consistent
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Figure 3: Left: Distribution of x0, x0.1, . . . , x1 learned by 10-step samplers with fixed (top) and
learned (middle) forward policy variance on the 25GMM energy. The last step of sampling the
fixed-variance model adds Gaussian noise of a variance close to that of the components of the target
distribution, preventing the the sampler from sharply capturing the modes. The last row shows the
policy variance learned as a function of x𝑡 at various time steps 𝑡 (white is high variance, blue is
low), showing that less noise is added around the peaks near 𝑡 = 1. The two models’ log-partition
function estimates are −1.67 and −0.62, respectively. Right: For varying number of steps 𝑇 , we
plot the log �̂� obtained by models with fixed and learned variance. Learning policy variances gives
similar samplers with fewer steps.

and significant improvement of the FL-SubTB
objective used by [86] over TB. Replacing TB with the VarGrad objective yields similar results.

The simple off-policy exploration method of adding variance to the policy notably enhances perfor-
mance on the 25GMM task. We investigate this phenomenon in more detail in Fig. 2, finding that
exploration that slowly decreases over the course of training is the best strategy.

On the other hand, our local search-guided exploration with a replay buffer (LS) leads to a substantial
improvement in performance, surpassing or competing with GFlowNet baselines, non-GFlowNet
baselines, and non-amortized sampling methods in most tasks and metrics. This advantage is
attributed to efficient exploration and the ability to replay past low-energy regions, thus preventing
mode collapse during training (Fig. 1). Further details on LS enhancements are discussed in §E with
ablation studies in §E.2.

Table 2: Log-likelihood estimates on a test set for
a pretrained VAE decoder on MNIST. The latent
being sampled is 20-dimensional. The VAE’s train-
ing ELBO (Gaussian encoder) was ≈ −101.
Algorithm ↓Metric→ log �̂� log �̂�RW

GGNS [43] −82.406±0.882

PIS [88] −102.54±0.437 −47.753±2.821
+ LP [88] −99.890±0.373 −47.326±0.777

TB [42] −162.73±35.55 −61.407±17.83

VarGrad −102.54±0.934 −46.502±1.018

TB + Expl. [42] −148.04±4.046 −49.967±5.683
FL-SubTB −147.992±22.671 −54.196±3.996

+ LP [86] −111.536±1.027 −47.640±1.313

TB + Expl. + LS (ours) −245.78±13.80 −55.378±9.125
TB + Expl. + LP (ours) −112.45±0.671 −48.827±1.787
TB + Expl. + LP + LS (ours) −117.26±2.502 −49.157±2.051

VarGrad + Expl. (ours) −103.39±0.691 −47.318±1.981
VarGrad + Expl. + LS (ours) −105.40±0.882 −48.235±0.891

VarGrad + Expl. + LP (ours) −99.472±0.259 −46.574±0.736

VarGrad + Expl. + LP + LS (ours) −99.783±0.312 −46.245±0.543

Incorporating Langevin parametrization (LP)
into TB or FL-SubTB results in notable
performance improvements (despite being 2-3×
slower per iteration), indicating that previous
observations [88] transfer to off-policy algo-
rithms. Compared to FL-SubTB, which aims
for enhanced credit assignment through partial
energy, LP achieves superior credit assignment
leveraging gradient information, akin to partial
energy in continuous time. LP is either superior
or competitive across most tasks and metrics.

In §C.3, we study the scaling of the algorithms
with dimension, showing efficiency of the
proposed LS.

Conditional sampling. For the VAE task, we
observe that the performance of the baseline
GFlowNet-based samplers is generally worse
than that of the simulation-based PIS (Table 2). While LP and LS improve the performance of
TB, they do not close the gap in likelihood estimation; however, with the VarGrad objective, the
performance is competitive with or superior to PIS. We hypothesize that this discrepancy is due to
the difficulty of fitting the conditional log-partition function estimator, which is required for the TB
objective but not for VarGrad, which only learns the policy. (In Fig. D.1 we show decoded samples
encoded using the best-performing diffusion encoder.)
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5.3 Extensions to general SDE learning problems

Our implementation of diffusion-structured generative flow networks includes several additional
options that diverge from the modeling assumptions made in most past work in the field. Notably, it
features the ability to:

• optimize the backward (noising) process – not only the denoising process – as was done for
related learning problems in [12, 63, 79];

• learn the forward process’s diffusion rate 𝑔(x𝑡 , 𝑡; 𝜃), not only the mean 𝑢(x𝑡 , 𝑡; 𝜃);
• assume a varying noise schedule for the backward process, making it possible to train models

with standard noising SDEs used for diffusion models for images.

These extensions will allow others to build on our implementation and apply it to problems such as
finetuning diffusion models trained on images with a GFlowNet objective.

As noted in §5.1, in the main experiments we fixed the diffusion rate of the learned forward process,
an assumption inherited from all past work and justified in the continuous-time limit. However, we
perform an experiment to show the importance of extensions such as learning the forward variance in
discrete time. Fig. 3 shows the samples of models on the 25GMM energy following the experimental
setup of [43]. We see that when the forward policy’s variance is learned, the model can better capture
the details of the target distributions, choosing a low variance in the vicinity of the peaks to avoid
‘blurring’ them through the noise added in the last step of sampling.

In §C.2, we include preliminary results using a variance-preserving backward process, as commonly
used in diffusion models, in place of the reversed Brownian motion used in the main experiments.

The ability to model distributions accurately in fewer steps is important for computational efficiency.
Future work can consider ways to improve performance in coarse time discretizations, such as non-
Gaussian transitions, whose utility in diffusion models trained from data has been demonstrated [82].

6 Conclusion

We have presented a study of diffusion-structured samplers for amortized inference over continuous
variables. Our results suggest promising techniques for improving the mode coverage and efficiency
of these models. Future work on applications can consider inference of high-dimensional parameters
of dynamical systems and inverse problems. In probabilistic machine learning, extensions of this
work should study integration of our amortized sequential samplers as variational posteriors in an
expectation-maximization loop for training latent variable models, as was recently done for discrete
compositional latents by [33], and for sampling Bayesian posteriors over high-dimensional model
parameters. The most important direction of theoretical work is understanding the continuous-time
limit (𝑇 →∞) of all the algorithms we have studied.

Note added in final version: In a paper that appeared subsequently to the publication of this work,
Berner et al. [9] have shown connections among the families of diffusion sampling algorithms
considered here and analyzed their continuous-time limits.
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A Code and hyperparameters

Code is available at https://github.com/GFNOrg/gfn-diffusion and will continue to be main-
tained and extended.

Below are commands to reproduce some of the results on Manywell and VAE with PIS and GFlowNet
models as an example, showing the hyperparameters:

PIS:

--mode_fwd pis --lr_policy 1e-3

PIS + Langevin:

--mode_fwd pis --lr_policy 1e-3 --langevin

GFlowNet TB:

python train.py
--t_scale 1. --energy many_well --pis_architectures --zero_init --clipping
--mode_fwd tb --lr_policy 1e-3 --lr_flow 1e-1

GFlowNet TB + Expl.:

python train.py
--t_scale 1. --energy many_well --pis_architectures --zero_init --clipping
--mode_fwd tb --lr_policy 1e-3 --lr_flow 1e-1
--exploratory --exploration_wd --exploration_factor 0.2

GFlowNet VarGrad + Expl.:

python train.py
--t_scale 1. --energy many_well --pis_architectures --zero_init --clipping
--mode_fwd tb-avg --lr_policy 1e-3 --lr_flow 1e-1
--exploratory --exploration_wd --exploration_factor 0.2

GFlowNet FL-SubTB:

python train.py
--t_scale 1. --energy many_well --pis_architectures --zero_init --clipping
--mode_fwd subtb --lr_policy 1e-3 --lr_flow 1e-2
--partial_energy --conditional_flow_model

GFlowNet FL-SubTB + LP:

python train.py
--t_scale 1. --energy many_well --pis_architectures --zero_init --clipping
--mode_fwd subtb --lr_policy 1e-3 --lr_flow 1e-2
--partial_energy --conditional_flow_model
--langevin --epochs 10000

GFlowNet TB + Expl. + LS:

python train.py
--t_scale 1. --energy many_well --pis_architectures --zero_init --clipping
--mode_fwd tb --lr_policy 1e-3 --lr_back 1e-3 --lr_flow 1e-1
--exploratory --exploration_wd --exploration_factor 0.1
--both_ways --local_search
--buffer_size 600000 --prioritized rank --rank_weight 0.01
--ld_step 0.1 --ld_schedule --target_acceptance_rate 0.574

GFlowNet TB + Expl. + LP:
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python train.py
--t_scale 1. --energy many_well --pis_architectures --zero_init --clipping
--mode_fwd tb --lr_policy 1e-3 --lr_flow 1e-1
--exploratory --exploration_wd --exploration_factor 0.2
--langevin --epochs 10000

GFlowNet TB + Expl. + LS (VAE):

python train.py
--energy vae --pis_architectures --zero_init --clipping
--mode_fwd cond-tb-avg --mode_bwd cond-tb-avg --repeats 5
--lr_policy 1e-3 --lr_flow 1e-1 --lr_back 1e-3
--exploratory --exploration_wd --exploration_factor 0.1
--both_ways --local_search
--max_iter_ls 500 --burn_in 200
--buffer_size 90000 --prioritized rank --rank_weight 0.01
--ld_step 0.001 --ld_schedule --target_acceptance_rate 0.574

GFlowNet TB + Expl. + LP + LS (VAE):

python train.py
--energy vae --pis_architectures --zero_init --clipping
--mode_fwd cond-tb-avg --mode_bwd cond-tb-avg --repeats 5
--lr_policy 1e-3 --lr_flow 1e-1
--lgv_clip 1e2 --gfn_clip 1e4 --epochs 10000
--exploratory --exploration_wd --exploration_factor 0.1
--both_ways --local_search
--lr_back 1e-3 --max_iter_ls 500 --burn_in 200
--buffer_size 90000 --prioritized rank --rank_weight 0.01
--langevin
--ld_step 0.001 --ld_schedule --target_acceptance_rate 0.574
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B Target densities

Gaussian Mixture Model with 25 modes (25GMM). The model, termed as 25GMM, consists of a
two-dimensional Gaussian mixture model with 25 distinct modes. Each mode exhibits an identical
variance of 0.3. The centers of these modes are strategically positioned on a grid formed by the
Cartesian product {−10,−5, 0, 5, 10} × {−10,−5, 0, 5, 10}, effectively distributing them across the
coordinate space.

Funnel [29]. The funnel represents a classical benchmark in sampling techniques, characterized
by a ten-dimensional distribution defined as follows: The first dimension, 𝑥0, follows a normal
distribution with mean 0 and variance 9, denoted as 𝑥0 ∼ N(0, 9). Conditional on 𝑥0, the remaining
dimensions, 𝑥1:9, are distributed according to a multivariate normal distribution with mean vector 0
and a covariance matrix exp(𝑥0)I, where I is the identity matrix. This is succinctly represented as
𝑥1:9 | 𝑥0 ∼ N (0, exp (𝑥0) I).
Manywell [52]. The manywell is characterized by a 32-dimensional distribution, which is con-
structed as the product of 16 identical two-dimensional double well distributions. Each of
these two-dimensional components is defined by a potential function, 𝜇(𝑥1, 𝑥2), expressed as
𝜇(𝑥1, 𝑥2) = exp

(
−𝑥4

1 + 6𝑥2
1 + 0.5𝑥1 − 0.5𝑥2

2
)
.

VAE [41]. This task involves sampling from a 20-dimensional latent posterior 𝑝(𝑧 |𝑥) ∝ 𝑝(𝑧)𝑝(𝑥 |𝑧),
where 𝑝(𝑧) is a fixed prior and 𝑝(𝑥 |𝑧) is a pretrained VAE decoder, using a conditional sampler
𝑞(𝑧 |𝑥) dependent on input data (image) 𝑥.

LGCP [49]. This density over a 1600-dimensional variable is a Log-Gaussian Cox process fit to a
distribution of pine saplings in Finland.

B.1 Discrepancies in past work

Wrong definitions of the Funnel density. As already noted by [78], [88] uses a different variance of
the first component in the Funnel density, 1 instead of 9. This apparent bug in the task definition has
been propagated to subsequent work, including [42].

Evaluation on LGCP. The LGCP benchmark suffers from the lack of a consistent ground truth log 𝑍
to compare against. Previous work has compared the value of the partition function log 𝑍 against a
“long run of Sequential Monte Carlo” [88]. We note that this approach produces noisy estimates of
the partition function, especially in high-dimensional problems (indeed, SMC has rarely been used
in problems with over a thousand dimensions); therefore, it is unclear how long the SMC needs to
be run to produce an accurate estimate. We found that two different values are being used in the
literature: log 𝑍 = 512.6 in one repository and log 𝑍 = 501.8 in another.

On FL-SubTB as used in [86]. We make two observations calling into question the main results of
[86].

First, the only substantial difference between the algorithm used by [86] and the one from the past
work [42] – which first proposed the use of GFlowNet objectives to train diffusion samplers – is
the substitution of the FL-SubTB objective [55, 44] for TB [45]. However, [86] elects to compare
FL-SubTB with the Langevin parameterization to TB without the Langevin parameterization. Our
results in Table 1 show that while the Langevin parameterization is crucial for the performance of all
objectives; FL-SubTB does not provide any consistent benefit over TB or VarGrad.

Second, the results are not reproducible, neither with the published code from [86] run ‘out of the
box’, nor with our reimplementation. In particular, on the LGCP density, the training did not converge
within the allotted training time. We have contacted the authors of [86], who confirmed that running
their published code does not reproduce the results in the paper but could not provide any further
explanation or a working implementation.

C Additional results

C.1 Expanded unconditional sampling results

Table C.1 is an expanded version of Table 1, showing Wasserstein distances between sets of 𝐾
samples from the true distribution and generated by a trained sampler. (Note that ground truth for
LGCP is not available.)
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Table C.1: Log-partition function estimation errors and 2-Wasserstein distances for unconditional
modeling tasks (mean and standard deviation over 5 runs). The four groups of models are: MCMC-
based samplers, simulation-driven variational methods, baseline GFlowNet methods with different
learning objectives, and methods augmented with Langevin parametrization and local search.
Energy→ 25GMM (𝑑 = 2) Funnel (𝑑 = 10) Manywell (𝑑 = 32)

Algorithm ↓Metric→ Δ log 𝑍 Δ log 𝑍RW W2
2 Δ log 𝑍 Δ log 𝑍RW W2

2 Δ log 𝑍 Δ log 𝑍RW W2
2

SMC 0.569±0.010 0.86±0.10 0.561±0.801 50.3±18.9 14.99±1.078 8.28±0.32
GGNS [43] 0.016±0.042 1.19±0.17 0.033±0.173 25.6±4.75 0.292±0.454 6.51±0.32

DIS [8] 1.125±0.056 0.986±0.011 4.71±0.06 0.839±0.169 0.093±0.038 20.7±2.1 10.52±1.02 3.05±0.46 5.98±0.46

DDS [78] 1.760±0.08 0.746±0.389 7.18±0.044 0.424±0.049 0.206±0.033 29.3±9.5 7.36±2.43 0.23±0.05 5.71±0.16

PIS [88] 1.769±0.104 1.274±0.218 6.37±0.65 0.534±0.008 0.262±0.008 22.0±4.0 3.85±0.03 2.69±0.04 6.15±0.02

+ LP [88] 1.799±0.051 0.225±0.583 7.16±0.11 0.587±0.012 0.285±0.044 22.1±4.0 13.19±0.82 0.07±0.85 6.55±0.34

TB [42] 1.176±0.109 1.071±0.112 4.83±0.45 0.690±0.018 0.239±0.192 22.4±4.0 4.01±0.04 2.67±0.02 6.14±0.02

TB + Expl. [42] 0.560±0.302 0.422±0.320 3.61±1.41 0.749±0.015 0.226±0.138 21.3±4.0 4.01±0.05 2.68±0.06 6.15±0.02

VarGrad + Expl. 0.615±0.241 0.487±0.250 3.89±0.85 0.642±0.010 0.250±0.112 22.1±4.0 4.01±0.05 2.69±0.06 6.15±0.02

FL-SubTB 1.127±0.010 1.020±0.010 4.64±0.09 0.527±0.011 0.182±0.142 22.1±4.0 3.98±0.07 2.72±0.05 6.15 ±0.01

+ LP [86] 0.209±0.025 0.011±0.024 1.45±0.29 0.563±0.021 0.155±0.317 22.2±4.0 4.23±0.12 2.66±0.22 6.10±0.02

TB + Expl. + LS (ours) 0.171±0.013 0.004±0.011 1.25±0.18 0.653±0.025 0.285±0.099 21.9±4.0 4.57±2.13 0.19±0.29 5.66±0.05

TB + Expl. + LP (ours) 0.206±0.018 0.011±0.010 1.29±0.07 0.666±0.615 0.051±0.616 22.3±3.9 7.46±1.74 1.06±1.11 5.73±0.31

TB + Expl. + LP + LS (ours) 0.190±0.013 0.007±0.011 1.31±0.07 0.768±0.052 0.264±0.063 21.8±3.9 4.68±0.49 0.07±0.17 5.33±0.03

VarGrad + Expl. + LP + LS (ours) 0.207±0.016 0.015±0.015 1.13±0.13 0.920±0.118 0.256±0.037 21.2±4.0 4.11±0.45 0.02±0.21 5.30±0.02

Highlight : mean indistinguishable from minimum in column with 𝑝 < 0.05 under one-sided Welch unpaired 𝑡-test.

Table C.2: Log-partition function estimation errors and empirical 2-Wasserstein distances on the
32-dimensional Manywell with Brownian and variance-preserving noising processes.
Backward process→ Brownian VP

Objective ↓Metric→ Δ log 𝑍 Δ log 𝑍RW W2
2 Δ log 𝑍 Δ log 𝑍RW W2

2

TB + Expl. + LP 7.46±1.74 1.06±1.11 5.73±0.31 7.55±2.85 1.49±1.30 5.68±0.42
TB + Expl. + LP + LS 4.68±0.49 0.07±0.17 5.33±0.03 4.52±0.21 1.23±0.07 5.75±0.01
VarGrad + Expl. 4.01±0.05 2.69±0.06 6.15±0.02 4.04±0.05 2.65±0.08 6.17±0.02

C.2 Variance-preserving noising process

Following the recent results by [8, 63, 78], we perform an additional set of experiments with a
different successful noise schedule. We replace the Brownian motion by the variance-preserving
SDEs from Song et al. [72], given by an Ornstein-Uhlenbeck process:

𝜎(𝑡) := 𝜈
√︁

2𝛽(𝑡)I and 𝜇(𝑥, 𝑡) := −𝛽(𝑡)𝑥 (16)

with 𝜈 ∈ (0,∞).

In particular, we follow the common procedure - use 𝜈 := 1 and
𝛽(𝑡) := (1 − 𝑡)𝛽𝑚𝑖𝑛 + 𝑡𝛽𝑚𝑎𝑥 , 𝑡 ∈ [0, 1],

with 𝛽𝑚𝑖𝑛 = 0.01 and 𝛽𝑚𝑎𝑥 = 4.0.

We evaluate three representative methods using this variance-preserving backward process. The
results, in Table C.2, are similar to those using the Brownian bridge process. We expect that the
choice of noising process gains importance in challenging high-dimensional problems.

C.3 Scalability study

The Manywell energy (§B) is defined in any even number of dimensions and thus allows to study the
scaling of the methods with dimension. We evaluate several representative methods in dimension
8, 128, and 512 (in addition to the 32 studied in the main text). All experimental settings are kept
the same as as for 𝑑 = 32. Due to the large runtime, some runs in dimensions 128 and 512 had to be
limited at 12 hours, while in dimensions 8 and 32 all run in under 3 hours on a RTX8000 GPU.

These results are shown in Table C.3. We observe:

• The overhead of the Langevin parametrization grows with dimension, but is critical to performance.
• The even higher overhead of FL-SubTB as used by [86].
• The relatively high efficiency and low overhead of our newly proposed local search.

19



Table C.3: Scaling with dimension on Manywell: log-partition function estimation errors and time
per training iteration on a RTX8000 GPU.

Dimension→ 𝑑 = 8 𝑑 = 32 𝑑 = 128 𝑑 = 512

Objective ↓Metric→ Δ log 𝑍 Δ log 𝑍RW Δ log 𝑍 Δ log 𝑍RW Δ log 𝑍 Δ log 𝑍RW Δ log 𝑍 Δ log 𝑍RW

PIS + LP [88] 0.86 0.14 13.19 0.07 58.0 23.7 251 169
TB [42] 0.95 0.70 4.01 2.68 205.6 119.8 1223 957
FL-SubTB + LP [86] 0.57 0.67 4.23 2.66 48.9 21.7 198 107
TB + LP 0.25 0.04 7.46 1.06 46.4 14.0 259 169
TB + LS 0.44 0.00 4.57 0.19 458.7 139.3 1626 1077
TB + LP + LS 0.25 0.02 4.68 0.07 66.6 14.9 326 209

8 32 128 512
Dimension

10 1

100

101

102

s /
 it

er

PIS + LP
TB
FL-SubTB + LP
TB + LP
TB + LS
TB + LP + LS

D Experiment details

Sampling energies. In this section, we detail the hyperparameters used for our experiments. An
important parameter is the diffusion coefficient of the forward policy, which is denoted by 𝜎 and also
used in the definition of the fixed backward process. The base diffusion rate 𝜎2 (parameter t_scale)
is set to 5 for 25GMM and 1 for Funnel and Manywell, consistent with past work.

For LGCP, we found that using too small diffusion rate 𝜎2 (e.g., 𝜎2 = 1) prevents the methods from
achieving reasonable results. We tested different values of 𝜎2 = {1, 3, 5}, and selected 𝜎2 = 5, which
gives the best results, which follows the findings in Zhang & Chen [88].

For all our experiments, we used a learning rate of 10−3. Additionally, we used a higher learning rate
for learning the flow parameterization, which is set as 10−1 when using the TB loss and 10−2 with the
SubTB loss. These settings were found to be consistently stable (unlike those with higher learning
rates) and converge within the allotted number of steps (unlike those with lower learning rates).

For the SubTB loss, we experimented with the settings of 10× lower learning rates for both flow and
policy models communicated by the authors of [86], but found the results to be inferior both using
their published code (and other unstated hyperparameters communicated by the authors) and using
our reimplementation.

For models with exploration, we use an exploration factor of 0.2 (that is, noise with a variance of 0.2
is added to the policy when sampling trajectories for training), which decays linearly over the first
half of training, consistent with [42].

We train all our models for 25, 000 iterations except those using Langevin dynamics, which are
trained for 10, 000 iterations. This results in approximately equal computation time owing to the
overhead from computation of the score at each sampling step.

We use the same neural network architecture for the GFlowNet as one of our baselines [88]. Similar
to [88], we also use an initialization scheme with last-layer weights set to 0 at the start of training.
Since the SubTB requires the flow function to be conditioned on the current state x𝑡 and time 𝑡, we
follow [86] and parametrize the flow model with the same architecture as the Langevin scaling model
NN2 in [88]. Additionally, we perform clipping on the output of the network as well as the score
obtained from the energy function, typically setting the clipping parameter of Langevin scaling model
to 102 and policy network to 104, similarly to [78]:

𝑓𝜃 (𝑘, 𝑥)=clip
(
NN1 (𝑘, 𝑥; 𝜃) + NN2 (𝑘; 𝜃) ⊙ clip

(
∇ ln 𝜋(𝑥),−102, 102) ,−104, 104

)
. (17)

All models were trained with a batch size of 300. In each experiment, we train models on a single
NVIDIA A100-Large GPU, if not stated explicitly otherwise.

VAE experiment. In the VAE experiment, we used a standard VAE model pretrained for 100 epochs
on the MNIST dataset. The encoder 𝑞(𝑧 |𝑥) contains an input linear layer (784 neurons) followed by
hidden linear layer (400 neurons), ReLU activation function, and two linear heads (20 neurons each)
whose outputs were reparametrized to be means and scales of multivariate Normal distribution. The
decoder consists of 20-dimensional input, one hidden layer (400 neurons), followed by the ReLU
activation, and 784-dimensional output. The output is processed by the sigmoid function to be scaled
properly into [0, 1].
The goal is to sample conditionally on 𝑥 the latent 𝑧 from the unnormalized density 𝑝(𝑧, 𝑥) =

𝑝(𝑧)𝑝(𝑥 | 𝑧) (where 𝑝(𝑧) is the prior and 𝑝(𝑥 |𝑧) is the likelihood computed from the decoder), which
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is proportional to the posterior 𝑝(𝑧 | 𝑥). We reuse the model architectures from the unconditional
sampling experiments, but also provide 𝑥 as an input to the first layer of the models expressing the
policy drift (as well as the flow, for FL-SubTB) and add one hidden layer to process high-dimensional
conditions. For models trained with TB, log 𝑍𝜃 also becomes a MLP taking 𝑥 as input.

The VarGrad and LS techniques require adaptations in the conditional setting. For LS, buffers (Dbuffer
and DLS) must store the associated conditions 𝑥 together with the samples 𝑧 and the corresponding
unnormalized density 𝑅(𝑧; 𝑥), i.e., a tuple of (𝑥, 𝑧, 𝑅(𝑧; 𝑥)). For VarGrad, because the partition
function depends on the conditioning information 𝑥, it is necessary to compute variance over many
trajectories sharing the same condition. We choose to sample 10 trajectories for each condition
occurring in a minibatch and compute the VarGrad loss for each such set of 10 trajectories.

The VAE model was trained on the entire MNIST training set and never updated on the test part
of MNIST. In order to evaluate samplers (with respect to the variational lower bound) on a unique
set of examples, we chose the first 100 elements of MNIST test data. All of the samplers were
trained having access to the MNIST training data and the frozen VAE decoder. For a fair comparison,
samplers utilizing the LP were trained for 10, 000, whereas the remaining for 25, 000 iterations. In
each iteration, a batch of 300 examples from MNIST was given as conditions. In each experiment,
we train models on a single NVIDIA A100-Large GPU, if not stated explicitly otherwise.

(a) Conditioning data (MNIST test
set)

(b) VarGrad + Expl. + LP samples
decoded (c) VAE reconstruction

Figure D.1: Our sampler (VarGrad + Expl. + LP) is conditioned by a subset of never-seen data
coming from the ground truth distribution (left). The conditional samples were then decoded by the
the fixed VAE (middle). For the comparison, we show the reconstruction of the real data by VAE
(right). We observed that the decoded samples are visually very similar to the reconstructions making
these two pictures almost indistinguishable. Both, decoded samples and reconstruction, are more
blurry than the ground truth data, which is caused by a limited capacity of the VAE’s latent space.
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E Local search-guided GFlowNet

Prioritized sampling scheme. We can use uniform or prioritized sampling to draw samples from the
buffer for training. We found prioritized sampling to work slightly better in our experiments (see
ablation study in §E.2), although the choice should be investigated more thoroughly in future work.

We use rank-based prioritization [74], which follows a probabilistic approach defined as:

𝑝(x;Dbuffer) ∝
(
𝑘 |Dbuffer | + rankDbuffer (x)

)−1
, (18)

where rankDbuffer (x) represents the relative rank of a sample 𝑥 based on a ranking function 𝑅(x) (in
our case, the unnormalized target density at sample x). The parameter 𝑘 is a hyperparameter for
prioritization, where a lower value of 𝑘 assigns a higher probability to samples with higher ranks,
thereby introducing a more greedy selection approach. We set 𝑘 = 0.01 for every task. Given that the
sampling is proportional to the size of Dbuffer, we impose a constraint on the maximum size of the
buffer: |Dbuffer | = 600, 000 with first-in first out (FIFO) data structure for every task, except we use
|Dbuffer | = 90, 000 for VAE task. See the algorithm below for a detailed pseudocode.

Algorithm 1 GFlowNet Training with Local search
1: Initialize policy parameters 𝜃 for 𝑃𝐹 , and empty buffers Dbuffer,DLS
2: for 𝑖 = 1, 2, . . . , 𝐼 do
3: if 𝑖%2 == 0 then
4: Sample 𝑀 trajectories {𝜏1, . . . , 𝜏𝑀 } ∼ 𝑃𝐹 (·|𝜖-greedy)
5: Update Dbuffer ← Dbuffer ∪ {𝑥 |𝜏 → 𝑥}
6: Minimize 𝐿 (𝜏; 𝜃) using {𝜏1, . . . , 𝜏𝑀 } to update 𝑃𝐹
7: else
8: if 𝑖%100 == 0 then
9: Sample {𝑥1, . . . , 𝑥𝑀 } ∼ Dbuffer

10: DLS ← Local Search({𝑥1, . . . , 𝑥𝑀 };DLS)
11: end if
12: Sample {𝑥′1, . . . , 𝑥

′
𝑀
} ∼ 𝑝buffer (· · · ;DLS)

13: Sample {𝜏′1, . . . , 𝜏
′
𝑀
} ∼ 𝑃𝐵 (· · · |𝑥′)

14: Minimize 𝐿 (𝜏′; 𝜃) using {𝜏′1, . . . , 𝜏
′
𝑀
} to update 𝑃𝐹

15: end if
16: end for

We use the number of total iterations 𝐼 = 25, 000 for every task as default. Note as local search is
performed to update DLS occasionally that per 100 iterations, the number of local search updates is
done 25, 000/100 = 250.
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E.1 Local search algorithm

This section describes a detailed algorithm for local search, which provides an updated buffer DLS,
which contains low-energy samples.

Dynamic adjustment of step size 𝜂. To enhance local search using parallel MALA, we dynamically
select the Langevin step size (𝜂), which governs the MH acceptance rate. Our objective is to attain
an average acceptance rate of 0.574, which is theoretically optimal for high-dimensional MALA’s
efficiency [56]. While the user can customize the target acceptance rate, the adaptive approach
eliminates the need for manual tuning.

Computational cost of local search. The computational cost of local search is not significant. Local
search for iteration of 𝐾 = 200 requires 6.04 seconds (averaged with five trials in Manywell), where
we only occasionally (every 100 iterations) update DLS with MALA. The speed is evaluated using
the computational resources of the Intel Xeon Scalable Gold 6338 CPU (2.00GHz) and the NVIDIA
RTX 4090 GPU.

Algorithm 2 Local search (Parallel MALA)

input Initial states {𝑥 (0)1 , . . . , 𝑥
(0)
𝑀
}, current buffer DLS, total steps 𝐾, burn in steps 𝐾burn-in, initial step size

𝜂0, amplifying factor 𝑓increase, damping factor 𝑓decrease, unnormalized target density 𝑅
output Updated buffer DLS

Initialize acceptance counter 𝑎 = 0
Set 𝜂← 𝜂0
for 𝑘 = 1 : 𝐾 do

Initialize step acceptance count 𝑎𝑘 = 0
for 𝑚 = 1 : 𝑀 do

Sample 𝜎 ∼ N(0, 𝐼)
Propose 𝑥∗𝑚 ← 𝑥

(𝑘−1)
𝑚 + 𝜂∇ log 𝑅(𝑥 (𝑘−1)

𝑚 ) +
√︁

2𝜂𝜎

Compute acceptance ratio 𝑟 ← min

(
1,

𝑅 (𝑥∗𝑚 ) exp
(
− 1

4𝜂 ∥𝑥
(𝑘−1)
𝑚 −𝑥∗𝑚−𝜂∇ log𝑅 (𝑥∗𝑚 ) ∥2

)
𝑅 (𝑥 (𝑘−1)

𝑚 ) exp
(
− 1

4𝜂 ∥𝑥∗𝑚−𝑥
(𝑘−1)
𝑚 −𝜂∇ log𝑅 (𝑥 (𝑘−1)

𝑚 ) ∥2
) )

With probability 𝑟, accept the proposal: 𝑥 (𝑘 )𝑚 ← 𝑥∗𝑚 and increment 𝑎𝑘 ← 𝑎𝑘 + 1
if 𝑘 > 𝐾burn-in then

Update buffer: DLS ← DLS ∪ {𝑥∗𝑚}
end if

end for
Compute step acceptance rate 𝛼𝑘 = 𝑎𝑘/𝑀
if 𝛼𝑘 > 𝛼target then
𝜂← 𝜂 × 𝑓increase

else if 𝛼𝑘 < 𝛼target then
𝜂← 𝜂 × 𝑓decrease

end if
end for

We adopt default parameters: 𝑓increase = 1.1, 𝑓decrease = 0.9, 𝜂0 = 0.01, 𝐾 = 200, 𝐾burn-in = 100, and
𝛼target = 0.574 for three unconditional tasks. For conditional tasks of VAE, we give more iterations
of local search: 𝐾 = 500, 𝐾burn-in = 200.

It is noteworthy that by adjusting the inverse temperature 𝛽 into 𝑅𝛽 during the computation of the
Metropolis-Hastings acceptance ratio 𝑟, we can facilitate a greedier local search strategy aimed at
exploring samples with lower energy (i.e., higher density 𝑝target). This approach proves advantageous
for navigating high-dimensional and steep landscapes, which are typically challenging for locating
low-energy samples. For unconditional tasks, we set 𝛽 = 1.

In the context of the VAE task (Table 2), we utilize two GFlowNet loss functions: TB and VarGrad.
For local search within TB, we set 𝛽 = 1, while for VarGrad, we employ 𝛽 = 5. As illustrated in
Table 2, employing a local search with 𝛽 = 1 fails to enhance the performance of the TB method.
Conversely, a local search with 𝛽 = 5 results in improvements at the log �̂�RW metric over the VarGrad
+ Expl. + LP, even though the performance of VarGrad + Expl. + LP surpasses that of TB substantially.
This underscores the importance of selecting an appropriate 𝛽 value, which is critical for optimizing
the exploration-exploitation balance depending on the target objectives.
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E.2 Ablation study for local search-guided GFlowNets

Increasing capacity of buffer. The capacity of the replay buffer influences the duration for which
it retains past experiences, enabling it to replay these experiences to the policy. This mechanism
helps in preventing mode collapse during training. Table E.1 demonstrates that enhancing the buffer’s
capacity leads to improved sampling quality. Furthermore, Figure 1 illustrates that increasing the
buffer’s capacity—thereby encouraging the model to recall past low-energy experiences—enhances
its mode-seeking capability.

Table E.1: Comparison of the sampling quality of each sampler trained with varying replay buffer
capacities in Manywell. Five independent runs have been conducted, with both the mean and standard
deviation reported.

Buffer Capacity ↓Metric→ Δ log 𝑍 Δ log 𝑍RW W2
2

30, 000 4.41±0.10 2.73±0.15 6.17±0.02
60, 000 4.06±0.05 2.38±0.38 6.14±0.04
600, 000 4.57±2.13 0.19±0.29 5.66±0.05

(a) Capacity 30, 000 (b) Capacity 60, 000 (c) Capacity 600, 000

Figure E.1: Illustration of each sampler trained with varying capacities of replay buffers, depicting
2,000 samples. As the capacity of the buffer increases, the number of modes captured by the sampler
also increases.

Benefit of prioritization.

Rank-prioritized sampling gives faster convergence compared with no prioritization (uniform sam-
pling), as shown in Fig. E.2a.

Dynamic adjustment of 𝜂 vs. fixed 𝜂 = 0.01. As shown in Fig. E.2b, dynamic adjustment to
target acceptance rate 𝛼target = 0.574 gives better performances than fixed Langevin step size of 𝜂
showcasing the effectiveness of the dynamic adjustment.
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Figure E.2: Ablation study for prioritized replay buffer and step size 𝜂 scheduling of local search.
Mean and standard deviation are plotted based on five independent runs.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See theory and experiment sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, see section 5.3 and conclusion, as well as references to appendix material
where relevant.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: No new theoretical results. For exposition of the mathematical basis for our
algorithms, we state the assumptions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See experiment sections and references to appendix material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide code to reproduce nearly all of our experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See the experiment sections and references to appendix material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All results tables and plots show standard deviation and indicate significance
of the best metric.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See experiment sections and references to appendix material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We believe there are no violations of the CoE.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper studies a ML problem with no immediate societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper studies a ML problem with no immediate application to generation
of new image or text content, nor other functions that have the potential for misuse, to the
best of our knowledge.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the works introducing all datasets we study.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human studies.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human studies.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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