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Abstract

Large Language Models (LLMs) often fal-
ter in providing accurate responses to queries
that demand up-to-date or context-specific in-
formation. Retrieval-Augmented Generation
(RAG) addresses this limitation by incorpo-
rating a retriever to fetch relevant documents
from databases or the Internet. However, RAG
falls short when relevant information is unavail-
able, necessitating expert intervention—a pro-
cess that is both costly and inefficient. This
work introduces and addresses the LLM-aided
expert problem, aiming to develop systems that
progressively enhance their competence in an-
swering queries while minimizing the need for
expert input. We propose two decision-making
strategies: (1) a classifier-based approach that
employs threshold-based filtering to evaluate
retrieved answers, and (2) a contextual bandit
approach that models the decision to rely on
retrieved answers or escalate to an expert as
a two-arm bandit problem. Both methods uti-
lize Pretrained Language Models for answer
validation and reward estimation. We evalu-
ate these strategies using a benchmark derived
from the Quora Question Pairs dataset, demon-
strating their effectiveness in reducing expert
interventions while maintaining high accuracy.
Our results highlight the potential of adaptive
decision-making frameworks to enhance LLM
reliability in dynamic query-answering environ-
ments.

1 Introduction

The advent of Transformers (Vaswani et al., 2017)
has spurred the development of numerous Large
Language Models (LLMs), such as BERT (Devlin
et al., 2019) and GPT (OpenAl et al., 2024), revo-
lutionizing the processing and analysis of written
language. However, LL.Ms face a significant limi-
tation: They often struggle to address user queries
that demand up-to-date or context-specific infor-
mation, as they lack real-time awareness and may
provide outdated or inaccurate responses.

To address this challenge, Retrieval-Augmented
Generation (RAG) (Lewis et al., 2020) was in-
troduced. RAG enhances interaction by integrat-
ing a Retriever to fetch relevant documents from
databases or the Internet. These retrieved docu-
ments, along with the user’s query, are processed
by a generative Large Language Model to produce
an answer. RAG has been shown to outperform
purely generative methods, significantly reducing
hallucinations (Lewis et al., 2020; Ji et al., 2023;
Sadat et al., 2023; Manakul et al., 2023).The term
hallucination refers to the generation of false, mis-
leading, or nonsensical information that appears
plausible but is not based on real data or facts.

While RAG provides a substantial improvement
over purely generative methods, it is still insuffi-
cient in scenarios where no relevant information
exists in the database or online. In such cases, to
address a query, the system requires an expert to
intervene and provide the correct answer. This
query, answer pair is then stored for future refer-
ence. However, expert interventions are costly, and
querying the expert unnecessarily should be mini-
mized. This raises a fundamental question:

How can we design an LLM-based system
that progressively builds competence in answer-
ing queries while minimizing reliance on expert
interventions?

We define this challenge as the LLLM-aided ex-
pert problem and formulate it as an online optimiza-
tion problem. Specifically, the system starts with
an empty database and processes queries sequen-
tially. For each new query, a retriever searches the
database for similar past queries and their corre-
sponding answers. The system then evaluates the
retrieved answers to determine the most likely cor-
rect response. Based on this assessment, it either
provides the retrieved answer to the user or assigns
the query to an expert when necessary.

In this work, we explore strategies to optimize
the trade-off between model autonomy and expert



involvement, aiming to develop a system that max-
imizes accuracy while minimizing expert interven-
tions. Our main contributions are as follows:

(a) We develop two sequential decision strate-
gies for the LL.M-aided expert problem.

1. The classifier-based approach. This strategy as-
sesses whether the retrieved answers are accurate
enough to be used. A classifier, combined with
an optimized thresholding procedure, determines
whether the system should return the retrieved an-
swer or escalate the query to an expert.

2. The contextual bandit approach. We formulate
the problem as a two-arm contextual bandit. Here,
the context corresponds to the incoming query and
the retrieved query-answer pair. Selecting the first
arm means returning the retrieved answer, while
selecting the second arm means consulting the ex-
pert. We propose a bandit algorithm that estimates
the expected reward of the first arm and makes
decisions accordingly.

In both strategies, we leverage a large variety of
pretrained language models — for answer assess-
ment in the classifier-based approach and reward
estimation in the bandit algorithm.

(b) Empirical evaluation and benchmarking. We
evaluate our methods using a question-answering
benchmark based on the Quora Question Pairs
dataset (Wang et al., 2017). To facilitate experi-
mentation, we develop an environment that allows
testing various methods and LLLM architectures.
Our results demonstrate the effectiveness of our
strategies, showing significant improvements over
naive baseline approaches.

2 Related Work

In contemporary applications of NLP to real-
world question-answering environments, where
knowledge may reside in documentation, Retrieval-
Augmented Generation (RAG) (Lewis et al., 2020)
has emerged as a pivotal technique. A RAG system
comprises two main components: a Retriever and a
Large Language Model. Retrievers excel at repre-
senting similar words and sentences closely in the
embedding space, thereby understanding language
patterns effectively.

Notable retriever models, such as Dense Pas-
sage Retrieval (DPR) (Karpukhin et al., 2020),
Embeddings from bidirectional Encoder Repre-
sentations (E5) (Wang et al., 2022), and General
Text Embedding (GTE) (Li et al., 2023), leverage
pretrained architectures like BERT (Devlin et al.,

2019) to initialize encoders. These encoders F
are fine-tuned to ensure that the cosine similarity
cosine_similarity(E(z), E(y)) accurately cap-
tures the true relationship between the query = and
the passage y.

Recently, the NLP community has increasingly
favored decoder architectures for creating embed-
dings (Springer et al., 2024; BehnamGhader et al.,
2024), as these approaches have demonstrated su-
perior performance over traditional encoder-based
methods. Among these, Mistral-E5 (Wang et al.,
2024a) stands out as the state-of-the-art LLM for
text retrieval. Retriever models are commonly eval-
uated using benchmarks such as BEIR (Thakur
et al., 2021) and MTEB (Muennighoff et al., 2022).

Several approaches have been proposed to en-
hance the quality of RAG systems. Self-RAG (Asai
et al., 2023) improves quality through retrieval and
self-reflection, training a single language model to
adaptively retrieve passages on demand and gener-
ate and reflect on both retrieved passages and its
own outputs using reflection tokens. This makes
the language model controllable during inference,
allowing it to adapt to diverse task requirements.

R3 (Ma et al., 2023) introduces a Rewrite-
Retrieve-Read scheme to effectively retrieve nec-
essary knowledge. This approach employs a read-
and-rewrite LLM, where a trainable small LLM
generates queries and is trained via reinforcement
learning based on feedback from a larger reader
LLM.

M-RAG (Wang et al., 2024b) presents a dynamic
system that achieved improvements of 11%, 8%,
and 12% in text summarization, machine transla-
tion, and dialogue generation, respectively. This
system utilizes two contextual bandit agents. Dur-
ing generation, Agent-S selects the database parti-
tion to address questions, and the retriever fetches
the most relevant document. A generative LLM
then produces multiple summaries, and Agent-
R identifies the best possible summary. The fi-
nal response is generated by an LLM based on
the summary and retrieved document. Only the
agents are trained, modeled as Markov decision
processes, and optimized using Deep Q-Network
(DQN) (Mnih, 2013) with replay memory.

3  Quora Question Groups

In this section, we introduce the dataset used in our
experiments to illustrate and clarify the LLM-aided
expert problem. The dataset is derived from the



Quora Question Groups, a clustered subset of the
Quora Question Pairs dataset (Wang et al., 2017).
The Quora Question Pairs dataset comprises over
400,000 question pairs, each annotated with a bi-
nary label indicating whether the questions are
paraphrases of each other. Details of our dataset
sampling process from the Quora Question Pairs
dataset are provided in Appendix A.

A key concept in our experiments is the notion of
a "question group." Two different questions belong
to the same group if they can be addressed by the
same answer. For example:

Q1: How do I erase my profile on Quora?

Q2: I can’t get rid of this annoying account. Can
someone help me?

A: To unsubscribe from Quora, you need to use a
full-on browser and follow these steps: ...

From the Quora Question Pairs dataset, we ex-
tracted 7,365 questions along with their correspond-
ing groups or answers. The dataset was split into
training (66%), test (19%), and validation (15%)
sets, ensuring no overlap of question groups across
these subsets to assess the generalization capabili-
ties of our models (see Table 1).

Figure 1 presents histograms of group sizes
across the datasets. Group sizes range from 1 to
100, where a group size of 100 indicates a fre-
quently asked question posed in various ways by at
least 100 users. Groups with a size of one contain
questions asked only once.
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Figure 1: distribution of our groups in the final dataset.

4 LLM-Aided Expert System

In this section, we formally introduce the LLM-
aided expert problem, outline various strategies for
system design, and describe the training and testing
procedures.

questions | groups | groupsize< 10 | group size =1
train 4854 730 495 (68%) 111 (15%)
test 1424 181 120 (66%) 33(18%)
validation 1087 189 115(61%) 37(20%)
total 7365 1100 730(66%) 181 (17%)

Table 1: Dataset Statistics

4.1 The LLM-aided Expert Problem

The LLM-aided expert problem is an online
decision-making problem where the system inter-
acts sequentially with its environment. This inter-
action is illustrated in Figure 2.

Environment. In our setup, users sequentially sub-
mit queries to the system. The system can either
respond directly or return an empty response ((),
indicating the need for expert intervention. We
assume the expert can always provide correct an-
swers. Each expert response is stored in the sys-
tem’s database for future reference.

System components. The system comprises a
database, a retriever, and an agent. The database
stores queries and their corresponding expert-
provided answers. The retriever identifies the k
most similar queries from the database to the in-
coming query. These k queries and their answers
are passed to the agent, which decides whether to
use one of these answers or engage the expert. If
the agent uses a previous answer, the new query-
answer pair is not stored to avoid potential contam-
ination of the database with incorrect information.
However, every expert engagement results in stor-
ing the new query-answer pair in the database.

Sequential interaction. Initially, the database B,
is empty. In each round ¢ > 1, a user generates
a query QF with an unknown correct answer A,
The retriever identifies k similar queries, and based
on these, the agent either selects a corresponding
answer or consults the expert. In practice, the agent
will primarily engage the expert early on when
the database is sparse. Over time, as the database
grows, the system will handle most queries inde-
pendently. However, novel queries may still neces-
sitate expert intervention at any stage.

Rewards and performance metrics. The system
receives a reward of +1 for correctly answering
a query without expert help and incurs a penalty
of -10 for incorrect answers. Engaging the expert
results in a -1 penalty to discourage unnecessary
consultations. Incorrect answers are heavily penal-



— fijit

Users

answer [

i The System The Environment
retrieve old
queries and
answers query
query and
add response
—> .. 1 _—
v k queries
v and answers
Agent
(@ Datbase @ answer
@ Retriever

ue
7] query

Jo

Expert
I

®

Figure 2: The LLM-aided expert system, and its interaction with the environment.

ized to prioritize accuracy over unnecessary expert
engagement. The objective is to design an agent
that maximizes cumulative rewards over a given
number of rounds, starting with an empty database.
Performance is also evaluated based on the num-
ber of incorrect answers and unnecessary expert
engagements.

4.2 Agent design approaches

The agent processes incoming queries and the &
similar query-answer pairs provided by the re-
triever to either select an answer or request ex-
pert assistance. We present two approaches for
designing the agent: the classifier and the contex-
tual bandit approaches. These are compared against
a baseline method where the retriever selects the
answer.

Baseline: the retriever. The retriever is a static
component of the system that remains untrained
throughout the experiments. It identifies the £ most
similar queries to the incoming query by leveraging
query embeddings and calculating cosine similarity
between the incoming query and database queries.
The retriever can also function as an agent by se-
lecting an answer based on these similarities: it
returns the answer with the highest similarity to the
incoming query if this similarity exceeds a prede-
fined threshold. If no query in the database meets
the similarity threshold, the retriever consults the
expert. During the validation phase, the threshold
is tuned to optimize performance.

Classifier approach. In the classification ap-
proach, the agent examines the incoming query
and the k similar query-answer pairs provided by
the retriever. Each query-answer pair (qo1d, Qold) 1S

combined with the incoming query gnew as follows:
[CLS] gnew [SEP] qoia [SEP] agia [FOS] (1)

where [C'LS] is the classification token, [SEP]
is the separator token, and [EOS] is the end-of-
sequence token. This sequence is fed into a lan-
guage model to estimate the probability that a,q is
the correct answer to gnew. The agent returns the
answer with the highest estimated likelihood if it
0.5. Otherwise, it consults the expert. The agent
is initialized with a pretrained language model and
fine-tuned using cross-entropy loss during training.
The threshold is optimized during the validation
phase.

Contextual bandit approach. In this approach,
the agent’s sequential decision problem is mod-
eled as a two-arm contextual bandit. For each
query-answer pair (gold, Golg) returned by the re-
triever, the context is formed by combining the pair
with the incoming query, as shown in equation (1).
The first arm corresponds to returning aqyg, while
the second arm represents consulting the expert,
with a known reward of -1. The reward of the first
arm is estimated by passing the sequence through
a pretrained language model, fine-tuned to mini-
mize Mean Squared Error. This estimated reward
is used to compute the index for the first arm. The
final decision involves selecting the answer whose
corresponding arm index is the highest, and ex-
ceeds a threshold, optimized during validation. If
the threshold is not met by any query-answer pair,
the second arm is played and the expert is called.
The agent is initialized with a pretrained language
model and fine-tuned during training.



Algorithm 1 Training round

Pick (QF, AF) from Dyyqin

k_pairs = Retriever(QF, database)

A = agent.answer(QF, k_pairs)

if A = () then
R, = —1 (penalty for engaging the expert)
database.update(QF, AR)

elseif A # Al' then

R, =-10 (incorrect answer penalty)
else

R =1 (correct answer reward)
end if

agent.update(QF, AR, Ry, k_pairs)

Figure 3: A round of our agent’s training.

4.3 Training and testing phases

The agent is trained by simulating the operational
environment, starting with an empty database. Dur-
ing each training round, as outlined in Figure 3, a
query-answer pair (QF, Af) is randomly selected
from the training dataset Dy, q;y,. The retriever iden-
tifies the £ most similar query-answer pairs from
the database. The agent then assesses whether any
of the retrieved answers can address QF. If the
agent determines that none of the retrieved answers
are suitable, it returns (), prompting the expert to
address the query. Each expert engagement incurs
a penalty of -1, and the new query-answer pair is
added to the database. If the agent provides an
answer A, it is compared with the original answer
AE. Our experiments utilize a cluster-based dataset
where questions are grouped by their corresponding
answers. This allows for comparisons by match-
ing the retrieved query group ID with that of the
incoming query Q. A correct match rewards the
agent with +1, while an incorrect match results in a
substantial penalty of -10. The agent’s model is up-
dated at the end of each training round using all col-
lected information. To ensure the agent performs
well even with a sparse database, the database is
periodically emptied approximately every 1,000
rounds.

During the test phase, the environment is simu-
lated using the test dataset Dy, The agent aims
to answer as many questions correctly as possible,
minimize expert engagement, and maximize knowl-
edge acquisition. Unlike the training phase, the
database is not periodically emptied. We consider

two scenarios: one where the agent is not updated
during testing, and another where it is updated at
the end of each round, mirroring the training phase.

S Experiments

Next, we present the agents we experimented with,
detail the experimental setup, and discuss the re-
sults obtained.

5.1 Experimental Setup

Our experiments involve deploying pretrained lan-
guage models as agents and fine-tuning them to
optimize system performance.

Retrievers. We experimented with several retriever
models, including: E5! (Wang et al., 2022), GTE?
(Li et al., 2023), NOMIC? (Nussbaum et al., 2024),
E5_Mistral* (Wang et al., 2024a).

Agents. We utilized a variety of language mod-
els as agents, including: BERT® (Reimers and
Gurevych, 2019), MiniLM® (Wang et al., 2020),
ALBERT’ (Lan et al., 2019), DeBERTa_v3® (He
etal., 2021), Mistral 7B° (Jiang et al., 2023), Llama
3 8B!0 (Dubey et al., 2024). A more detailed de-
scription of these language models is provided in
Appendix C.

Hyperparameter Tuning. For each model, we
conducted hyperparameter tuning to optimize per-
formance. The hyperparameters experimented with
are presented in Table 2. For the classifier approach,
the ’class 0 weight’ tunes the decision threshold
used to decide whether the expert is consulted. Sim-
ilarly the decision boundary in the bandit approach
corresponds to the threshold used to assess the in-
dex of the first arm and to decide whether the sec-
ond arm is played (the expert is consulted). The
number of epochs corresponds to the number of
times we go through the entire dataset. At the be-
ginning of each epoch, the database is emptied, and
the order in which queries are treated is random-
ized.

Performance analysis. We begin by evaluating
our baseline, which is the retriever. We test various

lintfloat/e5-base
“thenlper/gte-base
3nomic-ai/nomic-embed-text-v1-unsupervised
*intfloat/e5-mistral-7b-instruct
Sgoogle-bert/bert-large-uncased
®microsoft/Multilingual-MiniLM-L12-H384
"albert/albert-large-v2
8 microsoft/deberta-v3-large
°mistralai/Mistral-7B-Instruct-v0.3

" meta-llama/Llama-3.1-8B-Instruct



Method Hyperparameters

decision threshold: from O to 1

Retriever . .
with step size 0.05

learning rate:

{le —5,2¢ —5,3e — 5}

k during training: {1,2,5}
k at test time: {1,2}
training epochs: {5, 10,15}
class 0 weights: {1,5,10}

Classifier
approach

learning rate:

{le —5,2¢ — 5,3e — 5}

k during training: {1,2,5}
k at test time: {1, 2}
training epochs: {5,10,15}
decision boundary:
{-3,-2,-1,0}

Bandit
approach

Table 2: Hyper parameters search space for all methods.

retriever models and select the best-performing one.
This retriever is then combined with either our clas-
sifier or bandit agent. During testing, we consider
two scenarios: one where the agent is not updated,
and another where the agent is further fine-tuned.

Our experiments revealed that performance is
significantly influenced by the sequence in which
questions are presented. To ensure an unbiased
estimation of validation and test performance, we
conducted 10 validation iterations for each hyper-
parameter combination and 10 test iterations, shuf-
fling the dataset in each iteration.

The results are presented in Table 3. Specifically,
we report the mean and variance of the number
of incorrect responses, the average number of un-
necessary expert engagements, macro F1 score,
weighted F1 score, and reward. Unnecessary ex-
pert engagement occurs when the answer is already
in the database, but the expert is consulted nonethe-
less. In Appendix D, we provide results for sce-
narios where the agents process the sequences (1)
without including the answer from the database.

5.2 Results

Retriever performance. In Table 3, the retriever
performance is evaluated as zero-shot performance
since no training is applied to the retriever. The
only parameter optimized is the decision thresh-
old during the validation phase. The E5_Mistral
model (Wang et al., 2024a) achieves the highest re-
ward while minimizing unnecessary expert engage-
ment. However, the GTE model (Li et al., 2023)

makes the fewest mistakes. Despite this, GTE’s
F1 score, accuracy, and reward are lower due to
a higher frequency of unnecessary expert engage-
ments. From these preliminary experiments, we
observe that the highest reward is achieved when
the agent effectively balances between incorrect
responses and unnecessary expert engagements.
Given that ES_Mistral (Wang et al., 2024a) was
identified as the best retriever model for our prob-
lem, we utilize it to retrieve similar questions in
subsequent experiments.

It is worth noting that GTE and Nomic used a
portion of the Quora dataset to train the supervised
versions of their models, which could potentially
affect their performance in our context. Nomic pro-
vides both supervised and unsupervised versions
of their model. Although the supervised version
achieves slightly better accuracy and F1 scores, the
unsupervised version performs slightly better due
to fewer incorrect responses.

Agents’ Performance with training-only up-
dates. When the model is updated solely during
training, the bandit agent based on Mistral (Jiang
et al., 2023) outperforms all other models, includ-
ing the retriever baseline. Notably, despite De-
BERTa_v3 (He et al., 2021) having a relatively
smaller size (330M parameters compared to Mis-
tral’s 7B and Llama’s 8B), the DeBERTa_v3-based
agent performs nearly as well as the Mistral-based
agent. This finding is significant because it under-
scores the potential of DeBERTa_v3 in scenarios
where powerful GPUs, necessary for running larger
models like Llama, are unavailable.

Agents’ performance with updates at test time.
Table 3 demonstrates that updating the model at
test time significantly enhances performance. No-
tably, even the MiniLM-based agent (Wang et al.,
2020), with only 30M parameters, outperforms the
E5_Mistral retriever (7B parameters) and the Mis-
tral bandit agent (Jiang et al., 2023) when the latter
is tuned only during training. This highlights that
a less complex model, trained on relevant queries,
can outperform more sophisticated models opti-
mized for different types of queries. The highest
reward is achieved by the Mistral classifier, which
scores 107 reward units below the theoretically
optimal reward of 1062. This model responded
incorrectly an average of 4 times and unnecessarily
engaged the expert 16 times, which is impressive
given the 1424 questions received during testing.
It is important to note that the optimal reward can



Incorrect  Unnecessary Fj weighted ~ F; macro Accuracy Reward
responses engaged
the expert
Zero-shot retriever performance
E 5 22 (£8) 104 (£6) 91% (£7e-5) 85% (L£le-4) 91% (£7e-5) 581 (+£94)
GTE 4(£+2) 164 (4) 89% (+9e-6) 81% (£2e-5) 89% (£le-5) 658 (£29)
Nomicynsupervised 10 (£4) 96 (+6) 92% (£2e-5) 87% (£5e-5) 92% (+2e-5) 715 (£40)
Nomic finetuned 16 (£6) 72 (£4) 93% (+1e-5) 89% (£4e-5) 94% (£2e-5) 705 (£62)
E5_Miistral 17 (£8) 28 (+1) 97% (£3e-5) 94% (£9e-5) 97% (+£3e-5) 791 (£83)
Performance of agents with training-only updates
Classifier approach
MiniLM 14 (£) 89 (£6) 93% (+5e-5) 87% (£le-4) 93% (£5e-5) 682 (£87)
BERT 12 (£5) 74 (£5) 94% (+£2e-5) 89% (£4e-5) 94% (+2e-5) 740 (£55)
ALBERT 7 (£3) 81 (£4) 94% (+1e-5) 89% (£4e-5) 94% (£2e-5) 774 (£34)
DeBERTa_v3 7 (£7) 54 (£4) 96% (£3e-5) 92% (£8e-5) 96% (£3e-5) 811 (£52)
Mistral 15 (£6) 23 (£5) 97% (+3e-5) 94% (£9e-5) 97% (+3e-5) 806 (£73)
Llama 20 (£7) 26 (£3) 97% (+3e-5) 94% (L£le-4) 95% (+3e-5) 744 (£79)
Bandit approach
MiniLM 15 (£11) 80 (£7) 93% (+2e-4) 88% (£3e-4) 94% (£2e-4) 691 (£122)
BERT 17 (£9) 71 (£5) 94% (£7e-5) 89% (£2e-4) 94% (£7e-5) 687 (£107)
ALBERT 20 (£9) 63 (£8) 94% (+6e-5) 89% (L£le-4) 94% (+6e-5) 668 (£98)
DeBERTa_v3 12 (£6) 53 (+4) 95% (£3e-5) 91% (£9e-5) 95% (£3e-5) 772 (£70)
Mistral 12 (+6) 19 (£2) 98% (+2e-5) 96% (L£6e-5) 98% (+2e-5) 847 (+69)
Llama 12 (£5) 20 (£3) 98% (+1e-5) 96% (+3e-5) 98% (+1e-5) 845 (+54)
Performance of agents with updates at test time
Classifier approach
MiniLM 16 (£5) 9 (+2) 98% (+1e-5) 96% (+£5e-5) 98% (+£le-5) 859 (+46)
BERT 17 (£5) 10 (£2) 95% (£9e-6) 95% (£5e-5) 98% (£le-5) 849 (£44)
ALBERT 19 (£8) 8 (£2) 98% (+4e-5) 96% (+£2e-4) 98% (+4e-5) 827 (£73)
DeBERTa_v3 12 (£4) 7 (£2) 99% (+£5e-6) 97% (+3e-5) 99% (+6e-6) 901 (+£30)
Mistral 4 (1) 16 (£5) 99% (+1e-5) 97% (£5e-5) 99% (+1e-5) 955 (£20)
Llama 4 (+1) 19 (£16) 98% (t1e-4) 97% (+4e-4) 98% (+le-4) 947 (£37)
Bandit approach
MiniLM 4 (1) 67 (+4) 95% (+£9e-6) 90% (+£3e-5) 95% (+£le-5) 853 (£19)
BERT 5(£2) 52 (£4) 96% (+9e-6) 92% (£3e-5) 96% (£le-5) 871 (£22)
ALBERT 4 (D) 48 (£95) 96% (£1e-5) 93% (£3e-5) 96% (£le-5) 887 (£17)
DeBERTa_v3 3(£1) 32 (£4) 98% (+£9e-6) 95% (+£3e-5) 98% (f£le-5) 935 (£18)
Mistral 6 (+1) 16 (£5) 98% (£5e-6) 97% (£2e-5) 98% (+4e-6) 931 (£21)
Llama 5(£1) 14 (£2) 99% (+3e-6) 97% (£1e-5) 99% (+3e-6) 949 (£16)
Optimal performance
0 (£0) 0(£0) 100% (+0) 100% (+0) 100% (+0) 1062 (+0)

Table 3: Performance of the retrievers (top rows), agents with training-only updates (middle rows), and agents with
updates at test time (bottom rows), when deploying both questions and answers for the evaluation.
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only be achieved if both the agent and the retriever
are optimal. This requires all correct answers to be
ranked within the top & by the retriever and selected
by the agent. In our experiments, we found that
k is typically 1 during testing, as retrieving more
than one answer increases the likelihood of provid-
ing incorrect responses. Additionally, we observe
that large language models generally outperform
smaller ones across all experimental setups in this
scenario.

Dynamics under the best models. Finally, we
compare the dynamic behavior at test time of (i)
the best retriever ES_Mistral model, (ii) the best
agent with training-only updates, the Mistral ban-
dit agent, (iii) the best agent with updates at test
time, the Mistral classifier agent. Figure 4 presents
one run of these agents at test time. The system
starts with an empty database, and so naturally, the
system returns incorrect answers and consults the
expert often at the beginning. These events tend
to discrease in rate as the system has seen more
queries as the database grows large. The plots in
Figure 4 really illustrates the advantage of updat-
ing the model at test time. Thanks to these updates,
the model adapts to the new group of queries and
in turn, makes almost no incorrect responses after
receiving a few queries.

6 Conclusion and Future Work

In this paper, we introduced and addressed
the LLM-aided expert problem, which arises in
question-answering scenarios where initial infor-
mation is lacking, necessitating expert intervention.
We presented various approaches to develop agents

that progressively enhance their competence in an-
swering queries while minimizing the need for ex-
pert input. Our solutions demonstrated superiority
over naive baseline methods.

Future work could focus on integrating genera-
tive large language models to dynamically generate
responses based on prior interactions, marking the
final step in deploying our system in real-world
scenarios. Implementing this system will provide
valuable insights into hallucination detection and
enhance its practical applications. Additionally,
we plan to explore the potential of applying our
system to real-time dialogue scenarios, where re-
sponses will be dynamically generated based on
previous questions and the evolving context of the
conversation.

Additionally, deploying our system in real-world
environments, such as customer support for new
products or educational settings, would be valuable.
In customer support, our system could handle a
large volume of repetitive questions during prod-
uct launches, enabling the testing of additional re-
inforcement learning methods. In education, our
system could assist students by providing answers
to frequently asked questions, ensuring accurate
responses to maintain trust.



7 Limitations

Our approach relies on access to a substantial
dataset of queries with corresponding correct an-
swers during training. This dataset is essential
for our agents to learn to evaluate the relevance
of similar queries retrieved by the retriever and
to back-propagate the loss from incorrect answers.
Our experiments showed that to achieve high per-
formance, especially with new types of queries in
test data, the agent must be updated at test time.
However, true answers are not available during test-
ing.

In real-world scenarios, we expect users to pro-
vide feedback on the answers they receive, enabling
the system to infer the validity of those answers.
Real-world experiments are necessary to confirm
this expectation. We have already tested our system
at test time, assuming users complain when receiv-
ing a wrong answer. In this scenario, at test time,
the agent was updated only when the user com-
plained and when the expert was consulted. We
observed no significant performance deterioration,
compared to the scenario where true answers are
known.
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A Dataset Sampling

We outline the process of constructing our dataset
using the Quora Question Pairs dataset. This
dataset is represented as a graph where nodes cor-
respond to questions, and an edge between two
nodes signifies that the questions are equivalent.
The graph is naturally divided into distinct groups,
each representing a set of equivalent questions or
connected components.

To create our dataset from the Quora Question
Pairs dataset, we categorized the questions into five
groups based on their frequency of occurrence:

1. Very Frequent: These questions belong to
groups with more than 20 occurrences. They
cover common and fundamental topics. The
Quora dataset includes 107 groups of very
frequent questions.

Frequent: Questions in this category belong to
groups with 11 to 20 occurrences. The Quora
dataset contains 324 frequent question groups.

Rare: These questions belong to groups with
6 to 10 occurrences. They focus on more
specific areas. The Quora dataset includes
1,276 rare question groups.

Very Rare: Questions in this category belong
to groups with 2 to 5 occurrences. They of-
ten pertain to specialized or niche topics. The
Quora dataset contains 58,749 very rare ques-
tion groups.

Unique: These are singular questions asked
only once. They can be intriguing and unex-
pected. The Quora dataset contains 426,153
unique questions.

After categorizing the questions, we identified
several groups containing paraphrased versions of
the same question. To address this, we sampled
400 groups from each category, except for the "Fre-
quent" and "Very Frequent" categories, which had
fewer than 400 samples. We began with an empty
dataset and, for each group, used our retriever to ex-
tract the 10 most common questions. We manually
inspected these questions and checked if the new
group matched any existing group in our database.
If a match was found, we merged the new group
with the existing one; otherwise, we added the new
group to the database. This process was repeated
twice.
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Finally, we reviewed each group to ensure that
all questions within a group could be answered with
the same response. We then retrieved answers from
Quora and revised those that did not adequately
address the corresponding questions.

B Implementation Details

Our experiments were conducted using the Trans-
formers library. Our dataset consists of questions,
group IDs, and the embeddings for each question.
To avoid recalculating embeddings at every step,
we precompute the embeddings at the beginning
and utilize them throughout our experiments.

In each epoch of our training, we shuffle
our dataset and traverse it sequentially. At
each training step, we retrieve a question
along with its embeddings and group IDs.
Our memory consists of prior questions, orga-
nized in a matrix and indexed based on their
respective positions. The matrix has a size of
(number_of_previous_questions, embeddings_size).

By multiplying the embeddings of the new ques-
tion with this matrix, we obtain a vector of size
(number_of_previous_questions), which consists
of the cosine similarity scores between the new
question and the prior questions in our database.
Subsequently, by performing a linear pass through
this vector, we can retrieve the k£ most similar ques-
tions to the new question based on our chosen met-
ric.

For each previous question and its corresponding
answer, we construct a triple sequence consisting
of the new question, the old question, and the old
answer. This sequence is then passed to our agent
LLM, which can function either as a classifier or a
contextual bandit. The agent’s role is to determine
whether the old answer is suitable for addressing
the new question.

The classifier approach. The classifier takes the
triple sequence as input and outputs the probability
that the old answer can address the new question.
If applicable, we return the most probable answers
for the new question only if the probability exceeds
50%. We initialize our classifier using the stan-
dard AutoModelForSequenceClassification from
the Transformers library, with number_of _labels =
2. The classifier is trained using cross-entropy loss.

The Bandit approach. The bandit takes the triple
sequence as input and returns the expected reward.
This reward can be —10 if the old answer does not
address the new question, indicating that we should



engage the expert, or 1 if it sufficiently addresses
the new question, in which case we provide the
previous answer as a response. Whether the old
answer addresses the new question depends on the
decision boundary, which is a hyperparameter we
experiment with. This decision boundary is equiva-
lent to the no-response arm and remains a constant
value. We return the answer with the highest score
if and only if the score exceeds the decision bound-
ary. We initialize our bandit using the standard Au-
toModelForSequenceClassification from the Trans-
formers library, with number_of _labels set to 1.
The bandit is trained using mean squared error.

If the expert is engaged, we store the new ques-
tion and its corresponding answer in the database.
Otherwise, we do not store it to prevent contami-
nating the database with false information. At the
end of each epoch, we reset the memory.

During the test and validation phases, we main-
tain the same experimental setup. The validation
set is used to identify the best hyperparameters,
while the test set is used to evaluate the perfor-
mance of our model. If learning occurs during the
test phase, we do not deploy the model trained on
the validation set. instead, we use the checkpoint
saved prior to the validation phase. For the learning
rate, we apply a linear scheduler during training,
while during testing, the learning rate is kept con-
stant at 1e >,

We conduct 10 independent evaluations and re-
port the results as the average score along with
the corresponding standard deviation or variance
for each metric. For each evaluation, we reset the
memory, shuffle the dataset, and reload the trained
model from the specified checkpoint.

C Pretrained Language models

In this section, we describe the Natural Language
Processing models we deployed.

ES (Wang et al., 2022): Embeddings from Bidi-
rectional Encoder Representations (ES) is avail-
able in three versions. The first version is initial-
ized with MiniLM (Wang et al., 2020), the sec-
ond is initialized with BERT-base (Reimers and
Gurevych, 2019), and the third is initialized with
BERT-large. This model follows a bi-encoder archi-
tecture, where both the query and passage encoders
are initialized with BERT. The training process
consists of two stages. The first stage, called "un-
supervised," uses a large number of unlabeled data,
including title and passage pairs from Wikipedia,
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questions and answers from Reddit, and more. The
InfoNCE contrastive loss (van den Oord et al.,
2018) is employed to minimize the distance be-
tween related queries and passages, while maxi-
mizing the distance between unrelated queries and
passages. The second stage involves training the
model on high-quality human-annotated data, such
as NLI (Gao et al., 2021), MS-MARCO (Bajaj
et al., 2016), and Natural Questions (Karpukhin
et al., 2020). During this stage, the model is trained
with a loss that combines the KL divergence be-
tween the probability distribution of the label, as
given by a cross-encoder teacher model, and the
probability distribution generated by our ES student
model, along with the InfoNCE contrastive loss.
This second stage further improves the model’s per-
formance on benchmarks such as BEIR (Thakur
et al., 2021) and MTEB (Muennighoff et al., 2022).

GTE (Li et al., 2023): General Text Embedding
(GTE) is available in three versions. The model’s
pretraining is divided into supervised and unsuper-
vised phases. This paper introduces an improved
contrastive loss, which is utilized in both phases
of training. Additionally, they removed the KL ob-
jective, introduced a new sampling process, and
expanded the dataset size during the supervised
phase.

NOMIC (Nussbaum et al., 2024): Nomic is ini-
tialized from BERT and modified to address long-
context retrieval. Nomic consists of 100 million
parameters and supports a sequence length of up
to 2048. Nomic’s pretraining is divided into three
stages. The first stage focuses on Masked Lan-
guage Modeling to learn longer sequence repre-
sentations. The subsequent stages are supervised
and unsupervised, both employing the InfoNCE
contrastive loss. This model was trained on a sig-
nificantly larger dataset compared to the previous
versions, encompassing both supervised and un-
supervised phases. Nomic uses task-specific pre-
fixes—such as search, search query document, clas-
sification, and clustering—to distinguish between
the behaviors of each task. For the purpose of our
work, we used the clustering prefix.

ES5_Mistral (Wang et al., 2024a): This is the first
unidirectional decoder architecture we use for our
work. The model is initialized from Mistral 7B
(Jiang et al., 2023) and consists of 7 billion param-
eters. The model takes as input the query ¢* and
the task_definition and generates the instruction



template:

qi—;st -

Where the task definition is:

’Given a web search query, retrieve relevant
search queries that paraphrase the query.’

The query instruction template and the document
instruction template are then passed to the LLM.
We obtain the query and document embeddings, h;
and h;, from the last layer of the LLM at the [EOS]
position. The model was trained on a large corpus
of both original and synthetic data. The synthetic
data was generated using advanced LLMs such as
GPT-4.

BERT (Reimers and Gurevych, 2019): Bidirec-
tional Encoder Representations from Transform-
ers (BERT) has the same number of parameters as
GPT (Radford and Narasimhan, 2018). However,
unlike GPT, BERT uses bidirectional self-attention,
whereas GPT uses constrained self-attention, where
each token can only attend to the context to its left.
The model was pretrained using Masked Language
Modeling (MLM) and Next Sentence Prediction
(NSP). BERT’s significant advancements over the
state-of-the-art during this period sparked a major
revolution in modern NLP, inspiring the develop-
ment of numerous models. We use the large version
of BERT, which consists of 304M parameters.

MiniLM (Wang et al., 2020): MiniLLM is a sim-
ple and effective approach to compressing large
Transformer-based pretrained models, referred to
as deep self-attention distillation. The small model
(student) is trained by closely mimicking the self-
attention module, which plays a vital role in Trans-
former networks (Vaswani et al., 2017), of the large
model (teacher). Specifically, they propose distill-
ing the self-attention module from the last Trans-
former layer of the teacher, which is both effec-
tive and flexible for the student. MiniLM retains
more than 99% accuracy on SQUAD 2.0 and sev-
eral GLUE benchmark tasks using only 50% of
the parameters and computational resources of the
teacher model. The model consists of 66M param-
eters.

ALBERT (Lan et al., 2019): ALBERT is a more
recent and efficient version of BERT that achieves
state-of-the-art performance. In the original paper,
two parameter-reduction techniques were proposed,
resulting in significantly smaller architectures that

‘Instruct: {task_definition} \n Query: {q+}’
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enable much faster pretraining and fine-tuning. Ad-
ditionally, the authors replaced the Next Sentence
Prediction (NSP) objective with Sentence Order
Prediction (SOP), as it was demonstrated to im-
prove performance on GLUE, RACE, and SQuAD.
We use the large version of this model, which con-
sists of 18M parameters.

DeBERTa_v3: DeBERTa (He et al., 2020) is an
improved version of BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) models, utilizing dis-
entangled attention and an enhanced mask decoder.
In the later version (He et al., 2021) of the model,
it was discovered that using Replace Token De-
tection (RDT), originally deployed in ELECTRA
(Clark et al., 2020), results in better performance
than the Masked Language Modeling (MLM) ob-
jective. The paper also shows that vanilla embed-
ding sharing in ELECTRA hurts training efficiency
and model performance, as the training losses of
the discriminator and generator pull token embed-
dings in different directions. We experiment with
the large version of the model, which consists of
304M parameters.

Mistral 7B (Jiang et al., 2023): This is the first
decoder model we utilize for our work. We experi-
ment with both the vanilla version and the instruct
version of the model. Instruct versions of LLMs
are the vanilla models fine-tuned on instruction
datasets. To fine-tune our model, we utilized LoRA
(Hu et al., 2021). LoRA freezes the pre-trained
model weights and injects trainable rank decompo-
sition matrices into each layer of the Transformer
architecture, significantly reducing the number of
trainable parameters for downstream tasks. LoRA
enables us to fine-tune LLMs consisting of billions
of parameters on a single GPU. For all our models,
we employed LoRA with a dimension of 16 and an
alpha value of 8.

Llama 3 8B (Dubey et al., 2024): Llama 3 8B is
the smaller model in the Llama 3 Herd of Models.
This paper introduces a series of Llama models
consisting of 8B, 70B, and 405B parameters. They
also train two separate vision and speech encoders,
as well as guard models for safe deployment of
the LLMs. The model follows the standard Trans-
former architecture (Vaswani et al., 2017). The
model was pretrained on 15T tokens, compared
to the 1.8T tokens used for Llama 2. After pre-
training, they utilized post-training methods like
supervised fine-tuning (SFT), rejection sampling
(RS), and direct preference optimization (DPO).



D Additional Experiments

In this appendix, we provide results for scenarios
where the agents process the sequences (1) without
including the answer from the database. The results
are presented in Table 4.

Our results demonstrate that the performance
based only on questions is close to that achieved
when considering both questions and answers.
This can be attributed to the characteristics of our
dataset. Specifically, according to the original
DeBERTa_v3 paper (He et al., 2021), the model
achieves an accuracy of 93% on the Quora Ques-
tion Pairs dataset (Wang et al., 2017), leaving lim-
ited room for further improvement. This perfor-
mance is slightly lower than that of the model
trained solely during the training phase. However,
the dynamic approach we implemented to create
pairs using our retrievers clearly enhances the ro-
bustness of our fine-tuning process. By providing
the most similar yet uncorrelated pairs, this method
allows our agents to learn effectively and perform
well in the most challenging scenarios.

It is important to note that Mistral (Jiang et al.,
2023), fine-tuned on our relatively small dataset
both as a classifier and as a bandit, outperforms
the zero-shot performance of E5_Mistral (Wang
et al., 2024a). This is particularly significant, as
E5_Miistral (Wang et al., 2024a) has undergone con-
siderably more training than our fine-tuned model.
Similar to the performance based on both questions
and answers, which we report in Table 3, we do
not observe significant differences between the ban-
dit and classification approaches. Moreover, it is
clear that models with billions of parameters outper-
form smaller models. Finally, it is evident that, in
this task, the DeBERTa_v3 model (He et al., 2021)
demonstrates impressive performance, comparable
to that of larger models.
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Incorrect  Unnecessary Fj weighted ~ F; macro Accuracy Reward
responses engaged
the expert
Zero-shot performance
E 5 22 (£8) 104 (£6) 91% (£7e-5) 85% (L£le-4) 91% (£7e-5) 581 (+£94)
GTE 4(£+2) 164 (4) 89% (+9e-6) 81% (£2e-5) 89% (£le-5) 658 (£29)
Nomicynsupervised 10 (£4) 96 (+6) 92% (£2e-5) 87% (£5e-5) 92% (+2e-5) 715 (£40)
Nomic finetuned 16 (£6) 72 (£4) 93% (+1e-5) 89% (£4e-5) 94% (£2e-5) 705 (£62)
E5_Miistral 17 (£8) 28 (+1) 97% (£3e-5) 94% (£9e-5) 97% (+£3e-5) 791 (£83)
Performance of agents with training-only updates
Classifier
MiniLM 13 (£7) 108 (£7) 92% (+5e-5) 86% (£5e-5) 93% (+4e-5) 668 (£67)
BERT 15 (£6) 85 (£6) 93% (+£4e-5) 88% (£le-4) 93% (£4e-5) 687 (£55)
ALBERT 15 (£8) 102 (£6) 92% (+5e-5) 86% (L£le-4) 92% (+4e-5) 654 (+86)
DeBERTa_v3 7 (£7) 55 (£95) 95% (£5e-5) 90% (£le-4) 95% (£5e-5) 714 (£93)
Mistral 9 (£5) 50 (+4) 96% (+3e-5) 92% (£7e-5) 96% (+3e-5) 811 (+£63)
Llama 9 (£2) 51 (£6) 96% (+2e-5) 92% (£7e-5) 96% (+2e-5) 744 (£79)
Bandit
MiniLM 10 (£7) 92 (£7) 93% (+5e-5) 87% (£le-4) 93% (£5e-5) 727 (£80)
BERT 7 (+4) 91 (£5) 94% (+£2e-5) 88% (£4e-5) 93% (+2e-5) 762 (+46)
ALBERT 15 (£9) 102 (£6) 94% (+1e-5) 86% (L£le-5) 94% (f£le-5) 654 (£86)
DeBERTa_v3 11 (£5) 82 (+9) 94% (+4e-5) 88% (L£le-4) 93% (£5e-5) 738 (£62)
Mistral 15 (£5) 25 (+4) 97% (+1e-5) 95% (£1e-5) 97% (+1e-5) 800 (+£60)
Llama 19 (£7) 26 (£4) 97% (+2e-5) 97% (+5e-5) 97% (+1e-5) 756 (£76)
Performance of agents with updates at test time
Classifier
MiniLM 21 (£7) 14 (£3) 98% (+2e-5) 95% (£9e-5) 98% (+2e-5) 808 (£59)
BERT 19 (£5) 10 (£2) 98% (+1e-5) 96% (+£5e-5) 98% (+1e-5) 825 (+44)
ALBERT 19 (£5) 13 (£8) 98% (+2e-5) 95% (£1le-5) 98% (+2e-5) 825 (£40)
DeBERTa_v3 16 (+£4) 6 (£2) 98% (+6e-5) 97% (£3e-5) 98% (+6e-5) 862 (+£36)
Mistral 15 (£5) 24 (+4) 97% (£2e-5) 95% (£6e-5) 97% (£2e-4) 917 (£20)
Llama 4 (+1) 52 (£58) 96%(+£1e-3)  93% (£3e-3) 96%(+1e-3)  799(+60)
Bandit
MiniLM 4 (1) 83 (£7) 94% (£6e-5) 89% (£6e-5) 94% (£2e-5) 827 (£20)
BERT 5(£2) 80 (£4) 95% (£9e-6) 89% (£3e-5) 95% (£le-5) 821 (£16)
ALBERT 5(£2) 57 (£5) 96% (£1le-5) 92% (£4e-5) 96% (£1e-5) 860 (£20)
DeBERTa_v3 8 (£2) 35 (£4) 97% (t£1e-5) 94% (+4e-5) 97%(+9%e-6) 883 (£18)
Mistral 4 (£2) 19 (£3) 98% (+6e-6) 97% (+£2e-5) 98%(+6e-6) 941 (+20)
Llama 5(£2) 20 (£3) 98% (+5e-6) 96% (+£2e-5) 98%(+5e-6) 938 (£16)
Optimal performance
0 (+0) 0 (+0) 100% (+0) 100% (£0) 100% (+0) 1062 (+0)

Table 4: Performance of the retrievers (top rows), agents with training-only updates (middle rows), and agents with
updates at test time (bottom rows), for various language models when deploying only questions for the evaluation.
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