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Abstract

Large Language Models (LLMs) often fal-001
ter in providing accurate responses to queries002
that demand up-to-date or context-specific in-003
formation. Retrieval-Augmented Generation004
(RAG) addresses this limitation by incorpo-005
rating a retriever to fetch relevant documents006
from databases or the Internet. However, RAG007
falls short when relevant information is unavail-008
able, necessitating expert intervention—a pro-009
cess that is both costly and inefficient. This010
work introduces and addresses the LLM-aided011
expert problem, aiming to develop systems that012
progressively enhance their competence in an-013
swering queries while minimizing the need for014
expert input. We propose two decision-making015
strategies: (1) a classifier-based approach that016
employs threshold-based filtering to evaluate017
retrieved answers, and (2) a contextual bandit018
approach that models the decision to rely on019
retrieved answers or escalate to an expert as020
a two-arm bandit problem. Both methods uti-021
lize Pretrained Language Models for answer022
validation and reward estimation. We evalu-023
ate these strategies using a benchmark derived024
from the Quora Question Pairs dataset, demon-025
strating their effectiveness in reducing expert026
interventions while maintaining high accuracy.027
Our results highlight the potential of adaptive028
decision-making frameworks to enhance LLM029
reliability in dynamic query-answering environ-030
ments.031

1 Introduction032

The advent of Transformers (Vaswani et al., 2017)033

has spurred the development of numerous Large034

Language Models (LLMs), such as BERT (Devlin035

et al., 2019) and GPT (OpenAI et al., 2024), revo-036

lutionizing the processing and analysis of written037

language. However, LLMs face a significant limi-038

tation:They often struggle to address user queries039

that demand up-to-date or context-specific infor-040

mation, as they lack real-time awareness and may041

provide outdated or inaccurate responses.042

To address this challenge, Retrieval-Augmented 043

Generation (RAG) (Lewis et al., 2020) was in- 044

troduced. RAG enhances interaction by integrat- 045

ing a Retriever to fetch relevant documents from 046

databases or the Internet. These retrieved docu- 047

ments, along with the user’s query, are processed 048

by a generative Large Language Model to produce 049

an answer. RAG has been shown to outperform 050

purely generative methods, significantly reducing 051

hallucinations (Lewis et al., 2020; Ji et al., 2023; 052

Sadat et al., 2023; Manakul et al., 2023).The term 053

hallucination refers to the generation of false, mis- 054

leading, or nonsensical information that appears 055

plausible but is not based on real data or facts. 056

While RAG provides a substantial improvement 057

over purely generative methods, it is still insuffi- 058

cient in scenarios where no relevant information 059

exists in the database or online. In such cases, to 060

address a query, the system requires an expert to 061

intervene and provide the correct answer. This 062

query, answer pair is then stored for future refer- 063

ence. However, expert interventions are costly, and 064

querying the expert unnecessarily should be mini- 065

mized. This raises a fundamental question: 066

How can we design an LLM-based system 067

that progressively builds competence in answer- 068

ing queries while minimizing reliance on expert 069

interventions? 070

We define this challenge as the LLM-aided ex- 071

pert problem and formulate it as an online optimiza- 072

tion problem. Specifically, the system starts with 073

an empty database and processes queries sequen- 074

tially. For each new query, a retriever searches the 075

database for similar past queries and their corre- 076

sponding answers. The system then evaluates the 077

retrieved answers to determine the most likely cor- 078

rect response. Based on this assessment, it either 079

provides the retrieved answer to the user or assigns 080

the query to an expert when necessary. 081

In this work, we explore strategies to optimize 082

the trade-off between model autonomy and expert 083
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involvement, aiming to develop a system that max-084

imizes accuracy while minimizing expert interven-085

tions. Our main contributions are as follows:086

(a) We develop two sequential decision strate-087

gies for the LLM-aided expert problem.088

1. The classifier-based approach. This strategy as-089

sesses whether the retrieved answers are accurate090

enough to be used. A classifier, combined with091

an optimized thresholding procedure, determines092

whether the system should return the retrieved an-093

swer or escalate the query to an expert.094

2. The contextual bandit approach. We formulate095

the problem as a two-arm contextual bandit. Here,096

the context corresponds to the incoming query and097

the retrieved query-answer pair. Selecting the first098

arm means returning the retrieved answer, while099

selecting the second arm means consulting the ex-100

pert. We propose a bandit algorithm that estimates101

the expected reward of the first arm and makes102

decisions accordingly.103

In both strategies, we leverage a large variety of104

pretrained language models — for answer assess-105

ment in the classifier-based approach and reward106

estimation in the bandit algorithm.107

(b) Empirical evaluation and benchmarking. We108

evaluate our methods using a question-answering109

benchmark based on the Quora Question Pairs110

dataset (Wang et al., 2017). To facilitate experi-111

mentation, we develop an environment that allows112

testing various methods and LLM architectures.113

Our results demonstrate the effectiveness of our114

strategies, showing significant improvements over115

naive baseline approaches.116

2 Related Work117

In contemporary applications of NLP to real-118

world question-answering environments, where119

knowledge may reside in documentation, Retrieval-120

Augmented Generation (RAG) (Lewis et al., 2020)121

has emerged as a pivotal technique. A RAG system122

comprises two main components: a Retriever and a123

Large Language Model. Retrievers excel at repre-124

senting similar words and sentences closely in the125

embedding space, thereby understanding language126

patterns effectively.127

Notable retriever models, such as Dense Pas-128

sage Retrieval (DPR) (Karpukhin et al., 2020),129

Embeddings from bidirectional Encoder Repre-130

sentations (E5) (Wang et al., 2022), and General131

Text Embedding (GTE) (Li et al., 2023), leverage132

pretrained architectures like BERT (Devlin et al.,133

2019) to initialize encoders. These encoders E 134

are fine-tuned to ensure that the cosine similarity 135

cosine_similarity(E(x), E(y)) accurately cap- 136

tures the true relationship between the query x and 137

the passage y. 138

Recently, the NLP community has increasingly 139

favored decoder architectures for creating embed- 140

dings (Springer et al., 2024; BehnamGhader et al., 141

2024), as these approaches have demonstrated su- 142

perior performance over traditional encoder-based 143

methods. Among these, Mistral-E5 (Wang et al., 144

2024a) stands out as the state-of-the-art LLM for 145

text retrieval. Retriever models are commonly eval- 146

uated using benchmarks such as BEIR (Thakur 147

et al., 2021) and MTEB (Muennighoff et al., 2022). 148

Several approaches have been proposed to en- 149

hance the quality of RAG systems. Self-RAG (Asai 150

et al., 2023) improves quality through retrieval and 151

self-reflection, training a single language model to 152

adaptively retrieve passages on demand and gener- 153

ate and reflect on both retrieved passages and its 154

own outputs using reflection tokens. This makes 155

the language model controllable during inference, 156

allowing it to adapt to diverse task requirements. 157

R3 (Ma et al., 2023) introduces a Rewrite- 158

Retrieve-Read scheme to effectively retrieve nec- 159

essary knowledge. This approach employs a read- 160

and-rewrite LLM, where a trainable small LLM 161

generates queries and is trained via reinforcement 162

learning based on feedback from a larger reader 163

LLM. 164

M-RAG (Wang et al., 2024b) presents a dynamic 165

system that achieved improvements of 11%, 8%, 166

and 12% in text summarization, machine transla- 167

tion, and dialogue generation, respectively. This 168

system utilizes two contextual bandit agents. Dur- 169

ing generation, Agent-S selects the database parti- 170

tion to address questions, and the retriever fetches 171

the most relevant document. A generative LLM 172

then produces multiple summaries, and Agent- 173

R identifies the best possible summary. The fi- 174

nal response is generated by an LLM based on 175

the summary and retrieved document. Only the 176

agents are trained, modeled as Markov decision 177

processes, and optimized using Deep Q-Network 178

(DQN) (Mnih, 2013) with replay memory. 179

3 Quora Question Groups 180

In this section, we introduce the dataset used in our 181

experiments to illustrate and clarify the LLM-aided 182

expert problem. The dataset is derived from the 183
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Quora Question Groups, a clustered subset of the184

Quora Question Pairs dataset (Wang et al., 2017).185

The Quora Question Pairs dataset comprises over186

400,000 question pairs, each annotated with a bi-187

nary label indicating whether the questions are188

paraphrases of each other. Details of our dataset189

sampling process from the Quora Question Pairs190

dataset are provided in Appendix A.191

A key concept in our experiments is the notion of192

a "question group." Two different questions belong193

to the same group if they can be addressed by the194

same answer. For example:195

Q1: How do I erase my profile on Quora?196

Q2: I can’t get rid of this annoying account. Can197

someone help me?198

A: To unsubscribe from Quora, you need to use a199

full-on browser and follow these steps: ...200

From the Quora Question Pairs dataset, we ex-201

tracted 7,365 questions along with their correspond-202

ing groups or answers. The dataset was split into203

training (66%), test (19%), and validation (15%)204

sets, ensuring no overlap of question groups across205

these subsets to assess the generalization capabili-206

ties of our models (see Table 1).207

Figure 1 presents histograms of group sizes208

across the datasets. Group sizes range from 1 to209

100, where a group size of 100 indicates a fre-210

quently asked question posed in various ways by at211

least 100 users. Groups with a size of one contain212

questions asked only once.213

Figure 1: distribution of our groups in the final dataset.

4 LLM-Aided Expert System214

In this section, we formally introduce the LLM-215

aided expert problem, outline various strategies for216

system design, and describe the training and testing217

procedures.218

questions groups group size < 10 group size = 1

train 4854 730 495 (68%) 111 (15%)

test 1424 181 120 (66%) 33 (18%)

validation 1087 189 115 (61%) 37 (20%)

total 7365 1100 730 (66%) 181 (17%)

Table 1: Dataset Statistics

4.1 The LLM-aided Expert Problem 219

The LLM-aided expert problem is an online 220

decision-making problem where the system inter- 221

acts sequentially with its environment. This inter- 222

action is illustrated in Figure 2. 223

Environment. In our setup, users sequentially sub- 224

mit queries to the system. The system can either 225

respond directly or return an empty response (∅), 226

indicating the need for expert intervention. We 227

assume the expert can always provide correct an- 228

swers. Each expert response is stored in the sys- 229

tem’s database for future reference. 230

System components. The system comprises a 231

database, a retriever, and an agent. The database 232

stores queries and their corresponding expert- 233

provided answers. The retriever identifies the k 234

most similar queries from the database to the in- 235

coming query. These k queries and their answers 236

are passed to the agent, which decides whether to 237

use one of these answers or engage the expert. If 238

the agent uses a previous answer, the new query- 239

answer pair is not stored to avoid potential contam- 240

ination of the database with incorrect information. 241

However, every expert engagement results in stor- 242

ing the new query-answer pair in the database. 243

Sequential interaction. Initially, the database B0 244

is empty. In each round t ≥ 1, a user generates 245

a query QR
t with an unknown correct answer AR

t . 246

The retriever identifies k similar queries, and based 247

on these, the agent either selects a corresponding 248

answer or consults the expert. In practice, the agent 249

will primarily engage the expert early on when 250

the database is sparse. Over time, as the database 251

grows, the system will handle most queries inde- 252

pendently. However, novel queries may still neces- 253

sitate expert intervention at any stage. 254

Rewards and performance metrics. The system 255

receives a reward of +1 for correctly answering 256

a query without expert help and incurs a penalty 257

of -10 for incorrect answers. Engaging the expert 258

results in a -1 penalty to discourage unnecessary 259

consultations. Incorrect answers are heavily penal- 260
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Figure 2: The LLM-aided expert system, and its interaction with the environment.

ized to prioritize accuracy over unnecessary expert261

engagement. The objective is to design an agent262

that maximizes cumulative rewards over a given263

number of rounds, starting with an empty database.264

Performance is also evaluated based on the num-265

ber of incorrect answers and unnecessary expert266

engagements.267

4.2 Agent design approaches268

The agent processes incoming queries and the k269

similar query-answer pairs provided by the re-270

triever to either select an answer or request ex-271

pert assistance. We present two approaches for272

designing the agent: the classifier and the contex-273

tual bandit approaches. These are compared against274

a baseline method where the retriever selects the275

answer.276

Baseline: the retriever. The retriever is a static277

component of the system that remains untrained278

throughout the experiments. It identifies the k most279

similar queries to the incoming query by leveraging280

query embeddings and calculating cosine similarity281

between the incoming query and database queries.282

The retriever can also function as an agent by se-283

lecting an answer based on these similarities: it284

returns the answer with the highest similarity to the285

incoming query if this similarity exceeds a prede-286

fined threshold. If no query in the database meets287

the similarity threshold, the retriever consults the288

expert. During the validation phase, the threshold289

is tuned to optimize performance.290

Classifier approach. In the classification ap-291

proach, the agent examines the incoming query292

and the k similar query-answer pairs provided by293

the retriever. Each query-answer pair (qold, aold) is294

combined with the incoming query qnew as follows: 295

[CLS] qnew [SEP ] qold [SEP ] aold [EOS] (1) 296

where [CLS] is the classification token, [SEP ] 297

is the separator token, and [EOS] is the end-of- 298

sequence token. This sequence is fed into a lan- 299

guage model to estimate the probability that aold is 300

the correct answer to qnew. The agent returns the 301

answer with the highest estimated likelihood if it 302

0.5. Otherwise, it consults the expert. The agent 303

is initialized with a pretrained language model and 304

fine-tuned using cross-entropy loss during training. 305

The threshold is optimized during the validation 306

phase. 307

Contextual bandit approach. In this approach, 308

the agent’s sequential decision problem is mod- 309

eled as a two-arm contextual bandit. For each 310

query-answer pair (qold, aold) returned by the re- 311

triever, the context is formed by combining the pair 312

with the incoming query, as shown in equation (1). 313

The first arm corresponds to returning aold, while 314

the second arm represents consulting the expert, 315

with a known reward of -1. The reward of the first 316

arm is estimated by passing the sequence through 317

a pretrained language model, fine-tuned to mini- 318

mize Mean Squared Error. This estimated reward 319

is used to compute the index for the first arm. The 320

final decision involves selecting the answer whose 321

corresponding arm index is the highest, and ex- 322

ceeds a threshold, optimized during validation. If 323

the threshold is not met by any query-answer pair, 324

the second arm is played and the expert is called. 325

The agent is initialized with a pretrained language 326

model and fine-tuned during training. 327
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Algorithm 1 Training round
Pick (QR

t , A
R
t ) from Dtrain

k_pairs = Retriever(QR
t , database)

A = agent.answer(QR
t , k_pairs)

if A = ∅ then
Rt = −1 (penalty for engaging the expert)
database.update(QR

t , A
R
t )

else if A ̸= AR
t then

Rt = −10 (incorrect answer penalty)
else

Rt = 1 (correct answer reward)
end if
agent.update(QR

t , A
R
t , Rt, k_pairs)

Figure 3: A round of our agent’s training.

4.3 Training and testing phases328

The agent is trained by simulating the operational329

environment, starting with an empty database. Dur-330

ing each training round, as outlined in Figure 3, a331

query-answer pair (QR
t , A

R
t ) is randomly selected332

from the training dataset Dtrain. The retriever iden-333

tifies the k most similar query-answer pairs from334

the database. The agent then assesses whether any335

of the retrieved answers can address QR
t . If the336

agent determines that none of the retrieved answers337

are suitable, it returns ∅, prompting the expert to338

address the query. Each expert engagement incurs339

a penalty of -1, and the new query-answer pair is340

added to the database. If the agent provides an341

answer Ā, it is compared with the original answer342

AR
t . Our experiments utilize a cluster-based dataset343

where questions are grouped by their corresponding344

answers. This allows for comparisons by match-345

ing the retrieved query group ID with that of the346

incoming query QR
t . A correct match rewards the347

agent with +1, while an incorrect match results in a348

substantial penalty of -10. The agent’s model is up-349

dated at the end of each training round using all col-350

lected information. To ensure the agent performs351

well even with a sparse database, the database is352

periodically emptied approximately every 1,000353

rounds.354

During the test phase, the environment is simu-355

lated using the test dataset Dtest. The agent aims356

to answer as many questions correctly as possible,357

minimize expert engagement, and maximize knowl-358

edge acquisition. Unlike the training phase, the359

database is not periodically emptied. We consider360

two scenarios: one where the agent is not updated 361

during testing, and another where it is updated at 362

the end of each round, mirroring the training phase. 363

5 Experiments 364

Next, we present the agents we experimented with, 365

detail the experimental setup, and discuss the re- 366

sults obtained. 367

5.1 Experimental Setup 368

Our experiments involve deploying pretrained lan- 369

guage models as agents and fine-tuning them to 370

optimize system performance. 371

Retrievers. We experimented with several retriever 372

models, including: E51 (Wang et al., 2022), GTE2 373

(Li et al., 2023), NOMIC3 (Nussbaum et al., 2024), 374

E5_Mistral4 (Wang et al., 2024a). 375

Agents. We utilized a variety of language mod- 376

els as agents, including: BERT5 (Reimers and 377

Gurevych, 2019), MiniLM6 (Wang et al., 2020), 378

ALBERT7 (Lan et al., 2019), DeBERTa_v38 (He 379

et al., 2021), Mistral 7B9 (Jiang et al., 2023), Llama 380

3 8B10 (Dubey et al., 2024). A more detailed de- 381

scription of these language models is provided in 382

Appendix C. 383

Hyperparameter Tuning. For each model, we 384

conducted hyperparameter tuning to optimize per- 385

formance. The hyperparameters experimented with 386

are presented in Table 2. For the classifier approach, 387

the ’class 0 weight’ tunes the decision threshold 388

used to decide whether the expert is consulted. Sim- 389

ilarly the decision boundary in the bandit approach 390

corresponds to the threshold used to assess the in- 391

dex of the first arm and to decide whether the sec- 392

ond arm is played (the expert is consulted). The 393

number of epochs corresponds to the number of 394

times we go through the entire dataset. At the be- 395

ginning of each epoch, the database is emptied, and 396

the order in which queries are treated is random- 397

ized. 398

Performance analysis. We begin by evaluating 399

our baseline, which is the retriever. We test various 400

1intfloat/e5-base
2thenlper/gte-base
3nomic-ai/nomic-embed-text-v1-unsupervised
4intfloat/e5-mistral-7b-instruct
5google-bert/bert-large-uncased
6microsoft/Multilingual-MiniLM-L12-H384
7albert/albert-large-v2
8microsoft/deberta-v3-large
9mistralai/Mistral-7B-Instruct-v0.3

10meta-llama/Llama-3.1-8B-Instruct

5



Method Hyperparameters

Retriever
decision threshold: from 0 to 1
with step size 0.05

Classifier
approach

learning rate:
{1e− 5, 2e− 5, 3e− 5}
k during training: {1, 2, 5}
k at test time: {1, 2}
training epochs: {5, 10, 15}
class 0 weights: {1, 5, 10}

Bandit
approach

learning rate:
{1e− 5, 2e− 5, 3e− 5}
k during training: {1, 2, 5}
k at test time: {1, 2}
training epochs: {5, 10, 15}
decision boundary:
{−3,−2,−1, 0}

Table 2: Hyper parameters search space for all methods.

retriever models and select the best-performing one.401

This retriever is then combined with either our clas-402

sifier or bandit agent. During testing, we consider403

two scenarios: one where the agent is not updated,404

and another where the agent is further fine-tuned.405

Our experiments revealed that performance is406

significantly influenced by the sequence in which407

questions are presented. To ensure an unbiased408

estimation of validation and test performance, we409

conducted 10 validation iterations for each hyper-410

parameter combination and 10 test iterations, shuf-411

fling the dataset in each iteration.412

The results are presented in Table 3. Specifically,413

we report the mean and variance of the number414

of incorrect responses, the average number of un-415

necessary expert engagements, macro F1 score,416

weighted F1 score, and reward. Unnecessary ex-417

pert engagement occurs when the answer is already418

in the database, but the expert is consulted nonethe-419

less. In Appendix D, we provide results for sce-420

narios where the agents process the sequences (1)421

without including the answer from the database.422

5.2 Results423

Retriever performance. In Table 3, the retriever424

performance is evaluated as zero-shot performance425

since no training is applied to the retriever. The426

only parameter optimized is the decision thresh-427

old during the validation phase. The E5_Mistral428

model (Wang et al., 2024a) achieves the highest re-429

ward while minimizing unnecessary expert engage-430

ment. However, the GTE model (Li et al., 2023)431

makes the fewest mistakes. Despite this, GTE’s 432

F1 score, accuracy, and reward are lower due to 433

a higher frequency of unnecessary expert engage- 434

ments. From these preliminary experiments, we 435

observe that the highest reward is achieved when 436

the agent effectively balances between incorrect 437

responses and unnecessary expert engagements. 438

Given that E5_Mistral (Wang et al., 2024a) was 439

identified as the best retriever model for our prob- 440

lem, we utilize it to retrieve similar questions in 441

subsequent experiments. 442

It is worth noting that GTE and Nomic used a 443

portion of the Quora dataset to train the supervised 444

versions of their models, which could potentially 445

affect their performance in our context. Nomic pro- 446

vides both supervised and unsupervised versions 447

of their model. Although the supervised version 448

achieves slightly better accuracy and F1 scores, the 449

unsupervised version performs slightly better due 450

to fewer incorrect responses. 451

Agents’ Performance with training-only up- 452

dates. When the model is updated solely during 453

training, the bandit agent based on Mistral (Jiang 454

et al., 2023) outperforms all other models, includ- 455

ing the retriever baseline. Notably, despite De- 456

BERTa_v3 (He et al., 2021) having a relatively 457

smaller size (330M parameters compared to Mis- 458

tral’s 7B and Llama’s 8B), the DeBERTa_v3-based 459

agent performs nearly as well as the Mistral-based 460

agent. This finding is significant because it under- 461

scores the potential of DeBERTa_v3 in scenarios 462

where powerful GPUs, necessary for running larger 463

models like Llama, are unavailable. 464

Agents’ performance with updates at test time. 465

Table 3 demonstrates that updating the model at 466

test time significantly enhances performance. No- 467

tably, even the MiniLM-based agent (Wang et al., 468

2020), with only 30M parameters, outperforms the 469

E5_Mistral retriever (7B parameters) and the Mis- 470

tral bandit agent (Jiang et al., 2023) when the latter 471

is tuned only during training. This highlights that 472

a less complex model, trained on relevant queries, 473

can outperform more sophisticated models opti- 474

mized for different types of queries. The highest 475

reward is achieved by the Mistral classifier, which 476

scores 107 reward units below the theoretically 477

optimal reward of 1062. This model responded 478

incorrectly an average of 4 times and unnecessarily 479

engaged the expert 16 times, which is impressive 480

given the 1424 questions received during testing. 481

It is important to note that the optimal reward can 482
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Incorrect

responses

Unnecessary

engaged

the expert

F1 weighted F1 macro Accuracy Reward

Zero-shot retriever performance

E_5 22 (±8) 104 (±6) 91% (±7e-5) 85% (±1e-4) 91% (±7e-5) 581 (±94)

GTE 4 (±2) 164 (4) 89% (±9e-6) 81% (±2e-5) 89% (±1e-5) 658 (±29)

Nomicunsupervised 10 (±4) 96 (±6) 92% (±2e-5) 87% (±5e-5) 92% (±2e-5) 715 (±40)

Nomicfinetuned 16 (±6) 72 (±4) 93% (±1e-5) 89% (±4e-5) 94% (±2e-5) 705 (±62)

E5_Mistral 17 (±8) 28 (±1) 97% (±3e-5) 94% (±9e-5) 97% (±3e-5) 791 (±83)
Performance of agents with training-only updates

Classifier approach

MiniLM 14 (±) 89 (±6) 93% (±5e-5) 87% (±1e-4) 93% (±5e-5) 682 (±87)

BERT 12 (±5) 74 (±5) 94% (±2e-5) 89% (±4e-5) 94% (±2e-5) 740 (±55)

ALBERT 7 (±3) 81 (±4) 94% (±1e-5) 89% (±4e-5) 94% (±2e-5) 774 (±34)

DeBERTa_v3 7 (±7) 54 (±4) 96% (±3e-5) 92% (±8e-5) 96% (±3e-5) 811 (±52)
Mistral 15 (±6) 23 (±5) 97% (±3e-5) 94% (±9e-5) 97% (±3e-5) 806 (±73)

Llama 20 (±7) 26 (±3) 97% (±3e-5) 94% (±1e-4) 95% (±3e-5) 744 (±79)

Bandit approach

MiniLM 15 (±11) 80 (±7) 93% (±2e-4) 88% (±3e-4) 94% (±2e-4) 691 (±122)

BERT 17 (±9) 71 (±5) 94% (±7e-5) 89% (±2e-4) 94% (±7e-5) 687 (±107)

ALBERT 20 (±9) 63 (±8) 94% (±6e-5) 89% (±1e-4) 94% (±6e-5) 668 (±98)

DeBERTa_v3 12 (±6) 53 (±4) 95% (±3e-5) 91% (±9e-5) 95% (±3e-5) 772 (±70)

Mistral 12 (±6) 19 (±2) 98% (±2e-5) 96% (±6e-5) 98% (±2e-5) 847 (±69)
Llama 12 (±5) 20 (±3) 98% (±1e-5) 96% (±3e-5) 98% (±1e-5) 845 (±54)

Performance of agents with updates at test time

Classifier approach

MiniLM 16 (±5) 9 (±2) 98% (±1e-5) 96% (±5e-5) 98% (±1e-5) 859 (±46)

BERT 17 (±5) 10 (±2) 95% (±9e-6) 95% (±5e-5) 98% (±1e-5) 849 (±44)

ALBERT 19 (±8) 8 (±2) 98% (±4e-5) 96% (±2e-4) 98% (±4e-5) 827 (±73)

DeBERTa_v3 12 (±4) 7 (±2) 99% (±5e-6) 97% (±3e-5) 99% (±6e-6) 901 (±30)

Mistral 4 (±1) 16 (±5) 99% (±1e-5) 97% (±5e-5) 99% (±1e-5) 955 (±20)
Llama 4 (±1) 19 (±16) 98% (±1e-4) 97% (±4e-4) 98% (±1e-4) 947 (±37)

Bandit approach

MiniLM 4 (±1) 67 (±4) 95% (±9e-6) 90% (±3e-5) 95% (±1e-5) 853 (±19)

BERT 5 (±2) 52 (±4) 96% (±9e-6) 92% (±3e-5) 96% (±1e-5) 871 (±22)

ALBERT 4 (±1) 48 (±5) 96% (±1e-5) 93% (±3e-5) 96% (±1e-5) 887 (±17)

DeBERTa_v3 3 (±1) 32 (±4) 98% (±9e-6) 95% (±3e-5) 98% (±1e-5) 935 (±18)

Mistral 6 (±1) 16 (±5) 98% (±5e-6) 97% (±2e-5) 98% (±4e-6) 931 (±21)

Llama 5 (±1) 14 (±2) 99% (±3e-6) 97% (±1e-5) 99% (±3e-6) 949 (±16)
Optimal performance

0 (±0) 0 (±0) 100% (±0) 100% (±0) 100% (±0) 1062 (±0)

Table 3: Performance of the retrievers (top rows), agents with training-only updates (middle rows), and agents with
updates at test time (bottom rows), when deploying both questions and answers for the evaluation.
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Figure 4: The number of incorrect answers (left) and of unnecessary expert consultations (right) vs the number of
received queries at test time for the best models. The retriever is E5_Mistral; ’Learning at test time’ corresponds to
the Mistral classifier agent; ’Learning during training’ to the Mistral bandit agent.

only be achieved if both the agent and the retriever483

are optimal. This requires all correct answers to be484

ranked within the top k by the retriever and selected485

by the agent. In our experiments, we found that486

k is typically 1 during testing, as retrieving more487

than one answer increases the likelihood of provid-488

ing incorrect responses. Additionally, we observe489

that large language models generally outperform490

smaller ones across all experimental setups in this491

scenario.492

Dynamics under the best models. Finally, we493

compare the dynamic behavior at test time of (i)494

the best retriever E5_Mistral model, (ii) the best495

agent with training-only updates, the Mistral ban-496

dit agent, (iii) the best agent with updates at test497

time, the Mistral classifier agent. Figure 4 presents498

one run of these agents at test time. The system499

starts with an empty database, and so naturally, the500

system returns incorrect answers and consults the501

expert often at the beginning. These events tend502

to discrease in rate as the system has seen more503

queries as the database grows large. The plots in504

Figure 4 really illustrates the advantage of updat-505

ing the model at test time. Thanks to these updates,506

the model adapts to the new group of queries and507

in turn, makes almost no incorrect responses after508

receiving a few queries.509

6 Conclusion and Future Work510

In this paper, we introduced and addressed511

the LLM-aided expert problem, which arises in512

question-answering scenarios where initial infor-513

mation is lacking, necessitating expert intervention.514

We presented various approaches to develop agents515

that progressively enhance their competence in an- 516

swering queries while minimizing the need for ex- 517

pert input. Our solutions demonstrated superiority 518

over naive baseline methods. 519

Future work could focus on integrating genera- 520

tive large language models to dynamically generate 521

responses based on prior interactions, marking the 522

final step in deploying our system in real-world 523

scenarios. Implementing this system will provide 524

valuable insights into hallucination detection and 525

enhance its practical applications. Additionally, 526

we plan to explore the potential of applying our 527

system to real-time dialogue scenarios, where re- 528

sponses will be dynamically generated based on 529

previous questions and the evolving context of the 530

conversation. 531

Additionally, deploying our system in real-world 532

environments, such as customer support for new 533

products or educational settings, would be valuable. 534

In customer support, our system could handle a 535

large volume of repetitive questions during prod- 536

uct launches, enabling the testing of additional re- 537

inforcement learning methods. In education, our 538

system could assist students by providing answers 539

to frequently asked questions, ensuring accurate 540

responses to maintain trust. 541
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7 Limitations542

Our approach relies on access to a substantial543

dataset of queries with corresponding correct an-544

swers during training. This dataset is essential545

for our agents to learn to evaluate the relevance546

of similar queries retrieved by the retriever and547

to back-propagate the loss from incorrect answers.548

Our experiments showed that to achieve high per-549

formance, especially with new types of queries in550

test data, the agent must be updated at test time.551

However, true answers are not available during test-552

ing.553

In real-world scenarios, we expect users to pro-554

vide feedback on the answers they receive, enabling555

the system to infer the validity of those answers.556

Real-world experiments are necessary to confirm557

this expectation. We have already tested our system558

at test time, assuming users complain when receiv-559

ing a wrong answer. In this scenario, at test time,560

the agent was updated only when the user com-561

plained and when the expert was consulted. We562

observed no significant performance deterioration,563

compared to the scenario where true answers are564

known.565
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A Dataset Sampling742

We outline the process of constructing our dataset743

using the Quora Question Pairs dataset. This744

dataset is represented as a graph where nodes cor-745

respond to questions, and an edge between two746

nodes signifies that the questions are equivalent.747

The graph is naturally divided into distinct groups,748

each representing a set of equivalent questions or749

connected components.750

To create our dataset from the Quora Question751

Pairs dataset, we categorized the questions into five752

groups based on their frequency of occurrence:753

1. Very Frequent: These questions belong to754

groups with more than 20 occurrences. They755

cover common and fundamental topics. The756

Quora dataset includes 107 groups of very757

frequent questions.758

2. Frequent: Questions in this category belong to759

groups with 11 to 20 occurrences. The Quora760

dataset contains 324 frequent question groups.761

3. Rare: These questions belong to groups with762

6 to 10 occurrences. They focus on more763

specific areas. The Quora dataset includes764

1,276 rare question groups.765

4. Very Rare: Questions in this category belong766

to groups with 2 to 5 occurrences. They of-767

ten pertain to specialized or niche topics. The768

Quora dataset contains 58,749 very rare ques-769

tion groups.770

5. Unique: These are singular questions asked771

only once. They can be intriguing and unex-772

pected. The Quora dataset contains 426,153773

unique questions.774

After categorizing the questions, we identified775

several groups containing paraphrased versions of776

the same question. To address this, we sampled777

400 groups from each category, except for the "Fre-778

quent" and "Very Frequent" categories, which had779

fewer than 400 samples. We began with an empty780

dataset and, for each group, used our retriever to ex-781

tract the 10 most common questions. We manually782

inspected these questions and checked if the new783

group matched any existing group in our database.784

If a match was found, we merged the new group785

with the existing one; otherwise, we added the new786

group to the database. This process was repeated787

twice.788

Finally, we reviewed each group to ensure that 789

all questions within a group could be answered with 790

the same response. We then retrieved answers from 791

Quora and revised those that did not adequately 792

address the corresponding questions. 793

B Implementation Details 794

Our experiments were conducted using the Trans- 795

formers library. Our dataset consists of questions, 796

group IDs, and the embeddings for each question. 797

To avoid recalculating embeddings at every step, 798

we precompute the embeddings at the beginning 799

and utilize them throughout our experiments. 800

In each epoch of our training, we shuffle 801

our dataset and traverse it sequentially. At 802

each training step, we retrieve a question 803

along with its embeddings and group IDs. 804

Our memory consists of prior questions, orga- 805

nized in a matrix and indexed based on their 806

respective positions. The matrix has a size of 807

(number_of_previous_questions, embeddings_size). 808

By multiplying the embeddings of the new ques- 809

tion with this matrix, we obtain a vector of size 810

(number_of_previous_questions), which consists 811

of the cosine similarity scores between the new 812

question and the prior questions in our database. 813

Subsequently, by performing a linear pass through 814

this vector, we can retrieve the k most similar ques- 815

tions to the new question based on our chosen met- 816

ric. 817

For each previous question and its corresponding 818

answer, we construct a triple sequence consisting 819

of the new question, the old question, and the old 820

answer. This sequence is then passed to our agent 821

LLM, which can function either as a classifier or a 822

contextual bandit. The agent’s role is to determine 823

whether the old answer is suitable for addressing 824

the new question. 825

The classifier approach. The classifier takes the 826

triple sequence as input and outputs the probability 827

that the old answer can address the new question. 828

If applicable, we return the most probable answers 829

for the new question only if the probability exceeds 830

50%. We initialize our classifier using the stan- 831

dard AutoModelForSequenceClassification from 832

the Transformers library, with number_of_labels = 833

2. The classifier is trained using cross-entropy loss. 834

The Bandit approach. The bandit takes the triple 835

sequence as input and returns the expected reward. 836

This reward can be −10 if the old answer does not 837

address the new question, indicating that we should 838
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engage the expert, or 1 if it sufficiently addresses839

the new question, in which case we provide the840

previous answer as a response. Whether the old841

answer addresses the new question depends on the842

decision boundary, which is a hyperparameter we843

experiment with. This decision boundary is equiva-844

lent to the no-response arm and remains a constant845

value. We return the answer with the highest score846

if and only if the score exceeds the decision bound-847

ary. We initialize our bandit using the standard Au-848

toModelForSequenceClassification from the Trans-849

formers library, with number_of_labels set to 1.850

The bandit is trained using mean squared error.851

If the expert is engaged, we store the new ques-852

tion and its corresponding answer in the database.853

Otherwise, we do not store it to prevent contami-854

nating the database with false information. At the855

end of each epoch, we reset the memory.856

During the test and validation phases, we main-857

tain the same experimental setup. The validation858

set is used to identify the best hyperparameters,859

while the test set is used to evaluate the perfor-860

mance of our model. If learning occurs during the861

test phase, we do not deploy the model trained on862

the validation set. instead, we use the checkpoint863

saved prior to the validation phase. For the learning864

rate, we apply a linear scheduler during training,865

while during testing, the learning rate is kept con-866

stant at 1e−5.867

We conduct 10 independent evaluations and re-868

port the results as the average score along with869

the corresponding standard deviation or variance870

for each metric. For each evaluation, we reset the871

memory, shuffle the dataset, and reload the trained872

model from the specified checkpoint.873

C Pretrained Language models874

In this section, we describe the Natural Language875

Processing models we deployed.876

E5 (Wang et al., 2022): Embeddings from Bidi-877

rectional Encoder Representations (E5) is avail-878

able in three versions. The first version is initial-879

ized with MiniLM (Wang et al., 2020), the sec-880

ond is initialized with BERT-base (Reimers and881

Gurevych, 2019), and the third is initialized with882

BERT-large. This model follows a bi-encoder archi-883

tecture, where both the query and passage encoders884

are initialized with BERT. The training process885

consists of two stages. The first stage, called "un-886

supervised," uses a large number of unlabeled data,887

including title and passage pairs from Wikipedia,888

questions and answers from Reddit, and more. The 889

InfoNCE contrastive loss (van den Oord et al., 890

2018) is employed to minimize the distance be- 891

tween related queries and passages, while maxi- 892

mizing the distance between unrelated queries and 893

passages. The second stage involves training the 894

model on high-quality human-annotated data, such 895

as NLI (Gao et al., 2021), MS-MARCO (Bajaj 896

et al., 2016), and Natural Questions (Karpukhin 897

et al., 2020). During this stage, the model is trained 898

with a loss that combines the KL divergence be- 899

tween the probability distribution of the label, as 900

given by a cross-encoder teacher model, and the 901

probability distribution generated by our E5 student 902

model, along with the InfoNCE contrastive loss. 903

This second stage further improves the model’s per- 904

formance on benchmarks such as BEIR (Thakur 905

et al., 2021) and MTEB (Muennighoff et al., 2022). 906

GTE (Li et al., 2023): General Text Embedding 907

(GTE) is available in three versions. The model’s 908

pretraining is divided into supervised and unsuper- 909

vised phases. This paper introduces an improved 910

contrastive loss, which is utilized in both phases 911

of training. Additionally, they removed the KL ob- 912

jective, introduced a new sampling process, and 913

expanded the dataset size during the supervised 914

phase. 915

NOMIC (Nussbaum et al., 2024): Nomic is ini- 916

tialized from BERT and modified to address long- 917

context retrieval. Nomic consists of 100 million 918

parameters and supports a sequence length of up 919

to 2048. Nomic’s pretraining is divided into three 920

stages. The first stage focuses on Masked Lan- 921

guage Modeling to learn longer sequence repre- 922

sentations. The subsequent stages are supervised 923

and unsupervised, both employing the InfoNCE 924

contrastive loss. This model was trained on a sig- 925

nificantly larger dataset compared to the previous 926

versions, encompassing both supervised and un- 927

supervised phases. Nomic uses task-specific pre- 928

fixes—such as search, search query document, clas- 929

sification, and clustering—to distinguish between 930

the behaviors of each task. For the purpose of our 931

work, we used the clustering prefix. 932

E5_Mistral (Wang et al., 2024a): This is the first 933

unidirectional decoder architecture we use for our 934

work. The model is initialized from Mistral 7B 935

(Jiang et al., 2023) and consists of 7 billion param- 936

eters. The model takes as input the query q+ and 937

the task_definition and generates the instruction 938
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template:939

q+inst = ‘Instruct: {task_definition} \n Query: {q+}’940

Where the task definition is:941

’Given a web search query, retrieve relevant942

search queries that paraphrase the query.’943

The query instruction template and the document944

instruction template are then passed to the LLM.945

We obtain the query and document embeddings, h+q946

and h+d , from the last layer of the LLM at the [EOS]947

position. The model was trained on a large corpus948

of both original and synthetic data. The synthetic949

data was generated using advanced LLMs such as950

GPT-4.951

BERT (Reimers and Gurevych, 2019): Bidirec-952

tional Encoder Representations from Transform-953

ers (BERT) has the same number of parameters as954

GPT (Radford and Narasimhan, 2018). However,955

unlike GPT, BERT uses bidirectional self-attention,956

whereas GPT uses constrained self-attention, where957

each token can only attend to the context to its left.958

The model was pretrained using Masked Language959

Modeling (MLM) and Next Sentence Prediction960

(NSP). BERT’s significant advancements over the961

state-of-the-art during this period sparked a major962

revolution in modern NLP, inspiring the develop-963

ment of numerous models. We use the large version964

of BERT, which consists of 304M parameters.965

MiniLM (Wang et al., 2020): MiniLM is a sim-966

ple and effective approach to compressing large967

Transformer-based pretrained models, referred to968

as deep self-attention distillation. The small model969

(student) is trained by closely mimicking the self-970

attention module, which plays a vital role in Trans-971

former networks (Vaswani et al., 2017), of the large972

model (teacher). Specifically, they propose distill-973

ing the self-attention module from the last Trans-974

former layer of the teacher, which is both effec-975

tive and flexible for the student. MiniLM retains976

more than 99% accuracy on SQuAD 2.0 and sev-977

eral GLUE benchmark tasks using only 50% of978

the parameters and computational resources of the979

teacher model. The model consists of 66M param-980

eters.981

ALBERT (Lan et al., 2019): ALBERT is a more982

recent and efficient version of BERT that achieves983

state-of-the-art performance. In the original paper,984

two parameter-reduction techniques were proposed,985

resulting in significantly smaller architectures that986

enable much faster pretraining and fine-tuning. Ad- 987

ditionally, the authors replaced the Next Sentence 988

Prediction (NSP) objective with Sentence Order 989

Prediction (SOP), as it was demonstrated to im- 990

prove performance on GLUE, RACE, and SQuAD. 991

We use the large version of this model, which con- 992

sists of 18M parameters. 993

DeBERTa_v3: DeBERTa (He et al., 2020) is an 994

improved version of BERT (Devlin et al., 2019) and 995

RoBERTa (Liu et al., 2019) models, utilizing dis- 996

entangled attention and an enhanced mask decoder. 997

In the later version (He et al., 2021) of the model, 998

it was discovered that using Replace Token De- 999

tection (RDT), originally deployed in ELECTRA 1000

(Clark et al., 2020), results in better performance 1001

than the Masked Language Modeling (MLM) ob- 1002

jective. The paper also shows that vanilla embed- 1003

ding sharing in ELECTRA hurts training efficiency 1004

and model performance, as the training losses of 1005

the discriminator and generator pull token embed- 1006

dings in different directions. We experiment with 1007

the large version of the model, which consists of 1008

304M parameters. 1009

Mistral 7B (Jiang et al., 2023): This is the first 1010

decoder model we utilize for our work. We experi- 1011

ment with both the vanilla version and the instruct 1012

version of the model. Instruct versions of LLMs 1013

are the vanilla models fine-tuned on instruction 1014

datasets. To fine-tune our model, we utilized LoRA 1015

(Hu et al., 2021). LoRA freezes the pre-trained 1016

model weights and injects trainable rank decompo- 1017

sition matrices into each layer of the Transformer 1018

architecture, significantly reducing the number of 1019

trainable parameters for downstream tasks. LoRA 1020

enables us to fine-tune LLMs consisting of billions 1021

of parameters on a single GPU. For all our models, 1022

we employed LoRA with a dimension of 16 and an 1023

alpha value of 8. 1024

Llama 3 8B (Dubey et al., 2024): Llama 3 8B is 1025

the smaller model in the Llama 3 Herd of Models. 1026

This paper introduces a series of Llama models 1027

consisting of 8B, 70B, and 405B parameters. They 1028

also train two separate vision and speech encoders, 1029

as well as guard models for safe deployment of 1030

the LLMs. The model follows the standard Trans- 1031

former architecture (Vaswani et al., 2017). The 1032

model was pretrained on 15T tokens, compared 1033

to the 1.8T tokens used for Llama 2. After pre- 1034

training, they utilized post-training methods like 1035

supervised fine-tuning (SFT), rejection sampling 1036

(RS), and direct preference optimization (DPO). 1037
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D Additional Experiments1038

In this appendix, we provide results for scenarios1039

where the agents process the sequences (1) without1040

including the answer from the database. The results1041

are presented in Table 4.1042

Our results demonstrate that the performance1043

based only on questions is close to that achieved1044

when considering both questions and answers.1045

This can be attributed to the characteristics of our1046

dataset. Specifically, according to the original1047

DeBERTa_v3 paper (He et al., 2021), the model1048

achieves an accuracy of 93% on the Quora Ques-1049

tion Pairs dataset (Wang et al., 2017), leaving lim-1050

ited room for further improvement. This perfor-1051

mance is slightly lower than that of the model1052

trained solely during the training phase. However,1053

the dynamic approach we implemented to create1054

pairs using our retrievers clearly enhances the ro-1055

bustness of our fine-tuning process. By providing1056

the most similar yet uncorrelated pairs, this method1057

allows our agents to learn effectively and perform1058

well in the most challenging scenarios.1059

It is important to note that Mistral (Jiang et al.,1060

2023), fine-tuned on our relatively small dataset1061

both as a classifier and as a bandit, outperforms1062

the zero-shot performance of E5_Mistral (Wang1063

et al., 2024a). This is particularly significant, as1064

E5_Mistral (Wang et al., 2024a) has undergone con-1065

siderably more training than our fine-tuned model.1066

Similar to the performance based on both questions1067

and answers, which we report in Table 3, we do1068

not observe significant differences between the ban-1069

dit and classification approaches. Moreover, it is1070

clear that models with billions of parameters outper-1071

form smaller models. Finally, it is evident that, in1072

this task, the DeBERTa_v3 model (He et al., 2021)1073

demonstrates impressive performance, comparable1074

to that of larger models.1075
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Incorrect

responses

Unnecessary

engaged

the expert

F1 weighted F1 macro Accuracy Reward

Zero-shot performance

E_5 22 (±8) 104 (±6) 91% (±7e-5) 85% (±1e-4) 91% (±7e-5) 581 (±94)

GTE 4 (±2) 164 (4) 89% (±9e-6) 81% (±2e-5) 89% (±1e-5) 658 (±29)

Nomicunsupervised 10 (±4) 96 (±6) 92% (±2e-5) 87% (±5e-5) 92% (±2e-5) 715 (±40)

Nomicfinetuned 16 (±6) 72 (±4) 93% (±1e-5) 89% (±4e-5) 94% (±2e-5) 705 (±62)

E5_Mistral 17 (±8) 28 (±1) 97% (±3e-5) 94% (±9e-5) 97% (±3e-5) 791 (±83)
Performance of agents with training-only updates

Classifier

MiniLM 13 (±7) 108 (±7) 92% (±5e-5) 86% (±5e-5) 93% (±4e-5) 668 (±67)

BERT 15 (±6) 85 (±6) 93% (±4e-5) 88% (±1e-4) 93% (±4e-5) 687 (±55)

ALBERT 15 (±8) 102 (±6) 92% (±5e-5) 86% (±1e-4) 92% (±4e-5) 654 (±86)

DeBERTa_v3 7 (±7) 55 (±5) 95% (±5e-5) 90% (±1e-4) 95% (±5e-5) 714 (±93)

Mistral 9 (±5) 50 (±4) 96% (±3e-5) 92% (±7e-5) 96% (±3e-5) 811 (±63)
Llama 9 (±2) 51 (±6) 96% (±2e-5) 92% (±7e-5) 96% (±2e-5) 744 (±79)

Bandit

MiniLM 10 (±7) 92 (±7) 93% (±5e-5) 87% (±1e-4) 93% (±5e-5) 727 (±80)

BERT 7 (±4) 91 (±5) 94% (±2e-5) 88% (±4e-5) 93% (±2e-5) 762 (±46)

ALBERT 15 (±9) 102 (±6) 94% (±1e-5) 86% (±1e-5) 94% (±1e-5) 654 (±86)

DeBERTa_v3 11 (±5) 82 (±9) 94% (±4e-5) 88% (±1e-4) 93% (±5e-5) 738 (±62)

Mistral 15 (±5) 25 (±4) 97% (±1e-5) 95% (±1e-5) 97% (±1e-5) 800 (±60)
Llama 19 (±7) 26 (±4) 97% (±2e-5) 97% (±5e-5) 97% (±1e-5) 756 (±76)

Performance of agents with updates at test time

Classifier

MiniLM 21 (±7) 14 (±3) 98% (±2e-5) 95% (±9e-5) 98% (±2e-5) 808 (±59)

BERT 19 (±5) 10 (±2) 98% (±1e-5) 96% (±5e-5) 98% (±1e-5) 825 (±44)

ALBERT 19 (±5) 13 (±8) 98% (±2e-5) 95% (±1e-5) 98% (±2e-5) 825 (±40)

DeBERTa_v3 16 (±4) 6 (±2) 98% (±6e-5) 97% (±3e-5) 98% (±6e-5) 862 (±36)

Mistral 15 (±5) 24 (±4) 97% (±2e-5) 95% (±6e-5) 97% (±2e-4) 917 (±20)
Llama 4 (±1) 52 (±58) 96%(±1e-3) 93% (±3e-3) 96%(±1e-3) 799(±60)

Bandit

MiniLM 4 (±1) 83 (±7) 94% (±6e-5) 89% (±6e-5) 94% (±2e-5) 827 (±20)

BERT 5 (±2) 80 (±4) 95% (±9e-6) 89% (±3e-5) 95% (±1e-5) 821 (±16)

ALBERT 5 (±2) 57 (±5) 96% (±1e-5) 92% (±4e-5) 96% (±1e-5) 860 (±20)

DeBERTa_v3 8 (±2) 35 (±4) 97% (±1e-5) 94% (±4e-5) 97%(±9e-6) 883 (±18)

Mistral 4 (±2) 19 (±3) 98%(±6e-6) 97% (±2e-5) 98%(±6e-6) 941 (±20)
Llama 5 (±2) 20 (±3) 98%(±5e-6) 96% (±2e-5) 98%(±5e-6) 938 (±16)

Optimal performance

0 (±0) 0 (±0) 100% (±0) 100% (±0) 100% (±0) 1062 (±0)

Table 4: Performance of the retrievers (top rows), agents with training-only updates (middle rows), and agents with
updates at test time (bottom rows), for various language models when deploying only questions for the evaluation.
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