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A B S T R A C T   

A pulsar is a rapidly rotating neutron star and transmits periodic oscillations of power to the earth. We introduce 
a novel method for pulsar candidate classification. The method contains two major steps: (1) make strong 
representations for pulsar candidate in the image domain by extracting deep features with the deep convolu-
tional generative adversarial Networks (DCGAN) and (2) develop a classifier defined by multilayer perceptron 
(MLP) neural networks trained with pseudoinverse learning autoencoder (PILAE) algorithm. We utilized the 
synthetic minority over-sampling technique (SMOTE) to handle the imbalance in the dataset. We report a variety 
of measure scores from the output of the PILAE method on datasets utilized in the experiments. The PILAE 
training process does not have to determine the learning control parameters or indicate the number of hidden 
layers. Therefore, the PILAE classifier can fulfil superior execution in terms of training effectiveness and accu-
racy. Empirical results from the high time resolution universe (HTRU) mid-latitude dataset, MNIST dataset and 
CIFAR-10 have demonstrated that the presented framework achieves excellent results with other models and 
reasonably low complexly.   

1. Introduction 

Learning from imbalanced data is a typical and challenging scenario 
in today’s machine learning applications (He and Garcia, 2008). The 
imbalance refers to the case that the distribution of different data classes 
is significantly unequal, where traditional learning models will fail to 
provide accurate predictions. This situation occurs commonly in areas 
such as security (e.g. spammer detection, where spammers are much 
fewer in number than normal users) and medicine (e.g. cancer diagnosis, 
where cancerous patients are much fewer in number than healthy ones). 
In this paper, we investigate the problem of learning from imbalanced 
data, in a novel application of pulsar candidate selection. The task to 
select a small minority of positive data samples as pulsar signals, from a 
large set of radiation signal data, where other signals are noise, becomes 
the first challenge. In astronomy, searching for real pulsars is important 
because they are useful in many astronomy tasks, such as the gravita-
tional wave detection and spacecraft navigation. Therefore, the aim of 
the paper is to propose a novel framework for classification problems 
with imbalanced data in general cases, as well as the verification in the 
specific application of pulsar candidate selection. 

Pulsar explores from present-day radio overviews include filtering 

through candidates distinguished by pulsar search channels, comprising 
of either single-beat searches or periodicity. These pulsar-explore algo-
rithms are regularly computationally over the top expensive (despite 
enhancements to their speed and affectability e.g. Cameron et al., 2017; 
Smith, 2016). The yield of these channels has a large number of candi-
dates, out of which only a small portion comprises pulsars with 
remaining candidates emerging from radio frequency interference (RFI) 
or different origins of noise (Keith et al., 2010). Significant numbers of 
these candidates are evidently investigated and physically screened by 
space specialists. For current creation pulsar studies, it takes approxi-
mately 1–300 s to vet every candidate (Eatough et al., 2010). More than 
70,000 h would be needed to examine the million or so candidates. Such 
a manual visual classification of the pulsar candidates becomes difficult 
during the Square Kilometre Array (SKA) period, where we hope to find 
approximately 20,000 new pulsars (Kramer and Stappers, 2015). 
Despite the fact that the filtering of genuine pulsar signals from noise can 
be encouraged with graphical utilities, for example in Keith et al. (2009), 
these signals have impediments, and one is inclined to commit errors 
(Eatough et al., 2010; Bates et al., 2012). Accordingly, to augment the 
location of pulsars in the SKA period, the computational expenses amid 
every one of the means of the pulsar-explore channel ought to be 
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decreased and human intercession should be limited at each progres-
sion, comprising the second challenge. An imperative advance in this 
procedure is robotized the sifting of pulsar candidate obtained from 
pulsar-explore channels however much as could reasonably be expected. 

Among the main approaches in solving the problem of imbalanced 
data, the sampling-based method is a competitive stream that is the 
domain of this paper. Studies have presented many base classifiers, in 
which the total classification execution is improved by utilizing a dataset 
that is balanced compared with an imbalanced one (Weiss and Provost, 
2001; Laurikkala, 2001; Estabrooks et al., 2004). These outcomes 
legitimize the utilization of sampling techniques for imbalanced 
learning. Regarding synthetic sampling, the synthetic minority 
over-sampling technique (SMOTE) (Chawla et al., 2002) is a robust 
method that has produced an incredible number of achievement in 
different applications. The SMOTE method makes synthetic data 
dependent on the feature space likenesses between existing minority 
samples. SMOTE has been recently utilized for the classification of 
obscure point sources from the Fermi-LAT index (Abdo et al., 2013), as 
well as for classification of variable stars from Kepler Bass and Borne 
(2016). It has additionally been utilized in a pulsar search to handle the 
class imbalance issues (Devine et al., 2016). Two features selection 
methods which are Recursive Feature Elimination (RFE), and Grid 
Search (GS) were used to select as few as possible features of pulsar 
candidates with SMOTE algorithm for handling the imbalance issue in 
the dataset (Lin et al., 2020). Hence, the first challenge can be taken care 
of utilizing SMOTE calculation. 

In this paper, we consider the case of pulsar candidate in the image 
domain. Fig. 1 illustrates the pulsar to non-pulsar candidate’s image in 
terms of candidate sub-bands, which is two-dimensional array contain-
ing the candidate sub-bands or phase-frequency diagram. Recently, 
learning strategies utilizing deep-learning features have been efficiently 
connected to resolve multiple computer vision issues (Lee et al., 2009; 
2011; Bengio et al., 2013) that prove troublesome. The core idea of deep 
learning is using forthright representations to learn hierarchical feature 
representation and then proceeding to develop more complex ones from 
the preceding level. Compared with the handcrafted models, deep 
learning design is capable of encoding data that is multilevel from their 
initial simple nature to a more intricate one. Therefore, for feature 
learning, this method is highly encouraging because (1) it does not 
necessitate ground truth; (2) It induces intricate non-linear connections 
using deep architecture that is hierarchical in nature; (3) It does not 
depend on chosen handcrafted features but rather is completely driven 
by data and (4) owing to its trained hierarchical deep network, it is 
capable of effectively and rapidly determining the feature representa-
tion of low-level images. Guo et al. (2019a) utilized the DCGAN model 
for feature extraction and synthesis of the minor class to overcome the 
issue of imbalance in the HTRU dataset followed by L2-SVM classifier. 

A pseudoinverse learning algorithm (PIL) Guo and Lyu (2004); 
Wang et al. (2018); Deng et al. (2019), it is a multilayer perceptron 
(MLP) learning algorithm composed of stacked generalization connected 

such that it dominates the neural networks’ (NNs) degradation predic-
tive accuracy. Its structure possesses the identical number of hidden 
neurons as the number of samples that are to be learned. PIL overcomes 
learning errors by performing the addition of hidden layers. It had been 
fully automated, feed-forward and does not contain critical user subor-
dinate parameters, for example, learning rate, the maximum epoch and 
momentum constants. PIL has been demonstrated to be an efficient al-
gorithm and by far much better than the standard back propagation (BP) 
and other algorithms of gradient descent. Wang et al. (2017) asserted 
that PILAE was a fully and fast automated framework that uses deep 
neural networks to train stacked autoencoders (Hinton and Sala-
khutdinov, 2006). PILAE trains the stacked autoencoder by embracing 
the PIL algorithm with a low-rank approximation; PILAE is not a 
gradient descent method and does not have the shortcoming of gradient 
vanishing. It also does not have the problem of saturation activation as a 
matrix that is multiplied by its pseudoinverse. Thus PILAE can be used 
for handling the second challenge. 

Different from our previous work (Guo et al., 2019a) we propose a 
DCGAN-PILAE model that uses SMOTE algorithm to overcome the 
imbalance problem and the DCGAN model for extraction deep features 
in an unsupervised manner. In the PILAE classifier, weight parameters 
are calculated with the pseudoinverse solution and do not have to be 
modified further, thus having an important effect on the performance of 
the model. We investigate the performance of the introduced model on 
the high time resolution universe (HTRU) dataset. 

The paper proceeds to evaluate Pulsar candidate classification 
related issued in Section 2. Section 3 provides a detailed description of 
the proposed model. Section 4 presents Implementation details, exper-
imental results and the discussion. Section 5 concludes the paper. 

2. Related work 

Many algorithms have been employed for pulsar candidate classifi-
cation. For example, an artificial neural network (ANN) was utilized in 
the pulsar selection by Eatough et al. (2010) to handle 16 million pulsar 
candidates acquired by reprocessing the Parkes multi-pillar dataset. 
Bates et al. (2012) additionally utilized an ANN in the HTRU dataset. 
They had the capacity to dismiss 99% of the noise candidates and 
identify 85% of the pulsars through a visually impaired investigation. 

In Zhu et al. (2014), the authors utilized a blend of three diverse 
methods—support vector machine (SVM), convolution neural network 
(CNN) and ANN—in their recognition of image based on PICS algorithm. 
The PALFA dataset is utilized to train PICS (Pulsar Image-based Classi-
fication System) algorithm where it is tested on the dataset from the 
green bank north celestial cap survey (GBNCC). From the test set, PALFA 
had the capacity to rank 100% of the pulsars in the top 1% from all 
candidates, while 80% were positioned higher than any impedance oc-
casions or noise. Lyon et al. (2013) contemplated the execution of 
different stream classifiers like VFDT (Hulten et al., 2001) on HTRU 
dataset. The authors demonstrated the vulnerability of the pulsar data to 
the imbalanced learning issue and how the imbalance seriously di-
minishes recall ratio of pulsar. 

In Lyon et al. (2014) presented another classification method for the 
data that involves imbalance utilizing Hellinger distance measure, 
which they tested the HTRU dataset. The authors had the capacity to 
show that the employed method can successfully improve minority class 
rates of recall on a dataset that is imbalanced. Morello et al. (2014) 
utilized neural network in a pulsar positioning method named SPINN. 
This method had the ability to distinguish every pulsar in the HTRU 
dataset with 0.64% of false positive rate (FPR) and furthermore 
decreased the number of possibilities to check by up to four requests of 
extent. 

Lyon et al. (2016) introduced another strategy for online sifting of 
pulsars utilizing a classifier called Gaussian Hellinger Very Fast Decision 
Tree. This strategy was able to process up to one million pulsars in few 
seconds and had rates near 98% of recall when the HTRU-1 and LOTAAS 

Fig. 1. An illustration of non-pulsar and pulsar candidate representations. The 
left and right images show a 2D graphical representation of a phase frequency 
diagram for the non-pulsar and pulsar candidates, respectively. 
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datasets were used; it concluded with >90% recall rates and <0.5% of 
FPR. Twenty new pulsars from the LOTAAS (Lyon et al., 2016) dataset 
were discovered using this strategy. Wagstaff et al. (2016) fused random 
forests algorithm in their radio transient discovery method, entitled 
V-FASTR. This approach had the capacity to consequently sift through 
realized occasion types (pulsars and noise) with 98.6% training accuracy 
and accomplished a 99–100% accuracy on test data. 

Devine et al. (2016) utilized six diverse frameworks (e.g. random 
forests and SVM) to characterize scattered pulsar bunches in the second 
phase of their single-pulse seek framework. They used a dataset 
comprised of more than 300 pulsars and approximately 9600 noise 
pulsar utilizing perceptions from the Green Bank Telescope. They found 
that the most efficient learning method was the multiclass ensemble 
tree. Mohamed (2018) proposed strategy relied upon fuzzy KNN clas-
sifier that was trained on HTRU-1 dataset (Lyon et al., 2016) and 
accomplished accuracy of 97.8%. In Bethapudi and Desai (2018), the 
authors presented different machine learning methods such as Ada-
boost, GBC, and XGBoost for Pulsar candidate classification in which the 
SMOTE method was applied to overcome the class imbalance problem. 
But the key problem of this method is that the accuracy of radio fre-
quency interference classification is very sensitive to feature selection. 

Wang et al. (2019) traded the CNN in PICS algorithm by the ResNet 
model, which achieved a recall rate on the GBNCC dataset of 96%. The 
authors in Li et al. (2018) employed a various-leveled display for pulsar 
classification that involves collecting a significant number of prepared 
base classifiers. They used the PIL rather than gradient descent (GD) 
method for the introduced method training process. This technique had 
the ability for classification of the pulsar in both HTRU and PMPS-26k 
(Manchester et al., 2001) datasets with a recall rate of 95.74% and 
87.50%, respectively. Wang et al., 2020 presented a swift model for 
eliminating the RFI in pulsar data. They used the PILAE to learn the RFI 
signatures and eliminate them from fast-sampled spectra, leaving real 
pulsar signals 

In Yao et al. (2016), Yao et al. proposed Hierarchical 
Candidate-Sifting Model (HCSM) to deal with imbalance issue of three 
pulsar datasets (HTRU, HTRU-1 and LOTAAS 1) by asserting the cost of 
misclassified of positive samples and collecting numerous classifiers 
prepared with various weighting parameters. The authors accomplished 
recall rates of 97.49%, 84.52% and 100%, respectively for the utilized 
datasets. 

Comparing to our previous work (Guo et al., 2019a; Li et al., 2018; 
Wang et al., 2020; Yao et al., 2016), we use the SMOTE method to 
overcome the imbalance problem in the dataset, DCGAN for feature 
extraction, and the PILAE for classification. In Guo et al. (2019a), we 
employed the two functions of the DCGAN that are feature extraction 
and synthesis of the minor class samples followed by the L2-SVM 
classifier. 

3. Approach 

In this section, we illustrate the pipeline of the suggested model. As 
shown in Fig. 2, the dataset is given to the DCGAN model for extracting 
features. Then, SOMTE is applied to synthesis the data, and finally, the 
PILAE algorithm is trained over these data also as features extraction 
and classifier. In the following subsections, we will demonstrate the 
concept of the DCGAN, SMOTE and PILAE. Our algorithm uses the same 

framework of DCGAN (Radford et al., 2015) without any amendments. 

3.1. Feature learning 

Inside our framework, DCGAN is utilized for the extracting features 
of a total of visible images. Produced from the GAN, DCGAN is suggested 
to entrench the GAN, which is designed from the convolutional 
composition to the training model. From that, DCGAN can make use the 
benefit of convolutional networks and achieve in the region of image 
processing and computer vision. 

The DCGAN includes the generator predicated on a transposed 
convolutional composition and the discriminator predicated on a con-
volutional composition. The generator’s role is to create a random 
sample, that is steadily changed by the correct execution of the image 
what we wish, predicated on the probability distribution and adversarial 
learning. The discriminator also distinguishes whether the insight image 
is genuine or fraudulent. In this framework, this technique is trained to 
raise the discriminate rate, using the fraudulent image that is nearly the 
same as the genuine image and produced by the generator model. It is 
worth mentioning that the generator must create an image with no 
memorization of prior images. When the generator makes an image 
predicated on the memorisation, it says that the generator just learns the 
one-on-one mapping method due to the overfitting. There is no image 
generation method predicated on features. Moreover, whenever we 
transfer to the latent space (an insight space of the generator), an even 
transition should be performed, rather than a sharpened transition. 

Inside the proposed framework, we utilize the DCGAN model for 
learning the features of images. In the learning process, discriminator 
and generator are trained concurrently to produce a more exact 
discriminator. 

3.2. Synthetic sampling with SMOTE 

The SMOTE algorithm provides out an oversampling method of 
rebalancing the main training set. Rather than implementing a 
straightforward reproduction of the minority class samples, the main 
notion of SMOTE is to expose synthetic samples. This new data are 
established by interpolation among several minority class samples that 
are within a precise neighborhood. Hence, the task is reported to be 
centered on the ‘feature space’ alternatively than on the ‘data space’; 
quite simply, the algorithm is depends on the ideals of the features and 
their relationship, instead of considering the data points altogether. 

3.3. Pseudoinverse learning autoencoder (PILAE) 

PIL Guo and Lyu (2004); Guo et al. (2019b); Feng et al. (2019) is a 
swift supervised learning algorithm for feedforward neural network; it 
depends on generalized linear algebra. PIL differs from techniques that 
are gradient based containing BP, in that PIL is not necessarily required 
to adapt affined variables such as momentum, learning epoch and step 
length; instead, these variables are normally hard selected by the users. 

PIL is utilized to train SAE with layer-wise learning framework that is 
greedy based; PILAE is utilized as an SAE building block. The number of 
hidden neurons is specified by the equation in Wang et al. (2017). To 
enable the learning of data feature, the hidden neuron’s number is a 
slightly larger than the input network rank’s and in general smaller than 
the input vector’s dimension. The rank of the input matrix is computed 
by the singular value decomposition method (SVD). Truncated SVD is 
specifically utilized to compute the input matrix pseudoinverse, which is 
then utilized as the encoder weight network. On the other hand, PIL is 
used to compute the decoder weight matrix. Furthermore, to reduce the 
degree of independence parameter, the decoder and encoder weights are 
tied up, allowing the weight of encoder network to be equal to the 
decoder weight that is transposed. The autoencoder is able to map the 
data to high- or low-rank approximation and is used to map the data to 
low-rank dimensions. 

Fig. 2. The proposed model pipeline. First, there is features extraction using D 
network of DCGAN model. Second, the extracted features are given to SMOTE 
to synthesis the minor class (pulsar samples). Third, the PILAE algorithm is 
given the balanced data and trained also as features extraction and classifier to 
give the final test accuracy. 
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X ∈ RMxN is a given training set, X = [x1, x2,…, xN] where the i − th 
training sample represents as vector xi = [x(1), x(2),…, x(m)]

T
, we utilize 

the SVD method to compute the pseudoinverse of the input matrix, 

X = UΣVT (1)  

The pseudoinverse of the input matrix can be calculated depend on the 
output of the SVD: 

X+ = VΣ′ UT, (2)  

Σ′ performs the diagonal matrix which is transposed that consisted of the 
mutual of nonzero elements in matrix Σ. The first hidden layer neuron 
numbers are adjusted to equal to the input matrix rank. 

The number of hidden neurons are assigned as 

p = βDim(x), β ∈ (0, 1], (3)  

Dim is the function which gives the input matrix dimension, on the other 
hand β can be an empirical parameter which is based upon the degree of 
the dimension to be reduced. This will assure that dimension reduction 
is boosted. 

X̂
+

is the low-rank approximation of the matrix X+ which calcu-
lating as follows: 

X̂
+

= V̂Σ′ UT, (4)  

where V̂ is shaped of the initial p rows of a singular matrix V. 
Since the autoencoder’s input data is approximately equal to the 

output, we append the restriction X = O, where O represents the output 
matrix. Qd is the decoder weight matrix and Qe is the encoder weight 

matrix, we assign Qe = X̂
+

. Though, the optimization objective function 
can rewrite as follows: 

min ‖ ZQ − X ‖2. (5)  

where the ZQ is the output of the last hidden layer and the weight matrix 
product. The following pseudoinverse approximate solution is used to 
solve the optimization problem: 

Q = Z+X. (6)  

According to the work of Hoerl and Kennard (1970) that in the case of 
multiple linear regression where b = Ax + ε, if ATA is not a unit matrix, 
the least squares estimation is sensitive to the error in A, and x isn’t 
meaningful. consequently, the following equation is used to represent. 

x =
(
AT A + k

)− 1AT b, k > 0. (7)  

where k is regularization variable. When matrix column rank is full, the 
orthogonal projection method is utilized to solve the pseudoinverse: 

QL =
(
ZTZ

)− 1ZTX. (8)  

The QL is the weight matrix of layer L. 
The weight decay regularization parameter is used to avert ill-posed 

problem: 

Q=
(
ZTZ+kI)− 1ZTX. (9)  

where k is regularization restriction which the user specifies, It could be 
determined with the form generated in Guo et al. (2003). In this manner, 
the value of k is tune to get it the trade-off among the accuracy and 
generalization. 

4. Experiments 

4.1. Dataset 

Three datasets are utilized to evaluate the proposed approach: (1) the 
HTRU medlat1 (Morello et al., 2014); (2) the MNIST dataset2 (LeCun 
et al., 1998) and (3) the CIFAR-103 (Krizhevsky and Hinton, 2009). 

The HTRU medlat dataset is utilized to evaluate the proposed 
approach. The HTRU medlat is the first labeled candidate dataset pro-
duced that is overtly obtainable. It contains 1196 pulsar and 89,996 non- 
pulsar candidates. 

The MNIST dataset contains 70,000 handwritten digital images of 
0–9, where 60,000 images are utilized as training samples and the 
remaining 10,000 images are the test samples. 

CIFAR-10 is an affirmed computer-vision dataset utilized for image 
recognition. It contains 60,000 color images consisting one of ten object 
classes, with 6000 images per class. Data pre-processing In the HTRU 
medlat dataset, the size of images is altered to 64x64 pixels through 
bicubic interpolation before DCGAN training. We performed our 
framework in MATLAB, utilizing the MatConvNet library (Vedaldi and 
Lenc, 2015) for our execution of DCGAN. Our experiments used a PC 
with a hardware configuration as follows: (1) CPU: Intel core i7-6800k; 
(2) Memory: 128 GB and (3) GPU: 1 x TITAN XP. 

4.2. Evaluation on HTRU dataset 

Every candidate in the dataset has 22 attributes come in one file of 
XML or PHCX format. We are using the sub bands attribute, which is a 
2D array containing the candidate sub-bands, also termed a phase fre-
quency diagram; after extraction of the phase frequency diagram for 
every candidate within the dataset, we get 2D grayscale image for every 
pulsar and non-pulsar (Fig. 1). The dataset has a ratio of pulsar to non- 
pulsar equal to 1:75, which making it high-class imbalance problem. 
Therefore, we over-sampled the positive samples (pulsar candidate) 
initially to avoid an imbalance of the dataset. We obtain a different ratio 
of pulsar to non-pulsar (within the range 1:2 to 1:4) to choose the best 
ratio. We found that the ratio of 1:2 is the best according to a result of the 
PILAE classifier. 

Our approach has three steps. First, there is features extraction using 
DCGAN model: we feed the dataset images to DCGAN for extracting 
features. The fourth layer of the discriminator network is selected out as 
extractor features because the DCGAN is not used to perform classifi-
cation but is instead employed to extract deep features. An 8192-dimen-
sional space for each image is then formed by concatenating and 
flattening these features. The hyperparameters of DCGAN are set to the 
same work of Radford et al. (2015), after preliminary experiments, we 
found it is the best to set the learning rate to 1e3 with a batch size of 64 
and we train for 15 epochs where each epoch take 42 s. 

Second, the extracted features from DCGAN model are given to 
SMOTE to synthesis the minor class (pulsar samples). We use SMOTE to 
artificially balance the dataset (i.e. to have the ratio of 1:1 of minor to 
major). Because the ratio of 1:2 gave the best result, it became (after 
applying SMOTE) 1:1 where each class (pulsar and non-pulsar) has 2392 
candidates. We perform SMOTE with a parameter of U = 100 and F = 5,
where U and F are the amount of oversampling and nearest neighbors, 
respectively. 

Third, the PILAE algorithm is given the balanced data and trained 
also as features extraction and classifier to give the final test accuracy. 
The dataset is split into training and testing with different ratios 
(80%:20%, 70%:30% and 60%:40% where the first number refers to 
training and the second to testing ratio). 

1 http://astronomy.swin.edu.au/~vmorello/  
2 http://yann.lecun.com/exdb/mnist/  
3 https://www.cs.toronto.edu/~kriz/cifar.html 
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Evaluation measures 

To similarly rank the execution of the proposed strategy, we ascer-
tain different execution scores; we have utilized seven distinct scores to 
measure the model execution as in Lyon et al. (2016). They are Accu-
racy, G-Mean, F-Score, Recall, Precision, Specificity and FPR. On binary 
classification problem such as our case, every component of the confu-
sion matrix relates to TP, TN, FP and FN, which are characterized in 
Table 1. 

Presently, we characterize every one of the seven scores used to 
assess the proposed method utilized in this paper. 

Accuracy is the ultimate prominent score in any classification 
Problem, where the classes have approximately the same ratio of 
samples (balanced) and is defined by (TN + TP)/(FP + FN + TP +
TN); the superior accuracy value is 1, denoting there are no 
misclassification of samples in the dataset, and 0 is the worst case. 
Recall is given as TP/(TP+FN), depicts the positive samples ratio 
recovered in the test set, A perfect classifier will have a recall esti-
mation of 1 and the lower rate for an outrageous classifier would be 
0. 
Specificity is defined as TN/(TN+FP), which is a ratio of how well 
the classifier can mark a negative class. 
G-Mean id identified as 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Specificity ∗ Recall

√
, and it is the geometric 

mean of Specificity and Recall. The worst and best values of G-Mean 
are 0 and 1, respectively. 
Precision is identified as TP/(TP+FP). Precision is the ratio of TRUE 
class perceptions classified effectively to the absolute number of 
perceptions that were classified as positive. Similar to recall, even 
here the worst rate is 0 and the best rate is 1. 
F-score is given as 2*(Precision*Recall)/(Precision + Recall), 
reflecting recall and precision together. F-score gives a mutual de-
gree of accuracy and has the worst value at 0 and the best value at 1. 
FPR is given as FP/(FP+TN). It is the negative samples that are 
misclassified as Positive. The worst and best values of FPR are 1 and 
0, respectively. 

In Table 2, we can investigate the efficiency of the proposed model 
where different split ratios of a train to test are used to reduce vari-
ability. As the ratio of training size increases, the more time is consumed 
(time contains extract features by DCGAN, syntheses minor class sam-
ples using the SMOTE algorithm and the PILAE classifier) for classifi-
cation. The best results are for a 60:40 ratio, and we therefore utilize this 
ratio for comparing with other state-of-the-art methods that used the 
same dataset. 

Table 3 illustrates the robustness and capacity of DCGAN-PILAE 
model compared with other best results. DCGAN-PILAE can be ranked 
to be the optimum solution in terms of test accuracy and time 
complexity. In the previous work which utilized the handcrafted fea-
tures followed by PILAE classifier, it has training time lower than the 
present work due to DCGAN-PILAE is handled the imbalance problem, 
thus increasing the training time. Spinn has the same ratio of recall with 
the proposed method, but the rate of FPR score is higher than for our 
method, indicating there are a significant number of non-pulsar candi-
dates being misclassified as a pulsar. 

In Fig. 4a the impact of β values regarding the accuracy of prediction 
on the dataset is given by β = 0.2. By examining the accuracy curve, It is 
clear there are moderate changes as the parameters of β vary. This result 
implies that the empirical parameter β necessitates a small influence on 

prediction performance. We compute the ratio between rank and the 
input data dimension in each layer in Fig. 4b; the test error curve on the 
dataset is illustrated in Fig. 4c. The test error is a classification error over 
the test set. From Fig. 4c, it can be identified that the test error reduces 
while the network goes more deeply. Fig. 3 shows a batch of generated 
images from DCGAN’s generator network of pulsar images. 

4.3. Evaluation on MNIST dataset 

To demonstrate the viability of our proposed technique, we trained 
our method on MNIST dataset and contrasted the execution result with 
other presented techniques. The MNIST dataset is balanced with 6000 
images per class for marks 0–9; we make a few changes on it to ensure it 
is imbalanced: we pick digits from 5 to 9 as the minority classes and 
randomly pick 300 images from each class (1,500 images). The other 
classes from 0 to 4 are picked as majority class where 3000 images are 
chosen randomly from each class (15,000 images). Finally, the dataset 
has ratio of a minor: major equal to 1:10. For DCGAN hyperparameters, 
we run the same number of epochs as a first dataset (15 epochs, 80 s per 
epoch) with a batch size of 256 and learning rate set to 2E-3. The SMOTE 
algorithm then applied to oversample the minor class to have a ratio to 
the major class equal to 9:10; the k value is set to 5 as HTRU dataset, 
although the final dataset will have 28,500 samples. We run the 
experiment on different data split ratios to reduce variability, as in 
Table 4. 

In Table 5, we can observe the results of DCGAN-PILAE algorithm 
over the MNIST dataset compared with other reported methods. There 
are three methods—DOS (Ando and Huang, 2017), CoSen CNN (Khan 
et al., 2018) and DQNimb (Lin et al., 2019)—where in Ando and Huang 
(2017) presents oversampling to the space of deep features created by 
CNN in their Deep Over-sampling (DOS) structure. This strategy is 
broadly assessed by creating imbalanced datasets from five prominent 
benchmark datasets, such as MNIST and CIFAR-10. The DOS structure 
comprises two synchronous learning strategies, improving both the 
upper- and lower- layer parameters independently. The upper layers 
determine how to differentiate between classes utilizing the created 
embeddings, whereas the lower layers are accountable for gaining the 
embedding function; in contrast, Khan et al. (2018) Presented a 
cost-sensitive (CoSen) deep-learning technique that mutually learns the 
weight parameters of network and the misclassification costs of every 
class through learning. The suggested technique, CoSen CNN, is assessed 
against six image datasets; for example, MNIST and CIFAR-100 (Kriz-
hevsky and Hinton, 2009). The pre-trained VGG16 over ImageNet 
dataset is utilized as a feature extractor and the standard CNN all 
through the examinations. The cost matrix that is learned by the CoSen 
CNN is utilized to change the yield of the VGG16 CNN’s last layer, giving 
higher significance to images with a greater cost. In the last method 
(Ando and Huang, 2017), the classification of imbalanced datasets issue 
is viewed as a speculating competition that can be disintegrated into a 
consecutive decision-making operation. At each time step, the operator 
obtains a domain state that is performed by a training sample and after 
that proceeds to a classification efficiency under the direction of the 
strategy. On the off chance that the operator plays out a correct classi-
fication efficiency, it will be given a positive reward, else, it will be given 
a negative reward. The reward from the majority class is lower than that 
of the minority class. The objective of the operator is to get as many 
increasingly combined rewards as conceivable amid the procedure of 
consecutive decision-making, that is, to accurately perceive the samples 

Table 1 
Confusion matrix for binary classification.  

Outcomes Positive prediction Negative prediction 

Pulsar True Positive (TP) False Negative (FN) 
Non-Pulsar False Positive (FP) True Negative (TN)  

Table 2 
Results for proposed method over HTRU dataset with difference split ratio.  

Train-test Training accuracy Testing accuracy Time min. 

80-20 99.97 100 7.49 
70-30 100 100 7.39 
60-40 100 100 7.29  
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as much as conceivable. From Table 4, the best results are for a 70:30 
ratio, and we subsequently utilize this ratio for comparing with other 
best methods that used the same dataset. In Table 5, the PILAE has 
achieved the best accuracy compared to other methods, proving evi-
dence for the efficiency of our proposed method. The suggested model 
becomes balanced between evaluation scores and time complexity. 

4.4. Evaluation on CIFAR-10 dataset 

Cifar-10 is a more complicated image dataset than HTRU and MNIST 
datasets. It includes 32x32 color images with ten classes of physical 
objects. The standard train: test ratio for every class is 5000:1,000. We 
use the same procedure of the MNIST dataset to make the CIFAE-10 
dataset imbalance. For the DCGAN hyperparameters, we run for 
twenty epochs where each epoch takes one minute to train and learning 
rate equals to 2E-3. Table 6 shows the training and test accuracy with 
total consuming time for a different train: test ratios. 

The measure scores of the experimental results are given in Table 7. 
Despite the different comparing strategies, the DCGAN-PILAE method 
obtains the optimal classification model. The F-measure scores and G- 
mean scores of the DCGAN-PILAE model are better than those of the 
comparing model. 

4.5. Discussion 

From the above results over the three datasets HTRU, MNIST and 
CIFAR-10, we can state that the proposed method achieves a good bal-
ance between computation complexity and test accuracy rate. The 
DCGAN model is used to extract features from the discriminator (D) 
network. We use the fourth layer from the D network, which is the top 
layer before output. The intuition is that these features are linearly 
separable because the top layer is just a logistic regression. In general, 
the highest-level features are extracted in the last convolution layer (Ren 
et al., 2012; Athiwaratkun and Kang, 2015). The SMOTE algorithm is 
used to oversample the minor class in the three datasets used in the 
proposed method. SMOTE can be applied to high-dimensional data such 
as for our situation (8192-dimensional space for each sample) and gives 
good results (Blagus and Lusa, 2013). The above experiments have 
demonstrated that the suggested combination features leaned by 
DCGAN and PILAE supplemented by the softmax classifier method at-
tains an excellent performance of prediction accuracy as compared to 
other methods. 

The computation complexity of our model has three terms. First, for 
DCGAN, it is O(B2) where B is the batch size of discriminator and 
generator networks. Second, the SMOTE computational time can be 
given as O(

⃒
⃒X+

R
⃒
⃒ ∗ V ∗ C) (Ertekin, 2013) where 

⃒
⃒X+

R
⃒
⃒ is the minor’s 

training samples number, V is the number of artificially generated 
samples for minor class at each iteration and C is the method that used to 
find the K nearest neighbors that involves use of the K-nearest neighbor 
(KNN) algorithm. Third, the PILAE algorithm can be approximately 
clarified as O (dN2) (Guo et al., 2018) where N indicates the number of 
samples in dataset and d is the dimension of the sample. Although our 
method has many parts in terms of computational complexity, it ach-
ieves good results comparing to other models. For HTRU dataset 
(60%:40%) one epoch of DCGAN model takes 42 s, the SMOTE method 
consuming one minute to generate artificial samples of minor class 
(pulsar) and finally, the PILAE algorithm only takes 26.50 s to classify 
pulsar to non-pulsar. 

PILAE possesses a fast training time because (1) it does not require 
fine-tuning; (2) PILAE weights can be analytically identified, in contract 
to traditional autoencoders where iterative algorithms are essentially 
required; and (3) it learns to signify features through singular values, 
unlike autoencoders where the representation of data is learned. In 
addition, the high classification ratios in suitable processing times, are 
enforced by the fact that our model has been executed effectively using 
GPUs; the utilization of GPUs allow us to realize the full probability of 
DCGAN approach for feature extraction followed by PILAE structure. 
The proposed method thus achieves a good balance between computa-
tional performance and prediction ability as compared to other classical 
methods. 

Table 3 
Result comparisons for HTRU dataset with best method. Time in minutes.  

Method G-Mean F-Score Recall Precision Specificity FPR Accuracy Training time 

GH-VFDT Lyon et al. (2016) 96.10 94.10 92.80 95.50 99.50 5E-3 98.80 – 
PIL& HOG + PILAE Li et al. (2018) – 94.65 95.74 93.95 – – – 5.3 
SPINN Morello et al. (2014) – – 100 – – 0.64 – – 
GS + AdaBoost Lin et al. (2020) – 80 99 67 – 0.651 – – 
REF + GBoost Lin et al. (2020) – 95 99 93 – 0.102 – – 
ANN (MLP) Bethapudi and Desai (2018) 99.80 97.90 99.80 96.10 – 0.055 99.90 – 
AdaBoost Bethapudi and Desai (2018) 99.80 98.60 99.70 97.60 – 0.032 99.90 – 
GBC Bethapudi and Desai (2018) 99.70 99.90 99.50 98.60 – 0.020 99.90 – 
XGBoost Bethapudi and Desai (2018) 99.80 98.50 99.70 97.40 – 0.036 99.90 – 
HCSM Yao et al. (2016) 98.47 98.31 97.49 99.15 100 0 99.99 – 
DCGAN + L2-SVM-2 Guo et al. (2019a) – 96.40 96.30 96.50 – – – – 
DeepF + SVM Guo et al. (2019a) – – 100 – – 0 – – 
DCGAN-PILAE 100 100 100 100 100 0 100 7.29  

Fig. 3. Generated pulsars images after fifteen epochs of training.  
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Fig. 4. The PILAE curves on HTRU dataset: (a) Test accuracy curve with regard to β, (b) The rank ratio as the model layers increased, and (c) The error as the model 
layers increased 

Table 4 
Results for proposed method over MNIST dataset with difference split ratio.  

Train-test Training accuracy Testing accuracy Time min. 

80-20 98.34 95.95 21 
70-30 99.89 98.97 21.3 
60-40 99.64 98.29 22  

Table 5 
Result comparisons for MNIST dataset with best method.  

Method G-Mean F- 
Score 

Recall Precision 

DOS Ando and Huang 
(2017) 

N/A 98 97 99 

CoSen CNN Khan et al. 
(2018) 

99.2 49.30 N/A N/A 

DQNimb Lin et al. (2019) 99.70 99.20 N/A N/A 
DCGAN-PILAE 98.16 98.09 97.50 98.96 
Method Specificity FPR Accuracy Training 

time 
DOS Ando and Huang 

(2017) 
N/A N/A N/A N/A 

CoSen CNN Khan et al. 
(2018) 

N/A N/A 98.60 2.5 
min/epoch 

DQNimb Lin et al. (2019) N/A N/A N/A N/A 
DCGAN-PILAE 98.83 1e-2 98.97 21.3 min.  

Table 6 
Results for proposed method over CIFAR-10 dataset with difference split ratio.  

Train-test Training accuracy Testing accuracy Time min. 

80-20 99.89 100 21.2 
70-30 99.66 100 21.4 
60-40 99.95 99.92 23  

Table 7 
Result comparisons for CIFAR-10 dataset with best method.  

Method G-Mean F-Score Recall Precision 

DOS Ando and Huang 
(2017) 

N/A 64 N/A N/A 

DQNimb Lin et al. (2019) 96.70 95 N/A N/A 
DCGAN-PILAE 100 100 100 100 
Method Specificity FPR Accuracy Training 

time 
DOS Ando and Huang 

(2017) 
N/A N/A N/A N/A 

DQNimb Lin et al. (2019) N/A N/A N/A N/A 
DCGAN-PILAE 100 2.74E19 100 21.2 min.  
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5. Conclusion 

To make up for the shortcomings of the learning from imbalanced 
data, this paper establishes a new model that can optimize the speed and 
prediction of the learning process, utilizing the SMOTE algorithm for 
tackling the imbalance problem. The DCGAN-PILAE framework is 
employed, in which DCGAN functions as an extraction feature. A PILAE 
classifier is then trained on the extracted features of DCGAN. The deep 
features can, therefore, be fully tuned with the PILAE classifier gener-
alization performance, occasioning in a recognition accuracy that is 
satisfying, without the requirement for additional and complicated 
DCGAN frameworks. More so with other techniques, the DCGAN-PILAE 
method can achieve perfect results with a forthright structure which 
alleviates training process, which is frequently time-consuming. 
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