
Attention Gathers, MLPs Compose: A Causal Analysis of an Action-Outcome
Circuit in VideoViT

Sai V R Chereddy
Independent Researcher

saivivaswanthreddy@alumni.usc.edu

Abstract

The paper explores how video models trained for classifi-
cation tasks represent nuanced, hidden semantic informa-
tion that may not affect the final outcome, a key challenge
for Trustworthy AI models. Through Explainable and Inter-
pretable AI methods, specifically mechanistic interpretability
techniques, the internal circuit responsible for representing
the action’s outcome is reverse-engineered in a pre-trained
video vision transformer, revealing that the ”Success vs Fail-
ure” signal is computed through a distinct amplification cas-
cade. While there are low-level differences observed from
layer 0, the abstract and semantic representation of the out-
come is progressively amplified from layers 5 through 11.
Causal analysis, primarily using activation patching sup-
ported by ablation results, reveals a clear division of labor:
Attention Heads act as ”evidence gatherers”, providing nec-
essary low-level information for partial signal recovery, while
MLP Blocks function as robust ”concept composers”, each of
which is the primary driver to generate the ”success” signal.
This distributed and redundant circuit in the model’s inter-
nals explains its resilience to simple ablations, demonstrat-
ing a core computational pattern for processing human-action
outcomes. Crucially, the existence of this sophisticated cir-
cuit for representing complex outcomes, even within a model
trained only for simple classification, highlights the poten-
tial for models to develop forms of ’hidden knowledge’ be-
yond their explicit task, underscoring the need for mechanis-
tic oversight for building genuinely Explainable and Trust-
worthy AI systems intended for deployment.

1. Introduction
Inspired by Vision Transformers (ViT) and their state-of-
the-art performance in image classification tasks, Arnab
et al. (2021) translated a pure transformer-based architecture
for video classification tasks as well, introducing the Video
Vision Transformer (ViViT) that focuses on the interplay
of spatio-temporal tokens. However, even with their ever-
increasing accuracy and capabilities, vanilla ViViT (and its
variants) and other video models in general, fail to explain
their reasoning for the output that they provide. This “black
box” problem is persistent across modalities, including lan-
guage and image but more so in videos, and lack of under-
standing of models’ internals and “hidden cognition” within
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its specified task environment, act as a critical barrier in hu-
mans deeming such deployed AI as trustworthy (von Es-
chenbach 2021).

Mechanistic Interpretability (or MechInterp) is a lead-
ing paradigm for addressing this opacity. MechInterp aims
to completely specify a neural network’s computations ie;
reverse-engineer the models’ internals to gain a deeper un-
derstanding of the models’ thought-process (Bereska and
Gavves 2024). Although there have been several techniques
explored both in observational analysis (like feature visu-
alization, logit lens, probes) and causal interventions (ab-
lations, activation patching, hypothesis testing), majority of
the work has been limited to language models and to some
extent vision models. While Olah et al. (2020) lays founda-
tions for interpretability in domains aside from text, rarely
have these experiments been translated to the video frontier
and this is primarily because moving frames brings about
unique 3-dimensional spatio-temporal challenges making
video interpretability a harder problem to solve (Anichenko,
Guerin, and Gilbert 2024).

This paper aims to address the concern of trustworthy
video AI models in deployment, through mechanistic inter-
pretability techniques applied to a 12-layer vanilla video vi-
sion transformer. The model is pre-trained on Kinetics-400
(Kay et al. 2017), which is a basic human-action dataset,
scrutinized in a simplistic experimental setup which involves
using a contrastive pair of videos (the strike ball and gutter
ball) which the model correctly classifies under the same
class label of “bowling” even with different internal rep-
resentations. Despite the identical and correct final output,
mechanistic analysis reveals the model’s deeper, hidden un-
derstanding of the contrasting interior mechanisms.

The contributions of this paper are threefold. First, an ob-
servational (attention visualization) and quantitative (delta
analysis) evidence is provided revealing that a pre-trained
Video Vision Transformer internally represents nuanced ac-
tion outcomes (strike vs. miss) distinctly, even when its fi-
nal classification labels for these outcomes are aligned with
ground truth. Second, the paper demonstrates a methodology
combining delta analysis on contrastive video pairs to locate
the internal outcome signal and activation patching (mea-
suring causal logit effects) to determine the functional roles
of specific circuit components (Attention vs. MLP blocks).
Finally, the setup reverse-engineers the core computational



mechanism which distinguishes final action-outcomes, pro-
viding strong causal evidence that mid-layer MLP blocks act
as the primary ’concept composers’ driving this internal rep-
resentation, refining the initial hypothesis of a simpler divi-
sion of labor i.e. Attention Gathers, MLPs Compose.

2. Related Work
2.1. Video Vision Transformers
The success of the transformer architecture across modali-
ties, firstly in text and then in vision (challenging the domi-
nance of CNN) is fairly evident in today’s world ((Vaswani
et al. 2017), (Dosovitskiy et al. 2021)) . Translating this
to moving frames, the Video Vision Transformers (ViViT)
which is a pure transformer-based model for video classifi-
cation is also seen to produce state-of-the-art perfomances,
making it common for computer vision tasks across in-
dustries. Examples include autonomous driving perception,
quality control in manufacturing, and automated medical
image analysis. As these models are deployed in increas-
ingly high-stakes domains, understanding their internal rea-
soning and ensuring their reliability becomes paramount
for establishing trust (Meyers, Löfstedt, and Elmroth 2023).
Structurally, the model extracts spatio-temporal tokens from
the input video that are then encoded by a series of trans-
former layers. While Arnab et al. (2021) introduced sev-
eral transformer models, this experiment focuses on spatio-
temporal attention with tubelet embeddings that span across
the “Joint Space-Time” dimensionalities. The architecture
also encodes a special [CLS] token or classifier token
that propagates throughout the model encoding information
about the final output class at each layer. This provides a
valuable target for interpretability techniques, allowing anal-
ysis of how the model’s prediction evolves layer by layer.

2.2. Mechanistic Interpretability
Understanding inner workings of AI systems is critical
for value alignment and safety, especially more so in de-
ployment (Gabriel 2020). A promising approach for this
is Mechanistic Interpretability (or MechInterp), which is
the reverse-engineering of computational mechanisms and
representations learned by neural networks into human-
understandable algorithms and concepts through a granular,
causal analysis (Bereska and Gavves 2024). This granular
analysis involves understanding of features, neurons, layers,
and connections, offering an intimate view of operational
mechanics. The ideologies of MechInterp are broadly clas-
sified into two categories: Observational analysis and causal
interventions. Observational techniques like logit lens, atten-
tion visualisations, structured probes and SAEs take a simple
“look and understand” approach which are mainly to under-
stand what parts of the model contribute to the final outcome
and in what capacity. On the other hand, causal intervention
studies deal directly with the model internals. Approaches
like ablations and activation patching change the model in-
ternals to understand what differences did it make in the final
outcome. This helps understand what the model is learning
and which part of the system is responsible for perceived de-
ceptions. Additionally, this causal approach offers a richer

level of understanding than standard baselines like Saliency
Maps, Integrated Gradients, or Concept Activation Vectors
(CAVs). While such attribution methods primarily approx-
imate which input features drive a prediction, mechanistic
interpretability causally isolates ”how” internal components
transform those features. By intervening on specific hid-
den states, we can disentangle the functional roles of dif-
ferent architectural blocks, such as distinguishing between
’evidence gathering’ (Attention) and ’concept composition’
(MLPs) which offers a structural distinction often obscured
in gradient-based attribution heatmaps.

2.3. Eliciting Latent Knowledge
A central challenge in ensuring the trustworthiness of de-
ployed AI systems is understanding their internal states, es-
pecially when outputs might be misleading or insufficient.
The field of Eliciting Latent Knowledge (ELK) specifically
aims to address this by finding patterns in a model’s acti-
vations that reliably track the truth, even when the model’s
explicit output cannot be trusted (Burns et al. 2022). This
involves moving beyond surface behavior to potentially by-
pass deception or misalignment. Similarly, secret elicitation
research focuses on uncovering knowledge a model pos-
sesses but does not verbalize. To study these phenomena in
controlled settings, researchers like Turner et al. (2025) of-
ten create ”model organisms”, models intentionally trained
to exhibit specific failure modes or hide information. For ex-
ample, Mallen et al. (2023) developed ”quirky” LMs fine-
tuned to make systematic errors in specific contexts (e.g.,
when the name ”Bob” is present), using them to test if lin-
ear probes could still extract correct knowledge from inter-
nal activations. They found probes in middle layers often
represented knowledge independently of the final output.
Cywiński et al. (2025) trained ”secret-keeper” LLMs de-
signed to possess and apply knowledge (like a secret word or
user gender) while denying awareness when asked directly.
They used these models to benchmark various black-box
(e.g., prefill attacks ) and white-box (e.g., logit lens, Sparse
Autoencoders ) elicitation techniques.

3. Methodologies
3.1. Model & Dataset:
Model: The specific model used is the “google/vivit-b-
16x2-kinetics400” which is open-sourced pre-trained on
Kinetics-400 human-action dataset, available on Hugging-
Face. It is a base architecture of Video Vision Transformer
(vivit-b) having 12 layers and attention heads similar to ViT-
B. The 16x2 refers to tubelet embeddings with 16x16 spatial
patch size and 2x temporal patch size, enabling the model
to encode and process videos by dividing them into spatio-
temporal “tubelets”.

Dataset: The experiment utilizes a custom-generated min-
imal contrastive pair of 10-second videos from the Kinetics-
400 (Sammani, Joukovsky, and Deligiannis 2023) ”bowl-
ing” class (Label: 31): a positive ”strike” run (ie; ball hits
the pins) and a negative ”gutter” run (ie; ball goes down the
gutter). During preprocessing, frames are uniformly sam-
pled with a stochastic temporal start index (random jitter) to



Figure 1: Qualitative visualization of CLS Token attention (Layer 10, Head 8) for the (a) ’Strike’ and (b) ’Gutter’ videos. This
head functions as one of the semantic ”outcome-detectors”.

align with standard training protocols. While this sampling
typically introduces minor variance between runs, a fixed
random seed (42) was used for all reported experiments to
ensure exact reproducibility. The custom dataset and analy-
sis code are available from the authors upon request.

3.2. Observational Interpretability Analysis:
This set of experiments pertained to understanding and
merely observing the model internals to understand where
the model focused when subjected to the input videos and
what part of its architecture contributed to the final classifi-
cation outcome (Joseph 2023).

3.2.1. Direct Logit Attribution (DLA): This is a tech-
nique for interpreting the output activations of model com-
ponents. In language models, this is done in the vocabulary
space but with ViViT’s architecture, we can focus directly
on the [CLS] or the classifier token. By studying the logits
in [CLS] token, DLA offers insights into which layer con-
tributed most towards the final logits of the output class.

3.2.2. Token-wise heatmap Visualization: Focusing on
the target class, this heatmap is generated by visualizing the
contribution of each spatio-temporal token across all frames
to the model’s internal representation, offering insights into
which parts of the input video the model attends to most
strongly.

3.2.3. CLS Token Attention Visualization: This heatmap
(shown in Figure 1) gives us insights into the attention scores
of the [CLS] token focusing on attention heads within a spe-
cific layer. The ViViT model divides each frame into patches
making it easier to visualise the attention of each part of the
image. Subsequently, an attention overlay was also plotted

as seen in Figure 1 which gave insights into which part of
the input video the model focuses on at a given frame.

3.2.4. Linear Probe Analysis: As an initial attempt to
find a signal distinguishing the two outcomes, linear probes
(a simple logistic regression classifier) were trained to dis-
tinguish between the activations of the [CLS] token from
the ”strike” run versus the ”gutter” run (Zhao et al. 2024).
This was done for each of the 12 layers of the VideoViT
model with the goal to determine if the internal semantic
concepts representing the outcome were linearly separable
in the residual stream without more granular intervention.

3.3. Signal Identification - Delta Analysis:
While the initial observational analysis offered several in-
sights into the model’s attention on the input frames and
contributions of parts of model’s architecture contributing
towards the final classification output, they showed limited
intuitions towards the semantic representation and hidden
cognition in the models internals (detailed in sections 4.1
and 4.2). Hence, delta analysis was used to precisely locate
the internal representation of the “Success vs Failure” signal
calculated using the activation deltas like so:

∆ = actstrike − actgutter
The L2 norm of this delta at each layer was used to quan-

tify the ”signal strength” and filter out noise; this calculation
helped produce the signal amplification graph shown in Fig-
ure 5.

3.4. Causal Analysis:
This set of experiments included tinkering with the activa-
tions of the model at specific set of points to understand how



Figure 2: Contribution of each layer towards the final logits of target class across frames for (a)strike and (b)gutter runs.

much of these interventions would cause a change in the
models final output i.e; to causally determine the function
of specific model components ((Heimersheim and Nanda
2024), (Méloux et al. 2025)).

3.4.1. Component Ablation:

To rigorously test the causal necessity of salient visual fea-
tures, an Automated Top-K Ablation strategy was used. The
top k% of tokens (where k = 10) were systematically ze-
roed out where the tokens that had the highest positive con-
tribution to the target class logit across the entire spatio-
temporal volume. This approach allows us to determine if
the model’s classification relies on these specific ”action
hotspots” or if it is robustly distributed across the global
scene context.

3.4.2. Activation Patching:

In this, activations were systematically patched (i.e; copied)
from the “strike” run into the “gutter” run for each com-
ponent (Attention vs MLP) at each layer. The goal was to
measure the percentage of the final Layer 11 ’Success vs.
Failure’ signal delta (identified via delta analysis) that was
recovered by patching each single component.

4. Results

4.1. Observational Interpretability Results

4.1.1. Direct Logit Attribution (DLA): DLA helped in
identifying which model layers contributed most to the fi-
nal logit predicting the ’bowling’ classification. As seen in
Figure 2, from layer 9 and beyond the model becomes in-
creasingly confident in its task to classify the input video.

4.1.2. Token-wise heatmap Visualization: As shown in
figure 3, the tokens most directly contributing to the final
output are spread across a number of frames, but fairly cen-
tral within the picture which aligns well with the input video
selected. The majority of these tokens correspond to the
rolling ball and the ball-pin interaction in the “strike” video.

Figure 3: Token-wise heatmap across frames in ”strike run”
indicating contribution of each token to the final predicted
output class

4.1.3. CLS Token Attention Visualization: Similar to the
overall token-wise heatmap seen in Figure 3 and attention
overlay in Figure 1, the attention head 8 in layer 9 for
the [CLS] token focuses on the ball-pin interaction for the
“strike” run corresponding to patches 60-80 as seen in Fig-
ure 4.

Figure 4: Attention visualisation heatmap for [CLS] token at
Layer 9, Head 8.

To investigate this mechanism qualitatively, we visual-
ized the attention from the specialized head of the next layer
(Layer 10, Head 8) directly onto the video frames and this
head acts as one of the semantic ’outcome-detectors’ as seen
in the attention overlay figure above.

In the ’Success’ video (Figure 1a), the head’s attention
(red heatmap) dynamically tracks the ball’s path (Frame 10)



Figure 5: The average L2 norm of the activation delta between the ”strike” and ”gutter” runs. The sharp rise from layer 5
onwards shows the amplification cascade.

before snapping to the pins at the moment of impact (Frame
15).

Conversely, in the ’Failure’ video (Figure 1b), the same
head correctly identifies the failure mode: its attention fo-
cuses on the gutter (Frame 5) and subsequently settles on
the untouched pins (Frame 15). This provides first visual ev-
idence that the model might have learned a robust, high-level
representation for both outcomes. That being said however,
a numerical evidence was still lacking.”

4.1.4. Linear Probe Analysis: The logistic regression lin-
ear probe showed a misleading 100% accuracy from Layer
0. This failed experiment indicated that the probe was acting
as a ’fingerprint scanner’ on superficial and spurious differ-
ences rather than identifying the underlying semantic con-
cept.

Figure 6: The layer-wise differentiating accuracy of the
trained probe showed 100% accuracy in distinguishing be-
tween the ”strike” and ”gutter” runs, acting as a superficial
fingerprint scanner.

4.2. From Failed Experiments to a Clear Signal
Initial explorations using Direct Logit Attribution (DLA)
and CLS Token Visualization were successful in identifying
which spatio-temporal region in the video the model con-
sidered important (i.e., the ball-pin interaction), but lacked
insights into how this information was processed or repre-
sented semantically. To address this limitation, the L2 norm
of the activation delta was analyzed:

∆ = act strike− act gutter (1)
between the two videos. As shown in Figure 5, this ap-

proach effectively filtered out low-level noise, revealing a
clear ”signal amplification cascade” from layer 5 through
11. Specifically, the average layer L2 norm shows a consis-
tent increase of over 300%, rising from approximately 75 at
layer 5 to over 250 in the final layer, pinpointing the location
of the potential outcome-computing circuit.

Consequently this delayed emergence in delta analysis, in
contrast to linear probe analysis (which detected superficial
differences at Layer 0), signalled a circuit which is not track-
ing low-level spurious features (e.g., background texture),
but is instead computing a higher-level semantic abstraction
deep within the network.

4.3. Component Ablations: Evidence for Circuit
Separation
Having established the existence of the outcome signal, it
was tested to see whether the explicit classification (”Bowl-
ing”) relied on the specific visual features associated with
this action. An Automated Top-K Ablation strategy was uti-
lized, using Direct Logit Attribution (DLA) to identify and
zero out the top 10% of tokens (313 patches) with the high-
est contribution to the ’Bowling’ class.

As shown in Tables 1 and 2, this aggressive ablation had
a negligible effect on the model’s top class predictions. For



Prediction Rank Original Prediction (Logit) Ablated Prediction (Logit) Change in Logits
1 Bowling (16.9954) Bowling (16.6583) -0.3371
2 Throwing Ball (9.0371) Throwing Ball (9.1341) 0.0970
3 Playing Cricket (6.2185) Playing Cricket (6.4343) 0.2158
4 High Kick (5.9146) High Kick (5.7234) -0.1912
5 Dancing Ballet (5.7508) Dancing Ballet (5.7579) 0.0072

Table 1: Comparison of logits before and after ablation in ”strike run”.

Prediction Rank Original Prediction (Logit) Ablated Prediction (Logit) Change in Logits
1 Bowling (16.5200) Bowling (16.5044) -0.0156
2 Throwing Ball (6.3758) Throwing Ball (6.6308) 0.2551
3 Headbutting (4.8109) Headbutting (5.1653) 0.3544
4 Playing Cricket (4.6217) Playing Cricket (4.6968) 0.0751
5 Throwing Baseball (4.2289) Throwing Baseball (4.3045) 0.0755

Table 2: Comparison of logits before and after ablation in ”gutter run”.

the ’Strike’ video (Table 1), the model retained the ’Bowl-
ing’ classification with a negligible logit decrease (-0.34).
Similarly, for the ’Gutter’ video (Table 2), the confidence re-
duced slightly (-0.02) indicating no real change in model’s
perception post ablations.

This creates a paradox: the model calculates a strong out-
come signal (Section 4.2), yet the classification circuit is
highly distributed and does not strictly require the salient
action features as seen after component ablations. This re-
silience provides strong causal evidence that the outcome
circuit is a ”hidden” mechanism that operates independently
of the explicit classification task, motivating the use of Acti-
vation Patching (Section 4.4) to precisely identify the com-
ponents responsible for this hidden computation.

4.4. The Causal Mechanism: A Division of Labor
Having localized the internal outcome signal and confirmed
its functional independence from the explicit classification
task (via ablation), activation patching was employed to
reverse-engineer the model’s construction mechanism. We
systematically patch individual components (Attention vs.
MLP blocks) from the ’strike’ run into the ’gutter’ run, quan-
tifying the causal contribution of each block by measuring
the percentage of the final signal recovered.

Leveraging the ’Success vs. Failure’ signal delta ( ∆orig)
as defined in the first equation: ∆orig = actstrike −
actgutter. Then a new delta is calculated (the patched delta,
∆patch) by running the ’gutter’ video with a patched com-
ponent and subtracting the original ’gutter’ run activations:
∆patch = actpatched gutter − actgutter. The percentage of
Signal Recovery is then calculated by comparing these two
deltas: Formalizing ’Signal Recovery’ as:

Recovery(%) =
∥∆patch∥
∥∆strike∥

· sign(∆patch ·∆strike)× 100

(2)
where ∆(act) is the L2 norm of the ’strike’ minus ’gutter’

activation at Layer 11, and the sign correction accounts for

cases where the signal is inverted.
The results as seen in Figure 7 reveal a fundamental divi-

sion of labor:

Attention Heads act as Evidence Gatherers: Patching
attention blocks makes a significant but partial contribution
(37-54% signal recovery). Their role is to move relevant
spatio-temporal evidence onto the residual stream.

MLPs act as Concept Composers: Patching single MLP
blocks consistently recovers a larger proportion of the sig-
nal (42–60%) from layers 4 through 9, identifying them as
the primary drivers of the outcome representation. The fact
that no single component achieves 100% recovery confirms
that the circuit is distributed: the model constructs the ’Suc-
cess’ outcome cumulatively across layers. This distributed
nature explains the robustness observed in the earlier abla-
tion experiments since the signal is not bottlenecked in a
single block, the model remains resilient to individual com-
ponent failures.

Layer Component Label % Recovery
4 Attention L4 Attention 54.41
4 MLP L4 MLP 60.17
5 Attention L5 Attention 50.22
5 MLP L5 MLP 57.49
6 Attention L6 Attention 43.62
6 MLP L6 MLP 49.11
7 Attention L7 Attention 40.38
7 MLP L7 MLP 42.55
8 Attention L8 Attention 37.72
8 MLP L8 MLP 42.10
9 Attention L9 Attention 44.43
9 MLP L9 MLP 58.66
10 Attention L10 Attention 47.61
10 MLP L10 MLP 43.39

Table 3: Patching Experiment Results showing causal effects
per layer and component.



Figure 7: Causal effect of patching individual components on the layer 11 signal. MLP blocks are causally sufficient to create
the outcome signal.

5. Discussion & Limitations
5.1. Conclusion
This investigation successfully reverse-engineered a core
computational pattern in VideoViT. The model represents
nuanced action outcomes not via a single, fragile circuit,
but through a robust, distributed algorithm where Attention
Gathers, MLPs Compose. This discovery causally explains
the model’s invariance to simple ablation experiments; the
resilience comes from the powerful, redundant cascade of
its MLP blocks. The results highlight how internal outcome
representations can persist invisibly, motivating mechanistic
oversight tools for safe model deployment.

5.2. Limitations
Since the experiments are foundational, a primary limitation
is the scope. The findings are based on a single minimal pair
of videos (”strike” vs. ”gutter”) and one specific pre-trained
model architecture. Given the high dimensionality of videos
(spatio-temporal tokens), a ’deep-dive’ case study approach
is adopted. This allowed for a granular, component-level
causal analysis that involved patching of specific Attention
heads and MLP blocks, which is computationally prohibitive
to perform manually at scale.

This controlled design implies that while the internal va-
lidity of the circuit for this specific pair is established, we
have not yet quantified the circuit’s invariance to scene-
specific details. We cannot strictly rule out the possibility
that the identified circuit relies on features specific to this
pair (e.g., background textures) rather than fully on a gener-
alized semantic concept. However, while not generalizable
across samples yet, the existence proof of ”hidden cogni-
tion” is sufficient to question the safety of deployed AI sys-
tems, as it confirms that models can harbor internal represen-
tations that are effectively invisible to standard output mon-
itoring and that are independent of original training tasks.

5.3. Future Directions
The most critical next step is to validate the ”Attention
Gathers, MLPs Compose” hypothesis at scale. Future work
will move beyond manual patching to Automated Circuit
Discovery (ACDC) techniques, allowing the extraction of
this circuit across a statistically significant sample of the
Kinetics-400 dataset. This will help to distinguish whether
the ”compositional MLP” pattern is a universal mechanism
for processing outcomes, specific to trajectory-based ac-
tions like bowling, or merely an artifact of specific sam-
ple pairs. Additionally, an objective is to benchmark these
mechanistic findings against standard interpretability base-
lines, such as Integrated Gradients, to empirically demon-
strate that mechanistic techniques offer superior fidelity in
isolating semantic circuits within the video domain com-
pared to gradient-based attribution methods. Finally, inves-
tigating similar compositional mechanism in different archi-
tectures (e.g., TimeSformer) will shed light on how model
architecture and patch size influence the distribution of la-
bor between attention and MLPs.

6. Broader Impact Statement
This work serves as an empirical case study to detect ”hid-
den cognition” in AI models, where the internal representa-
tions of a model (e.g., ”success” vs. ”failure”) are more nu-
anced than its final output, which is a simple human-action
class of ”bowling”. The techniques used offer a path to-
wards scalable oversight to identify discrepancies between
a model’s behavior and its internal state, a key challenge in
AI safety and trustworthy AI. The finding that the outcome-
concept is computed robustly and redundantly by an MLP
cascade suggests that simple safety interventions, such as
removing a single ”harmful” component, are likely to fail.
This highlights the need for more sophisticated approaches
before such AI systems are deemed safe and deployable.
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