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ABSTRACT

Model Inversion (MI) attacks pose a significant privacy threat by reconstructing pri-
vate training data from machine learning models. While existing defenses primarily
concentrate on model-centric approaches, the impact of data on MI robustness
remains largely unexplored. In this work, we explore Random Erasing (RE), a
technique traditionally used to enhance model generalization under occlusion. Sur-
prisingly, our study reveals that RE emerges as a powerful defense against MI
attacks. We conduct analysis to identify crucial properties of RE to serve as an
effective defense. Particularly, Partial Erasure in RE prevents the model from
observing the entire objects during training, and we find that this has significant
impact on MI, which aims to reconstruct the entire objects. Meanwhile, our analy-
sis suggests Random Location in RE is important for outstanding privacy-utility
trade-off. Furthermore, our analysis reveals that model trained with RE leads to a
discrepancy between the features of MI-reconstructed images and that of private
images. These effects significantly degrade MI reconstruction quality and attack
accuracy while maintaining reasonable natural accuracy. Our RE-based defense
method is simple to implement and can be combined with other defenses. Extensive
experiments of 34 setups demonstrate that our method achieve SOTA performance
in privacy-utility tradeoff. The results consistently demonstrate the superiority of
our defense over existing defenses across different MI attacks, network architec-
tures, and attack configurations. For the first time, we achieve significant degrade
in attack accuracy without decrease in utility for some configurations. Our code
and additional results are included in Supplementary.

1 INTRODUCTION

Machine learning and deep neural networks (DNNs) (LeCun et al., 2015) have demonstrated their
utility across numerous domains, including computer vision (Voulodimos et al., 2018; O’Mahony
et al., 2020), natural language processing (Otter et al., 2020), and speech recognition (Deng et al.,
2013; Nassif et al., 2019). DNNs are now applied in critical areas such as medical diagnosis (Azad
et al., 2021), medical imaging (Shen et al., 2017; Lundervold & Lundervold, 2019), facial recognition
(Wang & Deng, 2021; Guo & Zhang, 2019; Masi et al., 2018), and surveillance (Zhou et al., 2021;
Harikrishnan et al., 2019; Hashmi et al., 2021). However, the potential risks associated with the
widespread deployment of DNNs raise significant concerns. In many practical applications, privacy
violations involving DNNs can result in the leakage of sensitive and private data, eroding public trust
in these applications. Defending against privacy violations of DNNs is of paramount importance.

One specific type of privacy violation is Model Inversion (MI) attacks on machine learning and DNN
models. MI attacks aim to reconstruct private training data by exploiting access to machine learning
models. Recent advancements in MI attacks including GMI (Zhang et al., 2020), KedMI (Chen
et al., 2021), PPA (Struppek et al., 2022), MIRROR (An et al., 2022), PLG-MI (Yuan et al., 2023)
and LOMMA (Nguyen et al., 2023) have achieved remarkable progress in attacking important face
recognition models. This raises privacy concerns for models that are trained on sensitive data, such
as face recognition, surveillance and medical diagnosis.

Related works. Existing MI defenses primarily focus on model-centric strategies like model gradients
(Dwork, 2006; 2008), loss functions (Wang et al., 2021; Peng et al., 2022; Struppek et al., 2024),
model features (Ho et al., 2024), and architecture designs (Koh et al., 2024) (see Tab. F.22). Earlier
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works (Dwork, 2006; 2008) demonstrated the ineffectiveness of traditional Differential Privacy (DP)
mechanisms against Model Inversion (MI) attacks. Recent research (Wang et al., 2021; Peng et al.,
2022; Struppek et al., 2024) has explored the impact of loss functions on MI resilience. Wang et al.
(2021) restricted the dependency between model inputs and outputs, while BiDO (Peng et al., 2022)
focused on limiting the dependency between model inputs and latent representations. To partially
restore model utility, BiDO maximized the dependency between latent representations and outputs.
Struppek et al. (2024) proposed using negative label smoothing factors as a defense. However,
these loss function-based approaches often introduce conflicting objectives, leading to significant
degradation in model utility. Recently, TL-DMI (Ho et al., 2024) restricts the number of layers to
be encoded by the private training data, while MI-RAD (Koh et al., 2024) found that removing skip
connections in final layers enhances robustness. However, both approaches experience difficulty in
achieving competitive balance between utility and privacy.

While data is the foundation of privacy, the impact of data on MI defense has not yet been explored.
Data augmentation, a technique that creates new, synthetic samples from existing data points, offers
a promising avenue for enhancing model robustness. In this paper, we pioneer the investigation of
Random Erasing (RE) (Zhong et al., 2020) for MI defense. RE, traditionally used to improve model
generalization for detecting occluded objects by removing randomly a region in training samples,
demonstrates its effectiveness as a powerful defense against MI attacks. We highlight two crucial
properties of RE that serve as an effective MI defense: Partial Erasure and Random Location.
On the one hand, Partial Erasure significantly reduces the amount of private information embedded in
the training data, preventing the model from observing the entire image, and consequently degrades
the MI attacks. On the other hand, Random Location improves the diversity of training data, thereby,
enhances the model utility. Furthermore, in MI attacks, adversaries optimize reconstructed images to
align with the target model’s feature space representation of training samples. Thanks to RE, the target
model’s feature representations are inherently biased towards the RE-private images, the training
data, rather than the private data. Consequently, RE creates a discrepancy between the features
of MI-reconstructed images and that of private images, resulting to degrade MI attacks. Our
proposed method leads to substantial degradation in MI reconstruction quality and attack accuracy
(See Sec. 3 for our comprehensive analysis and validation). Meanwhile, natural accuracy of the
model is only moderately affected. Overall, we can achieve state-of-the-art (SOTA) performance
in privacy-utility trade-offs as demonstrated in our extensive experiments of 34 setups – 7 SOTA
MI attacks including both white-box and label-only MI attacks, 11 model architectures (including
vision transformer), 6 datasets and different resolution including 64× 64, 116× 116, and 224× 224
resolution – and user study (in Supp.). Our contributions are:

• We propose a novel defense method against model inversion (MI) attacks via Random
Erasing (MIDRE). This is the first work to consider the well-known RE technique as a
privacy protection mechanism, leveraging its powerful ability to reduce MI attack accuracy
while maintaining model utility.

• Our analysis investigates two crucial properties of RE that serve as an effective MI defense:
Partial Erasure and Random Location. With these two properties, our defense method
degrades the attack accuracy while the impact on model utility is small.

• We provide a deeper understanding on features space analysis of Random Erasing’s defense
effectiveness which leads to reduce of MI attacks in MIDRE model.

• We conduct extensive experiments (Sec. 4, Sec. B) and user study (Supp. Sec. B.3) to
demonstrate that our MIDRE can achieve SOTA privacy-utility trade-offs. Notably, in
the high-resolution setting, our MIDRE is the first to achieve competitive MI robustness
without sacrificing natural accuracy. Note that our method is very simple to implement and
is complementary to existing MI defense methods.

2 OUR APPROACH: MODEL INVERSION DEFENSE VIA RANDOM ERASING
(MIDRE)

2.1 MODEL INVERSION

A model inversion (MI) attack aims to reconstruct private training data from a trained machine
learning model. The model under attack is called a target model, Tθ. The target model Tθ is trained
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on a private dataset Dpriv = {(xi, yi)}Ni=1, where xi represents the private, sensitive data and yi
represents the corresponding ground truth label. For example, Tθ could be a face recognition model,
and xi is a face image of an identity. The model is trained with standard loss function ℓ that penalizes
the difference between model output Tθ(x) and y:

L(θ) =
N∑
i=1

ℓ(Tθ(xi), yi) (1)

MI attacks. The underlying idea of MI attacks is to seek a reconstruction x that achieves maximum
likelihood for a label y under Tθ:

max
x
P(y;x, Tθ) (2)

In addition, some prior to improve reconstructed image quality can be included (Zhang et al., 2020;
Chen et al., 2021). SOTA MI attacks (Zhang et al., 2020; Chen et al., 2021; Nguyen et al., 2023;
Struppek et al., 2022) also apply GAN trained on a public dataset Dpub to limit the search space for
x. Dpub has no identity intersection with Dpriv, assuming attackers can not access to any private
samples. To mitigate model inversion attacks, existing methods (Wang et al., 2021; Peng et al., 2022;
Struppek et al., 2024) primarily employ additional loss during the training of the target model Tθ.
While these losses aim to improve privacy, they often conflict with the primary training objective
ℓ, leading to a significant decline in model performance. Recent work (Ho et al., 2024) suggests
limiting the number of model parameters θ that encode private training data, but this approach also
experiences difficulty in achieving competitive balance between utility and privacy. In (Koh et al.,
2024), authors study the impact of DNN architecture designs, particularly skip connections, on
model inversion attacks. Removing skip connections in last layers improves robustness, but requires
computationally expensive optimization, and also struggles to achieve a utility-privacy trade-off. (see
Fig. F.4 (b)). More details can be found in Sec. F.

2.2 RANDOM ERASING (RE) AS A DEFENSE

Random Erasing (RE) (Zhong et al., 2020) involves employing a random selection process to identify
an region inside an image. Subsequently, this region is altered through the application of designated
pixel values, such as zero or the mean value obtained from the dataset, resulting in partial masking of
the image. Traditionally, RE is applied as a data augmentation technique to improve robustness of
machine learning models in the presence of object occlusion (Zhong et al., 2020).

We propose a simple configuration of RE as a MI defense, requiring only one hyper-parameter. Given
a training sample x with dimensions W ×H , we propose a square region erasing strategy to restrict
private information leakage from x. We initiate by randomly selecting a starting point, denoted as
(xe, ye), within the bounds of x. Next, we randomly select the erased area portion ae within the
specified range of [0.1, ah], guaranteeing at least 10% of x is erased during training, while ah is
the only hyper-parameter of our defense. The size of the erased region is

√
sRE ×

√
sRE where

sRE = W ×H × ae is the erased region. With the designated region, we determine the coordinates
of the erased region (xe, ye, xe +

√
sRE , ye +

√
sRE). However, we need to ensure this selected

region stays entirely within the boundaries of x, i.e. xe +
√
sRE ≤ W , ye +

√
sRE ≤ H . If the

areased region extends beyond the image width or height, we simply repeat the selection process
until we find a suitable square erased region that fits perfectly within x. We fill the erased regions
with ImageNet mean pixel value (See Sec. C.2 for a detailed discussion on the impact of the erased
value) to obtain the RE-image. Note that RE is applied to all private training samples and the size
and position vary each training iteration. We depict our method in Algorithm 1 (Sec. A.5).

3 ANALYSIS OF PRIVACY EFFECT OF MIDRE

In this section, we analyze the privacy impact of RE within our proposed MIDRE framework. We
conduct a thorough analysis and demonstrate that RE can achieve a surprisingly state-of-the-art
balance between utility and privacy. Specifically, when employed as a defense against MI attacks, RE
is the first method to significantly reduce attack accuracy without compromising utility in certain
configurations, whereas all prior MI defenses exhibit noticeable degradation in utility to achieve
similar reductions in attack success. Experimental results in Sec. 4 further validate this finding.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Furthermore, we delve deeper into the mechanisms that underpin the effectiveness of RE. Our analysis
reveals that partial erasure, as implemented in RE, is a highly effective method for mitigating MI
attacks. Particularly, to present the model with less private pixels during training, our approach
of applying partial erasure while maintaining the original number of training epochs proves to be
more effective than the alternative approach of reducing the number of epochs without using partial
erasure. We attribute this to the fact that MI attacks rely on the target model to reconstruct the
entire image, and RE’s partial erasure prevents the target model from ever fully observing the entire
image throughout the training process. Additionally, we show that applying partial erasure at random
locations, as is done in RE, is more effective than erasure at fixed locations. Importantly, we further
conduct a feature space analysis to explain RE’s defense effectiveness, showing that model trained
with MIDRE leads to a discrepancy between the features of MI-reconstructed images and that of
private images, resulting in degrade of attack accuracy.

3.1 RE DEGRADES MI SIGNIFICANTLY, ACHIEVING SOTA PRIVACY-UTILITY TRADE-OFF

In the analysis, we study attack accuracy and natural accuracy of a target model Tθ under different
erased region portions ae. Recall ae = sRE/(W×H), and

√
sRE is the size of the erased region. For

the target model, which is a face recognition model, in each setup, we employ the same architecture
and hyper-parameters, while modifying the erased region portions ae. Specifically, we fix the values
of ae instead of random it as describe in Algorithm 1 to examinate the effect of ae to model utility
(accuracy) and model privacy (attack accuracy). We vary ae from 0.0 (indicating no random erasing
and the same as No Defense) to 0.5 (erasing 50% of each input samples). After the training of Tθ, we
proceed to evaluate its top 1 attack accuracy using SOTA MI attacks. This evaluation is conducted
for all target models trained with different ae. In order to ensure diversity in our study, we employ
six distinct setups for model inversion attacks, target model architecture, private dataset, and public
dataset, and both low- and high-resolution datasets.

RE has small impact on model utility while degrading MI attacks significantly. Fig. 1 summarizes
the impact of erased portions on model performance and model inversion attacks. In all setups, we
demonstrably improve robustness against MI attacks with small sacrifice to natural accuracy. For
instance, introducing erased portions ae at a ratio of 0.2 in Setup 1 caused a small 2.76% decrease in
natural accuracy while the attack accuracy plummeted by 29.2%. This trend continued in Setup 2 – a
0.2 ratio of ae led to a modest 3.92% decrease in natural accuracy, but a substantial 15.47% drop
in attack accuracy. We note that in Setup 3, LOMMA+KedMI attack accuracy degrades by 39.93%.
For high resolution images (Setup 4, 5), we observe an increase in model accuracy when using RE.
In Setup 4, there is a significant 69.39% drop in attack accuracy while natural accuracy slightly
increase (0.37%) when ae = 0.5. Similar trend for Setup 5, attack accuracy drops from 88.67% to
27.75% when ae = 0.4 while natural accuracy increases 1.83%. In conclusion, using RE-images
during training significantly degrades MI attack while impact on natural accuracy is small.

These findings suggest that MI defense via Random Erasing could achieve a strong balance between
privacy and utility.

3.2 IMPORTANCE OF PARTIAL ERASURE AND RANDOM LOCATION FOR PRIVACY-UTILITY
TRADE-OFF

In this section, we analyse two properties of Random Erasing that are: Property P1: Partial Erasure,
and Property P2: Random Location. To investigate the effect of each property, we conduct the
experiment using the following setup: We use T = ResNet-18 (Simonyan & Zisserman, 2014),
Dpriv = Facecrub (Ng & Winkler, 2014), Dpub = FFHQ (Karras et al., 2019), attack method = PPA
(Struppek et al., 2022). The NoDef model is trained using 50, 60, 70, and 100 epochs. We also train
defense models using random and fixed erasing techniques. For Random Erasing (RE), the location
of erased areas is randomly selected for each image and training iteration. For Fixed Erasing (FE), a
fixed erased location is used for each image throughout all iterations, but the erased area is different
for each image. We train RE and FE for 100 epochs using the following ae values: 0.5, 0.4, and 0.3.

Property P1 brings the privacy effect to defend against MI attacks. By erasing portions of training
images, it reduces the amount of private information exposed to the model during training. By erasing
more information, we can effectively degrade the accuracy of privacy attacks. Additionally, partial
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Figure 1: Our analysis shows that Random Erasing (RE) can lead to substantial degradation
in MI reconstruction quality and attack accuracy, while natural accuracy of the model is only
moderately affected. In this analysis, we experiment 6 setups with different MI attacks/target
models architecture/private/public datasets/image resolution. We analyze the attack (green line)
and natural accuracy (orange line) of the target models under different extents of random erasing
applied in the training stage, using random erasing ratio ae = sRE/(W ×H) as discussed in Sec.
2.2. To properly reconstruct private high-dimensional facial images of individuals, MI attacks require
significant amount of private training data information encoded inside the model. We found the
model using RE by small percentages can significantly degrade MI attacks, with MI attack accuracy
decreasing, for example, from 15.47% to 39.93%. However, the natural accuracy of the model only
decreases slightly, less than 4%, as sufficient information remained in the RE-images for the model
to learn to discriminate between individuals (Setup 1-3). We also observed a high degradation in
MI attack accuracy while the model accuracy increased. For instance, model accuracy increased by
0.37%, while attack accuracy decreased by 69.39% (Setup 4). Overall, our proposed defense method
demonstrates state-of-the-art privacy-utility trade-offs and can improve model utility in certain setups

Table 1: We compare three different techniques to reduce the amount of private information presented
to the model during training. The results show that simply reducing epochs is insufficient for
degrading attack performance. Meanwhile, RE improves model utility while degrading attack
accuracy effectively.

Random Erasing Fixed Erasing NoDef
Acc (↑) AttAcc (↓) Acc (↑) AttAcc (↓) Acc (↑) AttAcc (↓)

ae = 0. / NoDef: epoch = 100 97.69 87.12 97.69 87.12 97.69 87.12
ae = 0.5 / NoDef: epoch = 50 93.77 15.98 86.69 14.86 95.56 82.83
ae = 0.4 / NoDef: epoch = 60 96.05 27.75 93.10 28.49 95.61 83.39
ae = 0.3 / NoDef: epoch = 70 97.14 46.30 96.13 50.71 95.87 84.50

erasures prevent the model from seeing entire images, making it more difficult for attackers to
reconstruct the entire images.

Evidence. In Tab. 1, partial erase (fixed or random) is more effective than entire erase (reduce epoch)
although same number of pixel is presented to the model for both schemes, in terms of degrading the
attack. Specifically, NoDef (50 epochs) is significantly more vulnerable to attacks than RE and FE
(50% image areas are erased, trained in 100 epochs), suffering approximately 67% higher in attack
accuracy.

Property P2 recovers the model utility. While information reduction can improve privacy, it may
also negatively impact model utility if too much information is erased. Fixed the erasing location for
an image means some identity feature of this image will never be presented to the model, model may
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has not substantial information to learn effectively. RE avoids this issue. As the location of erased
area is changed in each training iteration, RE improves the diversity of the training data and ensures
that the model still observes a significant portion of the image, the model can learn effective.

Evidence. In Tab. 1, RE improves the model accuracy while maintains the same attack accuracy as
FE in different erased portion ratio ae. For instance, RE has higher model accuracy than FE by 7.08%
with ae = 0.5. With ae = 0.3 and 0.4, RE has higher accuracy and lower attack accuracy than NoDef
model, showing that privacy effect of RE.

3.3 FEATURE SPACE ANALYSIS OF RANDOM ERASING’S DEFENSE EFFECTIVENESS

In addition to two properties discussed in Sec. 3.2 which contribute to outstanding effectiveness of
applying RE to degrade MI, we present in this section another novel observation that explains RE’s
defense effectiveness. We observe Property P3: Model trained with RE-private images following
our MIDRE leads to a discrepancy between the features of MI-reconstructed images and that
of private images, resulting in degrade of attack accuracy.

The following analysis explains why MIDRE has Property P3. We use the following notation: ftrain,
fpriv, fRE , and frecon represent the features of training images, private images, RE-private images,
and MI-reconstructed images, respectively. To extract these features, we first train the target model
without any defense (NoDef) and another target model with our MIDRE. Then, we pass images into
these models to obtain the penultimate layer activations. Specifically, we input private images into
the models to obtain fpriv. Next, we apply RE to private images, pass these RE-private images into
the models to obtain fRE . We also perform MI attacks to obtain reconstructed images from NoDef
model (resp. MIDRE model), and then feed them into the NoDef model (resp. MIDRE model) to
obtain frecon. We use the same experimental setting as in Sec. 3.2. Then, we visualize penultimate
layer activations fpriv, fRE , frecon by both NoDef and our MIDRE model. We use ae = 0.4 to train
MIDRE and to generate RE-private images. Additionally, we visualize the convex hull of these
features.

(a) NoDef, AttAcc = 88.67%

(b) MIDRE, ae = 0.4, AttAcc = 27.75%

Figure 2: Feature space analysis to show that, under MIDRE, fMIDRE
recon and fMIDRE

priv has a
discrepancy, degrading MI attack. We visualize penultimate layer activations of private images
(⋆ fpriv), RE-private images (▼ fRE), and MI-reconstructed images (× frecon) generated by both
(a) NoDef and (b) our MIDRE model. We also visualize the convex hull for private images ,

RE-private images , and MI-reconstructed images . In (a), fNoDef
recon closely resemble fNoDef

priv ,
consistent with high attack accuracy. In (b), private images and RE-private images share some
similarity but they are not identical, with partial overlap between fMIDRE

priv and fMIDRE
RE . Importantly,

fMIDRE
recon closely resembles fMIDRE

RE as RE-private is the training data for MIDRE. This results
in a reduced overlap between fMIDRE

recon and fMIDRE
priv , explaining that MI does not accurately

capture the private image features.

Features of MI-reconstructed images tend to match features of training data. SOTA MI attacks
aim to reconstruct images that maximize the likelihood under the target model (Eq. 2) in order to
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extract training data (which possess a high likelihood under the target model). Under attacks of high
accuracy, frecon tends to match the features of training data ftrain (Nguyen et al., 2023).

Evidence. In Fig. 2 (a), as the training data of NoDef is private images fNoDef
train = fNoDef

priv , we
observe that in NoDef model, fNoDef

recon overlaps fNoDef
priv , i.e. there is significant overlap between

the pink and blue polygons. In Fig. 2 (b), the MIDRE model is trained with RE-private images
fMIDRE
train = fMIDRE

RE , as a result, pink polygon (fMIDRE
recon ) and green polygon (fMIDRE

RE ) overlap.
This confirms features of reconstructed images tend to match to the features of training data.

Mismatch in feature space of MIDRE. MIDRE is trained using RE-private images and is generaliz-
able to images without RE as shown in (Zhong et al., 2020). Under MIDRE target model, fMIDRE

RE

and fMIDRE
priv have partial overlaps, but they are not identical. Meanwhile, fMIDRE

recon tend to match
with fMIDRE

RE (RE-private images are training data for MIDRE, and follows the above discussion).
Therefore, fMIDRE

recon do not replicate fMIDRE
priv , significantly degrading the MI attack.

Evidence. In Fig. 2 (b), green polygon ( fMIDRE
RE ) and blue polygon (fMIDRE

priv ) are partial
overlap. Importantly, the pink polygon (fMIDRE

recon ), which overlaps with fMIDRE
RE as explained

above, only partially overlaps with the blue polygon (fMIDRE
priv ), suggesting MI attacks fail to

guide the reconstructed features to replicate private features. Consequently, MIDRE introduces a
discrepancy between MI-reconstructed and private images in feature space of the target model,
degrading the attack accuracy.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

To demonstrate the generalisation of our proposed MI defense, we carry out multiple experiments
using different SOTA MI attacks on various architectures. In addition, we also use different setups
for public and private data. The summary of all experiment setups is shown in Tab. 2. In total, we
conducted 34 experiment setups to demonstrate the effectiveness of our proposed defense MIDRE.

Dataset: We follow the same setups as SOTA attacks (Zhang et al., 2020; Nguyen et al., 2023;
Struppek et al., 2022) and defense (Peng et al., 2022; Struppek et al., 2024; Ho et al., 2024) to conduct
the experiments on four datasets including: CelebA (Liu et al., 2015), FaceScrub (Ng & Winkler,
2014), VGGFace2 (Cao et al., 2018), and Stanford Dogs (Dataset, 2011). We use FFHQ (Karras
et al., 2019) and AFHQ Dogs (Choi et al., 2020) for the public dataset. We strictly follow (Zhang
et al., 2020; Nguyen et al., 2023; Struppek et al., 2022; An et al., 2022; Peng et al., 2022; Struppek
et al., 2024; Ho et al., 2024; Koh et al., 2024) to divide the datasets into public and private set. See
Supp for the details of datasets.

Table 2: Details of our experiments. In total, we conduct 34 experiment setups to demonstrate the
effectiveness of MIDRE.

Attack Target model architecture Dpriv Dpub Resolution
GMI (Zhang et al., 2020)

VGG16 (Simonyan & Zisserman, 2014)
IR152 (He et al., 2016)
FaceNet64 (Cheng et al., 2017)

CelebA CelebA/FFHQ 64×64
KedMI (Chen et al., 2021)
LOMMA (Nguyen et al., 2023)
PLGMI (Yuan et al., 2023)
BREPMI (Kahla et al., 2022)

PPA (Struppek et al., 2022)

ResNet18 (He et al., 2016)

Facescrub FFHQ
224×224

ResNet101 (He et al., 2016)
ResNet152 (He et al., 2016)
DenseNet121 (Huang et al., 2017)
DenseNet169 (Huang et al., 2017)
MaxVIT (Tu et al., 2022)
ResneSt101 Stanford Dogs AFHQ Dogs

MIRROR (An et al., 2022) Inception-V1 (Inc) VGGFace2 FFHQ 160×160
ResNet50 (He et al., 2016) 224×224

Model Inversion Attacks. To evaluate the effectiveness of our proposed defense MIDRE, we
employ a comprehensive suite of state-of-the-art MI attacks. This includes various attack categories:
white-box and label-only, one type of black-box attack. To assess robustness at high resolutions,
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Figure 3: We evaluate PPA attack (Struppek et al., 2022) on our proposed method, NoDef, MID
(Wang et al., 2021), BiDO (Peng et al., 2022), NLS (Struppek et al., 2024), and TL-DMI (Ho et al.,
2024). Target models are trained on Dpriv = Facescrub with 6 architectures. The results show that
our method archives the best trade-of between utility and privacy among state-of-the-art defenses.

we employ PPA (Struppek et al., 2022) against attacks targeting 224×224 pixels and MIRROR (An
et al., 2022) against attacks targeting 116×116 pixels. For low resolution 64×64 pixels, we leverage
four SOTA white-box attacks: GMI (Zhang et al., 2020), KedMI (Chen et al., 2021), PLG-MI (Yuan
et al., 2023), and LOMMA (Nguyen et al., 2023) (including LOMMA+GMI and LOMMA+KedMI).
Additionally, we incorporate BREPMI (Kahla et al., 2022) for label-only attacks. We strictly replicate
the experimental setups in (Zhang et al., 2020; Chen et al., 2021; Yuan et al., 2023; Nguyen et al.,
2023; Struppek et al., 2022; Peng et al., 2022; An et al., 2022) to ensure a fair comparison between
NoDef (the baseline model without defense), existing state-of-the-art defenses, and our proposed
method, MIDRE.

Target Models. We follow other MI research (Zhang et al., 2020; Nguyen et al., 2023; Struppek et al.,
2022; Peng et al., 2022) to train defense models. We use 11 architectures for the target model to assess
its resistance to MI attacks using various experimental configurations. The details are summaried in
Tab. 2. We train target models with the same hyper-parameter (ah) for all low-resolution data set-ups.
In addition, for high-resolution data, we use two value for hyper-parameter ah = 0.4 and ah = 0.8
across all setups. This allows us to demonstrate MIDRE’s effectiveness in achieving the optimal
trade-off between utility and privacy with consistent hyper-parameter.

Comparison Methods. We compare the performance of our model against no defending method
(NoDef) and five defense methods including NLS (Negative Label Smoothing)(Struppek et al., 2024),
TL-DMI (Ho et al., 2024), MI-RAD (MI-resilient architecture designs) (Koh et al., 2024), BiDO
(Peng et al., 2022), and MID (Wang et al., 2021). As for MI-RAD (Koh et al., 2024), we compare our
results to Removal of Last Stage Skip-Connection (RoLSS), Skip-Connection Scaling Factor (SSF),
Two-Stage Training Scheme (TTS).

We establish a baseline (NoDef) by training the target model from scratch without incorporating any
MI defense strategy. According to NLS, TL-DMI, MI-RAD, we follow their setup and evaluation
to compare with MIDRE. We then carefully tuned the hyperparameters of each method to achieve
optimal performance.

Evaluation Metrics. MI defenses typically involve a trade-off between the model’s original utility
and its resistance to model inversion attacks. In the main paper, we evaluate these defenses using two
key metrics: Natural Accuracy (Acc ↑) to evaluate the model utility and Attack accuracy (AttAcc
↓) and to evaluate the model privacy. We further show other evaluation metric, including K-Nearest
Neighbor Distance (KNN Dist ↑), δeval, δface (Struppek et al., 2022), complement these results with
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qualitative results and a user study in Supp Sec. B.3. The details of evaluation metrics can be found
in Supp Sec. A.2.

4.2 COMPARISON AGAINST SOTA MI DEFENSES

We compare the model accuracy and attack accuracy of defense models in 6 architectures using attack
method PPA (Struppek et al., 2022) in Fig. 3. All the target models are trained on Facescrub dataset.
Interestingly, we are the first to observe that our defense models achieve higher natural accuracy but
lower attack acuracy than no defense model for larger image sizes (224×224). With small masking
areas (Ours(0.1,0.4)), our proposed method consistently achieves the lowest attack accuracy among
all defense models while its natural accuracy is higher than NoDef, BiDO, MID, and DP models.
For example, using ResNet101, our model reduces attack accuracy by 39.42% compared to NoDef
while achieving the model accuracy is higher than NoDef model 3.16%. MaxVIT, a recent advanced
architecture, has very high attack accuracy (80.66%). Our defense mechanism significantly enhances
its robustness, lowering attack accuracy to 42.5% without compromising model performance. By
increasing the masking areas (Ours(0.1,0.8)), they achieve a significant reduction in attack accuracy
while maintaining high natural accuracy, outperforming other strong defense methods like NLS
and TL-DMI. Specially, our attack accuracies are below 20% for all architectures. This represents
the best utility-privacy trade-off among all evaluated defense models, demonstrating our method’s
effectiveness in mitigating model inversion attacks.
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Figure 4: We evaluate MIRROR attack (An et al., 2022) on Vg-
gFace2 dataset. The results show that our method archives the
best trade-of between utility and privacy among state-of-the-art
defenses.

As for the MIRROR attack, we
compare the results of our pro-
posed method and the NoDef
model using Dpriv = VGGFace2
(see Figure 4). Our defense re-
duces the attack accuracy by 22%
and 70% without harming model
utility, where the target model T
= ResNet50/InceptionV1. More
results of other attacks such as
GMI, KedMI, LOMMA, and
PLGMI on other datasets can be
found in Section B.

The experiment results demon-
strate that our defense model has
a small impact on model utility
while significantly enhancing the model’s robustness against state-of-the-art MI attacks. Moreover,
we are the first to report a substantial improvement in model utility among all existing defenses.

4.3 ADAPTIVE ATTACK

We perform adaptive attacks in which the attacker knows the portions of the masking area ae and
uses it during inversion attacks. We use 2 setups: Setup 1: T = ResNet152, Dpriv = Facescrub, Dpub

= FFHQ, Attack method = PPA, image size = 224 × 224. Setup 2: T = VGG16, Dpriv/Dpub =
CelebA, Attack method = LOMMA + KedMI, image size = 64 × 64. We use ae = [0.1,0.4] to train
MIDRE and during inversion attack.

We report the results in Tab. 3. Adaptive attacks fail to enhance attack performance in both two
experimental setups. This may be due to the dynamic masking positions employed in each attack
iteration, hindering the convergence of the inverted images. In conclusion, even when attackers are
fully informed about RE and use this knowledge to design an adaptive MI mechanism, they still fail
to achieve accurate inversion results.

4.4 COMBINATION WITH EXISTING DEFENSES

Since MIDRE improves defense effectiveness from the training data perspective, our proposed
method can be combined with other defense mechanism from the training objective perspective such
as BiDO (Peng et al., 2022) and NLS (Struppek et al., 2024). We use 2 setups at discuss in Sec. 4.3.
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Table 3: We conduct the adaptive at-
tacks where the attacker knows the mask-
ing area portions ae and uses it dur-
ing inversion attacks. Adaptive attacks
(Adapt.Att) fail to enhance attack per-
formance in both 2 setups.
Setup Attack AttAcc

Setup 1 MIDRE 48.16
MIDRE (Adapt.Att) 37.03 (-11.13%)

Setup 2 MIDRE 43.07
MIDRE (Adapt.Att) 38.53 (-4.54%)

Table 4: The combination MIDRE with existing defense
BiDO and NLS. The combine models significantly reduces
attack accuracy compared to individual defenses.

Setup Defense Acc (↑) AttAcc (↓) ∆(↑)

Setup 1

NoDef 95.43 86.51 -
NLS 91.50 13.94 18.47
MIDRE 95.47 15.97 -
MIDRE + NLS 93.69 3.75 47.65

Setup 2

NoDef 86.90 81.80 ± 1.44 -
BiDO 79.85 63.00 ± 2.08 2.67
MIDRE 79.85 43.07 ± 1.99 5.49
MIDRE + BiDO 82.15 39.00 ± 1.30 9.01

The results (see Tab. 4) demonstrate the effectiveness of combining MIDRE with either NLS or
BiDO for enhancing defense against MI attacks, as our MIDRE takes a data-centric perspective
for defense, complementary to existing defenses. In both experimental setups, the combination
models demonstrate a substantial reduction in attack accuracy compared to using MIDRE or the
other defenses independently. In particular, in setup 1, the combination of MIDRE and Negative
LS achieves a remarkable 4.54% attack accuracy when using the state-of-the-art PPA attack while
preserving model utility. For Setup 2, MIDRE + BiDO improves the natural accuracy of the model
by 2.3% while reducing the attack accuracy by 4.07% and 24% compared to MIDRE and BiDO,
respectively. This shows our effectiveness of combining MIDRE and existing defense for a better
defense. The combination ability of MIDRE supports that it examines a distinct aspect of the system
by focusing on data input, setting it apart from other existing approaches to defend against model
inversion attacks.

5 CONCLUSION

We propose a novel approach to MI Defense via Random Erasing (MIDRE). We conducted an
analysis to demonstrate that RE possess two crucial properties to degrade MI attack while the impact
on model utility is small. Furthermore, our features space analysis shows that model trained with
RE-private images following MIDRE leads to a discrepancy between the features of MI-reconstructed
images and that of private images, resulting in reducing of attack accuracy. Experiments validate
that our approach achieves outstanding performance in balancing model privacy and utility. The
results consistently demonstrate the superiority of our method over existing defenses across various
MI attacks, network architectures, and attack configurations. The code and additional results can be
found in the Supplementary section.

Ethics Statement. We conduct our research on public datasets, then we do not have any concern about
ethics in terms of data. In fact, we do a user study on Amazon Mechanical Turk, which is a crowd-
sourcing service. Our user studies involve comparing image similarity by collecting aggregated data
on image without direct participant interaction. No personally identifiable or sensitive information is
collected. Participants solely label acquired images. Based on these factors, our Institutional Review
Board confirmed that our user studies do not qualify as human-subject research. Therefore, IRB
approval is not necessary.

Reproducibility Statement. Firstly, we provide source code and the pre-trained model to reproduce
the results in the paper in the overview section of supplementary. We provide details of dataset, defense
baseline, attacks, and hyper-parameters information in experimental setup and supplementary.
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Supplementary Materials

OVERVIEW

In this supplementary material, we provide additional experiments, analysis, ablation study, and
details that are required to reproduce our results. These were not included in the main paper due to
space limitations.

We provide the code and the pre-trained models of target models/ evaluation models at: Our source
code, Pretrained target model. In addition, we also provide inverted samples of BiDO and our
methods, with private images for reference at: Images. A subset of these images is presented in Fig.
B.2.
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A ADDITIONAL ANALYSIS AND DETAILS ON EXPERIMENTAL SETUP

A.1 DATASET

We use three datasets including CelebA (Liu et al., 2015), Facescrub (Ng & Winkler, 2014), and
Stanford Dogs (Dataset, 2011) as private training data and use two datasets including FFHQ (Karras
et al., 2019) and AFHQ Dogs(Choi et al., 2020) as public dataset.

The Celeba dataset (Liu et al., 2015) is an extensive compilation of facial photographs, encompassing
more than 200,000 images that represent 10,177 distinct persons. For MI task, we follow (Zhang
et al., 2020; Chen et al., 2021; Nguyen et al., 2023) to divide CelebA into private dataset and public
dataset. There is no overlap between private and public dataset. All the images are resized to 64×64
pixels.

Facescrub (Ng & Winkler, 2014) consists of a comprehensive collection of 106836 photographs
showcasing 530 renowned male and female celebrities. Each individual is represented by an average
of around 200 images, all possessing diversity of resolution. Following PPA (Struppek et al., 2022)
to resize the image to 224×224 for training target models.

The FFHQ dataset comprises 70,000 PNG images of superior quality, each possessing a resolution of
1024x1024 pixels. FFHQ is used as a public dataset to train GANs using during attacks (Zhang et al.,
2020; Chen et al., 2021; Struppek et al., 2022).

Stanford dogs (Dataset, 2011) contains more than 20,000 images encompassing 120 different dogs.
AFHQ Dogs (Choi et al., 2020) contain around 5,000 dog images in high resolution. Follow (Struppek
et al., 2022), we use Stanford dogs dataset as private dataset while AFHQ Dogs as the public dataset.

VGGFace2 (Cao et al., 2018) is a large-scale face recognition dataset designed for robust face
recognition tasks. It consists of images that are automatically downloaded from Google Image
Search, capturing a wide range of variations in factors such as pose, age, illumination, ethnicity, and
profession. The diversity of the dataset makes it suitable for training and evaluating face recognition
models across different conditions and demographics. It contains more than 3.3 milions images for
9000 identities.

A.2 EVALUATION METHOD

We evaluate these defenses using two key metrics:

• Natural Accuracy (Acc ↑). This metric measures the accuracy of the defended model on a
private test set, reflecting its performance on unseen data. Higher natural accuracy indicates
better performance of the primary task.

• Attack accuracy (AttAcc ↓). This metric measures the percentage of successful attacks,
where success is defined as the ability to reconstruct private information from the model’s
outputs. Lower attack accuracy indicates a more robust defense. Following existing works
(Zhang et al., 2020; Chen et al., 2021; Nguyen et al., 2023; Struppek et al., 2022), we utilize a
separate evaluation model. This model has a distinct architecture and is trained on the private
dataset Dpriv. Similar to human inspection practices (Zhang et al., 2020), the evaluation
model acts as a human proxy for assessing the quality of information leaked through MI
attacks. Higher attack accuracy on the evaluation model signifies a more effective attack,
implying a weaker defense.

K-Nearest Neighbor Distance (KNN Dist ↑): KNN distance measures the similarity between a
reconstructed image of a specific identity and their private images. This is calculated using the L2

norm in the feature space extracted from the penultimate layer of the evaluation model. In MI defense,
a higher KNN Dist value indicates a greater degree of robustness against model inversion (MI) attacks
and a lower quality of attacking samples on that model.

Distance evaluation for PPA. We also use δeval and δface metrics from (Struppek et al., 2022) to
quantify the quality of inverted images generated by PPA. These two metrics are the same concept as
KNN Dist, but different in the model to produce a feature to calculate distance. δface use pretrained
FaceNet (Schroff et al., 2015) as model to extract penultimate features, while δeval uses evaluation
model for PPA attack.
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Trade-off value. ( ∆ ↑)To quantify the trade-off between model utility (natural accuracy) and attack
performance (attack accuracy), let NoDef model and defended model are fn and fd respectively,
we compute ∆ =

AttAccfn−AttAccfd
Accfn−Accfd

. This metric calculates the ratio between the decrease in
attack accuracy and the decrease in natural accuracy when applying an MI attack to a model without
defenses (NoDef) and defense models1. A higher ∆ value indicates a more favorable trade-off.

A.3 HYPER-PARAMETERS FOR MODEL INVERSION ATTACK

In the case of GMI(Zhang et al., 2020), KedMI(Chen et al., 2021), and PLG-MI(Yuan et al., 2023),
BREPMI(Kahla et al., 2022), our approach is primarily based on the referenced publication outlining
the corresponding attack. However, in certain specific scenarios, we adhere to the BiDO study
due to its distinct model inversion attack configuration in comparison to the original paper. The
LOMMA(Nguyen et al., 2023) approach involves adhering to the optimal configuration of the
method, which encompasses three augmented model architectures: EfficientNetB0, EfficientNetB1,
and EfficientNetB2. We adopt exactly the same experimental configuration, including the relevant
hyper-parameters, as described in the referenced paper. We also follow PPA and MIRROR paper’s
configuration (Struppek et al., 2022; An et al., 2022) for our MI attack setup.

A.4 HYPER-PARAMETERS FOR MIDRE

Our method only requires a hyper-parameter ah, which is 0.4 for all low-resolution setups. According
to high-resolution setups, we use ah = 0.4 and ah = 0.8 as two setups for our defense.

A.5 TRAIN THE DEFENSE MODEL USING RANDOM ERASING

Algorithm 1 Train the Defense model using Random Erasing

Input: Private training data Dpriv = {(xi, yi)}Ni=1, model Tθ, a maximum masking area portion
ah.
Output: The MIDRE-trained model Tθ.
Initialize t← 0
while t < tRE do

Sample a mini-batch Db with size b from Dpriv

DRE = {}
while (x, y) in Db do
x̃ = x
Randomly select ae within the range [0.1, ah]
x̃ = RE(x, ae)
Dmask ← (x̃, y)

end while
Compute L(θ) = 1

b

∑DRE ℓ(Tθ(x̃i), yi)
Backward Propagation θ ← θ − α∇L(θ)

end while

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 EXPERIMENTS ON LOW RESOLUTION IMAGES

We evaluate our method against existing Model Inversion defenses. We follow the experiment setup
in BiDO (Peng et al., 2022) and report the results on the standard setup using T = VGG16 and
Dpriv = CelebA in Tab. B.1. We evaluate against six MI attacks, including GMI (Zhang et al., 2020),
KedMI (Chen et al., 2021), LOMMA (Nguyen et al., 2023) with two variances (LOMMA+GMI and
LOMMA+KedMI), PLGMI (Yuan et al., 2023), and a black-box attack, BREPMI (Kahla et al., 2022).
We also compare our method with NLS and TL-DMI in Tab.B.2 and Tab.B.3. Please note that the
TL-DMI and NLS results are obtained from their paper. Since TL-DMI uses different basic hyper

1This metric is used when defense models have lower natural accuracy compared to the no-defense model.
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Table B.1: We report the MI attacks under multiple SOTA MI attacks on images with resolution
64×64. We compare the performance of these attacks against existing defenses including NoDef,
BiDO, MID and our method. T = VGG16, Dpriv = CelebA, Dpub = CelebA.

Attack Defense Acc ↑ AttAcc ↓ ∆ ↑ KNN Dist ↑

LOMMA
+ GMI

NoDef 86.90 74.53 ± 5.65 - 1312.93
MID 79.16 54.53 ± 4.35 2.58 1348.21
BiDO 79.85 53.73 ± 4.99 2.95 1422.75
MIDRE 79.85 31.93 ± 5.10 6.04 1590.12

LOMMA
+ KedMI

NoDef 86.90 81.80 ± 1.44 - 1211.45
MID 79.16 67.20 ± 1.59 1.89 1249.18
BiDO 79.85 63.00 ± 2.08 2.67 1345.94
MIDRE 79.85 43.07 ± 1.99 5.49 1503.89

PLGMI

NoDef 86.90 97.47 ± 1.68 - 1149.67
MID 79.16 93.00 ± 1.90 0.58 1111.61
BiDO 79.85 92.40 ± 1.74 0.72 1228.36
MIDRE 79.85 66.60 ± 2.94 4.38 1475.76

GMI

NoDef 86.90 20.07 ± 5.46 - 1679.18
MID 79.16 20.93 ± 3.12 -0.11 1698.50
BiDO 79.85 6.13 ± 2.98 1.98 1927.11
MIDRE 79.85 3.20 ± 2.15 2.39 2020.49

KedMI

NoDef 86.90 78.47 ± 4.60 - 1289.46
MID 79.16 53.33 ± 4.97 3.25 1364.02
BiDO 79.85 43.53 ± 4.00 4.96 1494.35
MIDRE 79.85 34.73 ± 4.15 6.20 1620.66

BREPMI

NoDef 86.90 57.40 ± 4.92 - 1376.94
MID 79.16 39.20 ± 4.19 2.35 1458.61
BiDO 79.85 37.40 ± 3.66 2.84 1500.45
MIDRE 79.85 21.73 ± 2.99 5.06 1611.78

parameters including number of epochs, learning rate, and scheduler, we compare our method with
this with the same set of hyper parameters in a separate Tab. B.3. In addition, because NLS uses
different attack setup with attacked 1000 identities compared to 300 identities in some attacks’ paper,
we also follow the same setup and comapare with NLS in Tab. B.2. In addition, we also use NoDef
baseline in NLS paper to compare and estimate ∆ in Tab. B.2.

Overall, our proposed method, MIDRE, achieves significant improvements in security for 64×64
setups compared to SOTA MI defenses. MIDRE achieves this by demonstrably reducing top-1 attack
accuracy while maintaining natural accuracy on par with other leading MI defenses. Specifically,
compared to BiDO, MIDRE offers a substantial 43.74% decrease in top-1 attack accuracy with
sacrificing only 7.05% in natural accuracy (measured using the KedMI attack method). Notably,
while BiDO achieves similar natural accuracy to MIDRE, it suffers from a significantly higher top-1
attack accuracy (8.84% higher than MIDRE).

B.2 ADDITIONAL RESULTS

We further show the effectiveness of our proposed method on a wide range of target model architec-
tures including IR152, FaceNet64, DenseNet-169, ResNeSt-101, and MaxVIT. The results are shown
in Tab. B.5 and B.6, and Tab.B.8 and B.9 (for comparison with TL-DMI) for 64×64 images and in
Figure.3 for 224×224 images, We have the same hyperparameters related reason with Tab. B.3 about
why comparing with TL-DMI in different tables.

The experiment results consistently demonstrate the effectiveness of our proposed method. For
example, with T = IR152, we sacrifice only 6.25% in natural accuracy, but the attack accuracies drop
significantly, from 22.07% (PLGMI attack) to 40% (LOMMA + GMI attack). Similarly, when T
= FaceNet64, natural accuracy decreases by 6.94%, while the attack accuracies drop significantly,
from 24.47% (PLGMI attack) to 45% (LOMMA attack). We report the results of additional setup in
Tab. B.11, B.12, B.13. In particular, we use attack method = PLGMI, T = VGG16/IR152/FaceNet64,
Dpriv = CelebA, Dpub = FFHQ. In addition to measuring attack accuracy, we incorporate KNN
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Table B.2: We report the MI attacks under multiple SOTA MI attacks on images with resolution
64×64. We compare the performance of these attacks against existing defenses including NoDef,
NLS, and our MIDRE. T = VGG16, Dpriv = CelebA, Dpub = CelebA.

Attack Defense Acc ↑ AttAcc ↓ ∆ ↑

LOMMA
+ GMI

NoDef 85.74 53.64 ± 4.64 -
NLS 80.02 39.16 ± 4.25 2.53
MIDRE 79.85 26.62 ± 1.93 4.59

LOMMA
+ KedMI

NoDef 85.74 72.96 ± 1.92 -
NLS 80.02 63.60 ± 1.37 1.64
MIDRE 79.85 41.82 ± 1.24 5.29

PLGMI

NoDef 85.74 71.00 ± 3.31 -
NLS 80.02 72.00 ± 2.50 -0.17
MIDRE 79.85 66.60 ± 2.94 0.75

GMI

NoDef 85.74 16.00 ± 3.75 -
NLS 80.02 5.92 ± 2.31 1.76
MIDRE 79.85 2.86 ± 0.74 2.23

KedMI

NoDef 85.74 43.64 ± 3.67 -
NLS 80.02 24.10 ± 3.06 3.42
MIDRE 79.85 22.46 ± 4.46 3.60

Table B.3: We report the MI attacks under multiple SOTA MI attacks on images with resolution
64×64. We compare the performance of these attacks against existing defenses including NoDef,
TL-DMI, and our MIDRE. T = VGG16, Dpriv = CelebA, Dpub = CelebA.

Attack Defense Acc ↑ AttAcc ↓ ∆ ↑ KNN Dist ↑

LOMMA
+ GMI

NoDef 86.90 74.53 ± 5.65 - 1312.93
TL-DMI 83.41 22.00 ± 4.77 15.05 1709.00
MIDRE 84.74 41.53 ± 6.21 15.28 1520.15

LOMMA
+ KedMI

NoDef 86.90 81.80 ± 1.44 - 1211.45
TL-DMI 83.41 75.67 ± 1.83 1.76 1304.00
MIDRE 84.74 50.47 ± 1.92 11.30 1434.57

GMI

NoDef 86.90 20.07 ± 5.46 - 1679.18
TL-DMI 83.41 7.80 ± 3.36 3.52 1845.00
MIDRE 84.74 3.20 ± 1.91 7.81 2093.92

KedMI

NoDef 86.90 78.74 ± 4.60 - 1289.46
TL-DMI 83.41 51.67 ± 3.93 7.68 1410.00
MIDRE 84.74 20.93 ± 4.20 24.07 1687.17

distance to demonstrate the efficacy of our strategy across different evaluation scenarios. The specifics
of KNN distance can be found in Sec. A.2.

For high resolution images, interestingly, with Dpriv = Facescrub, we see a slight increase in natural
accuracy (1.95%) along with a significant reduction in attack accuracy of around 40%. These results
consistently show that MIDRE significantly reduces the impact of MI attacks. We report detailed
results of PPA attack on our method compared to SOTA defense including MID, DP, BiDO, TL-DMI,
NLS and RoLSS, SSF, TTS. the results are presented in Tab. B.14 and B.15. We also use δeval and
δface, with details in Sec. A.2 to evaluate quality of PPA inverted images.

B.3 USER STUDY

In addition to attack accuracy measured by the evaluation model, we conduct a user study to further
validate the attack’s effectiveness.

When BiDO and our model with architecture VGG16 are attacked, we randomly receive an re-
constructed image from PLG-MI for each identity for overall 150 first identities. We upload it to
Amazon Mechanical Turk and designate three individuals to vote on two of our model’s and BiDO’s
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Table B.4: Additional results on 64×64 images. We use (a) T = IR152 and (b) T = FaceNet64. The
target models are trained on Dpriv = CelebA and Dpub = CelebA. The results conclusively show that
our defense model is effective compared to NoDef models.

Table B.5: (a) T = IR152

Attack Defense Acc ↑ AttAcc ↓ KNN Dist ↑
GMI NoDef 91.16 32.40 ± 4.88 1587.28

MIDRE 84.91 7.87 ± 3.30 1888.47

KedMI NoDef 91.16 78.93 ± 5.15 1262.44
MIDRE 84.91 40.07 ± 4.99 1548.16

LOMMA + GMI NoDef 91.16 80.93 ± 4.56 1253.03
MIDRE 84.91 40.93 ± 6.11 1559.88

LOMMA + KedMI NoDef 91.16 90.87 ± 1.31 1116.90
MIDRE 84.91 52.13 ± 1.81 1481.70

PLGMI NoDef 91.16 99.47 ± 0.93 1021.42
MIDRE 84.91 77.40 ± 4.79 1470.46

Table B.6: (b) T = FaceNet64

Attack Defense Acc ↑ AttAcc ↓ KNN Dist ↑
GMI NoDef 88.50 29.60 ± 5.43 1607.86

MIDRE 81.56 6.73 ± 3.42 1908.19

KedMI NoDef 88.50 81.67 ± 2.63 1270.71
MIDRE 81.56 36.33 ± 6.06 1545.93

LOMMA + GMI NoDef 88.50 83.33 ± 3.40 1259.61
MIDRE 81.56 37.60 ± 3.74 1570.85

LOMMA + KedMI NoDef 88.50 90.87 ± 1.31 1116.90
MIDRE 81.56 54.33 ± 1.44 1456.84

PLGMI NoDef 88.50 99.47 ± 0.69 1091.51
MIDRE 81.56 75.00 ± 4.30 1509.78

Figure B.1: Our Amazon Mechanical Turk (MTurk) interface for user study with model inversion
attacking samples

reconstructed images, for a total of 450 votes. Participants were asked to select one of 4 options:
BiDO, MIDRE, neither, or both, for each image pair. Each pair was rated by three different users.

According to the results, 221 users voted in favour of BiDO, 108 in favour of our approach, 119 in
favour of neither, and 2 in favour of both. It suggests that the reconstructed image quality from our
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Table B.7: Additional results compared with TL-DMI on 64×64 images. We use (a) T = IR152
and (b) T = FaceNet64. The target models are trained on Dpriv = CelebA and Dpub = CelebA. The
results conclusively show that our defense model is effective.

Table B.8: (a) T = IR152

Attack Defense Acc ↑ AttAcc ↓ ∆ ↑ KNN Dist↑

GMI
NoDef 91.16 32.40 ± 4.88 - 1587.28

TL-DMI 86.70 8.93 ± 3.73 5.26 1819.00
MIDRE 87.94 11.07 ± 3.60 6.62 1813.11

KedMI
NoDef 91.16 78.93 ± 5.15 - 1262.44

TL-DMI 86.70 64.60 ± 4.93 3.21 1333.00
MIDRE 87.94 46.67 ± 5.45 10.02 1455.88

LOMMA
+ GMI

NoDef 91.16 80.93 ± 4.56 - 1253.03
TL-DMI 86.70 41.87 ± 5.37 8.76 1551.00
MIDRE 87.94 49.40 ± 6.30 9.79 1497.50

LOMMA
+ KedMI

NoDef 91.16 90.87 ± 1.31 - 1116.90
TL-DMI 86.70 77.73 ± 1.57 2.95 1305.00
MIDRE 87.94 62.93 ± 2.15 8.68 1551.00

Table B.9: (b) T = FaceNet64

Attack Defense Acc ↑ AttAcc ↓ ∆ ↑ KNN Dist ↑

GMI
NoDef 88.50 29.60 ± 5.43 - 1607.86

TL-DMI 83.41 15.73 ± 4.58 2.72 1752.00
MIDRE 85.74 7.47 ± 2.59 8.02 1898.29

KedMI
NoDef 88.50 81.67 ± 2.63 - 1270.71

TL-DMI 83.41 73.40 ± 4.10 1.62 1265.00
MIDRE 85.74 42.93 ± 5.22 14.04 1512.52

LOMMA
+ GMI

NoDef 88.50 83.33 ± 3.40 - 1259.61
TL-DMI 83.41 43.67 ± 5.60 7.79 1616.00
MIDRE 85.74 43.33 ± 6.02 14.49 1550.77

LOMMA
+ KedMI

NoDef 88.50 90.87 ± 1.31 - 1116.90
TL-DMI 83.41 79.60 ± 1.78 2.21 1345.00
MIDRE 85.74 58.07 +/- 1.78 11.88 1386.67

model is not as good as the reconstructed image quality from BiDO. Our interface for user study is
illustrated in Fig. B.1, and our results are presented in Tab. B.16.

Figure B.2: Reconstructed image obtained from PPA attack with T = ResNet-18, Dpriv = Facescrub,
Dpub = FFHQ. The quality of the reconstructed image obtained from the attack on the model trained by
MIDRE is comparatively worse when compared to that from NoDef and BiDO methods, suggesting
the efficiency of our proposed defense MIDRE.
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Table B.10: We report the PLGMI attacks on images with resolution 64×64. We compare to NoDef
and BiDO methods. T = VGG16, IR152 and FaceNet64, Dpub = FFHQ.

Table B.11: T = VGG16

Attack Defense Acc ↑ AttAcc ↓ ∆ ↑ KNN Dist ↑

PLGMI
NoDef 86.90 81.80 ± 2.74 - 1323.27
BiDO 79.85 60.93 ± 3.99 2.96 1440.16

MIDRE 79.85 36.07 ± 4.76 6.49 1654.41

Table B.12: T = IR152

Attack Defense Acc ↑ AttAcc ↓ ∆ ↑ KNN Dist ↑
PLGMI NoDef 91.16 96.60 ± 2.11 - 1187.37

MIDRE 84.91 54.02 ± 4.86 6.81 1579.28

Table B.13: T = FaceNet64

Attack Defense Acc ↑ AttAcc ↓ ∆ ↑ KNN Dist↑
PLGMI NoDef 88.50 95.00 ± 2.56 - 1250.90

MIDRE 81.56 51.60 ± 3.61 6.25 1501.85

Table B.14: We report the PPA MI attacks on images with resolution 224×224. We compare the
performance of these attacks against existing defenses including NoDef, MID, DP, BiDO NLS,
TLDMI, and MI-RAD variances. Dpriv = Facescrub Dpub = FFHQ, Arhchitecture is Resnet18,
ResNet152 and ResNet101.

Architecture Defense Acc ↑ AttAcc ↓ δeval ↑ δface ↑

ResNet18

NoDef 94.22 88.67 123.85 0.74
MID 91.15 65.47 137.75 0.87
DP 89.80 75.26 130.41 0.82
BiDO 91.33 76.56 127.86 0.75
TL-DMI 91.12 22.36 - -
MIDRE(0.1, 0.4) 97.28 48.16 131.72 0.80
MIDRE(0.1,0.8) 93.33 13.89 154.79 0.97

ResNet152

NoDef 95.43 86.51 113.03 0.73
MID 91.56 66.18 137.18 0.86
BiDO 91.80 58.14 147.28 0.87
NLS 91.50 14.34 - 1.23
RoLSS 93.00 64.98 - -
SSF 93.79 70.71 - -
TTS 93.97 73.59 - -
MIDRE(0.1,0.4) 97.90 42.44 139.66 0.82
MIDRE(0.1,0.8) 95.47 15.97 155.61 0.95

ResNet101

NoDef 94.86 83.00 128.60 0.76
MID 92.70 82.08 122.96 0.76
DP 91.36 74.88 131.38 0.82
BiDO 90.31 67.07 139.15 0.84
TL-DMI 90.10 31.82 - -
NLS(-0.05) 94.79 33.14 130.94 0.90
RoLSS 92.40 58.68 - -
SSF 93.79 71.06 - -
TTS 94.16 77.26 - -
MIDRE(0.1,0.4) 98.02 43.58 139.01 0.81
MIDRE(0.1,0.8) 95.15 15.47 155.80 0.96
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Table B.15: We report the PPA MI attacks on images with resolution 224×224. We compare the
performance of these attacks against existing defenses including NoDef, MID, DP, BiDO NLS,
TLDMI, and MI-RAD variances. Dpriv = Facescrub Dpub = FFHQ, Arhchitecture is DenseNet169,
DenseNet121, ResneSt101, and MaxVIT.

Architecture Defense Acc ↑ AttAcc ↓ δeval ↑ δface ↑

DenseNet169

NoDef 95.49 87.80 124.74 0.77
RoLSS 72.14 6.77 - -
SSF 92.95 60.99 - -
MIDRE(0.1,0.4) 97.99 46.67 136.18 0.81
MIDRE(0.1,0.8) 95.04 15.78 154.96 0.95

DenseNet121

NoDef 95.54 95.13 116.14 0.68
NLS(-0.05) 92.13 40.69 179.53 0.97
RoLSS 74.25 10.24 - -
SSF 93.09 65.21 - -
MIDRE(0.1,0.4) 98.19 46.98 134.86 0.81
MIDRE (0.1,0.8) 95.76 15.66 154.62 0.96

ResneSt101

NoDef 95.38 84.27 129.18 0.81
NLS(-0.05) 88.82 13.23 172.73 1.10
MIDRE(0.1,0.4) 98.11 45.43 137.78 0.80
MIDRE(0.1,0.8) 95.09 15.54 156.44 0.96

MaxVIT

NoDef 98.36 80.66 110.69 0.69
TL-DMI 93.01 21.17 - -
NLS(-0.05) 98.23 55.09 127.68 0.81
RoLSS 95.09 25.17 - -
MIDRE(0.1,0.4) 98.46 42.50 133.61 0.81
MIDRE(0.1,0.8) 96.52 13.92 155.31 0.96

Table B.16: We report results for an user study was performed utilising Amazon Mechanical Turk.
Reconstructed samples of PLG-MI/VGG16/CelebA/CelebA with first 150 classes. The study asked
users for inputs regarding the similarity between a private training image and the reconstructed image
from BiDO trained model and our trained model.

Defense Num of samples selected by users as more similar to private data

BiDO 221
Ours 108
Both 119
None 2

B.4 QUALITATIVE RESULTS

We show the comparison on qualitative results in Fig. B.2. We collect images acquired from the
PPA attack using T = ResNet-18, Dpriv = Facescrub, Dpub = FFHQ. It is clear that attack samples
obtained when attacking the target model trained by our strategy have lower quality compared to
samples obtained when attacking the NoDef and BiDO models.
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C ABLATION STUDY

C.1 ABLATION STUDY ON THE GRADCAM.

We employed GRADCAM visualization (Selvaraju et al., 2017) on false positive samples. We remark
that false positives are reconstructed samples that the target model classifies with high confidence
but are demonstrably incorrect when evaluated by a separate model (e.g., evaluation model). We
analyzed models trained with NoDef, BiDO, and our proposed MIDRE method using T = VGG16,
Dpriv = CelebA, Dpub = CelebA. The GRADCAM visualizations for these analyses are presented in
Fig. C.3.

Figure C.3: GRADCAM visualisation on false positive reconstructed samples obtained when at-
tacking Nodef, BiDO, and our MIDRE target models. We note that GRADCAM heatmaps of
reconstructed samples from our model are more concentrated in parts of the images. When the target
model is trained using our MIDRE, the model learns to produce a high likelihood based on parts of
an input image. During an MI attack on this MIDRE-trained model, the attacker may achieve a high
likelihood by correctly reconstructing parts of the image related to a specific identity, while the rest
of the image may not contain accurate features for this identity, resulting in false positives as shown
in these results.

We observe that GRADCAM visualizations for reconstructions from our proposed method with
Random Erasing show a more focused heatmap compared to other methods. Recall that MI attacks
aim to maximize the target model’s likelihood score for the reconstructed image. Since RE-trained
models assign high likelihood based on partial information (which makes the model robust to
occlusion as previously shown in (Zhong et al., 2020)), attackers might achieve high scores by
reconstructing only identity-relevant parts. This can lead to false positives, where reconstructed
images appear plausible to the target model but lack accurate features for the specific identity.
Consequently, we observe significant reductions in MI attack accuracy for our defense models while
the model’s natural accuracy experiences a moderate impact.

C.2 ABLATION STUDY ON MIDRE’S SETUP

Ablation study on Masking Values. In this section, we examine the effect of masking value to
MIDRE performance. We select attack method = PLGMI (Yuan et al., 2023), T = FaceNet64, Dpriv

= CelebA, Dpub = FFHQ. We set ae = (0.2,0.2). Similar to (Zhong et al., 2020), we investigate four
types of masking values: 0, 1, a random value, and the mean value. In case of random value, we
randomly select it within a range (0,1). The mean value uses the ImageNet dataset’s mean pixel
values ([0.485, 0.456, 0.406]).

Tab. C.17 demonstrates that the mean value offers the best balance between robustness against MI
attacks and maintaining natural image accuracy. Consequently, we adopt the Imagenet mean pixel
values for masking in MIDRE.

Ablation study on Area Ratio. In MIDRE, the area ratio ae controls the portion of an image masked
to prevent MI attacks. This experiment investigates the impact of different ae values on MIDRE’s
performance. In particular, ae is randomly selected within the range (0.1, ah), guaranting that at least
10% of the image is always masked. We select three values for ah: 0.3, 0.4, and 0.5. Similar to the
previous ablation study, we employ attack method = PLGMI (Yuan et al., 2023), T = FaceNet64,
Dpriv = CelebA, Dpub = FFHQ. The masking process uses the ImageNet mean pixel values.
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Table C.17: The effect of different masking value. We use attack method = PLGMI (Yuan et al.,
2023), T = FaceNet64,Dpriv = CelebA,Dpub = FFHQ. Overall, mean value achieves the best balance
between robustness against MI attacks and maintaining natural image accuracy.

Masking value Acc ↑ AttAcc ↓ ∆ ↑ Ranking
NoDef 88.50 95.00 ± 2.56 - -
0 83.72 69.20 ± 2.64 5.40 3
1 83.68 70.00 ± 3.18 5.18 4
random 80.76 51.87 ± 4.43 5.57 2
mean 85.14 68.87 ± 3.97 7.78 1

Table C.18: The effect of area ratio. We use attack method = PLGMI (Yuan et al., 2023), T =
FaceNet64, Dpriv = CelebA, Dpub = FFHQ. To achieve a balance between robustness and natural
accuracy, we opt ah = 0.4 in MIDRE.

ah Acc ↑ AttAcc ↓ ∆ ↑ Ranking
NoDef 88.50 95.00 ± 2.56 - -
0.3 83.55 65.07 ± 4.02 6.05 2
0.4 81.65 51.60 ± 3.61 6.34 1
0.5 78.50 45.40 ± 3.85 4.96 3

The results in Tab. C.18 indicate that increasing ah strengthens MIDRE’s defense against MI attacks,
but this comes at the cost of reduced natural accuracy. To achieve a balance between robustness and
natural accuracy, we opt ah = 0.4 in MIDRE.

Table C.19: We report the LOMMA+KedMI attacks on images with resolution 64×64. T = VGG16,
Dpriv = CelebA, Dpub = CelebA with different aspect ratios of RE in MIDRE. We also put NoDef
result as a baseline.

Attack Defense Acc ↑ AttAcc ↓ ∆ ↑ KNN Dist ↑

LOMMA+KedMI

NoDef 86.90 81.80 ± 1.44 - 1211.45
MIDRE 79.85 43.07 ± 1.99 5.49 1503.89

MIDRE(aspect ratio = 0.5) 81.32 49.13 ± 1.53 5.85 1424.40
MIDRE(aspect ratio = 2.0) 81.65 51.87 ± 1.62 5.70 1440.00

Ablation study on Aspect Ratio. We perform an ablation study on the aspect ratio of random erasing
for model inversion defense. The results presented in Tab. C.19 demonstrate that the influence of
aspect ratio on attack accuracy is not as significant as that of area ratio.

Table C.20: We report the PPA attack on images with resolution 224×224. T = ResNet18, Dpriv =
Facescrub, Dpub = FFHQ to target models trained with different data augmentation.

Attack Defense Acc ↑ AttAcc ↓

PPA

NoDef 94.22 88.67
MIDRE 97.28 48.16

Random Cropping 92.24 74.22
Gaussian Blur 97.57 87.12

Compare MIDRE with other data augmentation-base defense. To compare our methods with
data augmentation-based defense, we compare MIDRE with model trained by random cropping and
Gaussian blur. The results in Tab.C.20 show that our method still achieves the best trade-off between
utility and privacy.

The effectiveness of substitute pixels generated by inpainting for MIDRE. We incorporated an
inpainting method (Telea, 2004) to replace masked values, following the experimental setup described
earlier. Our results show that MIDRE (inpainting) modestly improves model accuracy while reducing
the attack success rate by 4.34%, which is indicated in Tab. C.21. However, this approach incurs a
higher computational cost compared to RE.
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Table C.21: We report the LOMMA+KedMI attack on images with resolution 64×64. T = VGG16,
Dpriv = CelebA, Dpub = CelebA to target models trained with RE with substitue pixel generate by
inpaiting.

Attack Defense Acc ↑ AttAcc ↓ KNN Dist ↑

LOMMA+KedMI
NoDef 86.90 81.80 ± 1.44 1211.45

MIDRE 79.85 43.07 ± 1.99 1503.89
MIDRE (inpainting) 80.42 38.73 ± 1.27 1508.28

D DISCUSSION

We propose a new defense against MI attacks using Random Erasing (RE) during training. RE
reduces private information exposure while significantly lowering MI attack success, with small
impact on model accuracy. Our method outperforms existing defenses across 34 experiment setups
using 7 SOTA MI attacks, 11 model architectures, 6 datasets, and user study.

D.1 BROADER IMPACTS

Model inversion attacks, a rising privacy threat, have garnered significant attention recently. By
studying defenses against these attacks, we can develop best practices for deploying AI models and
build robust safeguards for applications, especially those that rely on sensitive training data. Research
on model inversion aims to raise awareness of potential privacy vulnerabilities and strengthen the
defense.

D.2 LIMITATION

Firstly, we currently focus on enhancing the robustness of classification models against MI attacks.
This is really important because these models are being used more and more in real-life situations
where privacy and security are a major concern. In the future, we plan to expand our research scope
to encompass MI attacks and defenses for a broader range of machine learning tasks.

Secondly, while our current experiments are comprehensive compared to prior works (Zhang et al.,
2020; Chen et al., 2021; Nguyen et al., 2023; Kahla et al., 2022; Struppek et al., 2022; Ho et al.,
2024; Koh et al., 2024) which mainly focus on image data, real-world applications often involve
diverse private/sensitive training data. Addressing these real-world data complexities through a
comprehensive approach will be essential for building robust and trustworthy machine learning
systems across various domains.

E EXPERIMENTS COMPUTE RESOURCES

In order to carry out our experiments, we utilise a workstation equipped with the Ubuntu operating
system, an AMD Ryzen CPU, and 4 NVIDIA RTX A5000 GPUs. Furthermore, we utilise a secondary
workstation equipped with the Ubuntu operating system, an AMD Ryzen CPU, and two NVIDIA
RTX A6000 GPUs.

F RELATED WORK

F.1 MODEL INVERSION ATTACKS

The GMI (Zhang et al., 2020) is a pioneering approach in model inversion to leverages publicly
available data and employs a generative model GAN to invert private datasets. This methodology
effectively mitigates the generation of unrealistic data instances. KedMI (Chen et al., 2021) can be
considered an enhanced iteration of the GMI model, as it incorporates the transmission of knowledge
to the discriminator through the utilisation of soft labels. PLGMI (Yuan et al., 2023) is the current
leading model inversion method in the field. It leverages pseudo labels derived from public data and
the target model. LOMMA (Nguyen et al., 2023) employs an augmented model in order to reduce
the model inversion overfitting. The augmented model is trained to distill knowledge from a target
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model by utilising public data. During attack, the attackers generate images in order to minimise the
identity loss in both the target model and the augmented model. However, it should be noted that the
aforementioned four approaches are specifically designed for target models that have been trained
on low-resolution data, specifically 64x64 for the CelebA private dataset. Recently, PPA (Struppek
et al., 2022), MIRROR (An et al., 2022), and DMMIA (Qi et al., 2023) perform the attack on high
resolution images. In addition, Kahla, Mostafa, et al (Kahla et al., 2022) introduced the BREPMI
attack as a form of label-only model inversion attack, where the assault is based on the predicted
labels of the target model. Another work is RLBMI (Han et al., 2023), which utilises a reinforcement
learning approach to target a model in a black box scenario.

F.2 MODEL INVERSION DEFENSES

Table F.22: Existing MI defenses primarily focus on model-centric strategies like loss functions,
model features, and architecture designs. Our study pioneers the exploration of how training data
affects MI robustness.

Effect of
loss function

on MI

Effect of
model

parameters
on MI

Effect of
DNN

architecture
on MI

Effect of
private

data
on MI

MID (Wang et al., 2021) ✓

BiDO (Peng et al., 2022) ✓

NLS (Struppek et al., 2024) ✓

TL-DMI (Ho et al., 2024) ✓

MI-RAD (Koh et al., 2024) ✓

MIDRE (Ours) ✓

To defend against MI attacks, differential privacy (DP) (Dwork, 2006; 2008) has been studied in earlier
works. Studies in (Dwork, 2006; 2008) have shown that current DP mechanisms do not mitigate MI
attacks while maintaining desirable model utility at the same time. More recently, regularizations
have been proposed for MI defenses (Wang et al., 2021; Peng et al., 2022; Struppek et al., 2024).
(Wang et al., 2021) propose regularization loss to the training objective to limit the dependency
between the model inputs and outputs. In BiDO (Peng et al., 2022), they propose regularization
to limit the the dependency between the model inputs and latent representations. However, these
regularizations conflict with the training loss and harm model utility considerably. To restore the
model utility partially, (Peng et al., 2022) propose to add another regularization loss to maximize the
dependency between latent representations and the outputs. However, searching for hyperparameters
for two regularizations in BiDO requires computationally-expensive. Recently, (Ye et al., 2022)
introduced a new approach that utilises differential privacy to protect against model inversion. (Gong
et al., 2023) proposed a novel Generative Adversarial Network (GAN)-based approach to counter
model inversion attacks. In this paper, we do not conduct experiments to compare to these methods
as the code is not available. (Struppek et al., 2024) study the effect of label smoothing regularization
on model privacy leakage. Their findings demonstrate that positive label smoothing factors can
amplify privacy leakage, whereas negative label smoothing factors mitigate privacy concerns at the
cost of a substantial decrease in model utility, resulting in a more favorable utility-privacy trade-off.
Recently, (Ho et al., 2024) introduce a novel approach to defending against model inversion attacks
by focusing on the model training process. Their proposed Transfer Learning-based Defense against
Model Inversion (TL-DMI) aims to restrict the number of layers that encode sensitive information
from the private training dataset into the model. As restricting the number of model parameters that
encode private information can potentially impact the model’s performance. (Koh et al., 2024) study
the impact of DNN architecture designs, particularly skip connections, on model inversion attacks.
They found that removing skip connections in the last layers can enhance model inversion robustness.
However, this approach necessitates searching for optimal skip connection removal and scaling factor
combinations, which can be computationally intensive. Both TL-DMI and MI-RAD experiences
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difficulty in achieving competitive balance between utility and privacy. We show comparison of
several defense approaches with our MIDRE in Tab. F.22, and Fig. F.4.
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Figure F.4: Our Proposed Model Inversion (MI) Defense via Random Erasing (MIDRE). (a)
Training a model without MI defense. L(θ) is the standard training loss, e.g., cross-entropy. Training
a model with state-of-the-art MI defense (SOTA) (b) BiDO (Peng et al., 2022), (c) NLS (Struppek
et al., 2024), and (d) TL-DMI (Ho et al., 2024), (e) MI-RAD (Koh et al., 2024) , (f) Our method.
Studies in (Peng et al., 2022; Struppek et al., 2024) focus on adding new loss to the training objective
in other to find the balance between model utility and privacy. TL-DMI (Ho et al., 2024) proposes to
reduce the number of parameters θ to be encoded with private training data. MI-RAD (Koh et al.,
2024) propose skip connection removing to defend against MI. Both TL-DMI and MI-RAD focus on
the model’s parameters to defend against MI. For our proposed method (f), the training procedure
and objective are the same as that in (a). However, the training samples presented to the model
are partially masked, thus, reducing private training sample’s information encoded in the model
and preventing the model from observing the entire images. This makes MIDRE become a novel
approach that focuses on input data only to defend. We find that this can significantly degrade MI
attacks, which require substantial amount of private training data information encoded inside the
model in order to reconstruct high-dimensional private images. See Sec. 3 in the main paper for our
comprehensive validation of this claim.
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