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ABSTRACT

Recently, Federated Continuous Learning (FCL) has gained attention for simu-
lating real-world dynamic problems, with catastrophic forgetting as its core chal-
lenge. While generative replay is widely used in FCL methods to mitigate this
issue, higher cross-client data heterogeneity necessitates excessive FL rounds per
task for convergence, thereby conflicting with clients’ demand for immediate re-
sponses. To address this, we focus on real-time FCL, where incremental data ar-
rives in small batches per FL round and is only accessible at that FL round, causing
global data heterogeneity to vary across FL rounds, and propose pFedGRP, which
includes two key components: Firstly, a flexible generative replay architecture that
decouples the generator by category to mitigate inter-class catastrophic forgetting,
combines with the task model to reduce redundant updates and improve genera-
tion quality, and adaptively adjusts client-specific local generation scales. Next,
a personalized FCL framework via generative replay that optimizes aggregation
weights on server-side for real-time model personalization, and transfers person-
alized knowledge to an extra average global model on client-side for catastrophic
forgetting mitigation. Experiments show pFedGRP outperforms other FCL meth-
ods via generative replay, with both superior performance and lower regret.

1 INTRODUCTION

Federated Learning (FL)(McMahan et al.,|2017) is an emerging privacy-preserving distributed ma-
chine learning (ML) framework. Personalized FL (pFL)(Tan et al.,|2023} Sabah et al., 2024), which
balances client utility with collaboration, has gained notable attention. However, the static single-
task framework of both FL and pFL lacks real-world practicality: in practice, clients receive data
randomly and incrementally, causing dynamic shifts in intra/inter-client data heterogeneity across
FL rounds(Li et al.| [2020a; Kairouz et al., [2021). Additionally, regulations(Voigt & Busschel 2017
Vizitiu et al.| | 2019j Balogun, 2025) constraints further limit raw data retention. For example, health
agencies in different regions can utilize FL to conduct research on COVID-19(Yang et al., 2020;
Dayan et al.,|2021), but the virus’s rapid mutation rate leads to significant variations in regional data
distribution and trends, while privacy regulations(Voigt & Busschel 2017} |Balogun) 2025)) limit the
retention period of raw medical data. In this case, FL and pFL are prone to catastrophic forget-
ting(Kirkpatrick et al., 2016 Kemker et al., [2018)—a phenomenon where models forget prior task
knowledge when learning new tasks without access to original training data.

In centralized ML, continuous learning (CL) works(Wang et al.,|2024aj|2025) mitigate catastrophic
forgetting through approaches such as rehearsal(Lee et al.l [2024; [Tong et al., [2025), generative re-
play(Wang et al.| 2024b; |Chen et al., [2025)), regularization(Lin et al., [2024b} Bian et al.,|2024), and
parameter isolation(Lin et al.,|2024a; Hu et al.l 2024), among others. But in Federated Continuous
Learning (FCL)(Yang et al.,|2024), distributed scenarios raise task ID prediction difficulty for regu-
larization and parameter isolation approaches, while privacy regulations constraints hinder rehearsal
approaches, promoting generative replay, with most FCL methods adopting a global generator to
mitigate catastrophic forgetting. However, these FCL methods mainly focus on offline CL, with
each task spanning dozens to hundreds of FL. communication rounds (i.e., FL rounds) for model’s
global aggregation and fine-tuning to achieve convergence. In contrast, real-world applications re-
semble online CL (OCL)(Lange et al.| 2022} (Gunasekara et al., [2023)), with client data arriving per
FL round in mini-batches and accessible solely within that FL round, causing less label/feature dis-
tribution overlap among many clients per FL round. We call it real-time FCL to distinguish it from
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online CL. In real-time FCL, FCL methods with single global generator and task model will struggle
to address dynamic data distribution shifts due to convergence lag (Zhu et al.,|2021;|Cao et al.,|2023)),
degrading performance for clients’ real-time need and weakening catastrophic forgetting mitigation.
Therefore, improving FCL for real-time FL aggregation through generative replay is crucial.

In this work, we integrate generative replay into pFL for real-time FL aggregation while mitigating
catastrophic forgetting. Firstly, we propose a flexible generative replay architecture: since model’s
training resource needs scales with data volume under a fixed batch size(Gui et al., [2023), to avert
cross-category catastrophic forgetting, we replace existing FCL methods’ single larger global gener-
ator with multiple smaller class-wise sub-generators, utilizing compact existing generative models.
Moreover, we use the latest task model to identify sub-generators’ feature drift, reducing redundant
updates thus speeding generator training. Subsequently, we use the latest task model to enhance
sub-generator’s output quality, better mitigating task model’s catastrophic forgetting on client-side
while enabling server-side real-time personalized FL aggregation. Furthermore, to handle diverse
task paths across clients, we adaptively adjust local generation scales to reducing replay errors.

Based on upon, we propose pFedGRP, a real-time FCL via generative replay. For real-time person-
alized FL aggregation, servers sync sub-generator caches through clients’ updated sub-generators,
then replay client-specific distributions to optimize personalized aggregation weights per FL round.
To align the global feature space for faster convergence, we propose using dual global task models:
clients initialize local task model with the global average one per FL round, then inject personalized
knowledge through replay data during local training to mitigate catastrophic forgetting.

Our main contributions can be summarized as follows:

1.We introduce a novel FCL framework for real-time FCL, tackling slow convergence in generative
replay-based FCL methods that requiring multiple FL rounds per task.

2.We propose a flexible generative replay architecture with class-specific sub-generators that en-
hanced by task model to support task model’s real-time personalized FL aggregation.

3.Based on above, we propose pFedGRP, a real-time FCL method via generative replay, achieves
task model’s global real-time personalized aggregation and local catastrophic forgetting mitigation.

4 Leveraging benchmark datasets, we propose scenario construction schemes and proper metrics for
real-time FCL, validating our approach across diverse datasets and dynamic data scenarios.

2 RELATED WORK

Federated Learning and Personalized Federated Learning: Federated Learning (FL)(McMahan
et al.,2017) enables distributed ML without raw data transmission, with its core challenge being con-
structing the global model that performs well across clients with heterogeneous data distributions.
One approach is to enhance knowledge transfer within the feature space of the single global model,
including methods such as parameter difference constraints(Li et al., [2020b), statistical information
sharing(Li et al., 2021b), dynamic regularization(Acar et al.,2021)), hidden space alignment(Yoon
et al.} 2021b)), dual label correction(Wu et al.l 2023), and global aggregation fine-tuning(Li et al.,
2023)), among others. Another approach is to customize a global model for each client by ad-
justing collaboration with others, known as personalized federated learning (pFL), including meth-
ods such as model distance estimation(L1 et al., 2021a), model representation decoupling(Collins
et al., |2021), model hierarchical sharing(Arivazhagan et al., |2019), personalized knowledge trans-
fer(Zhang et al.;2021)), personalized distribution mixing(Marfoq et al.}[2021)), and personalized col-
laboration graph(Ye et al.,[2023)), among others. However, current FL and pFL methods are designed
for static local data (a single task) and need multiple FL rounds to converge. In FCL scenarios, when
learning new task, these methods struggle to mitigate catastrophic forgetting caused by the inability
to access old task data, resulting in degraded performance across all tasks.

Federated Continue Learning: Federated Continuous Learning (FCL) extends CL to FL scenar-
ios. In this paradigm, each client’s local dataset remains static for each task that spans multiple
FL rounds, while federated collaboration are employed to retain cross-task knowledge and mitigate
catastrophic forgetting. Current FCL works mainly focuses on: Task parameter isolation meth-
ods(Arivazhagan et al.,[2019;Yoon et al.,|2021a};[Luopan et al.,|[2023; Wang et al.||2024c)) train task-
specific modules but require explicit task ID provision during training and inference. The orthogonal
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model update methods(Shoham et al.,|2019; Bakman et al.l 2024} |Salami et al., [2025; Zhang et al.,
2025) compute task residual matrix for parameter update, but small-batch’s high sample variance
in real-time FCL severely challenges this computation. The sample replay (i.e., rehearsal) meth-
ods(Li et al., |2024; Nori et al.| 2025} |Serra & Buettner, 2025)) preserve local core sets through task
model, highly rely on task model performance and may violate data privacy laws. There generative
replay methods mainly adopt two strategies: local training methods(Q1 et al., 2023} Wuerkaixi et al.|
2024; Serra & Buettner, [2025) update global generator on client-side per task through multiple FL.
aggregations, global training methods(Zhang et al., 2023 |Babakniya et al., |2023; [Tran et al., 2024)
update global generator on server-side with the converged global task model after per task’s com-
pletion, both strategies require a large-scale generator to fit the complex global feature distributions
of all tasks across multiple clients, causing computational and scalability challenges in training and
inference. In short, most FCL methods need multiply FL rounds for global model convergence per
task. In real-time FCL, poor convergence degrades model performance(Zhu et al., 2021)), failing to
meet clients’ demands per FL round.

3 PRELIMINARY

Symbol Definitions:

For the model, we denote the task model used to solve practical problems as w, the generator for all
categories as (7, the smaller sub-generator for a category ¢ as G.. In the ¢-th FL round, w!, G and
G;C represent the local models updated on the i-th client C;, while wf] and w;’i refer to the global
task model and client C;’s personalized global task model aggregated on server, respectively.

For the local dataset, we denote the local dataset of client C; in the t-th FL round as Df =
{(z;,y;)|Vj € [ml]}, with data distribution P} = P(X}, V) defined as the joint distribution over
its label space ! and feature space X. The local dataset D} consists of m} sample pairs, with each
x; € X} as the input and y; € )} the corresponding label. Moreover, let Y} = {m} |Vc € Y/}
denote the data quantity vector of Df, with mﬁ’c as the sample count of category c € y;.

For the synthetic dataset, we denote client C;’s local label space as V; = U7, V! (across all T
FL rounds), and the synthetic dataset created by generator G as D!(’~” denotes “synthesis”). Let
Y} = {m} .[Vc € V;} be its data quantity vector, with 77} _ as the sample count of category c € V;.

Optimization Problem: In real-time FCL, client data arrives in small batches per FL round, result-
ing in less or even no overlap in label and feature distributions among some clients during that FL
round. Therefore, we refer to the definitions of OCL(Gunasekara et al.l [2023)) and Task-Free CL
(TFCL)(Wang et al., 2025), set client-specific task sequences where tasks change across FL rounds
for all clients. Consider a T-round (i.e, T-tasks) FL process with a set C = {C;|i = 1,...,n}
consisting of n clients, each client C; has a unique task sequence 7; = {T;'|i = 1,..., T}, where
each task 7' in ¢-th FL round associates to a data distribution P! = P(X}, V!) and a local dataset
D! = {(zj,y;)|Vj € [m!]} with m} task-ID-free samples. Similar to TFCL, in real-time FCL,
each client’s local datasets remain mutually exclusive across FL rounds, despite possible distribu-
tion overlaps (i.e, Dfl ﬁDf2 = (,Vt1,ts € [T],t1 # t2,Vi € [n]), and each D! is available to client
C; only in ¢-th FL round, ensuring that each training sample is processed by client C; within a single
FL round. With unknown task ID, while the ¢-th FL round comes, clients jointly train a global task
model or n personalized global task models that perform well across each client C;’s all ¢ tasks’ data
distributions {P}, ..., P!}. Let w;’i denote the global task model received by client Cj, the global

objective F* in the ¢-th FL round can be formulated as:
n t
, 1
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Where F7 is the local objective of client C; in ¢-th FL round (i.e., task T"), f(w}, ;; %) is the output
of model w;ﬂ» in , I(-;-) is the mission loss related to mission type (e.g., classification, or others).
Note that when all clients share the same global task model w/, (i.e., w! ; - w}, Vi € [n]) in each FL
round ¢ € [T'], and each task span multiple FL rounds (i.e., D!* = D!* P! = P!* Vi € [n], Vi3, 14
from the same task, t3 # t4; Di° N DI = 0, P NPL° ~ (), Vi € [n],Vts, te from different tasks),
objective|l| will degrade from real-time FCL to (offline) FCL.
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(1.a) Update the single larger generator. ‘ ‘ (1.b) Update smaller class-specific sub-generators. ‘ (1.c) Reduce updates on smaller class-specific sub-generators. ‘
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Figure 1: The flowchart compares the generators’ update mechanisms. Given a client C; with
predefined categories {c1, ¢2, c3, ¢4 }, the dataset D} for its ¢-th task contains {c3, ¢4 }. In (1.a), client
C; employs G ’f ! to create a synthetic dataset Df ~1, mixes it with D! to mitigate G’;* 1°5 catastrophic
forgetting on {c1,co}. In (1.b), client C; updates sub-generators G!~ 1 G ! on category-specific

1,c3" 1,C4
datasets D!, D!, C D, respectively. In (1.c), client C; first employs latest task model w;™*
(captures features of {c3,c4} from D) to compute the accuracies ACCY,, ACCY, on Di sy Dic,
created by GE 71 G~ respectively. then, with threshold T H, if ACC! < THg, client C; updates

1,c3 "7 1,Cq
GE,_Cl on Df’c (e.g., category c3), else retains Gf;l (e.g., category c4), reducing redundant updates.

4 METHODOLOGY

4.1 A FLEXIBLE GENERATED REPLAY ARCHITECTURE

1. Decouple Local Generator by Category: In (offline) FCL where tasks span multiple FL rounds,
existing generative replay-based FCL methods(Yang et al., 2024) employ FL to train a large global
generator which captures the data distributions of all clients’ historical tasks, thereby mitigating
catastrophic forgetting in the global task model (See Fig[I.a). However, in real-time FCL where tasks
change per FL round, these methods face the three key challenges: Firstly, a single global model
(task model or generator) struggles to rapidly adapt to all clients’ local data distribution shifts(Sabah
et al.,[2024), resulting in convergence delays to task changes and performance degradation(Zhu et al.,
2021). Secondly, a single generator requires extensive parameters to fit the complex global historical
data distributions(Bubeck & Sellkel |2021)), thereby elevating computational demands and delaying
convergence(Gui et al.|[2023)). Finally, due to the inaccessibility of prior tasks’ data, a single genera-
tor must self-generate replays during training to mitigate catastrophic forgetting, with more training
data delaying convergence(Wang et al., 2024a). Since model’s training resource needs scales with
data volume under a fixed batch size(Gui et al.}|2023), the computational cost of training a generator
on the full dataset for one epoch equals to the sum of training it separately on each category’s data
for one epoch, and further equal to the sum of training the category-specific generators on their re-
spective data for one epoch. Therefore, for each client C; € C with local label space J; = U{zlyi’“,
we configure a smaller existing generative model for each category ¢ € ); as a category-specific
sub-generator G; . (i.e., local generator G; = {G; |Vc¢ € );}). During the ¢-th FL round (task

ThH, let GI1 = {G’;flwc € Y;} denote the local generator to be updated, client C; updates the

C

sub-generator subset {Gf;l Ve € VF} of G~ that corresponding to task 7;'’s label space V! C Vi,
using category-specific datasets { D} .|Vc € Y} where D} . = {(z,y)|V(z,y = ¢) € D}}, respec-
tively. (See Fig At this point, the local generator effectively mitigates inter-class catastrophic
forgetting, while avoiding generative replay or significant cost increase, and accelerates training.

2. Reduce Generator Updates via Task Model: By decoupling the generator by category, we
mitigates generator’s inter-class catastrophic forgetting without generative replay. However, if there
is no feature drift in data with the same category across multiple tasks, updating that category’s sub-
generators in all tasks merely increases training burden with marginal gains. Since client updates
both local task model and generator on task-specific local dataset, we propose using the updated
local task model to detect feature shifts in the sub-generators to be updated, and selectively updating
only those with larger feature shifts, to reduce invalid updates and further accelerate training. Taking
classification mission as an example, as shown in Fig during the ¢-th FL round (task 7.'), client
C; first updates the global task model to obtain the local one (denoted as wf’*), which learns the latest
features from local dataset D!. Next, for local generator G f_ 1°5 sub-generators {Gﬁ;l Ve € V!} that

to be updated, client C; uses each sub-generator Gf;l to create a synthetic dataset, then employs
w!* to evaluates its accuracy on class ¢ (denoted as ACCY), if ACC! falls below a predefined
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threshold T'H, client C; updates Gﬁfcl on the category-specific dataset D} . = {(z,y)|V(z,y =
¢) € D!} then get the updated sub-generator sz otherwise, no update is performed on GE;l.
Thirdly, with all updated sub-generators (denoted as the set {sz lc € Y!}), client C; replaces the
corresponding old sub-generators in Gﬁ_l, thereby obtaining the updated local generator G?.

3. Enhance Generative Replay via Task Model: By using smaller, class-specific sub-generators
with lower update frequency, we improve local generator’s update efficiency while mitigating catas-
trophic forgetting, but sub-generators’ limited feature-matching capability, which offering some pri-
vacy protection via underfitting, trades generation performance. Therefore, we propose using the
latest task model to enhancing sub-generators’ synthesis data, adapting to task model’s need without
improving sub-generators’ generation performance. Taking classification mission as an example,

given the latest task model w;"* and the local generator G¢ = {G} IVc € Y}, we aim to cre-
ate a synthetic dataset Dt ("~ denotes “synthesis”’) based on a generated data quantity vector
Ylt = {m .|Ve € Vi}, where m! . denotes the sample count for each category ¢ € Y;. For each
category ¢ e Y, we first employ the sub-generator Gw to generate ml,C samples that are judged
as category ¢ by w;, denoted as a small synthetic dataset ﬁt = {(#;,0)|Vj € [} .]}. Then, we
merge all small synthetic datasets {D .|Vc € V;} to form the Dt (.e., D = Ucey, D )

4. Adjust Local Generation Scales Adaptively: In real-time FCL, clients’ task evolutlon paths vary
widely. Since our generator design supports category-level generation scale adjustment, to reduce
replay errors from synthetic data in the task model while alleviating catastrophic forgetting, we
introduce a dynamic local replay scheme that minimizes synthetic data usage: In the ¢-th FL round
(task T;'), for client C;, define the data quantity vector Y} = {m/ .|Vc € J/} composed of the data

Data count

Class Class

Zt 1 Yk y,f Yéi = Zi—:ll Yik + yit YE.: 7: — thl,l _ Yt

L

{Data count Data count Data count iData count
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Figure 2: The flowchart of Adaptive local Generation Scale Adjustment. See text below for details.

quantities m! . of each category ¢ € V! in local dataset D!. As shown in Figure l client C; first
calculates the total data quantity vector Ycl_ = Z kel Y ("3 represents class-wise summation)
across all ¢ tasks, then proportionally scales thwi such that only one category of data has a quantity
matching that in Y}, denoted that category as c* € )?, and then capping each category’s generative
scale at mﬁ - € Y thereby obtaining the scaled data quantity vector Yt " from Yé Finally, client

C; computes the generated data quantity vector Yt = Yé — Y}/, using mlnlmal synthetic data to
dynamically adapt to local distribution shifts wh11e mitigating task model’s catastrophic forgetting.

4.2 PFEDGRP

Using the Flexible Generated Replay Architecture, we propose pFedGRP, a pFL framework via gen-
erated replay for real-time FCL. Since in real-time FCL, a single global model struggles to rapidly
adapt to all clients’ local data shifts(Sabah et al.l|2024), we employ dual global task models: a per-
sonalized one handles client’s real-time need per FL round (task), while an averaged one initializes
local task model to align global feature space, with generative replay, enhanced by the personalized
one, to mitigate catastrophic forgetting. We illustrate its process via the ¢-th FL round below.

Local Training: In ¢-th FL round (task 7;'), each client C; € C holds a local dataset D} and a local
generator Gﬁfl (defined in Sec 4.1.1) updated in (¢-1)-th FL round, and receives the personalized
global task model wé;l and the average global task model wéfl from the server. Firstly, client
C; calculates the generated data volume vector f’f (Sec 4.1.4), and uses 17]', Gﬁ_l and wé;l to
create the synthetic dataset Dg_l (Sec 4.1.3). Then, client C; updates wf;l on the merged dataset

D!~ U D! to minimizing the mission loss (-; -), while aligning the outputs of wi~!and wt ! via
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Figure 3: The flowchart of pFedGRP for each client C; € C'in the ¢-th FL round (task). In local
training phase, client C; € C computes the generated data quantity vector Y;* (Sec 4.1.4), uses Y},
local generator Gf‘l and personalized global task model w;fil to create a synthetic dataset Df_l

(Sec 4.1.3), fixes th1 with task-specific dataset D, then updates the averaged global task model

wz Lon it whlle aligning the outputs of wt ! and wt ! on DIt ! via MSE loss, obtaining the local

task model wi . Afterwards, client C; partlally updates Gf 'to Gﬁ_l with wf’*(Sec 4.1.2). In

global aggregation phase, server sync generator caches to G, using G, wf ™ and P (Ya) to create

a synthetic dataset D? (Sec 4.1.3), then optimizes the aggregate weights {w} ,[Vu € [n]} on Dt to
aggregate the personalized global task model w! 4.i» and additionally aggregate an averaged w;.
A-weighted Mean Squared Error loss M SE(+;-) on synthetic dataset Df ~! to reduce feature drift.
Let wf’* be the updated local task model, the local objective for client C'; can be formulated as:

W]+ argmin > I(fwh ey + A > MSE(f(wh ' a); f(w;il;fc))}
“ (zy)e{D;~UD!} eeD}™!

2

Afterwards, with the threshold 7' H, client C; partially update the local generator G';_l to G with

w!™ (Sec 4.1.2), and yields the updated sub-generators {G:: |c € V!}. Finally, client C; normalizes
the sum of all ¢ tasks’ data volume vectors Z}; , Y (denoted as P (f’a )) to approximate the local
label distribution, sends w,’ {Gt “lce Yt} and P(Yt ) to the server, ending local training.

Global Aggregating: In pFedGRP, the server keeps a local generator cache (also denoted as G;) per
client C; € C for personalized global task model aggregation. In ¢-th FL round, denote the local
task models uploaded by all n clients as {w’;*|Vu € [n]}. For each client C; € C, server syncs
the old local generator cache G ! to G via the updated sub-generators {sz %1, and then
uses P(ffa) w;* and G! to create a synthetic dataset D! (Sec 4.1.3). Let {wj ,[Vu € [n]} with
ZZ=1 wf’u = 1 denote the personalized aggregation weight for client C;, the server updates it by

minimizing the mission loss {(+; -) of the aggregated task model >_"'_, wfu - wbh* on ﬁf . Denoting
the optimal weight as {wzz |Vu € [n]}, the personalized global objective for client C; be:

{wf:Nu € [n]} « argmin Z l(f(Z w!, ~wf;*;x) ; y) , 8.t Z wi, =1 3

{w} , IVueln]} >
(z,y)eD}
Finally, for client C;, the server aggregates the personahzed global task model w i Zu 1 w
w!* and an averaged global task model w’, <~ 2 3" | w!’*, then sends both w! and w} to chent
C After the server completes the above process for all n chents the ¢-th FL. round ends.

Appendix [D]presents the pFedGRP algorithm in structured pseudocode format.

5 EXPERIMENT

5.1 DATA SETTINGS, EVALUATION METRICS, DATASETS AND BASELINES

Data Settings: In FCL, each task spanning multiple FL rounds is assigned mutually exclusive cate-
gories while covering all their data, with a-Dirichlet sampling commonly used to create task-specific
global data heterogeneity(Yang et al.| 2024). However, in real-time FCL, tasks with small data
batches dynamically co-evolve with FL rounds, resulting in distinct client task paths while client
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may encounter similar tasks (sharing the same data category but containing entirely different task-id-
free data) in different FL rounds, the lack of intra-class data accessibility control makes «-Dirichlet
sampling ineffective in real-time FCL. Thus, we propose the following settings: Given an existing
dataset with K categories(/N samples each), each client randomly divides the K categories into
mutually exclusive K-sized subsets(one per task-type), then split each category’s [N samples into
Np-sized subsets for each task, forming K- Ny-sample tasks per task-type. Ultimately, each client
obtains | K/ K| distinct task-types (varying across clients) with | N/Ny | tasks per task-type. In
each FL round, each client’s training data is limited to one randomly selected pending task, while
the task-id-free test data accumulates across FL rounds (tasks), creating a real-time FCL process
with T'= | K/(K7 - N7)] - N FL rounds (tasks). More details can be found in Appendix [A.1]

Evaluation Metrics: In real-time FCL, given the large task volume and the absence of task IDs in
test data, we employ online learning’s metric(Hoi et al., |[2021)), measuring FL. method’s Accuracy
(Acc) and Regret (Reg) on the cumulative test data in each FL round (task). Specifically, we define
a ’Centralized’ baseline where clients can access all previous data per FL round (task) without
global aggregation, the Regret is measured as the Accuracy gap between ’Centralized’ and the FL.
method. Furthermore, we evaluate FL method’s overall performance via Average Accuracy (AA)
and Average Regret (AR) across all 7' FL rounds (tasks). Details are provided in Appendix

Datasets: With above data settings and evaluation metrics, we construct three real-time FCL scenar-
ios on six existing datasets: FashionMNIST(F-MNIST)(Xiao et al.,[2017), EMNIST-Byclass(Cohen
et al., [2017), CIFAR10(Krizhevsky & Hinton, 2009), CIFAR100(Krizhevsky & Hinton, |2009),
plus two ImageNet(Krizhevsky et all [2012) subsets: ImageNet-10 (random 10 categories from
ILSVRC2012) and TinyImageNet-100 (top 100 categories). Details are provided in Appendix

BaseLines: Since existing FL and pFL methods failing to mitigate catastrophic forgetting, we select
one method for each: FedAVG(McMabhan et al., [2017) and pFedGraph(Ye et al., [2023)). For FCL
methods, we select five task-id-free methods via generative replay: FedCIL(Q1 et al., [2023) and
AF-FCL(Wuerkaixi et al., 2024) (Client-side generator training), as well as TARGET(Zhang et al.,
2023)), MFCL(Babakniya et al., 2023)) and LANDER(Tran et al., 2024)) (Server-side generator train-
ing via global task model). Note that most FCL methods via rehearsal or parameter isolation require
task id in data, we excluded these approaches. Then we select two classic generative models with
distinct principles - WGAN-GP(Gulrajani et al.,2017) and DDPM(Ho et al.| 2020) - as pFedGRP’s
sub-generators to verify universality, denoted as pFedGRP+WGAN-GP and pFedGRP+DDPM, re-
spectively. The details and setups of all the above methods are provided in Appendix and[B.2]

5.2 BASELINE EXPERIMENTS

Under the above data settings, we designed three real-time FCL scenarios: the first two on F-MNIST,
CIFAR-10 and ImageNet-10, the third on EMNIST, CIFAR-100 and TinylmageNet-100. All tasks
comprise K7 = 2 categories and Nt = 200 samples per category (/N7 = 50 for ImageNet series).
We use T to abstractly denote the total number of FL rounds (tasks) across different datasets.

Expt.1: Real-time FCL with Tasks Gradually Changing. The scenario describes the data distri-
bution experiencing frequent and repetitive shifts over time, mimicking real-world conditions. With
K = 10 categories, each task-type contains K = 2 categories, yielding random 10/2 = 5 task-
types for each client. Each client C; randomly selects two task-types (denoted as T; 1, T; 2) from
its five to form a loop, where task execution follows the task-type sequence: 7 ; 1, T2, T41, Ti2
... After every | T'/5] FL rounds, another task-type (denoted as T; 3) is chosen to replace the earlier
task-type in the loop, for example, if 7, ; is replaced, the loop then consists of 77; o and T 3.

Expt.2: Real-time FCL with Tasks Circulating. The scenario involves circular data distribution
changes. Each client C; is assigned five random task-types (similar to Expt.1), arranged in an
ordered cycle. As FL rounds progress, task execution follows the sequence of task-types: T 1,
Ti2 Tis Tia Tis, Tin,. .. repeating until all T FL rounds (tasks) are completed.

Expt.3: Real-time FCL with Extreme Data Heterogeneity. This scenario occurs when global data
heterogeneity is excessive, preventing FL. methods from converging. With each task-type contains
K1 = 2 categories, each client is assigned random 31 task-types (62/2) on EMNIST and random
50 task-types (100/2) on both CIFAR100 and TinyImageNet-100. Each client then organizes all its
task-types into a cycle and completes one iteration (consisting of 31 or 50 FL rounds (tasks)).
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Table 1: Baseline Experiment Results of Expt.1 and Expt.2

Expt.1: Tasks Gradually Changing Expt.2: Tasks Circulating
FL methods F-MNIST CIFAR10 ImageNet-10 F-MNIST CIFARI10 ImageNet-10
AAT ARl | AAT AR! | AAT ARl | AAT ARl | AAT AR! | AAT AR!
FedAVG | 51.39 37.78 | 23.79 3690 | 20.23 34.67 | 54.68 3293 | 21.06 35.79 | 16.94 31.41
pFedGraph | 5449 34.68 | 22.64 38.05 | 20.19 34.71 | 56.98 30.63 | 18.52 38.33 | 18.95 29.40
FedCIL 7417 15.00 | 31.22 2947 | 11.49 4341 | 72.18 1543 | 2445 3240 | 1044 3791
AF-FCL 73.11 16.06 | 29.94 30.75 | 20.41 3449 | 70.89 16.72 | 21.98 34.87 | 26.17 22.18
TARGET | 72.08 17.09 | 29.98 30.71 | 1438 40.52 | 70.36 17.25 | 18.64 3821 | 28.55 19.80
MFCL 70.85 18.32 | 29.14 31.55 | 27.54 2736 | 70.11 17.50 | 19.70 37.15 | 26.15 22.20
LANDER | 7332 15.85 | 30.83 29.86 | 25.69 29.21 | 71.12 16.50 | 21.03 35.82 | 26.80 21.55

FedGRP+

pé‘/ﬁ]_ Gp | 8280 637 | 4194 1875 | 37.17 1773 | 8234 527 | 3353 2332 | 33.68 1467
+

pFSdD?)RP - - [ 5270 799 | 4979 511 | - - | 46.06 1079 | 43.61 4.74

Centralized | 89.17 0 60.69 0 54.90 0 87.61 0 56.85 0 48.35 0

Table 2: Baseline Experiment Results of Expt.3 Table [I] and Table 2] summarize the re-
sults of three baseline experiments, while

EMNIST- CIFAR100 | TinylmageNet-  the Acc Charts in Appendix [D] showing

FL methods | Byclass 100 all FL, pFL and FCL methods’ accuracy

AAT ARl | AAT  ARI | AAT ARl  (rends across FL rounds (tasks).
FedAVG 548 76.67 | 236 32.11 2.45 20.72

pFedGraph | 727 74.88 | 323 3124 | 305 2012 In Exptl and Expt.2 with repeated
FedCIL | 585 7630 | 1.78 32.69 | 1.54 2163  task-types, as shown in Table |I| and
AF-FCL | 531 7684 | 174 3273 | 233 2084  the Acc Charts in Appendix [E.I| and
TARGET | 446 77.69 | 176 3271 | 235 2082 |E.2} pFedGRP, equipped with category-
MFCL 498 7717 | 1.68 3279 | 233 2084  decoupling generator and dual task mod-
LANDER | 478 7737 | 183 32.64 | 253 20.64 els, achieves convergence with fewer FL

rounds (tasks), thereby reducing regret
PFeAGRPY | o133 3082 | 9.02 2545 | 807 15.10 ds (tasks) y g reg
WGAN-GP and improving performance. In contrast,
pFedGRP+ FCL methods with single generator and
- - 21.85 12.62 | 13.91 9.26
DDPM task model need more FL rounds (tasks)
Centralized | 82.15 0 | 3447 0 2317 O to converge and yield inferior results.

In Expt.3 with emerging new task-types
continuously and non-convergence, as shown in Table[2]and the Acc Charts in Appendix [E.3] pFed-
GRP better maintains the task model’s performance on previous tasks through personalized aggre-
gation in each FL round (task), surpassing other FCL methods.

5.3 ABLATION STUDIES

Our pFedGRP integrates a generative replay architecture and a pFL framework featuring dual task
models. Ablation studies (AS) on FMNIST and CIFAR10 under the scenarios of Expt.1 and Expt.2
evaluated both components, with all sub-generators employing WGAN-GP. The results are pre-
sented in Table [3] while the Acc Charts in Appendix [E.4] showing all methods’ accuracy trends
across FL rounds (tasks).

For the generated replay architecture: 'pFedGRP-AS1’: Disabling the improvement of generative
replay via the latest task model; "pFedGRP-AS2’: Disabling feature shift detection during the update
of all sub-generators per FL round (task); 'pFedGRP-AS3’: Replacing all smaller sub-generators
with a dual-channel WGAN-GP model as a single larger generator, similar to other FCL methods.

For the pFL framework featuring dual task models: ’pFedGRP-ASG’: Disabling the local and per-
sonalized global task models’ output alignment on synthetic data (i.e., A = 0) during local training;
’pFedGRP-ASP’: Disabling initializing local task model with the averaged global task models but
the personalized one; 'FedAVG-replay’ and ’pFedGraph-replay’: Disabling pFedGRP’s pFL aggre-
gation while integrating the generative replay architecture into FedAVG and pFedGraph.

For pFedGRP’s two hyperparameters—personalized knowledge transfer weight A (default is 0.3)
and sub-generator update threshold 7' Hg (default is 0.25) —we analyze how they affect the task
model’s performance, and presents the results in Table 4 and Table 3]

8
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Table 3: Ablation Study (AS) Results of pFedGRP’s Components Tabled: AS Results of \

Expt.1: Tasks Gradually Changing Expt.2: Tasks Circulating in EXpt.l

FL methods F-MNIST CIFAR10 F-MNIST CIFARI0

AAT ARl | AAT ARl | AAT AR! | AAT AR! 1 F-MNIST CIFAR10
pFedGRP-AS1 8144 768 | 37.77 2291 | 8027 7.34 | 28.04 2881 AAT ARl | AAT ARL
pFedGRP-AS2 83.67 545 | 4136 19.33 | 82.64 4.97 | 3354 2331 0 | 7912 1000 | 4088 19.80

0.1 81.13 7.99 4123 19.46
0.2 81.99 7.13 42,02  18.67
0.3 82.80 6.32 41.94 18.77
0.4 82.87 6.24 4042 2028

pFedGRP-AS3 8244  6.68 29.16  31.53 | 7998 7.63 | 20.80 36.05
pFedGRP-ASG 7917 9.95 40.88  19.81 | 72.18 1543 | 31.07 25.78
pFedGRP-ASP 7582 1330 | 34.08 26.61 | 7036 17.25 | 24.69 32.16

FedAVG-replay | 7740 1172 | 3938 2131 | 7411 1350 | 3291 2394 | os |s314 5907 | 3868 2201
chdGraph—rcplay 80.20 8.92 37.84 22.85 76.59 11.02 3258 2427 1 83.22 5.90 36.96 23.72
pFedGRP+WGAN-GP | 82.80  6.42 | 41.94 18.75 | 8234 527 | 3353 2332 | Comr

Centralized 89.12 0 |6069 0 |8761 0 | 568 0 alized | 2212 0| 6069 0

Table 5: AS Results of TH¢ in Expt.] ~ As shown in Table 3] and Appendix [E4 pFedGRP-
AS1 underperforms pFedGRP in all FL scenarios,

F-MNIST CIFAR-10 . .
THe [TAaT ARL AUCL | AAT  ARL AUCL shoyvmg that using task model enhanced data gen-
01 18135 777 100 13012 3057 100 eration is efficient; pFedGRP-AS2 shows marginal
02 | 8224 688 164 |[3510 2559 242 performance gain over pFedGRP, suggesting lim-
025 | 8280 632 226 | 4194 1866 344 ited necessity for updating all sub-generators per FL

03 18327 585 267 | 4213 1856  37.5 rounds; pFedGRP-AS3 performs worst with highist
04 | 8356 556 383 |4245 1824 978

05 | 8361 551 735 | 4232 1837 1624  computational costs, showcasing the limitations of
Centr using a single large global model; pFedGRP-ASG
alized | 212 0 I R i underperforms pFedGRP in all FL scenarios, show

that personalized knowledge transfer can alleviate
task model forgetting; pFedGRP-ASP lags behind pFedGRP/pFedGRP-ASG in mid-late FL stages
with more categories, showing global task model initialization boosts generalization; Both FedAVG-
replay and pFedGraph-replay underperform pFedGRP in the early FL stages, showing the superior
efficiency of pFedGRP’s pFL aggregation. As shown in Table 4} the optimal X correlates directly
with task model performance. As shown in Table [5] where *AUC’ denotes the Average Update

Count of each clients’ all sub-generators across 1" FL rounds, a lower T'H¢ also reduces sub-
generators’ updates, degrading pFedGRP’s performance, while a higher T'Hg traps pFedGRP at
the sub-generators’ limited generative performance, causing redundant updates.

5.4 ADDITIONAL EXPERIMENTAL RESULTS AND EXTENDED RESEARCH

Due to space limitations, Appendix [C.T] details the generator parameters and computational costs
of pFedGRP and other FCL methods, and quantifies the extra overhead from generator training.
The additional ablation studies in Appendix [C.2]further analyze the performance differences across
generative replay schemes. Moreover, based on the setup of Expt.1, Appendix [C.3] evaluates the
performance variations of FL. methods by adjusting the degree of cross-task data distribution shifts,
and Appendix [C.4]examines the effects of client volume and participation rate on FL methods.

6 LIMITATIONS AND FUTURE WORK

Due to space limitations, the discussion of limitations and future work is provided in Appendix [F]

7 CONCLUSION

In this paper, we extend generative replay-based FCL to real-time FCL where clients encounter new
tasks with small-batch data per FL round. To address slow convergence of the global models in ex-
isting FCL methods, we propose a flexible generative replay architecture that splits the larger single
generator into category-specific smaller sub-generators, utilizes the task model to reduce the sub-
generators update frequency for efficiency, and combines task-model-enhanced generative replay
with adaptive local generation scale adjustment to improve the task model’s catastrophic forgetting
alleviation. Afterwards, we proposed pFedGRP, a generative replay-based method, achieving per-
sonalized global aggregation for clients’ real-time needs per FL round (task), and enabling local
personalized knowledge transfer to alleviate the task model’s catastrophic forgetting, thereby im-
proving task model’s performance while reducing regrets. Experimental results show that pFedGRP
outperforms other generative replay-based FCL methods across various real-time FCL scenarios.
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A DATA SETTINGS, DATASETS AND EVALUATION METRICS

A.1 DETAILS OF DATA SETTINGS

We use existing datasets to construct the real-time FCL scenarios. In our setting, the time interval
between the server twice sending the task model to the clients constitutes a FL round. During each
FL round, every client executes a specific task pertaining to one of its task-types (As detailed in
Section[5.1)). Specifically, for every client, each task-type contains multiple specific tasks that share
the same categories but have different actual data. Each specific task contains training data and test
data, where the training data is only accessible to the client during the FL round when executing
that specific task, while the test data will be used in all FL rounds after the execution of that specific
task to evaluate the performance of the task model on the client side. Figure @] shows the schematic
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Figure 4: Schematic diagram of the partitioning of local training data and testing data. Please refer
to the following text for detailed information

diagram of constructing local training and test data for each client: Each color in the figure represents
one category of data, with each category containing N samples. We evenly divide the training data
samples of each category into | N/N7 | non-overlapping parts by grouping every N7 samples, then
divide the test data samples into N+ equal and non-overlapping parts. In each FL round, based on
the categories corresponding to the task type of the specific task executed by the client, the client
selects training data parts that have not been previously accessed by the client to build the local
training dataset (As shown in the upper right of Figure[d). and adds the corresponding test data parts
into the local test dataset (As shown in the lower right of the Figure [).

A.2 DETAILS OF DATASETS

The specific details and settings of the datasets used in our experiments are as follows:

FashionMNIST. The FashionMNIST(F-MNIST)(Xiao et al., dataset is a 10-category cloth-
ing classification dataset (i.e., K = 10), with each category containing 6000 training samples and
1000 test samples (i.e., N = 6000), where each sample is a single-channel grayscale image of size
28 x 28 representing a type of clothing. In our baseline experimental setup, each client comprises
5 task types, each task type includes 2 distinct categories (i.e., K7 = 2), and the training data
allocated to each category within a specific task is 200 samples (i.e., Ny = 200). Therefore, the
total number of FL rounds in the baseline experiments for the F-MNIST dataset is calculated as
T = [6000/(200 x 2)] x 10 = 150.

EMNIST-ByClass. The EMNIST-ByClass(Cohen et all, 2017) dataset consists of 62 imbal-
anced categories of handwritten characters and numbers, containing 814255 grayscale images sized
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28 x 28. Compared with the F-MNIST dataset, EMNIST-ByClass dataset contains covers categories,
and its English characters incorporate both uppercase and lowercase forms, consequently increasing
classification difficulty. In our baseline experimental setup, each task type includes 2 distinct cate-
gories (i.e., K7 = 2), thus each client comprises 62/2 = 31 task types, resulting in total FL rounds
T = 31. The training data and test data allocated to each category within a specific task consist of
200 samples (i.e., N7 = 200) and 100 samples, respectively.

CIFAR10. The CIFAR10(Krizhevsky & Hinton, [2009) dataset is a real image classification dataset
consisting of 10 categories of 32 x 32 color RGB images (i.e., K = 10), each category containing
5000 training images (i.e., N = 5000) and 1000 test images. Compared with the MNIST series
dataset, CIFAR10 contains objects in the real world which have not only have a lot of noise but also
different proportions and features, making data classification more difficult. Our experimental setup
on the CIFAR 10 dataset is the same as that on the MNIST dataset, and the total number of FL rounds
is T'= |5000/(200 x 2)| x 10 = 120.

CIFAR100. The CIFAR100(Krizhevsky & Hinton, 2009) dataset is a real image classification
dataset consisting of 20 super categories, each super category comprises 5 categories and contains
of 32 x 32 color RGB images, with the total number of categories being 100 (i.e., K = 100). Each
category has 500 training images and 100 test images. Compared with the CIFAR10 dataset, the
CIFAR100 dataset has a larger number of categories, and the images of each category within the
same super category are more similar which increases the difficulty of classification. In our baseline
experimental setup, each task type includes 2 distinct categories (i.e., K+ = 2), therefore each client
comprises 100/2 = 50 task types, resulting in a total of 7' = 50 FL rounds. The training data and
test data allocated to each category within a specific task consist of 200 samples (i.e., N+ = 200)
and 100 samples, respectively.

ImageNet-10. The ILSVRC2012 is a dataset used in the ImageNet(Krizhevsky et al.| [2012) Large
Scale Visual Recognition Challenge in 2012, consisting of approximately 1.4 million training im-
ages, 50000 validation images, and 100000 test images, covering 1000 object categories, with each
category’s training set containing 1300 samples. We randomly selected 10 categories of training
sets from ILSVRC2012 to form the ImageNet-10 dataset (i.e., K = 10), and divided each cate-
gory’s training set into 1000 training samples (i.e., N = 1000) and 300 test samples in sequence. In
our baseline experimental setup, each client comprises 5 task types, each task type includes 2 dis-
tinct categories (i.e., K-+ = 2), and the training data allocated to each category within a specific task
is 50 samples (i.e., N7 = 50). Therefore, the total number of FL rounds in the baseline experiments
for the ImageNet-10 dataset is calculated as 7' = | 1000/(50 x 2)] x 10 = 100.

TinyImageNet-100. TinyImageNet is a subset of the ImageNet(Krizhevsky et al., [2012)) dataset,
containing 200 categories with 500 training images, 50 validation images, and 50 test images per
category. We construct the TinyImageNet-100 dataset by selecting data from the first 100 categories
in TinyImageNet. In our baseline experimental setup, each task type includes 2 distinct categories
(i.e., K7 = 2), thus each client comprises 100/2 = 50 task types, resulting in total FL rounds
T = 50. The training data and test data allocated to each category within a specific task consist of
50 samples (i.e., N7 = 50) and 50 samples, respectively.

A.3 DETAILS OF EVALUATION METRICS

Under the experimental setup above, we evaluate the performance of each FL method based on the
following proposed metrics: Accuracy(Acc), Average Accuracy (AA) and Average Regret (AR).
Let the client set be denoted as C' and the total number of FL rounds as T'; the definitions of these
metrics are as follows:

Accuracy. After global aggregation in each FL round ¢, we evaluate the performance of the global
task models on all test data corresponding to previous ¢ tasks for each client C; € C(i.e., accuracy,
denoted as a!), and then calculate the Acc of the ¢-th FL round based on the weighted average of the
total number of training data encountered by each client C; (denoted as n}):

Acct = # Z nt

t
¢ it 4 “)
ZC,;GC ni c,eC
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The Acc can indicate the comprehensive performance of the global task model obtained in FL round
t across all previously encountered tasks.

Average Accuracy. This metric uses the mean Acc value across all 7' FL rounds to indicate the
overall performance of each FL method throughout the entire FL process, that is:

T
_ 1 t
AA = T ;:1 Acc @)

AA can reduce evaluation errors caused by variations in task difficulty and better assess the perfor-
mance stability of different methods throughout the FL process.

Average Regret. the Average Regret (AR) is the difference between the performance of the client
when it can access real data of previous tasks and when it cannot access such data. Let the Acc of
the Centralized method in the ¢-th FL round be Acch,, s arizcqr the Average Regret (AR) of each
method is:

T
1
AR = T Z(ACCt - AcctCentralized) (6)
t=1

AR can evaluate the extent to which the performance of FL. methods declines as the number of tasks
increases, with a smaller value indicating better memory stability of the FL. method.

B DETAILS OF BASELINE METHODS AND EXPERIMENTAL SETUP

B.1 DETAILS OF BASELINE METHODS

We compare pFedGRP with following one FL methods, one pFL methods and five task-id-free
generative replay-based FCL methods, and establish the performance of local task models - where
clients can access real data from previous tasks - as the theoretical boundary, referred to as the
”Centralized” methods. The FL. methods and pFL methods lack the capability to retain information
related to historical tasks, while the task-id-free FCL methods can mitigate catastrophic forgetting
to some extent. In ablation studies, we further integrate FL. and pFL methods with our generated
replay framework.

FedAVG: FedAVG(McMabhan et al.| 2017) is a representative federated learning approach, it con-
structs the global model through weighted aggregation of client-uploaded parameters, where the
aggregation weights correspond to the proportion of each client’s local training data volume.

pFedGraph: pFedGraph(Ye et al.,[2023) is a relatively new personalized federated learning method.
It proposes constructing a personalized collaboration graph on the server based on the cosine dif-
ferences between local task models, thereby enabling personalized aggregation of the global task
model for individual clients to balance local utility and collaborative benefits. Additionally, it em-
ploys cosine similarity constraints during local training to mitigate model deviation.

FedCIL: FedCIL(Qi et al.}2023)) is a newer Federated Continual Learning (FCL) method based on
the ACGAN framework, which integrates both the task model and generator into a unified ACGAN
architecture. During local training phases, FedCIL leverages data generated by both the global AC-
GAN model and previous local ACGAN models to mitigate catastrophic forgetting in local ACGAN
models through model distillation and label alignment techniques. In the global aggregation phase,
the server first performs model averaging on local ACGAN models to obtain the global ACGAN
model, then fine-tunes this global model using data generated by each local ACGAN model.

AF-FCL: AF-FCL(Wuerkaixi et al.| 2024) is a relatively new FCL method based on local sample-
free generated replay and distillation. It designs a local distillation mechanism based on partial
feature forgetting. During the client-side local training phase, to achieve the dual objectives of
distilling data features for the task model and obtaining a higher-performing generator, AF-FCL
alternately trains the local generator and task model using both real data and data replayed by the
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global generator. On the server side, it employs an averaging method to aggregate both the task
models and generators

TARGET: TARGET(Zhang et al 2023) is a relatively new FCL method based on global feature
replay. On the server side, it trains a global generator using aggregated batch normalization (BN)
layer features from the global task model and an untrained task model. This enables the global
generator to synthesize data that can be effectively classified by the task model. On the client side,
it alleviates catastrophic forgetting in the task model by leveraging replayed data generated by the
global generator.

MFCL: MFCL(Babakniya et al.|[2023) is a relatively new FCL method based on global sample-free
generated replay and distillation. On the server side, it proposes a training scheme that leverages the
aggregated global task model to train a global generator for producing high-quality synthetic data.
On the client side, during local training, the knowledge from the global task model is transferred to
the local task model through distillation using the data generated by the global generator.

LANDER: LANDER(Tran et al.}[2024) is an improved version of TARGET, it employs a pre-trained
language model to produce label text embeddings that serve as anchors in the global generator’s
feature space. Subsequently, it leverages an aggregated global task model to train a unified global
generator on the server side, which corresponds to all previously encountered tasks.

FedAVG-replay: FedAVG-replay extends the FedAVG algorithm by integrating pFedGRP’s gener-
ated replay architecture into local training phases.

pFedGraph-replay: pFedGraph-replay extends the pFedGraph algorithm by integrating pFed-
GRP’s generated replay architecture into local training phases.

Centralized: The Centralized method does not perform global aggregation, and each client can
access the real data encountered in previous FL rounds during local training.

B.2 DETAILS OF EXPERIMENTAL SETUP

For the task model, we choose ResNet20(He et al., |2016)) for all FL methods except FedCIL. The
local training epochs are uniformly set to 20 (with AF-FCL set to 100 to alternate training its local
generator), and we employ SGD as the optimizer with a learning rate of 0.01, momentum of 0.9,
and weight decay of 0.01. In pFedGRP, the personalized knowledge transfer weight A is set to 0.3.
For FedCIL, the task model is the ACGAN model, which follows its default dataset-specific settings
with local training epochs set to 400.

For the sub-generators of pFedGRP, we set the WGAN-GP(Gulrajani et al., 2017) model and
DDPM(Ho et al., 2020) model to perform updates using their respective default loss functions
and settings, with an update threshold THs = 0.25. For MNIST-series datasets, we deploy the
WGAN-GP model with 16 channels as sub-generator, which undergoes 200 training epochs when
updates are required. For CIFAR-series datasets, we implement two types of existing generative
models as sub-generators: the 64-channel WGAN-GP and the default-configured DDPM, which are
trained for 500 and 4000 epochs per update cycle, respectively. For ImageNet-series datasets, we
implement two types of existing generative models as sub-generators: the 128-channel WGAN-GP
and the default-configured DDPM, which are trained for 1000 and 6000 epochs per update cycle,
respectively.

For the generators of other FCL methods, we follow their default training settings. Specifically: For
the AF-FCL method, the local generator undergoes 100 epochs of training during the local training
phase, which alternates with the task model training. For the FedCIL method, the local generator
adopts the ACGAN model and completes 400 training epochs during the local training phase per FL
round. For the TARGET, MFCL and LANDER methods, their global generators are trained on the
server side. After aggregating the global task model, the server performs 100 training epochs on the
global generator per FL round.

In the fine-tuning setting for global aggregation on the server side, our pFedGRP performs 20 epochs
of personalized aggregation weight optimization for each client, employing optimizer settings con-
sistent with local training. The FedCIL method performs 100 epochs of model distillation on the
global ACGAN model using default configurations. Other FL. methods do not involve a fine-tuning
phase during the global aggregation process.
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C ADDITIONAL EXPERIMENTAL RESULTS AND EXTENDED RESEARCH

C.1 DETAILS OF GENERATORS’ COMPUTATION AND COMMUNICATION COST

Firstly, we have compiled in Table [6] both the computational consumption per data sample (i.e.,
FLOPs) and the model parameters of all models utilized in our experimental study. Then, we cal-

Table 6: FLOPs and Parameters of all models used in the experiments

MNIST series dataset CIFAR series dataset ImageNet series dataset
Models FLOPs Parameter FLOPs Parameter FLOPs Parameter
ResNet-20 29.05M 701.18K 35.66M 701.466K 35.77TM 702.23K
ResNet-20 (AF-FCL) 29.09M 734.20K 35.69M 734.490K 35.80M 735.26K
WGAN-GP (pFedGRP) 7.19M 186.27K 94.54M 1732.22K 338.40M 6101.25K
DDPM (pFedGRP) - - 4061.68M  167726.40K | 16239.97TM 167726.40K
ACGAN (FedCIL) 241.10M  3951.69K | 957.47M  14719.17K | 1157.97M  18197.96K
Flow (AF_FCL) 46.49M 4663.81K 176.87M  17715.71K 688.74M 68985.34K
Generator (TARGET) 89.21M 1834.31K 117.70M 2328.90K 470.81M 8644.93K
GEN(MFCL) 93.76M 6500.87K 123.64M 8423.94K 507.77TM 8571.78K
Generator (LANDER) 3173.19M  130826.60K | 3173.19M 130826.60K | 43504.28M 425186.42K
WGAN-GP (pFedGRP-AS3) 24.87M 536.38K | 356.852M  6085.888K - -

culate the average training iterations of the generator for pFedGRP and each FCL method in the
Baseline experiment:

In the 150 FL rounds (tasks) on the F-MNIST dataset, each pFedGRP client trained the WGAN-GP
sub-generator an average of 24.7 times, each time using only half of the local data (due to the local
data containing two types), while other FCL methods trained the global generator 150 times.

In the 120 FL rounds (tasks) on the Cifar10 dataset, each pFedGRP client trained the WGAN-GP
sub-generator an average of 36.3 times and the DDPM sub-generator an average of 10 times, each
time using only half of the local data, while other FCL methods trained the global generator 120
times.

In the 100 FL rounds (tasks) on the ImageNet-10 dataset, the client trained the WGAN-GP sub-
generator an average of 32.6 times and the DDPM sub-generator an average of 10 times, each time
using only half of the local data, while other FCL methods trained the global generator 100 times.

We have listed in Tables[7] Tables|[8] and Tables[9|the average additional computational cost per data
by the training generator for pFedGRP and various FCL methods.

Table 7: The average computational cost of training generator on F-MNIST datasets

Local computational cost Global computational cost Avg Acc

FL methods Total Local | Model Total Global Model Total

times | epoch | FLOPs FLOPs epoch FLOPs FLOPs | Expt.l Expt.2
per data per data
FedCIL 150 400 | 241.1M | 14466B 100 241.1M 3617B 74.17 72.18
AF-FCL 150 100 | 46.5M 1395B - - 0 73.11 70.89
TARGET 150 - - 0 100 89.21M 1338B 72.08 70.36
MFCL 150 - - 0 100 93.76M 1406B 70.85 70.11
LANDER 150 - - 0 100 3173.19M | 47609B 73.32 71.12
pFedGRP-AS3 150 200 | 24.8M 744B - - 0 82.44 79.98
pFedGRP+

WGAN-GP 24.7%0.5 | 200 7.2M 35.568B - - 0 82.80 82.34
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Table 8: The average computational cost of training generator on Cifar10 datasets

Local computational cost Global computational cost Avg Acc
Total Total
FL methods Total Local | Model Global Model
FLOP: FLOP Expt.1 Expt.2
times | epoch | FLOPs OPs epoch FLOPs OPs xpt xpt
per data per data
FedCIL 120 400 | 957.5M 45960B 100 957.5M 11490B 31.22 24.45
AF-FCL 120 100 176.9M 2123B - - 0 29.94 21.98
TARGET 120 - - 0 100 117.70M 1412B 29.98 18.64
MFCL 120 - - 0 100 123.64M 1484B 29.14 19.70
LANDER 120 - - 0 100 3173.19M | 38078B 30.83 21.03
pFedGRP-AS3 120 500 | 356.9M 21414B - - 0 29.16 20.80
pFedGRP+ "
WGAN-GP 36.3*0.5 | 500 94.5M 858B - - 0 41.94 33.53
pFedGRP+ "
DDPM 10*¥0.5 | 4000 | 4061.7M | 81234B - - 52.70 46.06

Table 9: The average computational cost of training generator on ImageNet-10 datasets

Local computational cost Global computational cost Avg Acc
Total Total
FL h
methods Total Local Model FLOPs Global Model FLOPs | Expt.l | Expt2
times | epoch | FLOPs epoch FLOPs
per data per data
FedCIL 100 400 1158.0M | 46320B 100 1158.0M 11580B 11.49 10.44
AF-FCL 100 100 688.7M 6887B - - 0 20.41 26.17
TARGET 100 - - 0 100 470.8M 4708B 14.38 28.55
MFCL 100 - - 0 100 507.8M 5078B 27.54 26.15
LANDER 100 - - 0 100 43504.3M | 435043B | 25.69 26.80
pFedGRP+ "
WGAN-GP 32.6%0.5 | 1000 338.4M 5516B - - 0 37.17 33.68
pFedGRP+ "
DDPM 10*0.5 | 6000 | 16240.0M | 487200B - - 0 49.79 43.61

As shown in the tables above, pFedGRP outperforms other FCL methods with lower additional
training consumption when WGAN-GP is employed as the sub-generator. In contrast, using DDPM
as the sub-generator results in higher training consumption but delivers even stronger performance.

C.2 ABLATION STUDIES ON PFEDGRP’S GENERATORS’ PERFORMANCE

In addition to the ablation experiments provided in the main text, we calculated the FID(Heusel
et al., 2017) values of the generated replay schemes used by various methods in the ablation study.
The lower the value, the better the performance of the generated replay. The results are shown in
Table [I0]below:

Table 10: FID Values for various Generated Replay Schemes on pFedGRP

F-MNIST CIFAR10 ImageNet-10
Generated Replay Scheme Fidl Fidl Fidl
A single Double-Channel WGAN-GP 301.390 707.879 974.345
Only WGAN-GP as sub-generator 187.622 436.116 407.823
WGAN-GP as sub-generator + ResNet20 165.552 390.213 376.938
Only DDPM as sub-generator - 77.035 181.153
DDPM as sub-generator + ResNet20 - 65.284 149.714

It can be seen that as the complexity of data increases, the generated replay effect of the auxiliary
model with category decoupling gradually becomes much better than that of a single larger auxil-
iary model. On this basis, using the information contained in the task model can further enhance
the generated replay performance of the auxiliary model. However, due to the underfitting update
strategy adopted by pFedGRP to reduce the update frequency, significant distribution differences
persist between the generated data and the real data, while the resulting distribution noise enhances
the privacy protection capability of pFedGRP.
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C.3 EXTEND EXPERIMENTS UNDER DIFFERENT DATA HETEROGENEITY

Under the baseline experimental setting of Expt.1, we further investigate how the progressively
strengthened correlations between tasks affect the performance of various FL methods. Since the
number of duplicate categories between adjacent tasks for each client in the baseline experimental
setting is 0, we increased this value to 2, 4, and 6 (i.e., each task type consequently contains 4, 6,
and 8 categories respectively) while maintaining the real data quantity per category at 200 (50 for
the ImageNet-10 dataset). As the number of duplicate categories between adjacent tasks grows, data
heterogeneity progressively decreases. The performance of pFedGRP and other baseline methods
under these experimental configurations is documented in Table[TT] Table [I2]and Table T3]

Table 11: Extend Experiment Results on F-MNIST and the setting of Expt.1

The number of duplicate categories between adjacent tasks on each client

FL methods 0 2 4 6
AAT AR! AAT AR! AAT ARl AAT AR!
FedAVG 51.39 37.78 75.61 12.71 83.70 5.150 84.61 3.27
pFedGraph  54.49 34.68 74.18 14.14 81.98  6.870  81.43 6.44
FedCIL 74.17 15.00 83.25 5.08 87.35 1.50 84.59 3.30
AF-FCL 73.11 16.06 83.15 5.18 87.79 1.06 85.41 2.45
TARGET 72.08 17.09 81.47 6.85 86.44 242 83.94 3.95
MFCL 70.85 18.32 82.41 5.91 86.61 2.24 84.48 3.41
LANDER 73.32 15.85 82.93 5.39 87.04 1.81 84.76 3.12
pFedGRP+
WGAN-GP 82.80 6.37 84.86 3.46 87.81 1.04 86.41 147
Centralized  89.17 0 88.32 0 88.85 0 87.88 0
Table 12: Extend Experiment Results on Cifar10 and the setting of Expt.1
The number of duplicate categories between adjacent tasks on each client ‘
FL methods 0 2 4 6
AAT ARI AAT ARI AAT AR AAT AR!
FedAVG 23.79 36.90 50.97 13.24 58.05 9.18 63.30 5.421
pFedGraph 22.64 38.05 50.15 14.05 56.70 10.53 62.37 6.351
FedCIL 31.22 29.47 39.57 24.63 4459  22.64 4457 2415
AF-FCL 29.94 30.75 44.93 19.28 47.24 19.99  49.63  19.09
TARGET 29.98 30.71 42.35 21.85 4537  21.85 4842  20.30
MFCL 29.14 31.55 45.92 18.29 46.21 21.01 46.50 22.22
LANDER 30.83 29.86 45.73 18.48 45.96 19.53 4855  20.17
pFedGRP+
WGAN-GP 41.94 18.75 48.60 15.60 47.70 19.53  50.76  17.96
pFedGRP+
DDPM 52.70 7.99 55.43 8.77 56.11 11.12 5653  12.19
Centralized  60.69 0 64.21 0 67.23 0 68.72 0

Table 13: Extend Experiment Results on ImageNet-10 and the setting of Expt.1

The number of duplicate categories between adjacent tasks on each client

FL methods 0 2 4 6
AAT AR AAT AR! AAT AR! AAT AR!
FedAVG 20.23 34.67 33.77 24.53 40.87 18.53 4522 15.03
pFedGraph 20.19 34.71 34.77 23.53 38.45 20.95  44.39 15.92
FedCIL 11.49 43.41 9.72 48.57 9.84 49.55 9.59 50.73
AF-FCL 20.41 34.49 37.62 20.68 43.83 15.56 4473 15.59
TARGET 14.38 40.52 19.08 39.22 37.94 2146  40.37 19.95
MEFCL 27.54 27.36 38.27 20.03 44.35 15.04 4530 15.02
LANDER 25.69 29.21 37.40 20.90 45.48 13.91 44.96 15.36
pFedGRP+
WGAN-GP 37.17 17.73 44.27 14.08 45.63 13.76  45.28 15.04
pFedGRP+
DDPM 49.79 5.11 52.83 5.47 52.36 7.03 51.52 8.80
Centralized 54.90 0 58.30 0 59.39 0 60.32 0
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As evidenced by the above tables, all FL. methods exhibit a trend of performance improvement with
decreasing data heterogeneity. However, on datasets like CIFAR 10 which feature relatively complex
data distributions but narrower performance bottlenecks for task models, the generation error caused
by the generator will have a significant impact on the task model, resulting in five FCL methods and
the pFedGRP method underperforming compared to FL and pFL methods in scenarios with low data
heterogeneity. Nevertheless, by employing multiple strategies to reduce generative-replay errors, the
pFedGRP method consistently outperforms all FCL methods. For the more complex ImageNet-10
dataset, where even task models encounter performance bottlenecks, the impact of generative replay
errors becomes less significant compared to that of data scarcity. This comparative advantage causes
the FedCIL method based on the ACGAN model to completely fail to converge, while enabling the
pFedGRP method using DDPM as a sub-generator to achieve optimal performance.

C.4 EXTEND EXPERIMENTS UNDER DIFFERENT CLIENT STATES

Under the baseline experimental setting of Expt.1, we further investigated the performance impact
of different total client counts and varying client participation ratios on various FL. methods on the
Cifarl0 dataset, in order to explore the robustness of each method.

For varying counts of clients, we examined scenarios with 5, 10, 20, and 30 clients while maintaining
identical experimental conditions, where the baseline configuration uses 10 clients by default. Since
the complexity of the global data distribution remains constant, increasing the number of clients
allows the global model to better capture the overall data features, thereby accelerating model con-
vergence. The performance of pFedGRP and other baseline methods under varying client counts is
presented in Table

Table 14: Extend Experiment Results on Cifar10 and the setting of Expt.1

The number of total client count ‘
FL methods 5 10 20 30
AAT AR! AAT AR! AAT AR! AAT AR!
FedAVG 21.24 39.45 23.79 36.90 25.14 35.55 2640  34.28
pFedGraph 21.13 39.55 22.64 38.05 24.86 35.83 25.93 34.76
FedCIL 30.24 30.45 31.22 29.47 34.75 2594 3568  25.01
AF-FCL 28.65 32.03 29.94 30.75 34.13 26.56  35.18  25.50
TARGET 28.11 32.58 29.98 30.71 33.96 26.73 3542 2527

MFCL 27.96 32.72 29.14 31.55 33.01 27.67 3527 2542
LANDER 28.34 32.35 30.83 29.86 3562  25.07 3585 24.84
pFedGRP+
WGAN-GP 40.71 19.98 41.94 18.75 42.14 1855 42.18 1851
Centralized  60.69 0 60.69 0 60.69 0 60.69 0

As evidenced by the above tables, the performance of all FL. methods improves as the number of
clients increases. The performance improvement of the FCL method, which requires global infor-
mation to construct the generative model, shows a significant positive correlation with the number
of clients. Compared to other methods, the performance bottleneck of pFedGRP mainly originates
from the performance limitations of its generative model, resulting in lower sensitivity to client
scale expansion. Nevertheless, in horizontal comparisons, pFedGRP still demonstrates superior per-
formance, with its comprehensive evaluation metrics consistently outperforming other FL. methods.

For varying client participation ratios, within the baseline setting comprising 10 clients total, we
examine scenarios where 0, 1, 2, or 4 clients are randomly missing in each FL round. The default
baseline setting reflects O missing clients per FL round. Increasing the number of missing clients
per round will reduce the convergence speed of the task model, further challenging the robustness
of FL methods. Table[I5]records the performance of pFedGRP and other FL methods with varying
client participation ratios.
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Table 15: Extend Experiment Results on Cifar10 and the setting of Expt.1

The number of random missing client in each FL round ‘
FL methods 0 1 2 4
AAT AR! AAT AR! AAT AR! AAT AR!
FedAVG 23.79 36.90 2347 37.22 2294 3774  21.60  39.08
pFedGraph  22.64 38.05 22.55 38.14 2237 3832 2198 3871
FedCIL 31.22 29.47 31.18 29.51 3098 29.71 3050  30.18
AF-FCL 29.94 30.75 29.80 30.89 29.58 3111 29.17  31.52
TARGET 29.98 30.71 29.03 31.65 28.86  31.82 2830 3239

MFCL 29.14 31.55 28.86 31.83 28.65 32.04 28.03 32.65
LANDER 30.83 29.86 28.54 32.15 28.57 32.12 28.19 32.50
pFedGRP+
WGAN-GP 41.94 18.75 41.92 18.70 41.80 18.88 41.55 19.14
Centralized  60.69 0 60.69 0 60.69 0 60.69 0

As evidenced by the above table, the performance of all FL methods deteriorates as the number
of randomly missing clients per FL round increases. Similar to the findings from the previous
experiment, compared with other methods, pFedGRP exhibits reduced sensitivity to client absence
and demonstrates greater robustness.
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D

PSEUDOCODE FOR PFEDGRP

Algorithm 1 : pFedGRP

1:

A A

10:

11:

12:

13:

15:
16:
17:
18:

19:

20:

21:
22:

23:
24
25:

Input: Client set C = {C;|i = 1,...,n} with n clients; Global Task model w; Local Genera-
tors GY = {G?)CW/C € Y;} for each client C; with local label space ;.

Output: Personalized global task models {w;,iwi € [n]} of n clients in each FL round ¢ €
{1,...,T} (i.e., the t-th task for each client).

Server random initializes w, takes it as global task model wS and n personalized global task
models {w! ;|Vi € [n]}, then sends wY ;, w) to each client C; € C.

for ecach FLround ¢ = 1,...,T (i.e., the ¢-th task) do

/I Client local training

for each client C; € C in parallel do
Client C; receives the personalized global task model wZ;l and the averaged global task
model wf]_l from server.
Client C; obtains the local dataset D! of task 7. along with its data quality vector Y;' and
label space V!.
Client C; computes the generated data quality vector Y’ (as described in Sec 4.1.4).
Client C; utilizes the local generator Gﬁ_l, Yit and wé;l to create the synthetic dataset
Df‘l (as described in Sec 4.1.3).
Client C; updates w! ™' on {f)f_l u D{} by optimizing Formula then obtains the
local task model w™*.
Client C; partially updates the sub-generators in Gf_l on D! with wf* (as described in
Sec 4.1.2), then obtains G* and the updated sub-generators {G'%|c € V!}.
Client C; computes the approximate local label distribution P()N/éi) = Norm(Yh_, V).
Client C; sends w;™, {G}%|c € Y} and P(Y, ) to the server.

end for

/I Server aggregating

for each cilent C; € C do
Server synchronizes the local generator cache G}~ to Gt with {G}%|c € V!}.
Server utilizes G, P (th‘,) and w!"* to create the synthetic dataset D! (as described in Sec
4.1.3). ~
Server optimizes Formula on D! then obtains the optimal personalized aggregated
weights {waWu € [n]}.
Server aggregates the personalized global task model w! ; < > 77, wf: Cwh*,
Server aggregates the averaged global task model w; — % Yo whr,
Server sends both wf”», "‘”Z to client C;.

end for '

end for
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E AccC VARIATION CHARTS FOR EXPERIMENTS

E.1 Acc VARIATION CHARTS FOR EXPT.1

In Expt.1, the gray vertical lines in the charts indicate the FL rounds (i.e., occurring every T/5 FL
rounds) at which the task-types in each client’s task-loop change.
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Figure 5: Acc Variation Chart on F-MNIST for Expt.1
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Figure 6: Acc Variation Chart on Cifar10 for Expt.1
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Figure 7: Acc Variation Chart on ImageNet-10 for Expt.1
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E.2 Acc VARIATION CHARTS FOR EXPT.2

In Expt.2, the gray vertical lines in the charts indicate the first FL round (i.e.,occurring every five FL.
rounds) of the new task-type cycle on each client.
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Figure 8: Acc Variation Chart on F-MNIST for Expt.2
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Figure 9: Acc Variation Chart on Cifar10 for Expt.2
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Figure 10: Acc Variation Chart on ImageNet-10 for Expt.2
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E.3 AccC VARIATION CHARTS FOR EXPT.3
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Figure 11: Acc Variation Chart on EMNIST-ByClass for Expt.3
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Figure 12: Acc Variation Chart on Cifar100 for Expt.3
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Figure 13: Acc Variation Chart on TinyIlmageNet-100 for Expt.3
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E.4 Acc VARIATION CHARTS FOR ABLATION STUDIES (AS)

In Expt.1, the gray vertical lines in the charts indicate the FL rounds (i.e., occurring every T/5 FL
rounds) at which the task-types in each client’s task-loop change.

In Expt.2, the gray vertical lines in the charts indicate the first FL round (i.e.,occurring every five FL

rounds) of the new task-type cycle on each client.
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Figure 14: Acc Variation Chart on F-MNIST
for AS in Expt.1
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Figure 16: Acc Variation Chart on F-MNIST

for AS in Expt.2
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Figure 15: Acc Variation Chart on Cifar10 for
AS in Expt.1
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F LIMITATIONS AND FUTURE WORK

F.1 LIMITATIONS

Potential High Storage Space Requirement: To mitigate the larger single generator’s training bur-
den caused by catastrophic forgetting through self-replay and to accelerate its updates for support-
ing real-time FCL, we propose a category-decoupled generative framework that assigns dedicated
smaller sub-generators to each data category. Although the sub-generators utilize smaller existing
generation models, they still require significant client storage space in highly diverse category sce-
narios. In summary, our generative replay architecture enhances training efficiency and reduces
communication overhead (by transmitting only updated sub-generators) at the expense of storage
space, thereby better supporting real-time FCL.

Potential Privacy Risks: In order to enable simultaneous real-time personalized aggregation while
mitigating catastrophic forgetting, unlike the FCL methods that train the generator on the server
based on the global task model, pFedGRP requires clients to train the generator locally and syn-
chronize it with the server. Although our strategy—using smaller existing generative models as
sub-generators and reducing their update frequency to accelerate generator updates—can indirectly
increase generative noise, servers could still infer private information from the generated data, and
this limitation is inherent to all FCL methods that train generators on the client side. To address this
issue, using the existing generative model with integrated differential privacy technology as sub-
generators could be a potential solution. It is worth noting that pFedGRP confines potential privacy
leakage to the server side by restricting the sub-generator’s transmission to a unidirectional flow
(client-to-server only), thereby preventing leakage to other clients.

F.2 FUTURE WORK

For Future Work, there are two possible directions for expansion:

Firstly, unlike existing FCL methods that rely on generative replay, pFedGRP imposes no architec-
tural constraints on the generator or task model. This flexibility has the potential to be extended
to diverse applications beyond image classification, such as regression mission and reinforcement
learning scenarios.

Secondly, to address the limitation of multiple sub-generators potentially consuming excessive client
storage space, more efficient approaches can be explored to balance training speed and storage
requirements.
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