

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 REAL-TIME PERSONALIZED FEDERATED CONTINUOUS LEARNING VIA GENERATIVE REPLAY

Anonymous authors

Paper under double-blind review

ABSTRACT

Recently, Federated Continuous Learning (FCL) has gained attention for simulating real-world dynamic problems, with catastrophic forgetting as its core challenge. While generative replay is widely used in FCL methods to mitigate this issue, higher cross-client data heterogeneity necessitates excessive FL rounds per task for convergence, thereby conflicting with clients' demand for immediate responses. To address this, we focus on real-time FCL, where incremental data arrives in small batches per FL round and is only accessible at that FL round, causing global data heterogeneity to vary across FL rounds, and propose pFedGRP, which includes two key components: Firstly, a flexible generative replay architecture that decouples the generator by category to mitigate inter-class catastrophic forgetting, combines with the task model to reduce redundant updates and improve generation quality, and adaptively adjusts client-specific local generation scales. Next, a personalized FCL framework via generative replay that optimizes aggregation weights on server-side for real-time model personalization, and transfers personalized knowledge to an extra average global model on client-side for catastrophic forgetting mitigation. Experiments show pFedGRP outperforms other FCL methods via generative replay, with both superior performance and lower regret.

1 INTRODUCTION

Federated Learning (FL)(McMahan et al., 2017) is an emerging privacy-preserving distributed machine learning (ML) framework. Personalized FL (pFL)(Tan et al., 2023; Sabah et al., 2024), which balances client utility with collaboration, has gained notable attention. However, the static single-task framework of both FL and pFL lacks real-world practicality: in practice, clients receive data randomly and incrementally, causing dynamic shifts in intra/inter-client data heterogeneity across FL rounds(Li et al., 2020a; Kairouz et al., 2021). Additionally, regulations(Voigt & Bussche, 2017; Vizitiu et al., 2019; Balogun, 2025) constraints further limit raw data retention. For example, health agencies in different regions can utilize FL to conduct research on COVID-19(Yang et al., 2020; Dayan et al., 2021), but the virus's rapid mutation rate leads to significant variations in regional data distribution and trends, while privacy regulations(Voigt & Bussche, 2017; Balogun, 2025) limit the retention period of raw medical data. In this case, FL and pFL are prone to catastrophic forgetting(Kirkpatrick et al., 2016; Kemker et al., 2018)—a phenomenon where models forget prior task knowledge when learning new tasks without access to original training data.

In centralized ML, continuous learning (CL) works(Wang et al., 2024a; 2025) mitigate catastrophic forgetting through approaches such as rehearsal(Lee et al., 2024; Tong et al., 2025), generative replay(Wang et al., 2024b; Chen et al., 2025), regularization(Lin et al., 2024b; Bian et al., 2024), and parameter isolation(Lin et al., 2024a; Hu et al., 2024), among others. But in Federated Continuous Learning (FCL)(Yang et al., 2024), distributed scenarios raise task ID prediction difficulty for regularization and parameter isolation approaches, while privacy regulations hinder rehearsal approaches, promoting generative replay, with most FCL methods adopting a global generator to mitigate catastrophic forgetting. However, these FCL methods mainly focus on offline CL, with each task spanning dozens to hundreds of FL communication rounds (i.e., FL rounds) for model's global aggregation and fine-tuning to achieve convergence. In contrast, real-world applications resemble online CL (OCL)(Lange et al., 2022; Gunasekara et al., 2023), with client data arriving per FL round in mini-batches and accessible solely within that FL round, causing less label/feature distribution overlap among many clients per FL round. We call it real-time FCL to distinguish it from

online CL. In real-time FCL, FCL methods with single global generator and task model will struggle to address dynamic data distribution shifts due to convergence lag (Zhu et al., 2021; Cao et al., 2023), degrading performance for clients’ real-time need and weakening catastrophic forgetting mitigation. Therefore, improving FCL for real-time FL aggregation through generative replay is crucial.

In this work, we integrate generative replay into pFL for real-time FL aggregation while mitigating catastrophic forgetting. Firstly, we propose a flexible generative replay architecture: since model’s training resource needs scales with data volume under a fixed batch size(Gui et al., 2023), to avert cross-category catastrophic forgetting, we replace existing FCL methods’ single larger global generator with multiple smaller class-wise sub-generators, utilizing compact existing generative models. Moreover, we use the latest task model to identify sub-generators’ feature drift, reducing redundant updates thus speeding generator training. Subsequently, we use the latest task model to enhance sub-generator’s output quality, better mitigating task model’s catastrophic forgetting on client-side while enabling server-side real-time personalized FL aggregation. Furthermore, to handle diverse task paths across clients, we adaptively adjust local generation scales to reducing replay errors.

Based on upon, we propose pFedGRP, a real-time FCL via generative replay. For real-time personalized FL aggregation, servers sync sub-generator caches through clients’ updated sub-generators, then replay client-specific distributions to optimize personalized aggregation weights per FL round. To align the global feature space for faster convergence, we propose using dual global task models: clients initialize local task model with the global average one per FL round, then inject personalized knowledge through replay data during local training to mitigate catastrophic forgetting.

Our main contributions can be summarized as follows:

1. We introduce a novel FCL framework for real-time FCL, tackling slow convergence in generative replay-based FCL methods that requiring multiple FL rounds per task.
2. We propose a flexible generative replay architecture with class-specific sub-generators that enhanced by task model to support task model’s real-time personalized FL aggregation.
3. Based on above, we propose pFedGRP, a real-time FCL method via generative replay, achieves task model’s global real-time personalized aggregation and local catastrophic forgetting mitigation.
4. Leveraging benchmark datasets, we propose scenario construction schemes and proper metrics for real-time FCL, validating our approach across diverse datasets and dynamic data scenarios.

2 RELATED WORK

Federated Learning and Personalized Federated Learning: Federated Learning (FL)(McMahan et al., 2017) enables distributed ML without raw data transmission, with its core challenge being constructing the global model that performs well across clients with heterogeneous data distributions. One approach is to enhance knowledge transfer within the feature space of the single global model, including methods such as parameter difference constraints(Li et al., 2020b), statistical information sharing(Li et al., 2021b), dynamic regularization(Acar et al., 2021), hidden space alignment(Yoon et al., 2021b), dual label correction(Wu et al., 2023), and global aggregation fine-tuning(Li et al., 2023), among others. Another approach is to customize a global model for each client by adjusting collaboration with others, known as personalized federated learning (pFL), including methods such as model distance estimation(Li et al., 2021a), model representation decoupling(Collins et al., 2021), model hierarchical sharing(Arivazhagan et al., 2019), personalized knowledge transfer(Zhang et al., 2021), personalized distribution mixing(Marfoq et al., 2021), and personalized collaboration graph(Ye et al., 2023), among others. However, current FL and pFL methods are designed for static local data (a single task) and need multiple FL rounds to converge. In FCL scenarios, when learning new task, these methods struggle to mitigate catastrophic forgetting caused by the inability to access old task data, resulting in degraded performance across all tasks.

Federated Continue Learning: Federated Continuous Learning (FCL) extends CL to FL scenarios. In this paradigm, each client’s local dataset remains static for each task that spans multiple FL rounds, while federated collaboration are employed to retain cross-task knowledge and mitigate catastrophic forgetting. Current FCL works mainly focuses on: Task parameter isolation methods(Arivazhagan et al., 2019; Yoon et al., 2021a; Luopan et al., 2023; Wang et al., 2024c) train task-specific modules but require explicit task ID provision during training and inference. The orthogonal

model update methods(Shoham et al., 2019; Bakman et al., 2024; Salami et al., 2025; Zhang et al., 2025) compute task residual matrix for parameter update, but small-batch’s high sample variance in real-time FCL severely challenges this computation. The sample replay (i.e., rehearsal) methods(Li et al., 2024; Nori et al., 2025; Serra & Buettner, 2025) preserve local core sets through task model, highly rely on task model performance and may violate data privacy laws. There generative replay methods mainly adopt two strategies: local training methods(Qi et al., 2023; Wuerkaixi et al., 2024; Serra & Buettner, 2025) update global generator on client-side per task through multiple FL aggregations, global training methods(Zhang et al., 2023; Babakniya et al., 2023; Tran et al., 2024) update global generator on server-side with the converged global task model after per task’s completion, both strategies require a large-scale generator to fit the complex global feature distributions of all tasks across multiple clients, causing computational and scalability challenges in training and inference. In short, most FCL methods need multiply FL rounds for global model convergence per task. In real-time FCL, poor convergence degrades model performance(Zhu et al., 2021), failing to meet clients’ demands per FL round.

3 PRELIMINARY

Symbol Definitions:

For the model, we denote the task model used to solve practical problems as ω , the generator for all categories as G , the smaller sub-generator for a category c as G_c . In the t -th FL round, ω_i^t , G_i^t and $G_{i,c}^t$ represent the local models updated on the i -th client C_i , while ω_g^t and $\omega_{g,i}^t$ refer to the global task model and client C_i ’s personalized global task model aggregated on server, respectively.

For the local dataset, we denote the local dataset of client C_i in the t -th FL round as $D_i^t = \{(x_j, y_j) | \forall j \in [m_i^t]\}$, with data distribution $\mathcal{P}_i^t = P(\mathcal{X}_i^t, \mathcal{Y}_i^t)$ defined as the joint distribution over its label space \mathcal{Y}_i^t and feature space \mathcal{X}_i^t . The local dataset D_i^t consists of m_i^t sample pairs, with each $x_j \in \mathcal{X}_i^t$ as the input and $y_j \in \mathcal{Y}_i^t$ the corresponding label. Moreover, let $Y_i^t = \{m_{i,c}^t | \forall c \in \mathcal{Y}_i^t\}$ denote the data quantity vector of D_i^t , with $m_{i,c}^t$ as the sample count of category $c \in \mathcal{Y}_i^t$.

For the synthetic dataset, we denote client C_i ’s local label space as $\mathcal{Y}_i = \cup_{t=1}^T \mathcal{Y}_i^t$ (across all T FL rounds), and the synthetic dataset created by generator G_i^t as \tilde{D}_i^t (“ \sim ” denotes “synthesis”). Let $\tilde{Y}_i^t = \{\tilde{m}_{i,c}^t | \forall c \in \mathcal{Y}_i\}$ be its data quantity vector, with $\tilde{m}_{i,c}^t$ as the sample count of category $c \in \mathcal{Y}_i$.

Optimization Problem: In real-time FCL, client data arrives in small batches per FL round, resulting in less or even no overlap in label and feature distributions among some clients during that FL round. Therefore, we refer to the definitions of OCL(Gunasekara et al., 2023) and Task-Free CL (TFCL)(Wang et al., 2025), set client-specific task sequences where tasks change across FL rounds for all clients. Consider a T -round (i.e., T -tasks) FL process with a set $\mathcal{C} = \{C_i | i = 1, \dots, n\}$ consisting of n clients, each client C_i has a unique task sequence $\mathcal{T}_i = \{\mathcal{T}_i^t | i = 1, \dots, T\}$, where each task \mathcal{T}_i^t in t -th FL round associates to a data distribution $\mathcal{P}_i^t = P(\mathcal{X}_i^t, \mathcal{Y}_i^t)$ and a local dataset $D_i^t = \{(x_j, y_j) | \forall j \in [m_i^t]\}$ with m_i^t task-ID-free samples. Similar to TFCL, in real-time FCL, each client’s local datasets remain mutually exclusive across FL rounds, despite possible distribution overlaps (i.e., $D_i^{t_1} \cap D_i^{t_2} = \emptyset, \forall t_1, t_2 \in [T], t_1 \neq t_2, \forall i \in [n]$), and each D_i^t is available to client C_i only in t -th FL round, ensuring that each training sample is processed by client C_i within a single FL round. With unknown task ID, while the t -th FL round comes, clients jointly train a global task model or n personalized global task models that perform well across each client C_i ’s all t tasks’ data distributions $\{\mathcal{P}_i^1, \dots, \mathcal{P}_i^t\}$. Let $\omega_{g,i}^t$ denote the global task model received by client C_i , the global objective \mathcal{F}^t in the t -th FL round can be formulated as:

$$\min_{\{\omega_{g,i}^t | i \in [n]\}} \mathcal{F}^t(\omega) := \frac{1}{n} \sum_{i=1}^n \mathcal{F}_i^t(\omega_{g,i}^t); \mathcal{F}_i^t(\omega_{g,i}^t) := \sum_{k=1}^t E_{(x,y) \sim \mathcal{P}_i^k} [l(f(\omega_{g,i}^t; x); y)] \quad (1)$$

Where \mathcal{F}_i^t is the local objective of client C_i in t -th FL round (i.e., task \mathcal{T}_i^t), $f(\omega_{g,i}^t; x)$ is the output of model $\omega_{g,i}^t$ in x , $l(\cdot; \cdot)$ is the mission loss related to mission type (e.g., classification, or others). Note that when all clients share the same global task model ω_g^t (i.e., $\omega_{g,i}^t \leftarrow \omega_g^t, \forall i \in [n]$) in each FL round $t \in [T]$, and each task span multiple FL rounds (i.e., $D_i^{t_3} = D_i^{t_4}, \mathcal{P}_i^{t_3} = \mathcal{P}_i^{t_4}, \forall i \in [n], \forall t_3, t_4$ from the same task, $t_3 \neq t_4$; $D_i^{t_5} \cap D_i^{t_6} = \emptyset, \mathcal{P}_i^{t_5} \cap \mathcal{P}_i^{t_6} \approx \emptyset, \forall i \in [n], \forall t_5, t_6$ from different tasks), objective 1 will degrade from real-time FCL to (offline) FCL.

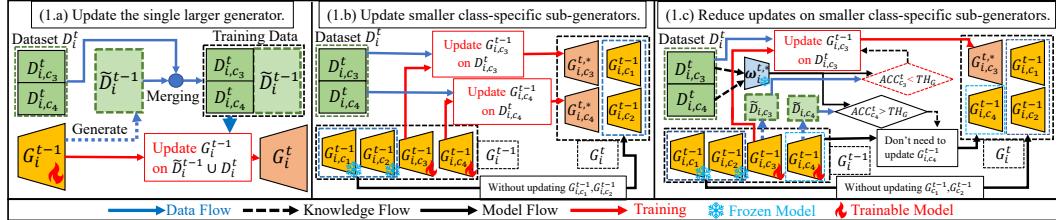


Figure 1: The flowchart compares the generators’ update mechanisms. Given a client C_i with predefined categories $\{c_1, c_2, c_3, c_4\}$, the dataset D_i^t for its t -th task contains $\{c_3, c_4\}$. In (1.a), client C_i employs G_i^{t-1} to create a synthetic dataset \tilde{D}_i^{t-1} , mixes it with D_i^t to mitigate G_i^{t-1} ’s catastrophic forgetting on $\{c_1, c_2\}$. In (1.b), client C_i updates sub-generators $G_{i,c3}^{t-1}, G_{i,c4}^{t-1}$ on category-specific datasets $D_{i,c3}^t, D_{i,c4}^t \subset D_i^t$, respectively. In (1.c), client C_i first employs latest task model $\omega_i^{t,*}$ (captures features of $\{c_3, c_4\}$ from D_i^t) to compute the accuracies ACC_{c3}^t, ACC_{c4}^t on $\tilde{D}_{i,c3}, \tilde{D}_{i,c4}$ created by $G_{i,c3}^{t-1}, G_{i,c4}^{t-1}$, respectively. Then, with threshold TH_G , if $ACC_c < TH_G$, client C_i updates $G_{i,c}^{t-1}$ on $D_{i,c}^t$ (e.g., category c_3), else retains $G_{i,c}^{t-1}$ (e.g., category c_4), reducing redundant updates.

4 METHODOLOGY

4.1 A FLEXIBLE GENERATED REPLAY ARCHITECTURE

1. Decouple Local Generator by Category: In (offline) FCL where tasks span multiple FL rounds, existing generative replay-based FCL methods(Yang et al., 2024) employ FL to train a large global generator which captures the data distributions of all clients’ historical tasks, thereby mitigating catastrophic forgetting in the global task model (See Fig 1.a). However, in real-time FCL where tasks change per FL round, these methods face the three key challenges: Firstly, a single global model (task model or generator) struggles to rapidly adapt to all clients’ local data distribution shifts(Sabah et al., 2024), resulting in convergence delays to task changes and performance degradation(Zhu et al., 2021). Secondly, a single generator requires extensive parameters to fit the complex global historical data distributions(Bubeck & Sellke, 2021), thereby elevating computational demands and delaying convergence(Gui et al., 2023). Finally, due to the inaccessibility of prior tasks’ data, a single generator must self-generate replays during training to mitigate catastrophic forgetting, with more training data delaying convergence(Wang et al., 2024a). Since model’s training resource needs scales with data volume under a fixed batch size(Gui et al., 2023), the computational cost of training a generator on the full dataset for one epoch equals to the sum of training it separately on each category’s data for one epoch, and further equal to the sum of training the category-specific generators on their respective data for one epoch. Therefore, for each client $C_i \in C$ with local label space $\mathcal{Y}_i = \bigcup_{k=1}^T \mathcal{Y}_i^k$, we configure a smaller existing generative model for each category $c \in \mathcal{Y}_i$ as a category-specific sub-generator $G_{i,c}$ (i.e., local generator $G_i = \{G_{i,c} | \forall c \in \mathcal{Y}_i\}$). During the t -th FL round (task \mathcal{T}_i^t), let $G_i^{t-1} = \{G_{i,c}^{t-1} | \forall c \in \mathcal{Y}_i\}$ denote the local generator to be updated, client C_i updates the sub-generator subset $\{G_{i,c}^{t-1} | \forall c \in \mathcal{Y}_i^t\}$ of G_i^{t-1} that corresponding to task \mathcal{T}_i^t ’s label space $\mathcal{Y}_i^t \subset \mathcal{Y}_i$, using category-specific datasets $\{D_{i,c}^t | \forall c \in \mathcal{Y}_i^t\}$ where $D_{i,c}^t = \{(x, y) | \forall (x, y) \in D_i^t, y = c\}$, respectively. (See Fig 1.b) At this point, the local generator effectively mitigates inter-class catastrophic forgetting, while avoiding generative replay or significant cost increase, and accelerates training.

2. Reduce Generator Updates via Task Model: By decoupling the generator by category, we mitigates generator’s inter-class catastrophic forgetting without generative replay. However, if there is no feature drift in data with the same category across multiple tasks, updating that category’s sub-generators in all tasks merely increases training burden with marginal gains. Since client updates both local task model and generator on task-specific local dataset, we propose using the updated local task model to detect feature shifts in the sub-generators to be updated, and selectively updating only those with larger feature shifts, to reduce invalid updates and further accelerate training. Taking classification mission as an example, as shown in Fig 1.c, during the t -th FL round (task \mathcal{T}_i^t), client C_i first updates the global task model to obtain the local one (denoted as $\omega_i^{t,*}$), which learns the latest features from local dataset D_i^t . Next, for local generator G_i^{t-1} ’s sub-generators $\{G_{i,c}^{t-1} | \forall c \in \mathcal{Y}_i^t\}$ that to be updated, client C_i uses each sub-generator $G_{i,c}^{t-1}$ to create a synthetic dataset, then employs $\omega_i^{t,*}$ to evaluates its accuracy on class c (denoted as ACC_c^t), if ACC_c^t falls below a predefined

threshold TH_G , client C_i updates $G_{i,c}^{t-1}$ on the category-specific dataset $D_{i,c}^t = \{(x, y) | \forall (x, y) \in D_i^t\}$ then get the updated sub-generator $G_{i,c}^{t,*}$, otherwise, no update is performed on $G_{i,c}^{t-1}$. Thirdly, with all updated sub-generators (denoted as the set $\{G_{i,c}^{t,*} | c \in \mathcal{Y}_i^t\}$), client C_i replaces the corresponding old sub-generators in G_i^{t-1} , thereby obtaining the updated local generator G_i^t .

3. Enhance Generative Replay via Task Model: By using smaller, class-specific sub-generators with lower update frequency, we improve local generator's update efficiency while mitigating catastrophic forgetting, but sub-generators' limited feature-matching capability, which offering some privacy protection via underfitting, trades generation performance. Therefore, we propose using the latest task model to enhancing sub-generators' synthesis data, adapting to task model's need without improving sub-generators' generation performance. Taking classification mission as an example, given the latest task model $\omega_i^{t,*}$ and the local generator $G_i^t = \{G_{i,c}^t | \forall c \in \mathcal{Y}_i\}$, we aim to create a synthetic dataset \tilde{D}_i^t ("~" denotes "synthesis") based on a generated data quantity vector $\tilde{Y}_i^t = \{\tilde{m}_{i,c}^t | \forall c \in \mathcal{Y}_i\}$, where $\tilde{m}_{i,c}^t$ denotes the sample count for each category $c \in \mathcal{Y}_i$. For each category $c \in \mathcal{Y}_i$, we first employ the sub-generator $G_{i,c}^t$ to generate $\tilde{m}_{i,c}^t$ samples that are judged as category c by ω_i^* , denoted as a small synthetic dataset $\tilde{D}_{i,c}^t = \{(\tilde{x}_j, c) | \forall j \in [\tilde{m}_{i,c}^t]\}$. Then, we merge all small synthetic datasets $\{\tilde{D}_{i,c}^t | \forall c \in \mathcal{Y}_i\}$ to form the \tilde{D}_i^t (i.e., $\tilde{D}_i^t = \cup_{c \in \mathcal{Y}_i} \tilde{D}_{i,c}^t$).

4. Adjust Local Generation Scales Adaptively: In real-time FCL, clients' task evolution paths vary widely. Since our generator design supports category-level generation scale adjustment, to reduce replay errors from synthetic data in the task model while alleviating catastrophic forgetting, we introduce a dynamic local replay scheme that minimizes synthetic data usage: In the t -th FL round (task \mathcal{T}_i^t), for client C_i , define the data quantity vector $Y_i^t = \{m_{i,c}^t | \forall c \in \mathcal{Y}_i^t\}$ composed of the data

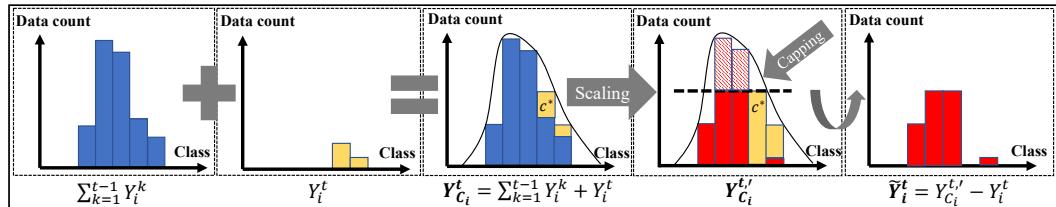


Figure 2: The flowchart of Adaptive local Generation Scale Adjustment. See text below for details.

quantities $m_{i,c}^t$ of each category $c \in \mathcal{Y}_i^t$ in local dataset D_i^t . As shown in Figure 2, client C_i first calculates the total data quantity vector $Y_{C_i}^t = \sum_{k=1}^t Y_i^k$ (" \sum " represents class-wise summation) across all t tasks, then proportionally scales $Y_{C_i}^t$ such that only one category of data has a quantity matching that in Y_i^t , denoted that category as $c^* \in \mathcal{Y}_i^t$, and then capping each category's generative scale at $m_{i,c^*}^t \in Y_i^t$, thereby obtaining the scaled data quantity vector $Y_{C_i}^{t, '}$ from $Y_{C_i}^t$. Finally, client C_i computes the generated data quantity vector $\tilde{Y}_i^t = Y_{C_i}^{t, '} - Y_i^t$, using minimal synthetic data to dynamically adapt to local distribution shifts while mitigating task model's catastrophic forgetting.

4.2 PFEDGRP

Using the Flexible Generated Replay Architecture, we propose pFedGRP, a pFL framework via generated replay for real-time FCL. Since in real-time FCL, a single global model struggles to rapidly adapt to all clients' local data shifts (Sabah et al., 2024), we employ dual global task models: a personalized one handles client's real-time need per FL round (task), while an averaged one initializes local task model to align global feature space, with generative replay, enhanced by the personalized one, to mitigate catastrophic forgetting. We illustrate its process via the t -th FL round below.

Local Training: In t -th FL round (task \mathcal{T}_i^t), each client $C_i \in \mathcal{C}$ holds a local dataset D_i^t and a local generator G_i^{t-1} (defined in Sec 4.1.1) updated in $(t-1)$ -th FL round, and receives the personalized global task model $\omega_{g,i}^{t-1}$ and the average global task model ω_g^{t-1} from the server. Firstly, client C_i calculates the generated data volume vector \tilde{Y}_i^t (Sec 4.1.4), and uses \tilde{Y}_i^t , G_i^{t-1} and $\omega_{g,i}^{t-1}$ to create the synthetic dataset \tilde{D}_i^{t-1} (Sec 4.1.3). Then, client C_i updates ω_g^{t-1} on the merged dataset $\tilde{D}_i^{t-1} \cup D_i^t$ to minimizing the mission loss $l(\cdot, \cdot)$, while aligning the outputs of ω_g^{t-1} and $\omega_{g,i}^{t-1}$ via

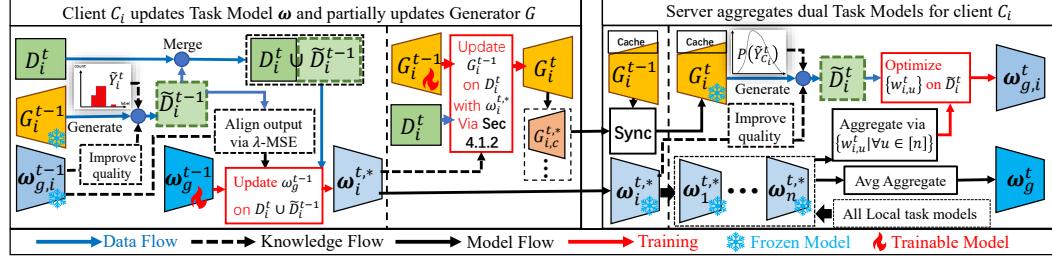


Figure 3: The flowchart of pFedGRP for each client $C_i \in \mathcal{C}$ in the t -th FL round (task). In local training phase, client $C_i \in \mathcal{C}$ computes the generated data quantity vector \tilde{Y}_i^t (Sec 4.1.4), uses \tilde{Y}_i^t , local generator G_i^{t-1} and personalized global task model $\omega_{g,i}^{t-1}$ to create a synthetic dataset \tilde{D}_i^{t-1} (Sec 4.1.3), fixes \tilde{D}_i^{t-1} with task-specific dataset D_i^t , then updates the averaged global task model ω_g^{t-1} on it while aligning the outputs of ω_g^{t-1} and $\omega_{g,i}^{t-1}$ on \tilde{D}_i^{t-1} via MSE loss, obtaining the local task model $\omega_i^{t,*}$. Afterwards, client C_i partially updates G_i^{t-1} to G_i^t with $\omega_i^{t,*}$ (Sec 4.1.2). In global aggregation phase, server sync generator caches to G_i^t , using G_i^t , $\omega_i^{t,*}$ and $P(\tilde{Y}_{C_i}^t)$ to create a synthetic dataset \tilde{D}_i^t (Sec 4.1.3), then optimizes the aggregate weights $\{w_{i,u}^t | \forall u \in [n]\}$ on \tilde{D}_i^t to aggregate the personalized global task model $\omega_{g,i}^t$, and additionally aggregate an averaged ω_g^t .

λ -weighted Mean Squared Error loss $MSE(\cdot, \cdot)$ on synthetic dataset \tilde{D}_i^{t-1} to reduce feature drift. Let $\omega_i^{t,*}$ be the updated local task model, the local objective for client C_i can be formulated as:

$$\omega_i^{t,*} \leftarrow \underset{\omega_g^{t-1}}{\operatorname{argmin}} \left\{ \sum_{(x,y) \in \{\tilde{D}_i^{t-1} \cup D_i^t\}} l(f(\omega_g^{t-1}; x); y) + \lambda \sum_{x \in \tilde{D}_i^{t-1}} MSE(f(\omega_g^{t-1}; x); f(\omega_{g,i}^{t-1}; x)) \right\} \quad (2)$$

Afterwards, with the threshold TH_G , client C_i partially update the local generator G_i^{t-1} to G_i^t with $\omega_i^{t,*}$ (Sec 4.1.2), and yields the updated sub-generators $\{G_{i,c}^{t,*} | c \in \mathcal{Y}_i^t\}$. Finally, client C_i normalizes the sum of all t tasks' data volume vectors $\sum_{k=1}^t Y_i^k$ (denoted as $P(\tilde{Y}_{C_i}^t)$) to approximate the local label distribution, sends $\omega_i^{t,*}$, $\{G_{i,c}^{t,*} | c \in \mathcal{Y}_i^t\}$ and $P(\tilde{Y}_{C_i}^t)$ to the server, ending local training.

Global Aggregating: In pFedGRP, the server keeps a local generator cache (also denoted as G_i) per client $C_i \in \mathcal{C}$ for personalized global task model aggregation. In t -th FL round, denote the local task models uploaded by all n clients as $\{\omega_u^{t,*} | \forall u \in [n]\}$. For each client $C_i \in \mathcal{C}$, server syncs the old local generator cache G_i^{t-1} to G_i^t via the updated sub-generators $\{G_{i,c}^{t,*} | c \in \mathcal{Y}_i^t\}$, and then uses $P(\tilde{Y}_{C_i}^t)$, $\omega_i^{t,*}$ and G_i^t to create a synthetic dataset \tilde{D}_i^t (Sec 4.1.3). Let $\{w_{i,u}^t | \forall u \in [n]\}$ with $\sum_{u=1}^n w_{i,u}^t = 1$ denote the personalized aggregation weight for client C_i , the server updates it by minimizing the mission loss $l(\cdot, \cdot)$ of the aggregated task model $\sum_{u=1}^n w_{i,u}^t \cdot \omega_u^{t,*}$ on \tilde{D}_i^t . Denoting the optimal weight as $\{w_{i,u}^{t,*} | \forall u \in [n]\}$, the personalized global objective for client C_i be:

$$\{w_{i,u}^{t,*} | \forall u \in [n]\} \leftarrow \underset{\{w_{i,u}^t | \forall u \in [n]\}}{\operatorname{argmin}} \sum_{(x,y) \in \tilde{D}_i^t} l\left(f\left(\sum_{u=1}^n w_{i,u}^t \cdot \omega_u^{t,*}; x\right); y\right), \text{s.t. } \sum_{u=1}^n w_{i,u}^t = 1 \quad (3)$$

Finally, for client C_i , the server aggregates the personalized global task model $\omega_{g,i}^t \leftarrow \sum_{u=1}^n w_{i,u}^{t,*} \cdot \omega_u^{t,*}$ and an averaged global task model $\omega_g^t \leftarrow \frac{1}{n} \sum_{u=1}^n \omega_u^{t,*}$, then sends both $\omega_{g,i}^t$ and ω_g^t to client C_i . After the server completes the above process for all n clients, the t -th FL round ends.

Appendix D presents the pFedGRP algorithm in structured pseudocode format.

5 EXPERIMENT

5.1 DATA SETTINGS, EVALUATION METRICS, DATASETS AND BASELINES

Data Settings: In FCL, each task spanning multiple FL rounds is assigned mutually exclusive categories while covering all their data, with α -Dirichlet sampling commonly used to create task-specific global data heterogeneity(Yang et al., 2024). However, in real-time FCL, tasks with small data batches dynamically co-evolve with FL rounds, resulting in distinct client task paths while client

324 may encounter similar tasks (sharing the same data category but containing entirely different task-id-
325 free data) in different FL rounds, the lack of intra-class data accessibility control makes α -Dirichlet
326 sampling ineffective in real-time FCL. Thus, we propose the following settings: Given an existing
327 dataset with K categories (N samples each), each client randomly divides the K categories into
328 mutually exclusive $K_{\mathcal{T}}$ -sized subsets (one per task-type), then split each category's N samples into
329 $N_{\mathcal{T}}$ -sized subsets for each task, forming $K_{\mathcal{T}} \cdot N_{\mathcal{T}}$ -sample tasks per task-type. Ultimately, each client
330 obtains $\lfloor K/K_{\mathcal{T}} \rfloor$ distinct task-types (varying across clients) with $\lfloor N/N_{\mathcal{T}} \rfloor$ tasks per task-type. In
331 each FL round, each client's training data is limited to one randomly selected pending task, while
332 the task-id-free test data accumulates across FL rounds (tasks), creating a real-time FCL process
333 with $T = \lfloor K/(K_{\mathcal{T}} \cdot N_{\mathcal{T}}) \rfloor \cdot N$ FL rounds (tasks). More details can be found in Appendix A.1.

334 **Evaluation Metrics:** In real-time FCL, given the large task volume and the absence of task IDs in
335 test data, we employ online learning's metric (Hoi et al., 2021), measuring FL method's Accuracy
336 (Acc) and Regret (Reg) on the cumulative test data in each FL round (task). Specifically, we define
337 a 'Centralized' baseline where clients can access all previous data per FL round (task) without
338 global aggregation, the Regret is measured as the Accuracy gap between 'Centralized' and the FL
339 method. Furthermore, we evaluate FL method's overall performance via Average Accuracy (AA)
340 and Average Regret (AR) across all T FL rounds (tasks). Details are provided in Appendix A.3.

341 **Datasets:** With above data settings and evaluation metrics, we construct three real-time FCL scenarios
342 on six existing datasets: FashionMNIST (F-MNIST) (Xiao et al., 2017), EMNIST-Byclass (Cohen
343 et al., 2017), CIFAR10 (Krizhevsky & Hinton, 2009), CIFAR100 (Krizhevsky & Hinton, 2009),
344 plus two ImageNet (Krizhevsky et al., 2012) subsets: ImageNet-10 (random 10 categories from
345 ILSVRC2012) and TinyImageNet-100 (top 100 categories). Details are provided in Appendix A.2.

346 **BaseLines:** Since existing FL and pFL methods failing to mitigate catastrophic forgetting, we select
347 one method for each: FedAVG (McMahan et al., 2017) and pFedGraph (Ye et al., 2023). For FCL
348 methods, we select five task-id-free methods via generative replay: FedCIL (Qi et al., 2023) and
349 AF-FCL (Wuerkaixi et al., 2024) (Client-side generator training), as well as TARGET (Zhang et al.,
350 2023), MFCL (Babakniya et al., 2023) and LANDER (Tran et al., 2024) (Server-side generator train-
351 ing via global task model). Note that most FCL methods via rehearsal or parameter isolation require
352 task id in data, we excluded these approaches. Then we select two classic generative models with
353 distinct principles - WGAN-GP (Gulrajani et al., 2017) and DDPM (Ho et al., 2020) - as pFedGRP's
354 sub-generators to verify universality, denoted as pFedGRP+WGANGP and pFedGRP+DDPM, re-
355 spectively. The details and setups of all the above methods are provided in Appendix B.1 and B.2.

356 5.2 BASELINE EXPERIMENTS

357 Under the above data settings, we designed three real-time FCL scenarios: the first two on F-MNIST,
358 CIFAR-10 and ImageNet-10, the third on EMNIST, CIFAR-100 and TinyImageNet-100. All tasks
359 comprise $K_{\mathcal{T}} = 2$ categories and $N_{\mathcal{T}} = 200$ samples per category ($N_{\mathcal{T}} = 50$ for ImageNet series).
360 We use T to abstractly denote the total number of FL rounds (tasks) across different datasets.

362 **Expt.1: Real-time FCL with Tasks Gradually Changing.** The scenario describes the data distri-
363 bution experiencing frequent and repetitive shifts over time, mimicking real-world conditions. With
364 $K = 10$ categories, each task-type contains $K_{\mathcal{T}} = 2$ categories, yielding random $10/2 = 5$ task-
365 types for each client. Each client C_i randomly selects two task-types (denoted as $\mathcal{T}_{i,1}, \mathcal{T}_{i,2}$) from
366 its five to form a loop, where task execution follows the task-type sequence: $\mathcal{T}_{i,1}, \mathcal{T}_{i,2}, \mathcal{T}_{i,1}, \mathcal{T}_{i,2}, \dots$. After every $\lfloor T/5 \rfloor$ FL rounds, another task-type (denoted as $\mathcal{T}_{i,3}$) is chosen to replace the earlier
367 task-type in the loop, for example, if $\mathcal{T}_{i,1}$ is replaced, the loop then consists of $\mathcal{T}_{i,2}$ and $\mathcal{T}_{i,3}$.

369 **Expt.2: Real-time FCL with Tasks Circulating.** The scenario involves circular data distribution
370 changes. Each client C_i is assigned five random task-types (similar to Expt.1), arranged in an
371 ordered cycle. As FL rounds progress, task execution follows the sequence of task-types: $\mathcal{T}_{i,1}, \mathcal{T}_{i,2}, \mathcal{T}_{i,3}, \mathcal{T}_{i,4}, \mathcal{T}_{i,5}, \mathcal{T}_{i,1}, \dots$ repeating until all T FL rounds (tasks) are completed.

373 **Expt.3: Real-time FCL with Extreme Data Heterogeneity.** This scenario occurs when global data
374 heterogeneity is excessive, preventing FL methods from converging. With each task-type contains
375 $K_{\mathcal{T}} = 2$ categories, each client is assigned random 31 task-types (62/2) on EMNIST and random
376 50 task-types (100/2) on both CIFAR100 and TinyImageNet-100. Each client then organizes all its
377 task-types into a cycle and completes one iteration (consisting of 31 or 50 FL rounds (tasks)).

378 Table 1: Baseline Experiment Results of Expt.1 and Expt.2
379

380 FL methods	381 Expt.1: Tasks Gradually Changing						382 Expt.2: Tasks Circulating					
	383 F-MNIST		384 CIFAR10		385 ImageNet-10		386 F-MNIST		387 CIFAR10		388 ImageNet-10	
	389 AA↑	390 AR↓	391 AA↑	392 AR↓	393 AA↑	394 AR↓	395 AA↑	396 AR↓	397 AA↑	398 AR↓	399 AA↑	400 AR↓
FedAVG	51.39	37.78	23.79	36.90	20.23	34.67	54.68	32.93	21.06	35.79	16.94	31.41
pFedGraph	54.49	34.68	22.64	38.05	20.19	34.71	56.98	30.63	18.52	38.33	18.95	29.40
FedCIL	74.17	15.00	31.22	29.47	11.49	43.41	72.18	15.43	24.45	32.40	10.44	37.91
AF-FCL	73.11	16.06	29.94	30.75	20.41	34.49	70.89	16.72	21.98	34.87	26.17	22.18
TARGET	72.08	17.09	29.98	30.71	14.38	40.52	70.36	17.25	18.64	38.21	28.55	19.80
MFCL	70.85	18.32	29.14	31.55	27.54	27.36	70.11	17.50	19.70	37.15	26.15	22.20
LANDER	73.32	15.85	30.83	29.86	25.69	29.21	71.12	16.50	21.03	35.82	26.80	21.55
pFedGRP+ WGAN-GP	82.80	6.37	41.94	18.75	37.17	17.73	82.34	5.27	33.53	23.32	33.68	14.67
pFedGRP+ DDPM	-	-	52.70	7.99	49.79	5.11	-	-	46.06	10.79	43.61	4.74
Centralized	89.17	0	60.69	0	54.90	0	87.61	0	56.85	0	48.35	0

393 Table 2: Baseline Experiment Results of Expt.3
394

395 FL methods	396 EMNIST- 397 Byclass		398 CIFAR100		399 TinyImageNet- 400 100	
	391 AA↑	392 AR↓	393 AA↑	394 AR↓	395 AA↑	396 AR↓
FedAVG	5.48	76.67	2.36	32.11	2.45	20.72
pFedGraph	7.27	74.88	3.23	31.24	3.05	20.12
FedCIL	5.85	76.30	1.78	32.69	1.54	21.63
AF-FCL	5.31	76.84	1.74	32.73	2.33	20.84
TARGET	4.46	77.69	1.76	32.71	2.35	20.82
MFCL	4.98	77.17	1.68	32.79	2.33	20.84
LANDER	4.78	77.37	1.83	32.64	2.53	20.64
pFedGRP+ WGAN-GP	51.33	30.82	9.02	25.45	8.07	15.10
pFedGRP+ DDPM	-	-	21.85	12.62	13.91	9.26
Centralized	82.15	0	34.47	0	23.17	0

409 continuously and non-convergence, as shown in Table 2 and the Acc Charts in Appendix E.3, pFed-
410 GRP better maintains the task model’s performance on previous tasks through personalized aggre-
411 gation in each FL round (task), surpassing other FCL methods.
412

414 5.3 ABLATION STUDIES

416 Our pFedGRP integrates a generative replay architecture and a pFL framework featuring dual task
417 models. Ablation studies (AS) on FMNIST and CIFAR10 under the scenarios of Expt.1 and Expt.2
418 evaluated both components, with all sub-generators employing WGAN-GP. The results are pre-
419 sented in Table 3, while the Acc Charts in Appendix E.4 showing all methods’ accuracy trends
420 across FL rounds (tasks).

421 For the generated replay architecture: ’pFedGRP-AS1’: Disabling the improvement of generative
422 replay via the latest task model; ’pFedGRP-AS2’: Disabling feature shift detection during the update
423 of all sub-generators per FL round (task); ’pFedGRP-AS3’: Replacing all smaller sub-generators
424 with a dual-channel WGAN-GP model as a single larger generator, similar to other FCL methods.

425 For the pFL framework featuring dual task models: ’pFedGRP-ASG’: Disabling the local and per-
426 sonalized global task models’ output alignment on synthetic data (i.e., $\lambda = 0$) during local training;
427 ’pFedGRP-ASP’: Disabling initializing local task model with the averaged global task models but
428 the personalized one; ’FedAVG-replay’ and ’pFedGraph-replay’: Disabling pFedGRP’s pFL aggre-
429 gation while integrating the generative replay architecture into FedAVG and pFedGraph.

430 For pFedGRP’s two hyperparameters—personalized knowledge transfer weight λ (default is 0.3)
431 and sub-generator update threshold TH_G (default is 0.25)—we analyze how they affect the task
432 model’s performance, and presents the results in Table 4 and Table 5.

Table 1 and Table 2 summarize the results of three baseline experiments, while the Acc Charts in Appendix D showing all FL, pFL and FCL methods’ accuracy trends across FL rounds (tasks).

In Expt.1 and Expt.2 with repeated task-types, as shown in Table 1 and the Acc Charts in Appendix E.1 and E.2, pFedGRP, equipped with category-decoupling generator and dual task models, achieves convergence with fewer FL rounds (tasks), thereby reducing regret and improving performance. In contrast, FCL methods with single generator and task model need more FL rounds (tasks) to converge and yield inferior results.

In Expt.3 with emerging new task-types

433

Table 3: Ablation Study (AS) Results of pFedGRP’s Components

FL methods	Expt.1: Tasks Gradually Changing				Expt.2: Tasks Circulating			
	F-MNIST		CIFAR10		F-MNIST		CIFAR10	
	AA↑	AR↓	AA↑	AR↓	AA↑	AR↓	AA↑	AR↓
pFedGRP-AS1	81.44	7.68	37.77	22.91	80.27	7.34	28.04	28.81
pFedGRP-AS2	83.67	5.45	41.36	19.33	82.64	4.97	33.54	23.31
pFedGRP-AS3	82.44	6.68	29.16	31.53	79.98	7.63	20.80	36.05
pFedGRP-ASG	79.17	9.95	40.88	19.81	72.18	15.43	31.07	25.78
pFedGRP-ASP	75.82	13.30	34.08	26.61	70.36	17.25	24.69	32.16
FedAVG-replay	77.40	11.72	39.38	21.31	74.11	13.50	32.91	23.94
pFedGraph-replay	80.20	8.92	37.84	22.85	76.59	11.02	32.58	24.27
pFedGRP+WGANGP	82.80	6.42	41.94	18.75	82.34	5.27	33.53	23.32
Centralized	89.12	0	60.69	0	87.61	0	56.85	0

Table4: AS Results of λ in Expt.1

λ	F-MNIST		CIFAR10	
	AA↑	AR↓	AA↑	AR↓
0	79.12	10.00	40.88	19.80
0.1	81.13	7.99	41.23	19.46
0.2	81.99	7.13	42.02	18.67
0.3	82.80	6.32	41.94	18.77
0.4	82.87	6.24	40.42	20.28
0.5	83.14	5.97	38.68	22.01
1	83.22	5.90	36.96	23.72
Centr alized	89.12	0	60.69	0

Table 5: AS Results of TH_G in Expt.1

TH_G	F-MNIST			CIFAR-10		
	AA↑	AR↓	AUC↓	AA↑	AR↓	AUC↓
0.1	81.35	7.77	10.0	30.12	30.57	10.0
0.2	82.24	6.88	16.4	35.10	25.59	24.2
0.25	82.80	6.32	22.6	41.94	18.66	34.4
0.3	83.27	5.85	26.7	42.13	18.56	37.5
0.4	83.56	5.56	38.3	42.45	18.24	97.8
0.5	83.61	5.51	73.5	42.32	18.37	162.4
Centr alized	89.12	0	-	60.69	0	-

task model forgetting; pFedGRP-ASP lags behind pFedGRP/pFedGRP-ASG in mid-late FL stages with more categories, showing global task model initialization boosts generalization; Both FedAVG-replay and pFedGraph-replay underperform pFedGRP in the early FL stages, showing the superior efficiency of pFedGRP’s pFL aggregation. As shown in Table 4, the optimal λ correlates directly with task model performance. As shown in Table 5 where ‘AUC’ denotes the Average Update Count of each clients’ all sub-generators across T FL rounds, a lower TH_G also reduces sub-generators’ updates, degrading pFedGRP’s performance, while a higher TH_G traps pFedGRP at the sub-generators’ limited generative performance, causing redundant updates.

As shown in Table 3 and Appendix E.4: pFedGRP-AS1 underperforms pFedGRP in all FL scenarios, showing that using task model enhanced data generation is efficient; pFedGRP-AS2 shows marginal performance gain over pFedGRP, suggesting limited necessity for updating all sub-generators per FL rounds; pFedGRP-AS3 performs worst with highest computational costs, showcasing the limitations of using a single large global model; pFedGRP-ASG underperforms pFedGRP in all FL scenarios, showing that personalized knowledge transfer can alleviate

task model forgetting; pFedGRP-ASP lags behind pFedGRP/pFedGRP-ASG in mid-late FL stages with more categories, showing global task model initialization boosts generalization; Both FedAVG-replay and pFedGraph-replay underperform pFedGRP in the early FL stages, showing the superior efficiency of pFedGRP’s pFL aggregation. As shown in Table 4, the optimal λ correlates directly with task model performance. As shown in Table 5 where ‘AUC’ denotes the Average Update Count of each clients’ all sub-generators across T FL rounds, a lower TH_G also reduces sub-generators’ updates, degrading pFedGRP’s performance, while a higher TH_G traps pFedGRP at the sub-generators’ limited generative performance, causing redundant updates.

5.4 ADDITIONAL EXPERIMENTAL RESULTS AND EXTENDED RESEARCH

Due to space limitations, Appendix C.1 details the generator parameters and computational costs of pFedGRP and other FCL methods, and quantifies the extra overhead from generator training. The additional ablation studies in Appendix C.2 further analyze the performance differences across generative replay schemes. Moreover, based on the setup of Expt.1, Appendix C.3 evaluates the performance variations of FL methods by adjusting the degree of cross-task data distribution shifts, and Appendix C.4 examines the effects of client volume and participation rate on FL methods.

6 LIMITATIONS AND FUTURE WORK

Due to space limitations, the discussion of limitations and future work is provided in Appendix F.

7 CONCLUSION

In this paper, we extend generative replay-based FCL to real-time FCL where clients encounter new tasks with small-batch data per FL round. To address slow convergence of the global models in existing FCL methods, we propose a flexible generative replay architecture that splits the larger single generator into category-specific smaller sub-generators, utilizes the task model to reduce the sub-generators update frequency for efficiency, and combines task-model-enhanced generative replay with adaptive local generation scale adjustment to improve the task model’s catastrophic forgetting alleviation. Afterwards, we proposed pFedGRP, a generative replay-based method, achieving personalized global aggregation for clients’ real-time needs per FL round (task), and enabling local personalized knowledge transfer to alleviate the task model’s catastrophic forgetting, thereby improving task model’s performance while reducing regrets. Experimental results show that pFedGRP outperforms other generative replay-based FCL methods across various real-time FCL scenarios.

486 REFERENCES
487

488 Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N. Whatmough,
489 and Venkatesh Saligrama. Federated learning based on dynamic regularization. In *9th International
490 Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7,
491 2021*. OpenReview.net, 2021.

492 Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Fed-
493 erated learning with personalization layers. *CoRR*, abs/1912.00818, 2019.

494 Sara Babakniya, Zalan Fabian, Chaoyang He, Mahdi Soltanolkotabi, and Salman Avestimehr. A
495 data-free approach to mitigate catastrophic forgetting in federated class incremental learning for
496 vision tasks. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and
497 Sergey Levine (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference
498 on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
499 December 10 - 16, 2023*, 2023.

500 Yavuz Faruk Bakman, Duygu Nur Yaldiz, Yahya H. Ezzeldin, and Salman Avestimehr. Federated
501 orthogonal training: Mitigating global catastrophic forgetting in continual federated learning. In
502 *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
503 May 7-11, 2024*. OpenReview.net, 2024.

504 Adebayo Yusuf Balogun. Strengthening compliance with data privacy regulations in us healthcare
505 cybersecurity. *Asian Journal of Research in Computer Science*, 18(1):154–173, 2025.

506 Ang Bian, Wei Li, Hangjie Yuan, Chengrong Yu, Mang Wang, Zixiang Zhao, Aojun Lu, Pengliang
507 Ji, and Tao Feng. Make continual learning stronger via c-flat. In Amir Globersons, Lester Mackey,
508 Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Ad-
509 vances in Neural Information Processing Systems 38: Annual Conference on Neural Information
510 Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024*, 2024.

511 Sébastien Bubeck and Mark Sellke. A universal law of robustness via isoperimetry. In Marc’Aurelio
512 Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
513 (eds.), *Advances in Neural Information Processing Systems 34: Annual Conference on Neural
514 Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual*, pp. 28811–
515 28822, 2021.

516 Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S. Yu, and Lichao Sun. A compre-
517 hensive survey of ai-generated content (AIGC): A history of generative AI from GAN to chatgpt.
518 *CoRR*, abs/2303.04226, 2023. doi: 10.48550/ARXIV.2303.04226.

519 Huitong Chen, Yu Wang, Yan Fan, Guosong Jiang, and Qinghua Hu. Reducing class-wise confusion
520 for incremental learning with disentangled manifolds. In *IEEE/CVF Conference on Computer
521 Vision and Pattern Recognition, CVPR 2025, Nashville, TN, USA, June 11-15, 2025*, pp. 10121–
522 10130. Computer Vision Foundation / IEEE, 2025. doi: 10.1109/CVPR52734.2025.00946.

523 Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST: an extension of
524 MNIST to handwritten letters. *CoRR*, abs/1702.05373, 2017.

525 Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared represen-
526 tations for personalized federated learning. In Marina Meila and Tong Zhang (eds.), *Proceedings
527 of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
528 Event*, volume 139 of *Proceedings of Machine Learning Research*, pp. 2089–2099. PMLR, 2021.

529 Ittai Dayan, Holger R Roth, Aoxiao Zhong, Ahmed Harouni, Amilcare Gentili, Anas Z Abidin,
530 Andrew Liu, Anthony Beardsworth Costa, Bradford J Wood, Chien-Sung Tsai, et al. Federated
531 learning for predicting clinical outcomes in patients with covid-19. *Nature medicine*, 27(10):
532 1735–1743, 2021.

533 Jie Gui, Zhenan Sun, Yonggang Wen, Dacheng Tao, and Jieping Ye. A review on generative ad-
534 versarial networks: Algorithms, theory, and applications. *IEEE Trans. Knowl. Data Eng.*, 35(4):
535 3313–3332, 2023. doi: 10.1109/TKDE.2021.3130191.

540 Ishaan Gulrajani, Faruk Ahmed, Martín Arjovsky, Vincent Dumoulin, and Aaron C. Courville. Improved training of wasserstein gans. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), *Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA*, pp. 5767–5777, 2017.

541

542

543

544

545 Nuwan Gunasekara, Bernhard Pfahringer, Heitor Murilo Gomes, and Albert Bifet. Survey on online streaming continual learning. In *Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR, China*, pp. 6628–6637. ijcai.org, 2023. doi: 10.24963/IJCAI.2023/743.

546

547

548

549

550 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016*, pp. 770–778. IEEE Computer Society, 2016. doi: 10.1109/CVPR.2016.90.

551

552

553

554 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), *Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA*, pp. 6626–6637, 2017.

555

556

557

558

559

560

561 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), *Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual*, 2020.

562

563

564

565 Steven C. H. Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. Online learning: A comprehensive survey. *Neurocomputing*, 459:249–289, 2021. doi: 10.1016/J.NEUCOM.2021.04.112.

566

567

568 Yusong Hu, De Cheng, Dingwen Zhang, Nannan Wang, Tongliang Liu, and Xinbo Gao. Task-aware orthogonal sparse network for exploring shared knowledge in continual learning. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024.

569

570

571

572 Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista A. Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaïd Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances and open problems in federated learning. *Found. Trends Mach. Learn.*, 14(1-2):1–210, 2021. doi: 10.1561/2200000083.

573

574

575

576

577

578

579

580

581

582

583

584 Ronald Kemker, Marc McClure, Angelina Abitino, Tyler L. Hayes, and Christopher Kanan. Measuring catastrophic forgetting in neural networks. In Sheila A. McIlraith and Kilian Q. Weinberger (eds.), *Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018*, pp. 3390–3398. AAAI Press, 2018. doi: 10.1609/AAAI.V32I1.11651.

585

586

587

588

589

590 James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in neural networks. *CoRR*, abs/1612.00796, 2016.

594 A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. *Handbook of*
 595 *Systemic Autoimmune Diseases*, 1(4), 2009.

596

597 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convo-
 598 lutional neural networks. In Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C. Burges,
 599 Léon Bottou, and Kilian Q. Weinberger (eds.), *Advances in Neural Information Processing Sys-*
 600 *tems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings*
 601 *of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States*, pp. 1106–1114, 2012.

602

603 Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Gregory G.
 604 Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
 605 tasks. *IEEE Trans. Pattern Anal. Mach. Intell.*, 44(7):3366–3385, 2022. doi: 10.1109/TPAMI.
 606 2021.3057446.

607

608 Donggyu Lee, Sangwon Jung, and Taesup Moon. Continual learning in the presence of spurious cor-
 609 relations: Analyses and a simple baseline. In *The Twelfth International Conference on Learning*
 610 *Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024.

611

612 Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
 613 methods, and future directions. *IEEE Signal Process. Mag.*, 37(3):50–60, 2020a. doi: 10.1109/
 614 MSP.2020.2975749.

615

616 Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
 617 Federated optimization in heterogeneous networks. In Inderjit S. Dhillon, Dimitris S. Papail-
 618 iopoulos, and Vivienne Sze (eds.), *Proceedings of the Third Conference on Machine Learning*
 619 *and Systems, MLSys 2020, Austin, TX, USA, March 2-4, 2020*. mlsys.org, 2020b.

620

621 Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
 622 learning through personalization. In Marina Meila and Tong Zhang (eds.), *Proceedings of the*
 623 *38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event*,
 624 *volume 139 of Proceedings of Machine Learning Research*, pp. 6357–6368. PMLR, 2021a.

625

626 Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. Fedbn: Federated learning
 627 on non-iid features via local batch normalization. In *9th International Conference on Learning*
 628 *Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenReview.net, 2021b.

629

630 Yichen Li, Qunwei Li, Haozhao Wang, Ruixuan Li, Wenliang Zhong, and Guannan Zhang. Towards
 631 efficient replay in federated incremental learning. In *IEEE/CVF Conference on Computer Vision*
 632 *and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024*, pp. 12820–12829.
 633 IEEE, 2024. doi: 10.1109/CVPR52733.2024.01218.

634

635 Zexi Li, Tao Lin, Xinyi Shang, and Chao Wu. Revisiting weighted aggregation in federated learning
 636 with neural networks. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
 637 Sivan Sabato, and Jonathan Scarlett (eds.), *International Conference on Machine Learning, ICML*
 638 *2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of *Proceedings of Machine Learning*
 639 *Research*, pp. 19767–19788. PMLR, 2023.

640

641 Haowei Lin, Yijia Shao, Weinan Qian, Ningxin Pan, Yiduo Guo, and Bing Liu. Class incremental
 642 learning via likelihood ratio based task prediction. In *The Twelfth International Conference on*
 643 *Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024a.

644

645 Weichen Lin, Jiaxiang Chen, Ruomin Huang, and Hu Ding. An effective dynamic gradient calibra-
 646 tion method for continual learning. In *Forty-first International Conference on Machine Learning, ICML*
 647 *2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024b.

648

649 Yixin Luopan, Rui Han, Qinglong Zhang, Chi Harold Liu, Guoren Wang, and Lydia Y. Chen. Fed-
 650 know: Federated continual learning with signature task knowledge integration at edge. In *39th*
 651 *IEEE International Conference on Data Engineering, ICDE 2023, Anaheim, CA, USA, April 3-7,*
 652 *2023*, pp. 341–354. IEEE, 2023. doi: 10.1109/ICDE55515.2023.00033.

653

654 Othmane Marfoq, Giovanni Neglia, Aurélien Bellet, Laetitia Kameni, and Richard Vidal. Federated
 655 multi-task learning under a mixture of distributions. In Marc'Aurelio Ranzato, Alina Beygelz-
 656 imer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), *Advances in Neural*

648 *Information Processing Systems 34: Annual Conference on Neural Information Processing Sys-*
 649 *tems 2021, NeurIPS 2021, December 6-14, 2021, virtual*, pp. 15434–15447, 2021.
 650

651 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
 652 Communication-efficient learning of deep networks from decentralized data. In Aarti Singh and
 653 Xiaojin (Jerry) Zhu (eds.), *Proceedings of the 20th International Conference on Artificial Intelli-*
 654 *gence and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA*, volume 54 of
 655 *Proceedings of Machine Learning Research*, pp. 1273–1282. PMLR, 2017.

656 Milad Khademi Nori, Il-Min Kim, and Guanghui Wang. Federated class-incremental learning: A
 657 hybrid approach using latent exemplars and data-free techniques to address local and global for-
 658 getting. In *The Thirteenth International Conference on Learning Representations, ICLR 2025,*
 659 *Singapore, April 24-28, 2025*. OpenReview.net, 2025.
 660

661 Daiqing Qi, Handong Zhao, and Sheng Li. Better generative replay for continual federated learn-
 662 ing. In *The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali,*
 663 *Rwanda, May 1-5, 2023*. OpenReview.net, 2023.

664 Fahad Sabah, Yuwen Chen, Zhen Yang, Muhammad Azam, Nadeem Ahmad, and Raheem Sarwar.
 665 Model optimization techniques in personalized federated learning: A survey. *Expert Syst. Appl.*,
 666 243:122874, 2024. doi: 10.1016/J.ESWA.2023.122874.
 667

668 Riccardo Salami, Pietro Buzzega, Matteo Mosconi, Jacopo Bonato, Luigi Sabetta, and Simone
 669 Calderara. Closed-form merging of parameter-efficient modules for federated continual learning.
 670 In *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore,*
 671 *April 24-28, 2025*. OpenReview.net, 2025. URL <https://openreview.net/forum?id=ROpY0qRUXL>.
 672

673 Giuseppe Serra and Florian Buettner. Federated continual learning goes online: Uncertainty-aware
 674 memory management for vision tasks and beyond. In *The Thirteenth International Conference*
 675 *on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025.
 676

677 Neta Shoham, Tomer Avidor, Aviv Keren, Nadav Israel, Daniel Benditkis, Liron Mor-Yosef, and
 678 Itai Zeitak. Overcoming forgetting in federated learning on non-iid data. *CoRR*, abs/1910.07796,
 679 2019.
 680

681 Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated learning.
 682 *IEEE Trans. Neural Networks Learn. Syst.*, 34(12):9587–9603, 2023. doi: 10.1109/TNNLS.2022.
 683 3160699.

684 Ruilin Tong, Yuhang Liu, Javen Qinfeng Shi, and Dong Gong. Coreset selection via reducible loss
 685 in continual learning. In *The Thirteenth International Conference on Learning Representations,*
 686 *ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025.
 687

688 Minh-Tuan Tran, Trung Le, Xuan-May Le, Mehrtash Harandi, and Dinh Phung. Text-enhanced data-
 689 free approach for federated class-incremental learning. In *IEEE/CVF Conference on Computer*
 690 *Vision and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024*, pp. 23870–
 691 23880. IEEE, 2024. doi: 10.1109/CVPR52733.2024.02253.

692 Anamaria Vizitiu, Cosmin Ioan Nita, Andrei Puiu, Constantin Suciu, and Lucian Mihai Itu. Towards
 693 privacy-preserving deep learning based medical imaging applications. In *IEEE International*
 694 *Symposium on Medical Measurements and Applications, MeMeA 2019, Istanbul, Turkey, June*
 695 *26-28, 2019*, pp. 1–6. IEEE, 2019. doi: 10.1109/MEMEA.2019.8802193.
 696

697 Paul Voigt and Axel Bussche. *The EU General Data Protection Regulation (GDPR): A Practical*
 698 *Guide*. 01 2017. ISBN 978-3-319-57958-0. doi: 10.1007/978-3-319-57959-7.
 699

700 Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
 701 learning: Theory, method and application. *IEEE Trans. Pattern Anal. Mach. Intell.*, 46(8):5362–
 5383, 2024a. doi: 10.1109/TPAMI.2024.3367329.

702 Maorong Wang, Nicolas Michel, Jiafeng Mao, and Toshihiko Yamasaki. Dealing with synthetic
 703 data contamination in online continual learning. In Amir Globersons, Lester Mackey, Danielle
 704 Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances in
 705 Neural Information Processing Systems 38: Annual Conference on Neural Information Process-
 706 ing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024*, 2024b.

707 Qiang Wang, Bingyan Liu, and Yawen Li. Traceable federated continual learning. In *IEEE/CVF
 708 Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June
 709 16-22, 2024*, pp. 12872–12881. IEEE, 2024c. doi: 10.1109/CVPR52733.2024.01223.

710 Zhenyi Wang, Enneng Yang, Li Shen, and Heng Huang. A comprehensive survey of forgetting in
 711 deep learning beyond continual learning. *IEEE Trans. Pattern Anal. Mach. Intell.*, 47(3):1464–
 712 1483, 2025. doi: 10.1109/TPAMI.2024.3498346.

713 Nannan Wu, Li Yu, Xuefeng Jiang, Kwang-Ting Cheng, and Zengqiang Yan. Fednoro: Towards
 714 noise-robust federated learning by addressing class imbalance and label noise heterogeneity. In
 715 *Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI
 716 2023, 19th-25th August 2023, Macao, SAR, China*, pp. 4424–4432. ijcai.org, 2023. doi: 10.
 717 24963/IJCAI.2023/492.

718 Abudukelimu Wuerkaixi, Sen Cui, Jingfeng Zhang, Kunda Yan, Bo Han, Gang Niu, Lei Fang,
 719 Changshui Zhang, and Masashi Sugiyama. Accurate forgetting for heterogeneous federated
 720 continual learning. In *The Twelfth International Conference on Learning Representations, ICLR
 721 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024.

722 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
 723 ing machine learning algorithms. *CoRR*, abs/1708.07747, 2017.

724 Li Yang, Shasha Liu, Jinyan Liu, Zhixin Zhang, Xiaochun Wan, Bo Huang, Youhai Chen, and
 725 Yi Zhang. Covid-19: immunopathogenesis and immunotherapeutics. *Signal Transduction and
 726 Targeted Therapy*, 2020(1), 2020. doi: 10.1038/S41392-020-00243-2.

727 Xin Yang, Hao Yu, Xin Gao, Hao Wang, Junbo Zhang, and Tianrui Li. Federated continual learning
 728 via knowledge fusion: A survey. *IEEE Transactions on Knowledge and Data Engineering*, 36(8):
 729 3832–3850, 2024.

730 Rui Ye, Zhenyang Ni, Fangzhao Wu, Siheng Chen, and Yanfeng Wang. Personalized federated
 731 learning with inferred collaboration graphs. In Andreas Krause, Emma Brunskill, Kyunghyun
 732 Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *International Conference
 733 on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of
 734 *Proceedings of Machine Learning Research*, pp. 39801–39817. PMLR, 2023.

735 Jaehong Yoon, Wonyong Jeong, Giwoong Lee, Eunho Yang, and Sung Ju Hwang. Federated continual
 736 learning with weighted inter-client transfer. In Marina Meila and Tong Zhang (eds.), *Proceed-
 737 ings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021,
 738 Virtual Event*, volume 139 of *Proceedings of Machine Learning Research*, pp. 12073–12086.
 739 PMLR, 2021a.

740 Tehrim Yoon, Sumin Shin, Sung Ju Hwang, and Eunho Yang. Fedmix: Approximation of mixup
 741 under mean augmented federated learning. In *9th International Conference on Learning Repre-
 742 sentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenReview.net, 2021b.

743 Jie Zhang, Song Guo, Xiaosong Ma, Haozhao Wang, Wenchao Xu, and Feijie Wu. Parameterized
 744 knowledge transfer for personalized federated learning. In Marc'Aurelio Ranzato, Alina Beygelz-
 745 imer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), *Advances in Neural
 746 Information Processing Systems 34: Annual Conference on Neural Information Processing Sys-
 747 tems 2021, NeurIPS 2021, December 6-14, 2021, virtual*, pp. 10092–10104, 2021.

748 Jie Zhang, Chen Chen, Weiming Zhuang, and Lingjuan Lyu. TARGET: federated class-continual
 749 learning via exemplar-free distillation. In *IEEE/CVF International Conference on Computer
 750 Vision, ICCV 2023, Paris, France, October 1-6, 2023*, pp. 4759–4770. IEEE, 2023. doi:
 751 10.1109/ICCV51070.2023.00441.

756 Yifei Zhang, Hao Zhu, Alysa Ziying Tan, Dianzhi Yu, Longtao Huang, and Han Yu. pfedmx:
757 Personalized federated class-incremental learning with mixture of frequency aggregation. In
758 *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2025, Nashville,*
759 *TN, USA, June 11-15, 2025*, pp. 30640–30650. Computer Vision Foundation / IEEE, 2025. doi:
760 10.1109/CVPR52734.2025.02853.

761 Hangyu Zhu, Jinjin Xu, Shiqing Liu, and Yaochu Jin. Federated learning on non-iid data: A survey.
762 *Neurocomputing*, 465:371–390, 2021. doi: 10.1016/J.NEUROCOM.2021.07.098.

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

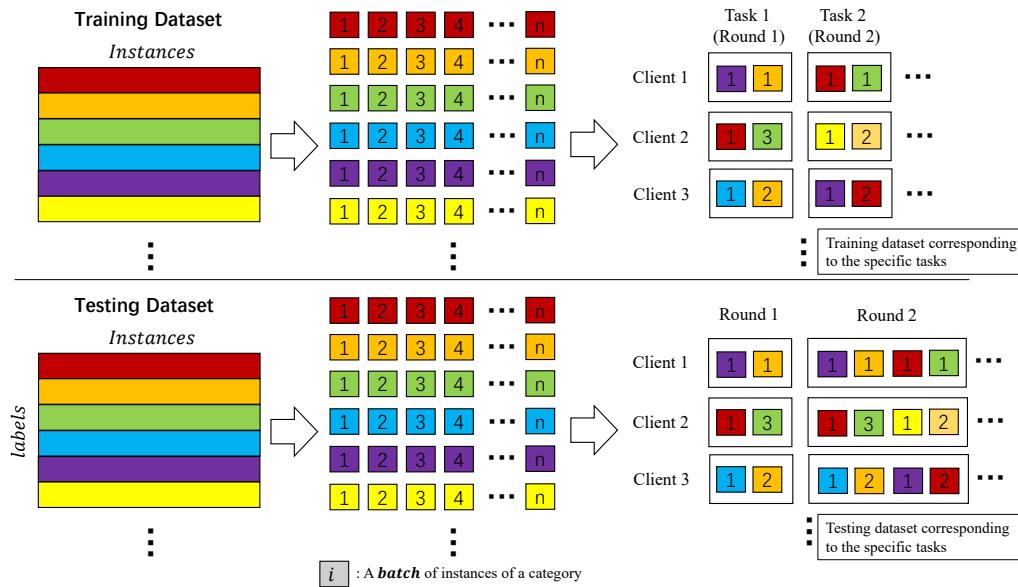
807

808

809

810 A DATA SETTINGS, DATASETS AND EVALUATION METRICS
811812 A.1 DETAILS OF DATA SETTINGS
813

814 We use existing datasets to construct the real-time FCL scenarios. In our setting, the time interval
815 between the server twice sending the task model to the clients constitutes a FL round. During each
816 FL round, every client executes a specific task pertaining to one of its task-types (As detailed in
817 Section 5.1). Specifically, for every client, each task-type contains multiple specific tasks that share
818 the same categories but have different actual data. Each specific task contains training data and test
819 data, where the training data is only accessible to the client during the FL round when executing
820 that specific task, while the test data will be used in all FL rounds after the execution of that specific
821 task to evaluate the performance of the task model on the client side. Figure 4 shows the schematic



811 Figure 4: Schematic diagram of the partitioning of local training data and testing data. Please refer
812 to the following text for detailed information
813

814 diagram of constructing local training and test data for each client: Each color in the figure represents
815 one category of data, with each category containing N samples. We evenly divide the training data
816 samples of each category into $\lfloor N/N_T \rfloor$ non-overlapping parts by grouping every N_T samples, then
817 divide the test data samples into N_T equal and non-overlapping parts. In each FL round, based on
818 the categories corresponding to the task type of the specific task executed by the client, the client
819 selects training data parts that have not been previously accessed by the client to build the local
820 training dataset (As shown in the upper right of Figure 4). and adds the corresponding test data parts
821 into the local test dataset (As shown in the lower right of the Figure 4).

822 A.2 DETAILS OF DATASETS
823

824 The specific details and settings of the datasets used in our experiments are as follows:

825 **FashionMNIST.** The FashionMNIST(F-MNIST)(Xiao et al., 2017) dataset is a 10-category cloth-
826 ing classification dataset (i.e., $K = 10$), with each category containing 6000 training samples and
827 1000 test samples (i.e., $N = 6000$), where each sample is a single-channel grayscale image of size
828 28×28 representing a type of clothing. In our baseline experimental setup, each client comprises
829 5 task types, each task type includes 2 distinct categories (i.e., $K_T = 2$), and the training data
830 allocated to each category within a specific task is 200 samples (i.e., $N_T = 200$). Therefore, the
831 total number of FL rounds in the baseline experiments for the F-MNIST dataset is calculated as
832 $T = \lfloor 6000/(200 \times 2) \rfloor \times 10 = 150$.

833 **EMNIST-ByClass.** The EMNIST-ByClass(Cohen et al., 2017) dataset consists of 62 imbal-
834 anced categories of handwritten characters and numbers, containing 814255 grayscale images sized

864 28×28 . Compared with the F-MNIST dataset, EMNIST-ByClass dataset contains covers categories,
 865 and its English characters incorporate both uppercase and lowercase forms, consequently increasing
 866 classification difficulty. In our baseline experimental setup, each task type includes 2 distinct cate-
 867 gories (i.e., $K_T = 2$), thus each client comprises $62/2 = 31$ task types, resulting in total FL rounds
 868 $T = 31$. The training data and test data allocated to each category within a specific task consist of
 869 200 samples (i.e., $N_T = 200$) and 100 samples, respectively.

870 **CIFAR10.** The CIFAR10(Krizhevsky & Hinton, 2009) dataset is a real image classification dataset
 871 consisting of 10 categories of 32×32 color RGB images (i.e., $K = 10$), each category containing
 872 5000 training images (i.e., $N = 5000$) and 1000 test images. Compared with the MNIST series
 873 dataset, CIFAR10 contains objects in the real world which have not only have a lot of noise but also
 874 different proportions and features, making data classification more difficult. Our experimental setup
 875 on the CIFAR10 dataset is the same as that on the MNIST dataset, and the total number of FL rounds
 876 is $T = \lfloor 5000/(200 \times 2) \rfloor \times 10 = 120$.

877 **CIFAR100.** The CIFAR100(Krizhevsky & Hinton, 2009) dataset is a real image classification
 878 dataset consisting of 20 super categories, each super category comprises 5 categories and contains
 879 of 32×32 color RGB images, with the total number of categories being 100 (i.e., $K = 100$). Each
 880 category has 500 training images and 100 test images. Compared with the CIFAR10 dataset, the
 881 CIFAR100 dataset has a larger number of categories, and the images of each category within the
 882 same super category are more similar which increases the difficulty of classification. In our baseline
 883 experimental setup, each task type includes 2 distinct categories (i.e., $K_T = 2$), therefore each client
 884 comprises $100/2 = 50$ task types, resulting in a total of $T = 50$ FL rounds. The training data and
 885 test data allocated to each category within a specific task consist of 200 samples (i.e., $N_T = 200$)
 886 and 100 samples, respectively.

887 **ImageNet-10.** The ILSVRC2012 is a dataset used in the ImageNet(Krizhevsky et al., 2012) Large
 888 Scale Visual Recognition Challenge in 2012, consisting of approximately 1.4 million training im-
 889 ages, 50000 validation images, and 100000 test images, covering 1000 object categories, with each
 890 category’s training set containing 1300 samples. We randomly selected 10 categories of training
 891 sets from ILSVRC2012 to form the ImageNet-10 dataset (i.e., $K = 10$), and divided each cate-
 892 gory’s training set into 1000 training samples (i.e., $N = 1000$) and 300 test samples in sequence. In
 893 our baseline experimental setup, each client comprises 5 task types, each task type includes 2 dis-
 894 tinct categories (i.e., $K_T = 2$), and the training data allocated to each category within a specific task
 895 is 50 samples (i.e., $N_T = 50$). Therefore, the total number of FL rounds in the baseline experiments
 896 for the ImageNet-10 dataset is calculated as $T = \lfloor 1000/(50 \times 2) \rfloor \times 10 = 100$.

897 **TinyImageNet-100.** TinyImageNet is a subset of the ImageNet(Krizhevsky et al., 2012) dataset,
 898 containing 200 categories with 500 training images, 50 validation images, and 50 test images per
 899 category. We construct the TinyImageNet-100 dataset by selecting data from the first 100 categories
 900 in TinyImageNet. In our baseline experimental setup, each task type includes 2 distinct categories
 901 (i.e., $K_T = 2$), thus each client comprises $100/2 = 50$ task types, resulting in total FL rounds
 902 $T = 50$. The training data and test data allocated to each category within a specific task consist of
 903 50 samples (i.e., $N_T = 50$) and 50 samples, respectively.

904 A.3 DETAILS OF EVALUATION METRICS

905 Under the experimental setup above, we evaluate the performance of each FL method based on the
 906 following proposed metrics: Accuracy(Acc), Average Accuracy (AA) and Average Regret (AR).
 907 Let the client set be denoted as \mathcal{C} and the total number of FL rounds as T ; the definitions of these
 908 metrics are as follows:

909 **Accuracy.** After global aggregation in each FL round t , we evaluate the performance of the global
 910 task models on all test data corresponding to previous t tasks for each client $C_i \in \mathcal{C}$ (i.e., accuracy,
 911 denoted as a_i^t), and then calculate the Acc of the t -th FL round based on the weighted average of the
 912 total number of training data encountered by each client C_i (denoted as n_i^t):

$$913 \quad Acc^t = \frac{1}{\sum_{C_i \in \mathcal{C}} n_i^t} \sum_{C_i \in \mathcal{C}} n_i^t \cdot a_i^t \quad (4)$$

918 The Acc can indicate the comprehensive performance of the global task model obtained in FL round
 919 t across all previously encountered tasks.
 920

921 **Average Accuracy.** This metric uses the mean Acc value across all T FL rounds to indicate the
 922 overall performance of each FL method throughout the entire FL process, that is:
 923

$$924 \quad AA = \frac{1}{T} \sum_{t=1}^T Acc^t \quad (5)$$

925 AA can reduce evaluation errors caused by variations in task difficulty and better assess the perfor-
 926 mance stability of different methods throughout the FL process.
 927

928 **Average Regret.** the Average Regret (AR) is the difference between the performance of the client
 929 when it can access real data of previous tasks and when it cannot access such data. Let the Acc of
 930 the Centralized method in the t -th FL round be $Acc_{Centralized}^t$, the Average Regret (AR) of each
 931 method is:
 932

$$933 \quad AR = \frac{1}{T} \sum_{t=1}^T (Acc^t - Acc_{Centralized}^t) \quad (6)$$

934 AR can evaluate the extent to which the performance of FL methods declines as the number of tasks
 935 increases, with a smaller value indicating better memory stability of the FL method.
 936

937 B DETAILS OF BASELINE METHODS AND EXPERIMENTAL SETUP

938 B.1 DETAILS OF BASELINE METHODS

939 We compare pFedGRP with following one FL methods, one pFL methods and five task-id-free
 940 generative replay-based FCL methods, and establish the performance of local task models - where
 941 clients can access real data from previous tasks - as the theoretical boundary, referred to as the
 942 "Centralized" methods. The FL methods and pFL methods lack the capability to retain information
 943 related to historical tasks, while the task-id-free FCL methods can mitigate catastrophic forgetting
 944 to some extent. In ablation studies, we further integrate FL and pFL methods with our generated
 945 replay framework.
 946

947 **FedAVG:** FedAVG(McMahan et al., 2017) is a representative federated learning approach, it con-
 948 structes the global model through weighted aggregation of client-uploaded parameters, where the
 949 aggregation weights correspond to the proportion of each client's local training data volume.
 950

951 **pFedGraph:** pFedGraph(Ye et al., 2023) is a relatively new personalized federated learning method.
 952 It proposes constructing a personalized collaboration graph on the server based on the cosine dif-
 953 ferences between local task models, thereby enabling personalized aggregation of the global task
 954 model for individual clients to balance local utility and collaborative benefits. Additionally, it em-
 955 ploys cosine similarity constraints during local training to mitigate model deviation.
 956

957 **FedCIL:** FedCIL(Qi et al., 2023) is a newer Federated Continual Learning (FCL) method based on
 958 the ACGAN framework, which integrates both the task model and generator into a unified ACGAN
 959 architecture. During local training phases, FedCIL leverages data generated by both the global AC-
 960 GAN model and previous local ACGAN models to mitigate catastrophic forgetting in local ACGAN
 961 models through model distillation and label alignment techniques. In the global aggregation phase,
 962 the server first performs model averaging on local ACGAN models to obtain the global ACGAN
 963 model, then fine-tunes this global model using data generated by each local ACGAN model.
 964

965 **AF-FCL:** AF-FCL(Wuerkaixi et al., 2024) is a relatively new FCL method based on local sample-
 966 free generated replay and distillation. It designs a local distillation mechanism based on partial
 967 feature forgetting. During the client-side local training phase, to achieve the dual objectives of
 968 distilling data features for the task model and obtaining a higher-performing generator, AF-FCL
 969 alternately trains the local generator and task model using both real data and data replayed by the
 970 971

972 global generator. On the server side, it employs an averaging method to aggregate both the task
 973 models and generators
 974

975 **TARGET**: TARGET(Zhang et al., 2023) is a relatively new FCL method based on global feature
 976 replay. On the server side, it trains a global generator using aggregated batch normalization (BN)
 977 layer features from the global task model and an untrained task model. This enables the global
 978 generator to synthesize data that can be effectively classified by the task model. On the client side,
 979 it alleviates catastrophic forgetting in the task model by leveraging replayed data generated by the
 980 global generator.

981 **MFCL**: MFCL(Babakniya et al., 2023) is a relatively new FCL method based on global sample-free
 982 generated replay and distillation. On the server side, it proposes a training scheme that leverages the
 983 aggregated global task model to train a global generator for producing high-quality synthetic data.
 984 On the client side, during local training, the knowledge from the global task model is transferred to
 985 the local task model through distillation using the data generated by the global generator.

986 **LANDER**: LANDER(Tran et al., 2024) is an improved version of TARGET, it employs a pre-trained
 987 language model to produce label text embeddings that serve as anchors in the global generator’s
 988 feature space. Subsequently, it leverages an aggregated global task model to train a unified global
 989 generator on the server side, which corresponds to all previously encountered tasks.

990 **FedAVG-replay**: FedAVG-replay extends the FedAVG algorithm by integrating pFedGRP’s gener-
 991 ated replay architecture into local training phases.

992 **pFedGraph-replay**: pFedGraph-replay extends the pFedGraph algorithm by integrating pFed-
 993 GRP’s generated replay architecture into local training phases.

994 **Centralized**: The Centralized method does not perform global aggregation, and each client can
 995 access the real data encountered in previous FL rounds during local training.
 996

997 B.2 DETAILS OF EXPERIMENTAL SETUP

999 For the task model, we choose ResNet20(He et al., 2016) for all FL methods except FedCIL. The
 1000 local training epochs are uniformly set to 20 (with AF-FCL set to 100 to alternate training its local
 1001 generator), and we employ SGD as the optimizer with a learning rate of 0.01, momentum of 0.9,
 1002 and weight decay of 0.01. In pFedGRP, the personalized knowledge transfer weight λ is set to 0.3.
 1003 For FedCIL, the task model is the ACGAN model, which follows its default dataset-specific settings
 1004 with local training epochs set to 400.

1005 For the sub-generators of pFedGRP, we set the WGAN-GP(Gulrajani et al., 2017) model and
 1006 DDPM(Ho et al., 2020) model to perform updates using their respective default loss functions
 1007 and settings, with an update threshold $TH_G = 0.25$. For MNIST-series datasets, we deploy the
 1008 WGAN-GP model with 16 channels as sub-generator, which undergoes 200 training epochs when
 1009 updates are required. For CIFAR-series datasets, we implement two types of existing generative
 1010 models as sub-generators: the 64-channel WGAN-GP and the default-configured DDPM, which are
 1011 trained for 500 and 4000 epochs per update cycle, respectively. For ImageNet-series datasets, we
 1012 implement two types of existing generative models as sub-generators: the 128-channel WGAN-GP
 1013 and the default-configured DDPM, which are trained for 1000 and 6000 epochs per update cycle,
 1014 respectively.

1015 For the generators of other FCL methods, we follow their default training settings. Specifically: For
 1016 the AF-FCL method, the local generator undergoes 100 epochs of training during the local training
 1017 phase, which alternates with the task model training. For the FedCIL method, the local generator
 1018 adopts the ACGAN model and completes 400 training epochs during the local training phase per FL
 1019 round. For the TARGET, MFCL and LANDER methods, their global generators are trained on the
 1020 server side. After aggregating the global task model, the server performs 100 training epochs on the
 1021 global generator per FL round.

1022 In the fine-tuning setting for global aggregation on the server side, our pFedGRP performs 20 epochs
 1023 of personalized aggregation weight optimization for each client, employing optimizer settings con-
 1024 sistent with local training. The FedCIL method performs 100 epochs of model distillation on the
 1025 global ACGAN model using default configurations. Other FL methods do not involve a fine-tuning
 phase during the global aggregation process.

1026 C ADDITIONAL EXPERIMENTAL RESULTS AND EXTENDED RESEARCH

1028 C.1 DETAILS OF GENERATORS' COMPUTATION AND COMMUNICATION COST

1030 Firstly, we have compiled in Table 6 both the computational consumption per data sample (i.e.,
 1031 FLOPs) and the model parameters of all models utilized in our experimental study. Then, we cal-

1032 Table 6: FLOPs and Parameters of all models used in the experiments

Models	MNIST series dataset		CIFAR series dataset		ImageNet series dataset	
	FLOPs	Parameter	FLOPs	Parameter	FLOPs	Parameter
ResNet-20	29.05M	701.18K	35.66M	701.466K	35.77M	702.23K
ResNet-20 (AF-FCL)	29.09M	734.20K	35.69M	734.490K	35.80M	735.26K
WGAN-GP (pFedGRP)	7.19M	186.27K	94.54M	1732.22K	338.40M	6101.25K
DDPM (pFedGRP)	-	-	4061.68M	167726.40K	16239.97M	167726.40K
ACGAN (FedCIL)	241.10M	3951.69K	957.47M	14719.17K	1157.97M	18197.96K
Flow (AF_FCL)	46.49M	4663.81K	176.87M	17715.71K	688.74M	68985.34K
Generator (TARGET)	89.21M	1834.31K	117.70M	2328.90K	470.81M	8644.93K
GEN(MFCL)	93.76M	6500.87K	123.64M	8423.94K	507.77M	8571.78K
Generator (LANDER)	3173.19M	130826.60K	3173.19M	130826.60K	43504.28M	425186.42K
WGAN-GP (pFedGRP-AS3)	24.87M	536.38K	356.852M	6085.888K	-	-

1046
 1047 culate the average training iterations of the generator for pFedGRP and each FCL method in the
 1048 Baseline experiment:

1049 In the 150 FL rounds (tasks) on the F-MNIST dataset, each pFedGRP client trained the WGAN-GP
 1050 sub-generator an average of 24.7 times, each time using only half of the local data (due to the local
 1051 data containing two types), while other FCL methods trained the global generator 150 times.

1052 In the 120 FL rounds (tasks) on the Cifar10 dataset, each pFedGRP client trained the WGAN-GP
 1053 sub-generator an average of 36.3 times and the DDPM sub-generator an average of 10 times, each
 1054 time using only half of the local data, while other FCL methods trained the global generator 120
 1055 times.

1056 In the 100 FL rounds (tasks) on the ImageNet-10 dataset, the client trained the WGAN-GP sub-
 1057 generator an average of 32.6 times and the DDPM sub-generator an average of 10 times, each time
 1058 using only half of the local data, while other FCL methods trained the global generator 100 times.

1060 We have listed in Tables 7, Tables 8, and Tables 9 the average additional computational cost per data
 1061 by the training generator for pFedGRP and various FCL methods.

1062 Table 7: The average computational cost of training generator on F-MNIST datasets

FL methods	Local computational cost				Global computational cost			Avg Acc	
	Total times	Local epoch	Model FLOPs	Total FLOPs per data	Global epoch	Model FLOPs	Total FLOPs per data	Expt.1	Expt.2
FedCIL	150	400	241.1M	14466B	100	241.1M	3617B	74.17	72.18
AF-FCL	150	100	46.5M	1395B	-	-	0	73.11	70.89
TARGET	150	-	-	0	100	89.21M	1338B	72.08	70.36
MFCL	150	-	-	0	100	93.76M	1406B	70.85	70.11
LANDER	150	-	-	0	100	3173.19M	47609B	73.32	71.12
pFedGRP-AS3	150	200	24.8M	744B	-	-	0	82.44	79.98
pFedGRP+ WGAN-GP	24.7*0.5	200	7.2M	35.568B	-	-	0	82.80	82.34

Table 8: The average computational cost of training generator on Cifar10 datasets

FL methods	Local computational cost			Global computational cost			Avg Acc		
	Total times	Local epoch	Model FLOPs	Total FLOPs per data	Global epoch	Model FLOPs	Total FLOPs per data	Expt.1	Expt.2
FedCIL	120	400	957.5M	45960B	100	957.5M	11490B	31.22	24.45
AF-FCL	120	100	176.9M	2123B	-	-	0	29.94	21.98
TARGET	120	-	-	0	100	117.70M	1412B	29.98	18.64
MFCL	120	-	-	0	100	123.64M	1484B	29.14	19.70
LANDER	120	-	-	0	100	3173.19M	38078B	30.83	21.03
pFedGRP-AS3	120	500	356.9M	21414B	-	-	0	29.16	20.80
pFedGRP+ WGAN-GP	36.3*0.5	500	94.5M	858B	-	-	0	41.94	33.53
pFedGRP+ DDPM	10*0.5	4000	4061.7M	81234B	-	-		52.70	46.06

Table 9: The average computational cost of training generator on ImageNet-10 datasets

FL methods	Local computational cost			Global computational cost			Avg Acc		
	Total times	Local epoch	Model FLOPs	Total FLOPs per data	Global epoch	Model FLOPs	Total FLOPs per data	Expt.1	Expt.2
FedCIL	100	400	1158.0M	46320B	100	1158.0M	11580B	11.49	10.44
AF-FCL	100	100	688.7M	6887B	-	-	0	20.41	26.17
TARGET	100	-	-	0	100	470.8M	4708B	14.38	28.55
MFCL	100	-	-	0	100	507.8M	5078B	27.54	26.15
LANDER	100	-	-	0	100	43504.3M	435043B	25.69	26.80
pFedGRP+ WGAN-GP	32.6*0.5	1000	338.4M	5516B	-	-	0	37.17	33.68
pFedGRP+ DDPM	10*0.5	6000	16240.0M	487200B	-	-	0	49.79	43.61

As shown in the tables above, pFedGRP outperforms other FCL methods with lower additional training consumption when WGAN-GP is employed as the sub-generator. In contrast, using DDPM as the sub-generator results in higher training consumption but delivers even stronger performance.

C.2 ABLATION STUDIES ON pFEDGRP’S GENERATORS’ PERFORMANCE

In addition to the ablation experiments provided in the main text, we calculated the FID(Heusel et al., 2017) values of the generated replay schemes used by various methods in the ablation study. The lower the value, the better the performance of the generated replay. The results are shown in Table 10 below:

Table 10: FID Values for various Generated Replay Schemes on pFedGRP

Generated Replay Scheme	F-MNIST	CIFAR10	ImageNet-10
	Fid↓	Fid↓	Fid↓
A single Double-Channel WGAN-GP	301.390	707.879	974.345
Only WGAN-GP as sub-generator	187.622	436.116	407.823
WGAN-GP as sub-generator + ResNet20	165.552	390.213	376.938
Only DDPM as sub-generator	-	77.035	181.153
DDPM as sub-generator + ResNet20	-	65.284	149.714

It can be seen that as the complexity of data increases, the generated replay effect of the auxiliary model with category decoupling gradually becomes much better than that of a single larger auxiliary model. On this basis, using the information contained in the task model can further enhance the generated replay performance of the auxiliary model. However, due to the underfitting update strategy adopted by pFedGRP to reduce the update frequency, significant distribution differences persist between the generated data and the real data, while the resulting distribution noise enhances the privacy protection capability of pFedGRP.

1134 C.3 EXTEND EXPERIMENTS UNDER DIFFERENT DATA HETEROGENEITY
1135

1136 Under the baseline experimental setting of Expt.1, we further investigate how the progressively
1137 strengthened correlations between tasks affect the performance of various FL methods. Since the
1138 number of duplicate categories between adjacent tasks for each client in the baseline experimental
1139 setting is 0, we increased this value to 2, 4, and 6 (i.e., each task type consequently contains 4, 6,
1140 and 8 categories respectively) while maintaining the real data quantity per category at 200 (50 for
1141 the ImageNet-10 dataset). As the number of duplicate categories between adjacent tasks grows, data
1142 heterogeneity progressively decreases. The performance of pFedGRP and other baseline methods
1143 under these experimental configurations is documented in Table 11, Table 12 and Table 13.

1144 Table 11: Extend Experiment Results on F-MNIST and the setting of Expt.1
1145

FL methods	The number of duplicate categories between adjacent tasks on each client							
	0		2		4		6	
	AA↑	AR↓	AA↑	AR↓	AA↑	AR↓	AA↑	AR↓
FedAVG	51.39	37.78	75.61	12.71	83.70	5.150	84.61	3.27
pFedGraph	54.49	34.68	74.18	14.14	81.98	6.870	81.43	6.44
FedCIL	74.17	15.00	83.25	5.08	87.35	1.50	84.59	3.30
AF-FCL	73.11	16.06	83.15	5.18	87.79	1.06	85.41	2.45
TARGET	72.08	17.09	81.47	6.85	86.44	2.42	83.94	3.95
MFCL	70.85	18.32	82.41	5.91	86.61	2.24	84.48	3.41
LANDER	73.32	15.85	82.93	5.39	87.04	1.81	84.76	3.12
pFedGRP+ WGAN-GP	82.80	6.37	84.86	3.46	87.81	1.04	86.41	1.47
Centralized	89.17	0	88.32	0	88.85	0	87.88	0

1157 Table 12: Extend Experiment Results on Cifar10 and the setting of Expt.1
1158

FL methods	The number of duplicate categories between adjacent tasks on each client							
	0		2		4		6	
	AA↑	AR↓	AA↑	AR↓	AA↑	AR↓	AA↑	AR↓
FedAVG	23.79	36.90	50.97	13.24	58.05	9.18	63.30	5.421
pFedGraph	22.64	38.05	50.15	14.05	56.70	10.53	62.37	6.351
FedCIL	31.22	29.47	39.57	24.63	44.59	22.64	44.57	24.15
AF-FCL	29.94	30.75	44.93	19.28	47.24	19.99	49.63	19.09
TARGET	29.98	30.71	42.35	21.85	45.37	21.85	48.42	20.30
MFCL	29.14	31.55	45.92	18.29	46.21	21.01	46.50	22.22
LANDER	30.83	29.86	45.73	18.48	45.96	19.53	48.55	20.17
pFedGRP+ WGAN-GP	41.94	18.75	48.60	15.60	47.70	19.53	50.76	17.96
pFedGRP+ DDPM	52.70	7.99	55.43	8.77	56.11	11.12	56.53	12.19
Centralized	60.69	0	64.21	0	67.23	0	68.72	0

1173 Table 13: Extend Experiment Results on ImageNet-10 and the setting of Expt.1
1174

FL methods	The number of duplicate categories between adjacent tasks on each client							
	0		2		4		6	
	AA↑	AR↓	AA↑	AR↓	AA↑	AR↓	AA↑	AR↓
FedAVG	20.23	34.67	33.77	24.53	40.87	18.53	45.22	15.03
pFedGraph	20.19	34.71	34.77	23.53	38.45	20.95	44.39	15.92
FedCIL	11.49	43.41	9.72	48.57	9.84	49.55	9.59	50.73
AF-FCL	20.41	34.49	37.62	20.68	43.83	15.56	44.73	15.59
TARGET	14.38	40.52	19.08	39.22	37.94	21.46	40.37	19.95
MFCL	27.54	27.36	38.27	20.03	44.35	15.04	45.30	15.02
LANDER	25.69	29.21	37.40	20.90	45.48	13.91	44.96	15.36
pFedGRP+ WGAN-GP	37.17	17.73	44.27	14.08	45.63	13.76	45.28	15.04
pFedGRP+ DDPM	49.79	5.11	52.83	5.47	52.36	7.03	51.52	8.80
Centralized	54.90	0	58.30	0	59.39	0	60.32	0

As evidenced by the above tables, all FL methods exhibit a trend of performance improvement with decreasing data heterogeneity. However, on datasets like CIFAR10 which feature relatively complex data distributions but narrower performance bottlenecks for task models, the generation error caused by the generator will have a significant impact on the task model, resulting in five FCL methods and the pFedGRP method underperforming compared to FL and pFL methods in scenarios with low data heterogeneity. Nevertheless, by employing multiple strategies to reduce generative-replay errors, the pFedGRP method consistently outperforms all FCL methods. For the more complex ImageNet-10 dataset, where even task models encounter performance bottlenecks, the impact of generative replay errors becomes less significant compared to that of data scarcity. This comparative advantage causes the FedCIL method based on the ACGAN model to completely fail to converge, while enabling the pFedGRP method using DDPM as a sub-generator to achieve optimal performance.

C.4 EXTEND EXPERIMENTS UNDER DIFFERENT CLIENT STATES

Under the baseline experimental setting of Expt.1, we further investigated the performance impact of different total client counts and varying client participation ratios on various FL methods on the Cifar10 dataset, in order to explore the robustness of each method.

For varying counts of clients, we examined scenarios with 5, 10, 20, and 30 clients while maintaining identical experimental conditions, where the baseline configuration uses 10 clients by default. Since the complexity of the global data distribution remains constant, increasing the number of clients allows the global model to better capture the overall data features, thereby accelerating model convergence. The performance of pFedGRP and other baseline methods under varying client counts is presented in Table 14.

Table 14: Extend Experiment Results on Cifar10 and the setting of Expt.1

FL methods	The number of total client count							
	5		10		20		30	
	AA↑	AR↓	AA↑	AR↓	AA↑	AR↓	AA↑	AR↓
FedAVG	21.24	39.45	23.79	36.90	25.14	35.55	26.40	34.28
pFedGraph	21.13	39.55	22.64	38.05	24.86	35.83	25.93	34.76
FedCIL	30.24	30.45	31.22	29.47	34.75	25.94	35.68	25.01
AF-FCL	28.65	32.03	29.94	30.75	34.13	26.56	35.18	25.50
TARGET	28.11	32.58	29.98	30.71	33.96	26.73	35.42	25.27
MFCL	27.96	32.72	29.14	31.55	33.01	27.67	35.27	25.42
LANDER	28.34	32.35	30.83	29.86	35.62	25.07	35.85	24.84
pFedGRP+ WGAN-GP	40.71	19.98	41.94	18.75	42.14	18.55	42.18	18.51
Centralized	60.69	0	60.69	0	60.69	0	60.69	0

As evidenced by the above tables, the performance of all FL methods improves as the number of clients increases. The performance improvement of the FCL method, which requires global information to construct the generative model, shows a significant positive correlation with the number of clients. Compared to other methods, the performance bottleneck of pFedGRP mainly originates from the performance limitations of its generative model, resulting in lower sensitivity to client scale expansion. Nevertheless, in horizontal comparisons, pFedGRP still demonstrates superior performance, with its comprehensive evaluation metrics consistently outperforming other FL methods.

For varying client participation ratios, within the baseline setting comprising 10 clients total, we examine scenarios where 0, 1, 2, or 4 clients are randomly missing in each FL round. The default baseline setting reflects 0 missing clients per FL round. Increasing the number of missing clients per round will reduce the convergence speed of the task model, further challenging the robustness of FL methods. Table 15 records the performance of pFedGRP and other FL methods with varying client participation ratios.

Table 15: Extend Experiment Results on Cifar10 and the setting of Expt.1

FL methods	The number of random missing client in each FL round							
	0		1		2		4	
	AA↑	AR↓	AA↑	AR↓	AA↑	AR↓	AA↑	AR↓
FedAVG	23.79	36.90	23.47	37.22	22.94	37.74	21.60	39.08
pFedGraph	22.64	38.05	22.55	38.14	22.37	38.32	21.98	38.71
FedCIL	31.22	29.47	31.18	29.51	30.98	29.71	30.50	30.18
AF-FCL	29.94	30.75	29.80	30.89	29.58	31.11	29.17	31.52
TARGET	29.98	30.71	29.03	31.65	28.86	31.82	28.30	32.39
MFCL	29.14	31.55	28.86	31.83	28.65	32.04	28.03	32.65
LANDER	30.83	29.86	28.54	32.15	28.57	32.12	28.19	32.50
pFedGRP+ WGAN-GP	41.94	18.75	41.92	18.70	41.80	18.88	41.55	19.14
Centralized	60.69	0	60.69	0	60.69	0	60.69	0

As evidenced by the above table, the performance of all FL methods deteriorates as the number of randomly missing clients per FL round increases. Similar to the findings from the previous experiment, compared with other methods, pFedGRP exhibits reduced sensitivity to client absence and demonstrates greater robustness.

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296 **D PSEUDOCODE FOR pFedGRP**
12971298 **Algorithm 1** : pFedGRP

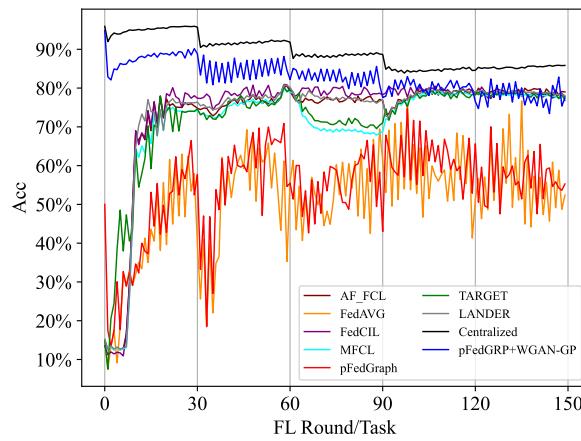
1300 1: **Input:** Client set $C = \{C_i | i = 1, \dots, n\}$ with n clients; Global Task model ω ; Local Generators $G_i^0 = \{G_{i,c}^0 | \forall c \in \mathcal{Y}_i\}$ for each client C_i with local label space \mathcal{Y}_i .
 1301 2: **Output:** Personalized global task models $\{\omega_{g,i}^t | \forall i \in [n]\}$ of n clients in each FL round $t \in \{1, \dots, T\}$ (i.e., the t -th task for each client).
 1302 3: Server random initializes ω , takes it as global task model ω_g^0 and n personalized global task
 1303 models $\{\omega_{g,i}^0 | \forall i \in [n]\}$, then sends $\omega_{g,i}^0, \omega_g^0$ to each client $C_i \in C$.
 1304 4: **for** each FL round $t = 1, \dots, T$ (i.e., the t -th task) **do**
 1305 5: // Client local training
 1306 6: **for** each client $C_i \in C$ in parallel **do**
 1307 7: Client C_i receives the personalized global task model $\omega_{g,i}^{t-1}$ and the averaged global task
 1308 model ω_g^{t-1} from server.
 1309 8: Client C_i obtains the local dataset D_i^t of task \mathcal{T}_i^t along with its data quality vector Y_i^t and
 1310 label space \mathcal{Y}_i^t .
 1311 9: Client C_i computes the generated data quality vector \tilde{Y}_i^t (as described in Sec 4.1.4).
 1312 10: Client C_i utilizes the local generator G_i^{t-1} , \tilde{Y}_i^t and $\omega_{g,i}^{t-1}$ to create the synthetic dataset
 1313 \tilde{D}_i^{t-1} (as described in Sec 4.1.3).
 1314 11: Client C_i updates ω_g^{t-1} on $\{\tilde{D}_i^{t-1} \cup D_i^t\}$ by optimizing Formula (2), then obtains the
 1315 local task model $\omega_i^{t,*}$.
 1316 12: Client C_i partially updates the sub-generators in G_i^{t-1} on D_i^t with $\omega_i^{t,*}$ (as described in
 1317 Sec 4.1.2), then obtains G_i^t and the updated sub-generators $\{G_{i,c}^t | c \in \mathcal{Y}_i^t\}$.
 1318 13: Client C_i computes the approximate local label distribution $P(\tilde{Y}_{C_i}^t) = \text{Norm}(\sum_{k=1}^t Y_i^k)$.
 1319 14: Client C_i sends $\omega_i^{t,*}, \{G_{i,c}^t | c \in \mathcal{Y}_i^t\}$ and $P(\tilde{Y}_{C_i}^t)$ to the server.
 1320 15: **end for**
 1321 16: // Server aggregating
 1322 17: **for** each client $C_i \in C$ **do**
 1323 18: Server synchronizes the local generator cache G_i^{t-1} to G_i^t with $\{G_{i,c}^{t,*} | c \in \mathcal{Y}_i^t\}$.
 1324 19: Server utilizes $G_i^t, P(\tilde{Y}_{C_i}^t)$ and $\omega_i^{t,*}$ to create the synthetic dataset \tilde{D}_i^t (as described in Sec
 1325 4.1.3).
 1326 20: Server optimizes Formula (3) on \tilde{D}_i^t then obtains the optimal personalized aggregated
 1327 weights $\{w_{i,u}^{t,*} | \forall u \in [n]\}$.
 1328 21: Server aggregates the personalized global task model $\omega_{g,i}^t \leftarrow \sum_{u=1}^n w_{i,u}^{t,*} \cdot \omega_u^{t,*}$.
 1329 22: Server aggregates the averaged global task model $\omega_g^t \leftarrow \frac{1}{n} \sum_{i=1}^n \omega_i^{t,*}$.
 1330 23: Server sends both $\omega_{g,i}^t, \omega_g^t$ to client C_i .
 1331 24: **end for**
 1332 25: **end for**

 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349

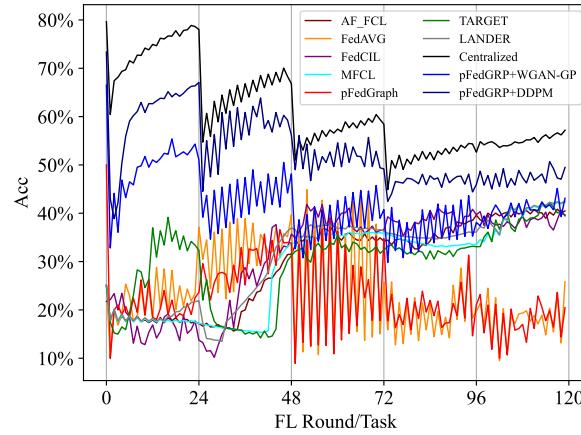
1350 **E ACC VARIATION CHARTS FOR EXPERIMENTS**
 1351

1352 **E.1 ACC VARIATION CHARTS FOR EXPT.1**
 1353

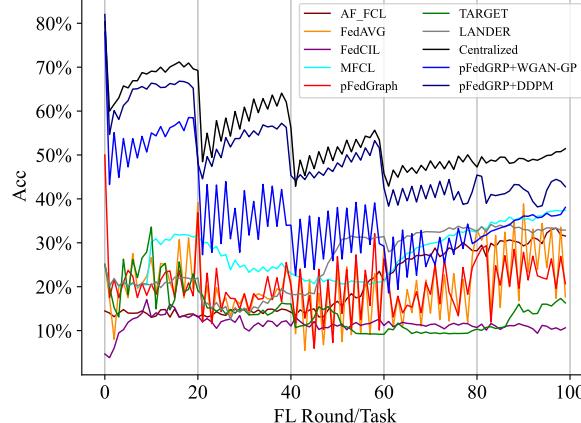
1354 In Expt.1, the gray vertical lines in the charts indicate the FL rounds (i.e., occurring every T/5 FL
 1355 rounds) at which the task-types in each client's task-loop change.



1370 Figure 5: Acc Variation Chart on F-MNIST for Expt.1
 1371



1372 Figure 6: Acc Variation Chart on Cifar10 for Expt.1
 1373



1387 Figure 7: Acc Variation Chart on ImageNet-10 for Expt.1
 1388

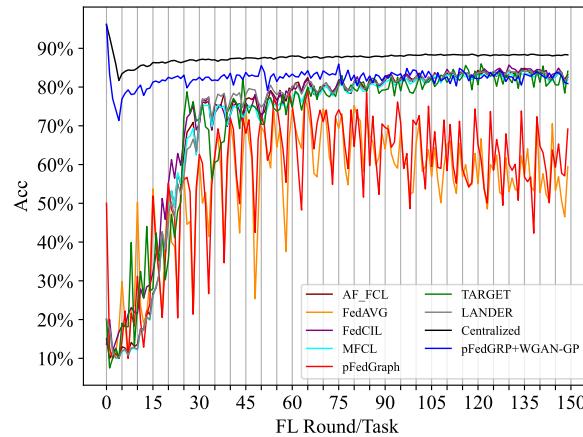
1404 E.2 ACC VARIATION CHARTS FOR EXPT.2
14051406 In Expt.2, the gray vertical lines in the charts indicate the first FL round (i.e., occurring every five FL
1407 rounds) of the new task-type cycle on each client.1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Figure 8: Acc Variation Chart on F-MNIST for Expt.2

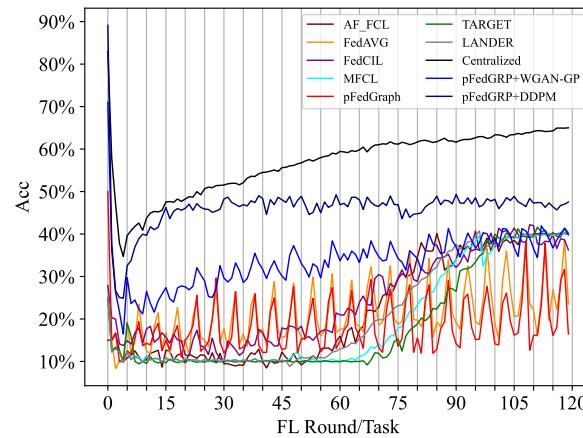


Figure 9: Acc Variation Chart on Cifar10 for Expt.2

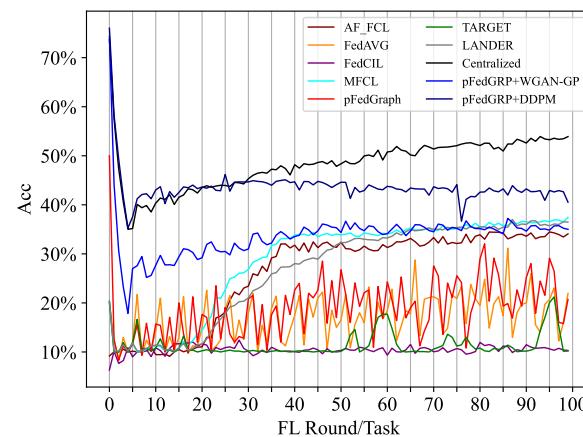
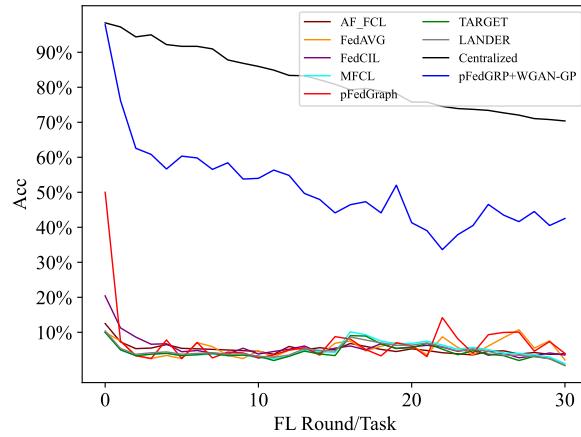
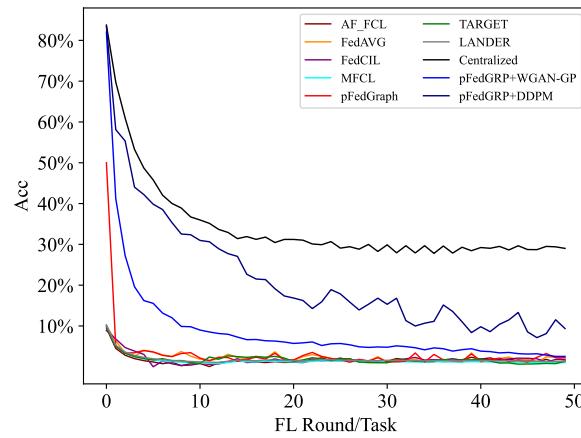
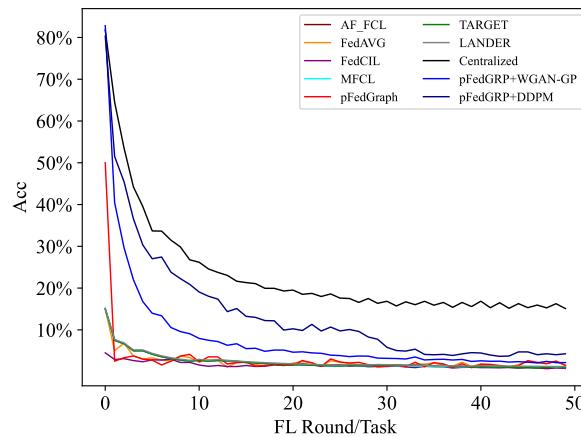
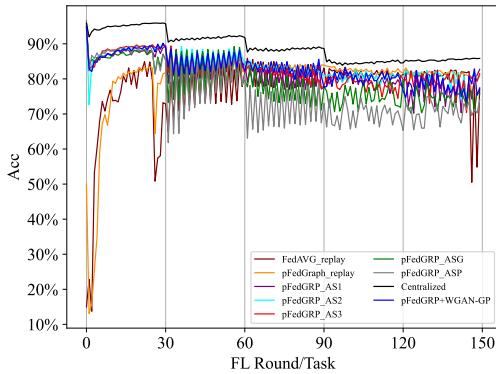
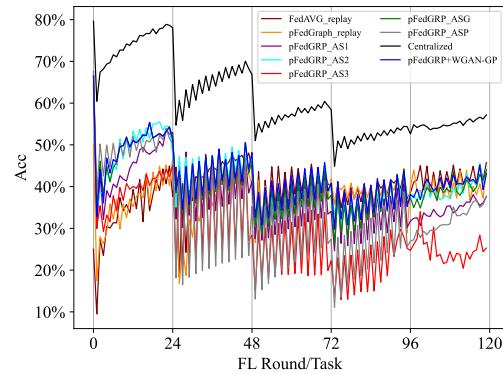
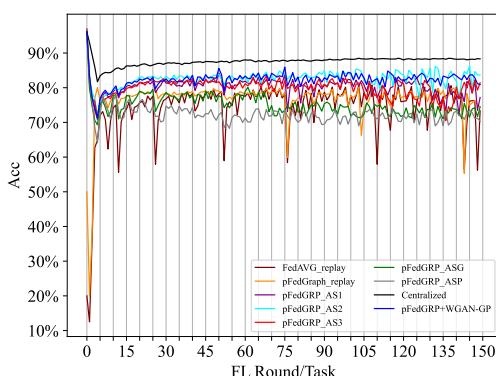
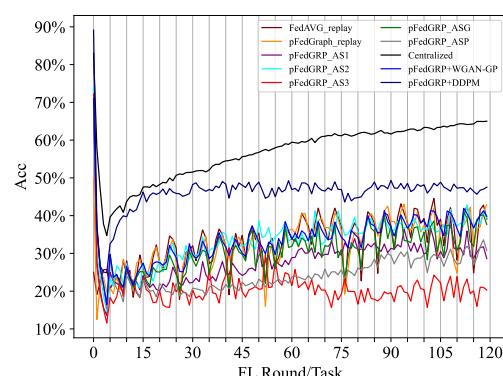


Figure 10: Acc Variation Chart on ImageNet-10 for Expt.2

1458 E.3 ACC VARIATION CHARTS FOR EXPT.3
14591460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474 Figure 11: Acc Variation Chart on EMNIST-ByClass for Expt.3
14751476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490 Figure 12: Acc Variation Chart on Cifar100 for Expt.3
14911492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
Figure 13: Acc Variation Chart on TinyImageNet-100 for Expt.3
1512

1512 E.4 ACC VARIATION CHARTS FOR ABLATION STUDIES (AS)
15131514 In Expt.1, the gray vertical lines in the charts indicate the FL rounds (i.e., occurring every T/5 FL
1515 rounds) at which the task-types in each client's task-loop change.
15161517 In Expt.2, the gray vertical lines in the charts indicate the first FL round (i.e., occurring every five FL
1518 rounds) of the new task-type cycle on each client.
15191520 Figure 14: Acc Variation Chart on F-MNIST for AS in Expt.1
1521
1522
1523
1524
1525
1526
1527
1528
1529
15301531 Figure 15: Acc Variation Chart on Cifar10 for AS in Expt.1
1532
1533
15341535 Figure 16: Acc Variation Chart on F-MNIST for AS in Expt.2
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
15461547 Figure 17: Acc Variation Chart on Cifar10 for AS in Expt.2
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

1566
1567

F LIMITATIONS AND FUTURE WORK

1568
1569

F.1 LIMITATIONS

1570
1571
1572
1573
1574
1575
1576
1577

Potential High Storage Space Requirement: To mitigate the larger single generator’s training burden caused by catastrophic forgetting through self-replay and to accelerate its updates for supporting real-time FCL, we propose a category-decoupled generative framework that assigns dedicated smaller sub-generators to each data category. Although the sub-generators utilize smaller existing generation models, they still require significant client storage space in highly diverse category scenarios. In summary, our generative replay architecture enhances training efficiency and reduces communication overhead (by transmitting only updated sub-generators) at the expense of storage space, thereby better supporting real-time FCL.

1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588

Potential Privacy Risks: In order to enable simultaneous real-time personalized aggregation while mitigating catastrophic forgetting, unlike the FCL methods that train the generator on the server based on the global task model, pFedGRP requires clients to train the generator locally and synchronize it with the server. Although our strategy—using smaller existing generative models as sub-generators and reducing their update frequency to accelerate generator updates—can indirectly increase generative noise, servers could still infer private information from the generated data, and this limitation is inherent to all FCL methods that train generators on the client side. To address this issue, using the existing generative model with integrated differential privacy technology as sub-generators could be a potential solution. It is worth noting that pFedGRP confines potential privacy leakage to the server side by restricting the sub-generator’s transmission to a unidirectional flow (client-to-server only), thereby preventing leakage to other clients.

1589
1590

F.2 FUTURE WORK

1591
1592
1593
1594
1595

For Future Work, there are two possible directions for expansion:

1596
1597
1598
1599

Firstly, unlike existing FCL methods that rely on generative replay, pFedGRP imposes no architectural constraints on the generator or task model. This flexibility has the potential to be extended to diverse applications beyond image classification, such as regression mission and reinforcement learning scenarios.

1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Secondly, to address the limitation of multiple sub-generators potentially consuming excessive client storage space, more efficient approaches can be explored to balance training speed and storage requirements.