
VideoPoet: A Large Language Model for Zero-Shot Video Generation

Dan Kondratyuk * 1 Lijun Yu * 1 2 Xiuye Gu * 1 José Lezama * 1 Jonathan Huang * 1 Grant Schindler 1
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Abstract
We present VideoPoet, a model for synthesizing
high-quality videos from a large variety of con-
ditioning signals. VideoPoet employs a decoder-
only transformer architecture that processes mul-
timodal inputs – including images, videos, text,
and audio. The training protocol follows that of
Large Language Models (LLMs), consisting of
two stages: Pretraining and task-specific adapta-
tion. During pretraining, VideoPoet incorporates
a mixture of multimodal generative objectives
within an autoregressive Transformer framework.
The pretrained LLM serves as a foundation that is
adapted to a range of video generation tasks. We
present results demonstrating the model’s state-of-
the-art capabilities in zero-shot video generation,
specifically highlighting the generation of high-
fidelity motions.

1. Introduction
Recently, there has been a surge of generative video mod-
els capable of a variety of video creation tasks. These in-
clude text-to-video (Zhang et al., 2023a; Singer et al., 2022),
image-to-video (Yu et al., 2023d), video-to-video styliza-
tion (Chen et al., 2023b; Chai et al., 2023; Voleti et al.,
2022), and video editing (Ceylan et al., 2023; Wang et al.,
2023b; Geyer et al., 2023) among other video applications.
Most existing models employ diffusion-based methods for
video generation. These video models typically start with a
pretrained image model, such as Stable Diffusion (Rombach
et al., 2022; Podell et al., 2023), that produces high-fidelity
images for individual frames, and then fine-tune the model
to improve temporal consistency across video frames.
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While Large Language Models (LLMs) are commonly used
as foundation models across various modalities including
language (Brown et al., 2020), code (Li et al., 2023; OpenAI,
2023), audio (Rubenstein et al., 2023), speech (Agostinelli
et al., 2023), and robotics (Driess et al., 2023; Zitkovich
et al., 2023), the diffusion model remains the predominant
approach for video generation. Although early research has
demonstrated the effectiveness of LLMs in text-to-image
generation, e.g., DALL-E (Ramesh et al., 2022), Parti (Yu
et al., 2022) and (Ding et al., 2021), and text-to-video, e.g.,
CogVideo (Hong et al., 2022)), language models have not
reached a level of quality on par with video diffusion models
in tasks like text-to-video generation as shown in previous
studies (Nash et al., 2022; Villegas et al., 2022). In contrast
to training exclusively for text-to-video tasks, the generative
model of LLMs in the language domain emphasizes a large
pretraining stage to learn a foundation (Bommasani et al.,
2021) by examining pretraining tasks that extend beyond
text-to-video generation.

A notable advantage of employing LLMs in video genera-
tion lies in the ease of integrating existing LLM frameworks.
This integration allows for reusing LLM infrastructure and
leverages the optimizations our community has developed
over many years for LLMs, including optimizations in learn-
ing recipes for model scaling (Brown et al., 2020; Chowdh-
ery et al., 2022), training and inference infrastructure (Du
et al., 2022), hardware, among other advancements. This
couples with their flexibility in encoding many diverse tasks
in the same model (Raffel et al., 2020), which stands in con-
trast to most diffusion models where architectural changes
and adapter modules are the dominant approach used to
adapt the model to more diverse tasks (Zhang et al., 2023b).

In this paper, we exploit language models for video genera-
tion, following the canonical training protocols of LLMs in
the language domain. We introduce VideoPoet, a language
model for video generation. VideoPoet employs a decoder-
only LLM architecture (Anil et al., 2023; OpenAI, 2023)
that admits image, video, and audio modalities as discrete
tokens, each produced by their respective tokenizer.
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VideoPoet: A Large Language Model for Zero-Shot Video Generation

Figure 1: VideoPoet Overview: a versatile video generator that conditions on multiple types of inputs and performs a
variety of video generation tasks.

The training process of VideoPoet consists of two stages:
(1) pretraining and (2) task-adaptation. During pretraining,
VideoPoet incorporates a mixture of multimodal pretraining
objectives within an autoregressive transformer framework.
After pretraining, the model functions as a versatile multi-
task video generation model such as text-to-video, image-to-
video, video editing and video-to-video stylization. These
capabilities are inherently integrated into a single LLM,
rather than relying on a separate generative model controlled
by text prompts (Tang et al., 2023). During subsequent task-
adaptation, the pretrained model can be further fine-tuned
either to enhance its generation quality on the training tasks
or to perform new tasks.

Experiments show VideoPoet’s state-of-the-art capabilities
in generating videos with large and high-fidelity motions.
Through the powerful capabilities of the transformer archi-
tecture, VideoPoet can be straightforwardly trained on a
multi-task, multimodal generative objective, allowing for
generating consistent and realistic motion driven by text or
other prompts. Furthermore, VideoPoet can synthesize co-
herent long videos of up to 10 seconds by autoregressively
extending the content, conditioned on the last second of the
generated video.

We also demonstrate that VideoPoet is capable of zero-shot
video generation. We use the term “zero-shot video gen-
eration” as VideoPoet processes new text, image, or video
inputs that diverge from the training data distribution. Fur-
thermore, VideoPoet handles new tasks not included in its
training. For example, VideoPoet is able to perform new
editing tasks by sequentially chaining training tasks together.
The main contributions of this work are:

• A method for training a Large Language Model (LLM)
specifically for video generation tasks, utilizing tokenized
video data that incorporates both text-paired and unpaired

video data.
• An approach to video super-resolution that increases spa-

tial resolution within the latent token space using a bidirec-
tional transformer with efficient windowed local attention.

• Evaluations and demonstrations to highlight VideoPoet’s
competitive and state-of-the-art performance, especially
in generating realistic and interesting videos with motion.

2. Related Work
Video diffusion models. Recently, numerous video gen-
eration methods use diffusion-based methods for text-to-
video (Ho et al., 2022a; Blattmann et al., 2023b; Zhang
et al., 2023a; Blattmann et al., 2023a; He et al., 2023; Zhou
et al., 2022; Wang et al., 2023a; Ge et al., 2023; Wang et al.,
2023d;c; Singer et al., 2022; Zhang et al., 2023a; Zeng et al.,
2023) and video-to-video editing (Liew et al., 2023; Feng
et al., 2023; Esser et al., 2023; Chen et al., 2023b). As
video diffusion models are usually derived from text-to-
image diffusion models (Ramesh et al., 2021; Saharia et al.,
2022), additional tasks and modalities are added via infer-
ence tricks (Meng et al., 2021), architectural changes (Esser
et al., 2023; Liew et al., 2023) and adapter layers (Zhang
et al., 2023b; Guo et al., 2023). Although these models are
composable after training, they are not trained end-to-end in
a unified framework. Our multitask pretraining strategy in a
single model improves performance and provides zero-shot
video generation capabilities.

Language models for video and image generation.
Video language models are typically derived from the gen-
eral family of transformer-based language models (Vaswani
et al., 2017; Raffel et al., 2020) that easily combine multi-
ple tasks in pretraining and demonstrate powerful zero-shot
capabilities. Image generation language models can gener-
ate images autoregressively (Yu et al., 2022) or via masked
prediction (Chang et al., 2022; 2023). Both families have
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Figure 2: Sequence layout for VideoPoet. We encode all modalities into the discrete token space, so that we can directly
use large language model architectures for video generation. We denote special tokens in <> (see Table 4 for definitions).
The modality agnostic tokens are in darker red; the text related components are in blue; the vision related components are in
yellow; the audio related components are in green. The left portion of the layout on light yellow represents the bidirectional
prefix inputs. The right portion on darker red represents the autoregressively generated outputs with causal attention.

been extended to text-to-video (Hong et al., 2022; Villegas
et al., 2022; Hu et al., 2023; Yan et al., 2021) using paired
data. While other text-to-video work with transformers only
leverages video-text pairs for training, we also leverage un-
paired videos (without text) and the same video for different
tasks. Since video language models can flexibly incorpo-
rate numerous tasks (Yu et al., 2023a; Nash et al., 2022),
including video-to-video, we extend this family of work to
text- and multimodal-conditioned tasks in this work with a
synergistic pretraining strategy across various tasks.
Pretraining task design in LLMs. As language models
can easily incorporate multiple training tasks, task selection
is an important area of research. GPT-3 (Brown et al., 2020)
and PaLM (Chowdhery et al., 2022) demonstrate that train-
ing LLMs on diverse tasks leads to positive scaling effects
on zero- and few-shot tasks. Other approaches show that
masking approaches are a valuable learning target (Hoff-
mann et al., 2022; Yu et al., 2023a;c). As the model size
grows, training data must grow as well (Hoffmann et al.,
2022) to maintain similar performance. Our pretraining
strategy enables using the same video for multiple train-
ing tasks even without paired text. This design facilitates
training on a large quantity of video-only examples, thereby
decreasing the demand for video-text pairs.

3. Model Overview
We propose an effective method for video generation and
related tasks from different input signals by leveraging large
language models. Our model consists of three components:
(1) modality-specific tokenizers, (2) a language model back-
bone (Fig. 2), and (3) a super-resolution module (Fig. 3).
The tokenizers map input data – i.e. image pixels, video
frames, and audio waveforms – into discrete tokens in a
unified vocabulary. The visual and audio tokens are flat-
tened into a sequence of integers. Next, the LLM accepts
these tokens as input along with text embeddings, and is
responsible for generative multi-task and multimodal mod-
eling. As illustrated in Fig. 2, VideoPoet conditions on text

embeddings, visual tokens, and audio tokens, and autore-
gressively predicts visual and audio tokens. Subsequently,
the super-resolution module increases the resolution of the
video outputs while refining visual details for higher quality.

3.1. Tokenization
We employ the MAGVIT-v2 (Yu et al., 2023c) tokenizer
for joint image and video tokenization, and the Sound-
Stream (Zeghidour et al., 2021) tokenizer for audio. Visual
and audio vocabularies are concatenated into a unified vo-
cabulary. The text modality is represented by embeddings.
Image and video tokenizer. Visual tokenizer is key to
generating high-quality video content, often determining
the upper limit of achievable video generation quality (Yu
et al., 2023c). After analyzing existing tokenizers (Esser
et al., 2020; Villegas et al., 2022; Yu et al., 2023a;b), we
choose the MAGVIT-v2 (Yu et al., 2023c) tokenizer due
to its performance in visual quality and high compression
capabilities, which effectively reduce the sequence length
required by the LLM, thereby facilitating more efficient and
effective learning. Specifically, a video clip is encoded and
quantized into a sequence of integers, with a decoder map-
ping them back to the pixel space. MAGVIT-v2 tokenizes
17-frame 2.125-second 128×128 resolution videos sampled
at 8 fps to produce a latent shape of (5, 16, 16), which is
then flattened into 1280 tokens, with a vocabulary size of
218. We also tokenize videos into a portrait aspect ratio at
128×224 resolution, producing a latent shape of (5, 28, 16),
or 2240 tokens.

We enforce causal temporal dependency, which facilitates
the generation of longer videos. To jointly represent images
and videos, we encode the initial frame of a video or a static
image into tokens with a consistent shape of (1, 16, 16). We
use the COMMIT (Yu et al., 2023a) encoding scheme to
tokenize the inpainting and outpainting tasks.
Audio tokenizer. We tokenize audio clips with a pre-
trained SoundStream (Zeghidour et al., 2021) tokenizer. We
embed 2.125 seconds of audio to produce 106 latent frames
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Figure 3: Custom transformer architecture for video
super-resolution.
with a residual vector quantizer (RVQ) of four levels. To im-
prove audio generation performance, we transpose the clip
before flattening so that the model predicts the full audio
clip at each RVQ granularity level before moving on to the
finer grained levels. Finally, each RVQ level has a disjoint
vocabulary with each level containing 1,024 codes. This
results in a combined audio vocabulary size of 4,096 codes.
Text embedding as input. Pretrained text representations,
in general, outperform training our model by learning text
tokens from scratch. We use pretrained language embed-
dings from a frozen T5 XL encoder (Raffel et al., 2020).
For tasks with text guidance, such as text-to-video, T5 XL
embeddings are projected into the transformer’s embedding
space with a linear layer.

3.2. Language Model Backbone
After converting the image, video, and audio modalities into
discrete tokens within a shared vocabulary, we can directly
leverage a language model to generate videos and audios
in the token space. We use a prefix language model with a
decoder-only architecture as the backbone. By constructing
different patterns of input tokens to output tokens during
training, we can control the tasks the model is able to per-
form as explained in Section 4.

3.3. Super-Resolution
Generating high-resolution (HR) videos with an autoregres-
sive transformer entails heavy computational costs due to
the increase in sequence length. To illustrate this with an
example, the video tokenizer of Section 3.1 operating on

a 17 × 896 × 512 video produces a sequence of 35, 840
tokens, making autoregressive sampling highly impractical.
Aiming at efficient and high-quality generative video upsam-
pling, we develop a custom spatial super-resolution (SR)
non-autoregressive video transformer (Yu et al., 2023a) to
operate in token space on top of the language model out-
put. To mitigate the computational requirements of the very
long sequences involved, and in particular the quadratic
memory of the self-attention layers, our design incorporates
windowed local attention (Gupta et al., 2022). Specifically,
our SR transformer is composed of blocks of three trans-
former layers, each of which performs self-attention in a
local window aligned with one of three axes (Tu et al., 2022):
spatial vertical, spatial horizontal and temporal. The cross-
attention layers attend to the low-resolution (LR) token se-
quence and are also divided into local windows, isomorphic
to those of the self-attention layers. All blocks also include
cross-attention to T5 XL text embeddings. See Fig. 3 for a
schematic representation of the custom transformer archi-
tecture.

Similar to (Yu et al., 2023c), we train the SR transformer
using token factorization (with k = 2 factors) to account for
the large vocabulary size. The LR token sequences are ob-
tained by tokenizing bicubic-downsampled versions of the
ground truth videos and applying noise augmentation (Ho
et al., 2022a) in the discrete latent space. Specifically, we
randomly resample the value of a random subset of the LR
tokens and independently drop the LR condition and text
embeddings for 10% of the training samples. During in-
ference, we use non-autoregressive sampling (Chang et al.,
2022; Yu et al., 2023a) with classifier-free guidance inde-
pendently on both the LR condition and the text embeddings
(Brooks et al., 2023). We use a cascade of two 2× stages to
generate videos of 896× 512 resolution from the 224× 128
base output of VideoPoet. More implementaiton details can
be found in the appendix.

4. LLM Pretraining for Generation
4.1. Task Prompt Design
We design a pretraining task mixture, each with a defined
prefix input and output. The model conditions on the prefix,
applying the loss solely to the output. Fig. 2 shows a typi-
cal input-output sequence layout. For each task, the input
sequence may include three types of values: text embed-
dings (T5), visual tokens(MAGVIT-v2), and audio tokens
(SoundStream). The model outputs two types of tokens:
visual and audio tokens. To facilitate training, VideoPoet
employs special tokens, as listed in Appendix Table 4. In
the following, we describe key designs for the task prompts.

Pretraining tasks. We consider the following tasks. Un-
conditioned video generation: Generate video frames with-
out conditioning on an input. Text-to-video (T2V): Gen-
erate video from a text prompt. Video future prediction
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(FP): Given an input video of variable length, predict future
frames. Image-to-video (I2V): Given the first frame of a
video as an input image, predict the future frames. Video
inpainting/outpainting (Painting): Given a masked video,
predict the video with the masked contents filled in. Video
stylization: Given text, optical flow, and depth, predict the
video frames (Section 4.1). Audio-to-video: Given an input
audio waveform, predict the corresponding video. Video-
to-audio: Given an input video, predict the corresponding
audio waveform. Audio-video continuation (AVCont) given
an input frame and its audio, predict the rest of the video
and audio.

To indicate the type of task, we condition on the <task>
token, which has a unique value for each unique output.
We note that not all input variations need a new <task>;
the model adapts to different context signals for identical
outputs. For instance, text-to-video, image-to-video, and
unconditioned video generation share the same <task>. If
a modality is absent in a task, related input/output tokens
and special tokens are excluded, shortening the sequence.

Representing an image as a video. In text-to-image pre-
training, we omit the <eos> and <eov o> tokens from the
input sequence, enabling continuous token generation for
inference of longer videos. This approach blurs the bound-
ary between video and image generation tasks, enhancing
cross-modality information sharing. This design leads to
the prediction of higher-quality initial frames and reduces
errors and artifacts in subsequent frames.

Video token format. We generate video tokens at two
resolutions, 128×128 and 128×224, each available in two
lengths: 17 frames and 41 frames, both encoded at 8 frames
per second. Special conditioning tokens are used to signal
the desired resolutions and durations for video generation.
Images are a special case of a 1-frame video, which we
tokenize at 128×128 resolution.

Video stylization. For video stylization, we adopt a
method motivated by (Zhang et al., 2023b; Chen et al.,
2023b; Esser et al., 2023), predicting videos from text, opti-
cal flow, and depth signals. The training task for stylization
is to reconstruct the ground truth video from the given opti-
cal flow, depth, and text information, but during inference,
we apply optical flow and depth estimation on an input
video but then vary the text prompt to generate a new style,
e.g. “cartoon.” Similar to (Esser et al., 2023), text dictates
the output “content” or appearance, while optical flow and
depth guide its “structure.”

4.2. Training Strategy
For multi-task training, we use the Alternating Gradient
Descent (AGD) method (Akbari et al., 2023) to train videos
of varying lengths. We design the tasks in the AGD format
resulting in a near 0% padding ratio, lower than that of the
packing approach (Raffel et al., 2020). This is accomplished

by grouping tasks by sequence length and alternately sam-
pling one group at each iteration. Since sequence lengths
are fixed and vary significantly across tasks, e.g., first frame
and long video generation, we achieve efficient training with
minimal padding.

We find that sampling from image and video datasets uni-
formly across time can lead to suboptimal results, as training
on images can enhance the model’s understanding of ob-
jects but does not capture any motions that are represented
in video data. Thus, we devise a two-stage pretraining strat-
egy, where we augment our sampling weights to sample
image data 90% of the time and video data 10% of the time
for the first 25% iterations of training. We then switch to
training on video 90% and image 10% for the remaining
iterations.

We fine-tune our pretrained model for enhanced perfor-
mance on specific tasks or for new task adaptation, such as
text-to-video and image-to-video tasks, using a high-quality
data subset. This results in improved generation quality,
consistent with Zhou et al. (2023), and addresses decoding
collapse issues, characterized by repetitive token predictions.
Such fine-tuning not only diversifies outputs but also allows
for a higher classifier-free guidance scale (Ho & Salimans,
2022), boosting overall quality.

5. Experiments
5.1. Experimental Setup

Training tasks. We train the model on a mixture of pre-
training tasks as detailed in Section 4.1. We finetune a
model on a high-quality training subset for text-to-video
evaluations, as discussed in Section 4.2. Unless explicitly
stated, we do not finetune on specific tasks for evaluations.
Datasets. We train on a total of 1B image-text pairs and
∼270M videos (∼100M with paired text, of which ∼50M
are used for high-quality finetuning, and ∼170M with paired
audio) from the public internet and other sources, i.e. around
2 trillion tokens across all modalities. The data has been
filtered to remove egregious content and sampled to improve
contextual and demographic diversity.
Evaluation protocol. We employ a zero-shot generation
evaluation protocol, as the model has not been trained on
the training data of target benchmarks. Specifically, the
evaluation benchmark includes two text-to-video generation
datasets, MSR-VTT (Xu et al., 2016) and UCF-101 (Soomro
et al., 2012), as well as the frame prediction task on Kinetics
600 (K600) (Carreira et al., 2018), in which the first 5 frames
are provided as the condition to predict the next 11 frames.
We also include inpainting and outpainting tasks (Yu et al.,
2023a) on Something-Something V2 (SSv2) (Goyal et al.,
2017).

We adopt widely used metrics such as Fréchet Video Dis-
tance (FVD) (Unterthiner et al., 2018), CLIP similarity
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Table 1: Pretraining task analysis on 300M models. The top rows list models with 300M parameters, trained on a
subset of the data, and are comparable to each other. The last row shows an 8B model trained on the entire dataset. T2I
(text-to-image), T2V (text-to-video), FP (frame prediction), Painting (inpainting/outpainting), Uncond (unconditional
generation), AVCont (audio-video continuation), and SSL (self-supervised learning).

Method

Pretraining Tasks Zero-shot Evaluation Benchmark

T2I T2V Uncond FP Painting AVCont
T2V FP Inpainting Outpainting

MSR-VTT UCF101 K600 SSv2 SSv2
CLIPSIM ↑ FVD ↓ FVD ↓ FVD ↓ FVD ↓

T2V ✓ 0.244 822 759 2,333 2,310
T2V+I ✓ ✓ 0.247 1,025 794 2,118 1,916
SSL ✓ ✓ ✓ ✓ 0.226 1,742 700 1,093 1,500
NO T2I ✓ ✓ ✓ ✓ ✓ 0.235 1,008 755 95 389
ALL ✓ ✓ ✓ ✓ ✓ ✓ 0.240 1,085 729 127 636

ALL (8B) ✓ ✓ ✓ ✓ ✓ ✓ 0.305 355 687 4.7 13.76

score (Wu et al., 2021), and Inception Score (IS) (Saito
et al., 2020) for evaluation. Note that the specific met-
rics and evaluation methods vary across different datasets.
Detailed information on these variations can be found in
Appendix A.5.4. We include examples of the generated
videos in the supplementary materials.

5.2. Pretraining Task Analysis
We investigate the learning capabilities of different combi-
nations of pretraining tasks using a model with 300 million
parameters. All task combinations are trained using a learn-
ing rate of 10−3 for the same number of steps (300k) with a
batch size of 1024.

For the analysis of pretraining tasks, we consider text-to-
video (T2V), text-to-image (T2I), and four self-supervised
learning (SSL) tasks: frame prediction (FP), central inpaint-
ing and central outpainting (Painting) (Yu et al., 2023a)
and audio-video continuation (AVCont) where the model is
provided with the first frame and its corresponding audio
to predict the subsequent 16 frames and matching audio.
For each video task, we uniformly select 20% of training
samples from a random subset of 50 million videos. For
the text-to-image task, we randomly sample 50 million text-
image pairs from our training dataset. For tasks involving
audio, our sampling is exclusive to videos that contain an
audio track.

The evaluation results are presented in Table 1. We assess a
model across the four tasks within the zero-shot evaluation
benchmark: the T2V task on MSR-VTT (Xu et al., 2016)
and UCF 101 (Soomro et al., 2012), the FP on K600 (Car-
reira et al., 2018), and central inpainting and outpainting on
SSv2 (Goyal et al., 2017). In these experiments, we employ
a single model to perform all the tasks. The model is not
trained on the training data of these evaluation datasets, and
thus it is a zero-shot evaluation.

The top rows of Table 1 depict each pretraining task con-
figuration of the 300 million parameter model, which are
comparable in their setups. Our evaluation benchmarks
span diverse visual domains, posing a challenge to achiev-

Table 2: Comparison on zero-shot text-to-video bench-
marks. See Appendix A.5.4 for evaluation details.

Model MSR-VTT UCF-101
CLIPSIM FVD FVD IS

CogVideo (EN) (2022) 0.2631 1294 702 25.27
MagicVideo (2022) - 998 655 -
Video LDM (2023b) 0.2929 - 551 33.45
ModelScopeT2V (2023a) 0.2930 550 - -
InternVid (2023d) 0.2951 - 617 21.04
VideoFactory (2023c) 0.3005 - 410 -
Make-A-Video (2022) 0.3049 - 367 33.00
Show-1 (2023a) 0.3072 538 394 35.42
VideoPoet (Pretrain) 0.3049 213 355 38.44
VideoPoet (Task adapt) 0.3123 - - -

ing consistent improvement across all of them. Nevertheless,
incorporating all pretraining tasks results in the best overall
performance, on average, across all evaluated tasks. Ad-
ditionally, the significant disparity observed in the “SSL”
row suggests the limitations of self-supervised training and
underscores the necessity for text-paired data during train-
ing. The last row, “ALL (8B)”, is the model with 8 billion
parameters, trained on the pretraining tasks as discussed in
Section 3 and utilized significantly more compute.

5.3. Comparison with the State-of-the-Art

Text-to-Video (T2V). Table 2 shows zero-shot text-to-
video evaluation results on the common MSR-VTT (Xu
et al., 2016) and UCF-101 (Soomro et al., 2012) datasets.
Our model performs favorably in terms of CLIP similarity
and FVD scores on MSR-VTT and UCF-101. The pre-
trained foundation model already achieves competitive per-
formance on all metrics. After finetuned on high-quality
subset of text-video pairs, VideoPoet achieves even better
CLIPSIM on MSR-VTT. More details on the evaluation
settings can be found in Appendix A.5.4.

Human Evaluations with Text-to-Video (T2V). We an-
alyze VideoPoet using human raters and compare with
other recent models: Show-1 (Zhang et al., 2023a),
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Figure 4: Human evaluation results on text-to-video
(T2V) generation. Green and pink bars represent the pro-
portion of trials where VideoPoet was preferred over or less
preferred to an alternative, respectively.

VideoCrafter (Chen et al., 2023a), Phenaki (Villegas et al.,
2022), Pika (Pika, 2023), Gen2 (Runway, 2023) and
Lumiere (Bar-Tal et al., 2024). Show-1, VideoCrafter,
Pika, Gen2 and Lumiere are video diffusion models while
Phenaki is a token-based model using masked token model-
ing (Chang et al., 2022). We ran the most up-to-date model
versions as of January 2024.

We first develop a unified evaluation prompt bank consisting
of ∼ 250 selected prompts from a variety of categories and
styles. Our prompts are sourced from published prompt sets
(e.g., Show-1, Video LDM (Blattmann et al., 2023b)). We
select the prompts prior to generating videos and fix these
choices after initial selection. We also select preferentially
for prompts that contain an explicit mention of motion so
that the evaluation would not be biased for models that gen-
erate high quality videos that are almost still (e.g., “person
jumping off of a chair” over “person standing on a chair”).
Note that due to time constraints, our experiments for Pika
and Gen2 were run on a subset of 50 prompts due to having
to submit these manually via their web interface. These 50
prompts were pre-selected (before any evaluations were run)
so as to be representative of the entire set.

For this user study we use the fine-tuned version of
VideoPoet as discussed in Section 4.2 and compare against
alternative models in a side-by-side fashion for each prompt.
Raters are shown videos generated by two models at a time
(in randomized order so as to not bias raters). Not all meth-
ods generate videos at the same size or aspect ratio, and
we resize each video to a fixed area while maintaining its
original aspect ratio. Raters are then asked to compare the
videos along 5 dimensions and for each dimension to report
which video is better. The 5 dimensions are: (1) text fidelity
(which video follows the text prompt most faithfully), (2)
video quality, (3) motion “interestingness”, (4) motion real-
ism, and (5) temporal consistency. Raters are required to go
through a collection of training examples for each of these
5 dimensions before they begin.

Our findings are summarized in Fig. 4, where green and
pink bars represent the proportion of trials where VideoPoet
was preferred or less preferred over an alternative, respec-
tively. We observe that VideoPoet outperforms all baseline
models along almost all of the dimensions. More specifi-
cally, VideoPoet achieves significant wins along the motion
categories (motion interestingness and realism, temporal
consistency) and Lumiere (Bar-Tal et al., 2024) which is dif-
fusion based and concurrent to our work, is the only model
that outperforms VideoPoet on Video Quality.

5.4. LLM’s Diverse Capabilities in Video Generation

This subsection presents several capabilities we discover
from the pretrained VideoPoet, shedding light on the LLM’s
promising potential in video generation. By combining the
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Figure 5: 10-Second long video generation example. By
predicting 1-second video segments from an initial 1-second
clip, VideoPoet can iteratively generate videos of extended
lengths.

Animated from historical photo

Animated from painting

Figure 6: Examples of videos animated from still images
plus text prompts tailored to each initial image.

flexibility of our autoregressive language model to perform
diverse tasks such as extending video in time, inpainting,
outpainting, and stylization, VideoPoet accomplishes multi-
ple tasks in a unified model.
Coherent long video generation and image-to-video. A
benefit of an decoder-based language model is that it pairs
well with autoregressively extending generation in time. We
present two different variants: Generating longer videos
and converting images to videos. Encoding the first frame
independently allows us to convert any image into the initial
frame of a video without padding. Subsequent frames are
generated by predicting remaining tokens, transforming the
image into a video as shown in Fig. 61.

This results in the capability to generate videos longer than
10 seconds or to allow users to iteratively extend video clips

1For image-to-video examples we source images from Wikime-
dia Commons: https://commons.wikimedia.org/wiki/Main Page

Animated from still image

Stylized video
Prompt: An oil painting of a snowman with a red hat

opening their mouth to yawn

Figure 7: Example of zero-shot video editing via task
chaining (text conditioned image-to-video and stylization)

based on previously generated video, and produces tempo-
rally consistent videos without significant distortion. Such
capabilities are rarely observed in contemporary diffusion
models.
Zero-shot video editing and task chaining. With the
multi-task pretraining, VideoPoet exhibits task generaliza-
tion that can be chained together to perform novel tasks.
We show the model can apply image-to-video animation
followed by video-to-video stylization in Fig. 7. In the Ap-
pendix, Fig. 10 shows another example applying video-to-
video outpainting, followed by editing them with additional
video-to-video effects. At each stage, the quality of the out-
put is sufficient to remain in-distribution (i.e. teacher forc-
ing) for the next stage without noticeable artifacts. These
capabilities can be attributed to our multimodal task de-
sign within an LLM transformer framework that allows for
modeling multimodal content using a single transformer
architecture over a unified vocabulary.
Zero-shot video stylization. Stylization results are pre-
sented in Appendix A.4 where the structure and text are used
as prefixes to guide the language model. Unlike other styl-
ization methods that employ adapter modules such as cross-
attention networks (Zhang et al., 2023b) or latent blend-
ing (Meng et al., 2021), our approach stylizes videos within
an LLM as one of several generative tasks.
3D structure, camera motion, visual styles. Even though
we do not add specific training data or losses to encourage
3D consistency, our model can rotate around objects and
predict reasonable visualizations of the backside of objects.
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Additionally, with only a small proportion of input videos
and texts describing camera motion, our model can use
short text prompts to apply a range of camera motions to
image-to-video and text-to-video generations (see Fig. 11).

5.5. Limitations

Despite VideoPoet demonstrating highly competitive perfor-
mance of LLMs relative to state-of-the-art models, certain
limitations are still observed. For example, the RGB frame
reconstruction from compressed and quantized tokens place
an upper bound on the generative model’s visual fidelity.
Second, the per-frame aesthetic biases in static scenes does
not match the best baseline. This difference is largely due
to a choice of training data, where we focus our training
on more natural aesthetics and excluded some sources con-
taining copyrighted images, such as LAION (Schuhmann
et al., 2022), which is commonly used in other work. Finally,
small objects and fine-grained details, especially when cou-
pled with significant motions, remains difficult within the
token-based modeling.

6. Conclusion
VideoPoet demonstrates the potential of a large language
model that is trained on discrete visual, text and audio to-
kens, in generating videos of compelling state-of-the-art
quality. A particular strength of our model lies in its ability
to generate high-fidelity, large, and complex motions. Our
large language model formulation benefits from training
across a variety of multimodal tasks with a unified architec-
ture and vocabulary. Consequently, the pretrained model is
adept at multi-task video creation, and serves as a foundation
for a diverse variety of video generation related capabilities,
including multiple forms of editing.
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A. Appendix
A.1. Responsible AI and Fairness Analysis

We evaluate whether the generated outputs of our model are fair regarding protected attributes such as (1) Perceived Age (2)
Perceived Gender Expression (3) Perceived Skin Tone. We construct 306 prompts with template — “a {profession or people
descriptor} looking {adverb} at the camera” with “profession” being crawled from the US Bureau of Labor and Statistics
and “people descriptors” including emotion state, socioeconomic class, etc. The “adverb” is used to generate semantically
unchanged prompt templates such as “straightly” or “directly”. We generate 8 videos for each prompt and for each generated
video we infer an approximation of the expressed attribute regarding the 3 protected attributes. Across 10 prompts that have
the same semantic meaning but different “adverbs”, we observe our outputs generally introduced a stronger distribution shift
toward “Young Adults” (age 18-35), “Male” and “Light Skin Tone”. However, we observe changing the “adverb” in the
prompt template can significantly alter the output distributions. Therefore, our model can be prompted to produce outputs
with non-uniform distributions across these groups, but also possess the ability of being prompted to enhance uniformity,
though prompts are semantically unchanged. While research has been conducted in the image generation and recognition
domain (Zhang et al., 2023c; Schumann et al., 2021; 2023; Chiu et al., 2023), this finding highlights the importance of
continued research to develop strategies to mitigate issues and improve fairness for video generation.

A.2. Model Scale and Performance

To analyze model performance versus model scale, we use a subset of the training set without text-paired data and a
slightly different task prompt design. We evaluate the video generation quality using FVD (Unterthiner et al., 2018)
and audio generation quality using the Fréchet Audio Distance (FAD), which uses the VGGish model as the embedding
function (Hershey et al., 2017). Both FVD and FAD metrics are calculated using a held-out subset of 25 thousand videos.

Fig. 8 shows that as the model size grows and the amount of training data increases, performance improves across visual and
audiovisual tasks. After obtaining the above results, we retrain our 1B and 8B models using the task design and text-paired
training data discussed in Section 3. Appendix A.2.1 shows a qualitative comparison of the 1B and 8B pretrained models.
Increasing the model size improved temporal consistency, prompt fidelity, and motion dynamics while adding capabilities
for limited text rendering, spatial understanding, and counting.

(a) Video generation quality in FVD (↓). (b) Audio generation quality in FAD (↓).

Figure 8: Effects of model and data scale on video and audio generation quality. The performance, depicted on a log-log
scale, improves significantly when we scale up the model and training data. Language models with 300 million, 1 billion,
and 8 billion parameters are trained on datasets comprising 10, 37, and 58 billion visual and audio tokens, respectively.

A.2.1. QUALITATIVE COMPARISON OF 1B AND 8B MODELS

In Figure 9, we show outputs of 1B and 8B parameter models on the same prompts. Four frames from the best video output
of each model in a batch of four text-to-video samples were selected to represent the model. In the first row, the 1B model
is unstable with large changes to the subject over time and misses elements from the complex prompt. This prompt was
originally used for scaling comparisons in (Yu et al., 2022), and compared to a dedicated image-only model, our model does
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prompt: A portrait photo of a kangaroo wearing an orange hoodie and blue sunglasses standing on the grass in front of the
Sydney Opera House holding a sign on the chest that says Welcome Friends!

prompt: A kangaroo holding a sign with the letter A on it

prompt: A photo of an astronaut riding a horse in the forest. There is a river in front of them with water lilies

prompt: A zoomed out map of the United States made out of sushi. It is on a table next to a glass of red wine. Pieces of
sushi disappear one by one

prompt: Rotating around a vase holding a dozen roses

Figure 9: A comparison of a 1B (left) and 8B (right) parameter models on the same prompt and settings.
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Original Video

Outpainted Video

Stylized Video
Prompt: A gingerbread and candy train on a

track

Figure 10: Example of zero-shot video editing via task chaining (outpainting and stylization) – the original video is first
outpainted and then stylized via a text prompt.

not preserve text as well given the training data used. In the second row, we use a simpler text task and show that the 8B
model can represent a single letter clearly, but the 1B model still produces artifacts. In the third row, we show that the 8B
model learns spatial positioning such as the river being in front of the astronaut and horse. In the fourth row, we show that
the 8B parameter model learned a stop motion style to have items disappear “one by one” and can follow a complicated
layout from a long prompt. In contrast, the 1B model includes all of the nouns, but is unstable over time and does not follow
the layout indicated in the prompt. In the bottom row, we show that the 8B model understands counts of objects in that it
displays a full bouquet (though 12 roses are not explicitly in frame) and smooth consistent motion as opposed to the 5 roses
and distorting objects produced by the 1B model. Overall, scaling the model improved temporal consistency, prompt fidelity,
and motion dynamics while adding capabilities for limited text rendering, spatial understanding, and counting.

A.3. Additional Generated Examples

We include most generated videos in the supplementary materials for an enhanced visualization of motion and visual quality,
in addition to Fig. 10 and Fig. 11.

A.4. Video Stylization

To perform video stylization, we follow an approach inspired by (Zhang et al., 2023b; Chen et al., 2023b; Esser et al., 2023)
to predict videos from the combination of text, optical flow, and depth signals. On a subset of steps, we also condition on the
first video frame. As described in (Esser et al., 2023), the text will generally define the “content” or appearance of the output
and the optical flow and depth control the “structure.” In contrast to the diffusion-based approaches that usually use external
cross-attention networks (Zhang et al., 2023b) or latent blending (Meng et al., 2021) for stylization, our approach is more
closely related to machine translation using large language models in that we only need to provide the structure and text as a
prefix to a language model.

To perform the task, we estimate optical flow from RAFT (Sun et al., 2022) and produce monocular depth maps from
MIDAS (Ranftl et al., 2020), and then normalize and concatenate on the channel dimension. This conveniently produces the

15



VideoPoet: A Large Language Model for Zero-Shot Video Generation

Camera Motion: Arc shot

Camera Motion: FPV drone shot

Figure 11: Examples of directed camera movement from the same initial frame.

Stylization

Control-a-video preferredVideoPoet preferred

Video Quality

Text Fidelity

22.5%77.5%

30%70%

Figure 12: Human side-by-side evaluations comparing VideoPoet with the video stylization model Control-a-
video (Chen et al., 2023b). Raters prefer VideoPoet on both text fidelity and video quality. Green and pink bars
represent the proportion of trials where VideoPoet was preferred over an alternative, or preferred less than an alternative,
respectively.

same number of channels as the RGB ground truth and so can be tokenized in the same fashion as RGB videos with the
MAGVIT-v2 tokenizer without retraining the tokenizer. The task of stylization is to reconstruct the ground truth video from
the given optical flow, depth, and text information. During inference, we apply optical flow and depth estimation on an input
video but then vary the text prompt to generate a new style, e.g. “cartoon”.

Table 3: Comparison on video stylization. VideoPoet outperforms Control-A-Video by a large margin.

Model CLIPSIM

Control-A-Video (Chen et al., 2023b)[depth] 0.3246
VideoPoet (Ours) 0.3417

To evaluate stylization capabilities, we choose 20 videos from the public DAVIS 20162 (Perazzi et al., 2016) dataset and
provide 2 style prompts for each video. For more details, please refer to Appendix A.5.6. Following (Esser et al., 2023), we
evaluated the CLIP-embedding consistency between each frame and the text prompt to determine if the stylization results
matches the text. As shown in Table 3, VideoPoet outperforms Control-A-Video conditioned on depth by a large margin. We
also conduct human evaluations as discussed above comparing with Control-A-Video (Chen et al., 2023b). Human raters
consistently prefer our text fidelity and video quality as shown in Fig. 12.

2DAVIS license: https://creativecommons.org/licenses/by-nc/4.0/deed.en
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Special Token Usage

<bos> Beginning of sequence
<task> Task to perform for this sequence
<bot i> Beginning of the text input.
<eot i> End of the text input.
<bov i> Beginning of the visual input.
<eov i> End of the video input.
<boa i> Beginning of the audio input.
<eoa i> End of the audio input.
<source> The source of the video to generate.
<res> Output resolution for the video.
<bov o> Beginning of the video output.
<eov o> End of the video output.
<boa o> Beginning of the audio output.
<eoa o> End of the audio output.
<eos> End of the entire sequence.

Table 4: List of representative special tokens used in training and inference.

A.5. Additional Implementation and Evaluation Details

A.5.1. ADDITIONAL IMPLEMENTATION DETAILS

The unified vocabulary is constructed as follows: the initial 256 codes are reserved for special tokens and task prompts.
Table 4 lists some examples of special tokens. Subsequently, the next 262,144 codes are allocated for image and video
tokenization. This is followed by 4,096 audio codes. We also include a small text vocabulary of English words. Overall, this
produces a total vocabulary size of approximately 300,000.

Since the first frame is tokenized separately, MAGVIT-v2 allows images to be represented in the same vocabulary as video.
In addition to being more compact, images provide many learnable characteristics that are not typically represented in
videos, such as strong visual styles (e.g., art paintings), objects which are infrequently seen in video, rich captions, and
significantly more text-image paired training data. When training on images, we resize the images to 128×128 which are
then tokenized to a latent shape of (1, 16, 16), or 256 tokens. We scale the MAGVIT-v2 model’s size and train it on the
datasets discussed in Section 5.1. The training follows two steps: image training, inflation (Yu et al., 2023c) and video
training. Due to images requiring fewer tokens, we can include roughly 5× more images per batch than videos, i.e. 256
image tokens vs. 1280 video tokens. We use up to a maximum of 64 text tokens for all of our experiments. For the <res>
token, the resolution is only specified for 128× 224 output, 128× 128 resolution is assumed otherwise.

The video-to-video tasks use the COMMIT encoding (Yu et al., 2023a) to obtain the tokens for the tasks such as inpainting
and outpainting. Text is encoded as T5 XL embeddings (Raffel et al., 2020) and are inserted into reserved sequence positions
right after the <bot i> token as shown in Fig. 2.

A.5.2. SUPER-RESOLUTION IMPLEMENTATION DETAILS

We use a 1B model for the first 2× spatial super-resolution stage and a 500M model for the second 2× stage. The first super-
resolution stage models videos of 17×448×256 pixels with a token sequence of shape (5, 56, 32). The second stage models
videos of 17× 896× 512 pixels with a token sequence of shape (5, 112, 64). The token sequences are obtained with the
same MAGVIT-v2 (Yu et al., 2023c) tokenizer used for the base language model. The custom super-resolution transformer
has local self-attention windows for vertical, horizontal and temporal layers of shape (1, 56, 4), (1, 8, 32), (5, 8, 8) in the
first stage and (1, 112, 2), (1, 4, 64), (5, 8, 8) in the second stage, respectively (Fig. 3). The cross-attention layers attend to
local windows in the low-resolution sequence isomorphic to self-attention windows but with half the spatial size.

We train the super-resolution stages on a dataset of 64M high-quality text-video pairs using the masked modeling objective
of MAGVIT (Yu et al., 2023a), with token factorization into k = 2 groups (Yu et al., 2023c). During inference, we use the
sampling algorithm of MAGVIT-v2 (Yu et al., 2023c) with 24 sampling steps for each stage and classifier-free guidance
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scale (Ho & Salimans, 2022; Brooks et al., 2023) of 4.0/8.0 for the text condition and 1.0/2.0 for the low-resolution
condition, in the first/second stage.

A.5.3. ADDITIONAL EVALUATION DETAILS

We measure CLIP similarity scores (Wu et al., 2021) following an implementation given by Villegas et al. (2022), measure
FVD (Unterthiner et al., 2018) following Yu et al. (2023a) on UCF101 dataset and following Zhang et al. (2023a) on
MSR-VTT, and measure Inception Score (IS) (Saito et al., 2020). When the evaluation protocol is on 16 frames, we discard
the generated last frame to make a 16-frame video.

A.5.4. ZERO-SHOT TEXT-TO-VIDEO EVALUATION SETTINGS

We report the details of our zero-shot text-to-video settings here. We note that some details are missing in previous papers
and different papers use different settings. Hence, we provide all the details and hope this evaluation setting can serve
as a standard text-to-video generation benchmark. Our results are reported on the 8B model and we adopt classifier-free
guidance (Ho & Salimans, 2022).
All metrics are evaluated on generated videos containing 16 frames with a resolution of 256 x 256. We first generate videos
of 128 x 128 resolution and then resize to 256 x 256 via bicubic upsampling.

Zero-shot MSR-VTT. For CLIP score, we used all 59,794 captions from the MSR-VTT test set. We use CLIP ViT-B/16 model
following Phenaki (Villegas et al., 2022). We note that some papers use other CLIP models, e.g., VideoLDM (Blattmann
et al., 2023b) uses ViT-B/32. Our CLIP score evaluated on the ViT-B/32 backbone for MSR-VTT is 30.01. For the FVD
metric, to evaluate on a wide range of captions as well as to be comparable with previous papers that evaluate on 2,048
videos, we evaluate on the first 40,960 captions in the MSR-VTT test set. More specifically, we report the FVD metrics on
2048 videos with 20 repeats. The FVD real features are extracted from 2,048 videos sampled from the MSR-VTT test set.
We sample the central 16 frames of each real video, without any temporal downsampling, i.e., we use the original fps in the
MSR-VTT dataset (30 fps as reported in Xu et al. (2016)). The FVD is evaluated with an I3D model trained on Kinetics-400.

Zero-shot UCF-101. Following VDM (Ho et al., 2022b), we sample 10,000 videos from the UCF-101 test set and use their
categories as the text prompts to generate 10,000 videos. We use the class text prompts provided in PYoCo (Ge et al., 2023)
to represent the 101 categories. To compute the FVD real features, we sample 10K videos from the training set, following
TGAN2 (Saito et al., 2020). We sample the central 16 frames for each real video , without any temporal downsampling, i.e.,
we use the original fps in the UCF-101 dataset (25 fps as reported in (Soomro et al., 2012)). The FVD metric is evaluated
with an I3D model trained on Kinetics-400 and the IS metric is evaluated with a C3D model trained on UCF-101.

A.5.5. SELF-SUPERVISED TASKS EVALUATION SETTINGS

Self-supervised learning tasks include frame prediction on K600 with 5 frames as condition, as well as inpainting and
outpainting on SSv2. FVD (Unterthiner et al., 2018) is used as the primary metric, calculated with 16 frames at 128×128
resolution. We follow MAGVIT (Yu et al., 2023a) in evaluating these tasks against the respective real distribution, using
50000×4 samples for K600 and 50000 samples for SSv2.

A.5.6. STYLIZATION EVALUATION ON DAVIS

To evaluate the CLIP similarity score and human preference on video stylization, we use the following set of videos and
prompts. We select 20 videos from DAVIS 2016 (Perazzi et al., 2016), and for each video we take 16 frames starting from the
initial frame specified below and evaluate stylization on the two text prompts specified below. To be easily reproducible, we
use a central square crop at the height of the video and evaluate the output videos at 256x256 resolution. We use CLIP-B/16
for the similarity score. Several prompts below are used in or inspired by previous work (Esser et al., 2023; Chen et al.,
2023b; Liew et al., 2023).
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video name starting frame first text prompt

elephant 10 oil painting of an elephant walking away
elephant 10 cartoon animation of an elephant walking through dirt surrounded by boulders
car-turn 40 car on a snowcovered road in the countryside
car-turn 40 8-bit pixelated car driving down the road
dog-agility 0 a dog in the style of a comic book
dog-agility 0 a dog running through a field of poles in the style of cyberpunk
bmx-bumps 10 riding a bicycle on a rainbow track in space with stars and planets in the background
bmx-bumps 10 riding a bicycle on a dirt track in the style of a graphic novel
train 0 a gingerbread steam train made of candy
train 0 a train in lava
bus 0 a black and white drawing of a bus
bus 0 a bus in cyberpunk style
lucia 0 an astronaut walking on mars
lucia 0 a claymation animation of a woman walking
tennis 15 a robot throwing a laser ball
tennis 15 astronaut playing tennis on the surface of the moon
bear 60 a polar bear exploring on an iceberg
bear 60 a space bear walking beneath the stars
flamingo 0 2D vector animation of a group of flamingos standing near some rocks and water
flamingo 0 oil painting of pink flamingos wading
hike 0 a green alien explorer hiking in the mountains
hike 0 paper cut-out mountains with a paper cut-out hiker
goat 59 a tiger prowling along the ridge above a jungle
goat 59 a dragon prowling over a crater on the moon
parkour 60 a man jumping over rocks in a red sandstone canyon
parkour 60 a robot dodging through an obstacle course
cows 10 a pig standing in the mud
cows 10 a robotic cow walking along a muddy road
camel 10 a camel robot on a snowy day
camel 10 toy camel standing on dirt near a fence
blackswan 0 a watercolor painting of a white swan
blackswan 0 a crochet black swan swims in a pond with rocks and vegetation
dog 20 a cat walking
dog 20 a dalmatian dog walking
kite-surf 10 a sand surfer kicking up sand in the desert
kite-surf 10 kite surfer in the ocean at sunset
libby 0 chinese ink painting of a dog running
libby 0 3D animation of a small dog running through grass
horsejump-high 0 a cartoon of a magical flying horse jumping over an obstacle
horsejump-high 0 person rides on a horse while jumping over an obstacle with an aurora borealis in the background

Table 5: DAVIS stylization evaluation settings.
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