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Abstract

Reliable feature extraction from multichannel mi-
croscopy images is crucial for biological discovery, but ex-
isting models typically require fixed channel architectures
or artificial RGB compositing. We introduce CellRep, a
channel-invariant foundation model that generates consis-
tent feature representations across varying experimental
conditions. By employing content-aware patch embedding
and channel-mixing transformer encoding, CellRep learns
to identify and represent biological structures independent
of channel position or type. Our evaluations demonstrate
CellRep’s strong performance as a microscopy image fea-
turizer for perturbation prediction, particularly when gen-
eralizing to novel cell types, imaging techniques, and chan-
nel configurations not seen during training.

1. Introduction
A fundamental challenge in biological research is quan-

tifying cellular responses to genetic and chemical per-
turbations at scale. Understanding how cells respond
to targeted interventions—whether through genetic mod-
ifications, chemical compounds, or environmental fac-
tors—provides critical insights into disease mechanisms
and potential therapeutic targets. Microscopy remains a cor-
nerstone technique for understanding cellular biology, with
multichannel imaging providing vital information about
cellular structures and responses to experimental interven-
tions. High-content screening (HCS) combines automated
fluorescence microscopy with computational image anal-
ysis to simultaneously measure multiple cellular features
across many samples [1]. These systems typically capture
multichannel images where each channel reveals specific
cellular components through distinct fluorescent markers or
stains, more clearly revealing cellular phenotypes.

Extracting the features with the richest possible biologi-
cal signal from microscopy images is essential for advanc-
ing our understanding of complex cellular processes and
enabling the discovery of novel biomarkers, drug targets,
and disease mechanisms through unbiased feature extrac-

tion. Traditional tools like CellProfiler [2] rely on prede-
fined feature extraction algorithms, which may miss sub-
tle or complex patterns that neural networks can detect.
Deep learning models have shown superior performance in
many cell imaging tasks, including phenotype classifica-
tion [3]. Promisingly, representation learning models ex-
cel at learning hierarchical representations that could cor-
respond to biological structures at different scales. How-
ever, they face challenges when applied to multichannel mi-
croscopy data. This is because most state-of-the-art com-
puter vision models were developed for natural RGB im-
ages, where the three channels exhibit high redundancy
and information correlation. This presents a fundamental
mismatch with cell staining assays in cellular microscopy
imaging, where each channel captures distinct biological
information through different fluorescent markers or imag-
ing modalities. Using RGB-based models requires artifi-
cial channel compositing through tools like CellProfiler [2],
introducing unnecessary complexity and potential artifacts
into image processing pipelines. Furthermore, composit-
ing down to RGB is inherently a form of lossy compres-
sion, which could limit these models’ ability to generalize to
unseen conditions across different experimental conditions,
cell types, or imaging protocols, where channel structures
may differ substantially.

This challenge of handling independent channels extends
beyond just cell microscopy. Other examples in biologi-
cal imaging include FISH (Fluorescence In Situ Hybridiza-
tion), where different DNA/RNA sequences are labeled
with distinct fluorescent probes, and immunofluorescence
screens, whereby multiple antibodies tagged with different
fluorophores can show the distribution of different proteins.
Satellite imaging captures multiple spectral bands that each
highlight different surface features, from vegetation health
to thermal signatures. Medical imaging modalities like MRI
generate multiple contrast weightings (T1, T2, FLAIR) that
provide complementary anatomical information. Materials
science techniques such as Energy Dispersive X-ray Spec-
troscopy produce channel-specific maps of different chemi-
cal elements. In each case, channels contain fundamentally
different information rather than the correlated color com-
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ponents found in natural RGB images.
We introduce CellRep, a channel-invariant foundation

model that generates strong feature representations. By
employing content-aware patch embedding and channel-
mixing encoding, CellRep learns to identify and represent
biological structures independent of channel position or
type. Our quantitative evaluations demonstrate CellRep’s
superior performance as a microscopy image featurizer,
particularly when generalizing to novel cell types, imag-
ing techniques, and channel configurations not seen during
training.

2. Related Work
Like other areas of machine learning, computer vision

has recently undergone a revolution due to the Transformer
[4] and self-supervised learning methods. Notable advances
include masked autoencoder (MAE) [5] and self-distillation
models using Vision Transformers (ViTs) [6] as backbones,
most prominently DINOv2 [7]. DINOv2 has emerged as
the leading approach for general computer vision tasks,
demonstrating exceptional performance across diverse ap-
plications. As mentioned before, DINOv2 was designed for
natural RGB images, meaning its use in HCS requires com-
positing multichannel images into RGB composites, which
leads to information loss and potential distortion of biolog-
ical signals.

Recent work has attempted to address the limitations
of standard computer vision models for multichannel mi-
croscopy, notably ChannelViT [8] and Phenom-Beta [9] [1].
ChannelViT employs learnable channel embeddings that
are added to patch embeddings, allowing the model to pro-
cess variable numbers of channels. While innovative, this
approach has a critical limitation: the channel embeddings
are position-specific and learned during training for prede-
termined channel types. Though it can handle missing chan-
nels from its training set, it cannot meaningfully process
new channel types or channel positions, limiting its gen-
eralizability. Additionally, ChannelViT incurs substantial
computational overhead as the sequence length grows lin-
early with channel count, resulting in quadratic growth in
attention computation costs1

Phenom-Beta takes a different approach, using a MAE
specifically designed for multichannel cellular microscopy
images by randomly masking patches across all channels
simultaneously. The model is trained to reconstruct the
masked regions while preserving channel-specific informa-
tion through separate decoder heads for each channel type.
While it avoids some of ChannelViT’s limitations, it inherits

1While they introduce Hierarchical Channel Sampling (dropping out
channels) during training to help mitigate computational costs, this does
not fully solve the high context length issue; it saves no cost during infer-
ence, and even though the effective sequence length during training is a
fraction of the total sequence, it is still higher than that of a standard ViT.

the performance gap between MAE-based models and state-
of-the-art self-distillation approaches like DINOv2. More-
over, it lacks explicit mechanisms for adapting to novel
channel types not seen during training.

To address these limitations, we developed CellRep with
a focus on channel-invariant feature representation that
eliminates the need for channel compositing while main-
taining computational efficiency.

3. Method
Our approach builds on the DINOv2 framework while

introducing key modifications to handle arbitrary channel
inputs. The architecture consists of three main modifica-
tions to the DINOv2 architecture: (1) content-aware patch
embedding that preserves channel-specific information, (2)
a channel-mixing transformer encoder that enables cross-
channel feature sharing, and (3) an efficient pooling mech-
anism that enables near computational cost parity with DI-
NOv2.

Figure 1. The CellRep architecture first randomly permutes chan-
nel order and normalizes channel pixel values. For each image,
global and local views are cropped at consistent spatial locations
across all channels. These channel-specific crops are then inde-
pendently processed through content-aware patch embedding lay-
ers. The resulting patch embeddings are then processed by a trans-
former encoder that enables feature sharing across all channels and
spatial locations. The output embeddings undergo average pool-
ing to reduce dimensionality by a factor of the number of chan-
nels. These pooled representations are then used in the DINOv2
student-teacher self-distillation framework. The teacher network
is updated through a momentum-based exponential moving av-
erage (ema) of the student’s parameters, with gradients flowing
only through the student network during backpropagation as a stop
gradient (sg) is applied to the teacher network. All components
are jointly optimized during training. Colorized channel sam-
ples are taken from [10], and student-teacher depiction is adapted
from [11].

3.1. Full Normalization

To prepare the raw microscopy channel samples, the
model gives the option to handle pixel-intensity clipping
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and adaptive histogram normalization in the data loading
process. Pixel-intensity clipping removes outliers that of-
ten result from imaging artifacts or auto-fluorescence, while
adaptive histogram normalization compensates for varia-
tions in staining intensity and imaging conditions across dif-
ferent experiments.

Thus, we have incorporated the preprocessing pipeline
directly into the model, saving time for downstream analy-
ses and ensuring consistent normalization across all inputs.

3.2. Content-Aware Patch Embedding

We introduce a content-aware patch embedding ap-
proach that processes multi-channel inputs while preserv-
ing channel-specific information. Unlike traditional patch
embedding methods that treat all channels uniformly, our
approach independently processes each channel and incor-
porates channel-specific context into the patch embeddings.

The method consists of two main components: a chan-
nel encoder that captures channel-specific features, and a
content-aware patch embedder that combines channel infor-
mation with spatial patch embeddings. The complete pro-
cess is detailed in Algorithm 1.

Algorithm 1 Channel Encoder and Patch Embedding in
PyTorch-like pseudocode

1: procedure ENCODECHANNELS(x, d)
2: B,C ← x.shape[: 2]
3: f ← conv2d(reshape(x, (B · C,
4: 1, H,W )), ch)
5: f ← avgpool(relu(f))
6: return linear(reshape(f, (B,C, ch)), d)
7: end procedure
8: procedure PATCHEMBED(x, p, d)
9: B,C,H,W ← x.shape

10: patches← stack([conv2d(x[:, c : c+ 1],
11: d, k = p, s = p) for c in range(C)])
12: patches← reshape(patches, (B,C,
13: −1, d)).transpose(−2,−1)
14: patches← patches + unsqueeze(
15: EncodeChannels(x, d), 2)
16: return layer norm(reshape(patches,
17: (B,−1, d)))
18: end procedure

The channel encoder processes each channel indepen-
dently through a small convolutional network followed by
global average pooling. This captures channel-specific fea-
tures that are then projected to the embedding dimension.
These channel embeddings encode the global context of
each channel.

The patch embedding process begins by extracting
patches from each channel independently using a con-
volutional layer with kernel size and stride equal to the
patch size. This generates patch embeddings that preserve

channel-specific spatial information. The channel embed-
dings from the channel encoder are then added to all patches
from their respective channels, allowing the model to in-
corporate both local patch information and global channel
context.

A key advantage of this approach is its flexibility with in-
put dimensions, as it removes the need for fixed image sizes
while maintaining the ability to process channel-specific
features. This makes it particularly suitable for applications
involving multi-spectral imaging or datasets with varying
image dimensions.

3.3. Channel Encoder and Mean pooling

To get the model to learn a channel-agnostic represen-
tation, we feed the patch embeddings to a small trans-
former encoder. The same positional embeddings are added
to each channel’s patch embeddings, ensuring spatial re-
lationships are preserved while maintaining channel inde-
pendence. Through self-attention mechanisms, the encoder
learns to identify and combine relevant features across
both spatial locations and channels, enabling the model to
process arbitrary channel combinations without requiring
channel-specific parameters.

The resulting fused embeddings are then down-sampled
using average pooling with a window size equal to the num-
ber of channels. The resulting fused embeddings form a
sequence of length L ∗ C, where L is the number of spa-
tial locations and C is the number of channels. We apply
window pooling to reduce this sequence to length L. The
transformer encoder has already learned to combine rele-
vant information across channels, making this averaging op-
eration information-preserving. Furthermore, this reduction
ensures the sequence length fed to the student and teacher
networks matches that of standard DINOv2, allowing us to
maintain the same computational efficiency while handling
multi-channel inputs.

3.4. Self-distillation

We employ a very similar self-distillation setup to DI-
NOv2. The framework uses a student network that pro-
cesses both global and local crops and a teacher network
that processes only global crops. The student learns to pre-
dict the teacher’s output distribution for the corresponding
views of the same image. Following DINOv2, we use a
momentum-updated teacher and center the output distribu-
tions using an exponential moving average. Although DI-
NOv2 incorporates iBOT’s patch-wise masking as an aux-
iliary task, we forgo this component as our experiments
showed a slightly negative performance impact for cell stain
images.
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4. Results
4.1. Training Data

Our training data is composed of two large-scale
cell painting datasets from the Broad Institute: CDRP-
BBBC047-Bray [12] and LINCS-Pilot [13]. After filtering,
our training set comprised approximately 1.2 million five-
channel microscopy images of cancer cells, namely U2OS
and A549 cells, respectively. The Cell Painting assay [14]
used in these datasets captures distinct cellular components
through the following channels:

• RNA/nucleoli and cytoplasmic RNA (SYTO 14)

• ER/endoplasmic reticulum (concanavalin A)

• AGP/actin, Golgi and plasma membrane (phalloidin
and WGA)

• Mito/mitochondria (MitoTracker Deep Red)

• DNA/nucleus (Hoechst 33342)

These datasets contain images of cells treated with di-
verse chemical compounds, providing a rich set of morpho-
logical phenotypes for model training. For both training and
testing datasets for all models, we applied our full normal-
ization pipeline to ensure consistent processing across all
experiments.

4.2. Model Training and Comparison

We evaluate Cellrep versus two other architectures: DI-
NOv2 and Phenom-Beta2. We pretrained all three models
from scratch on the training data described above. For Cell-
Rep, we directly fed the individual normalized channels as
input. For DINOv2, which requires RGB input, we cre-
ated channel composites using CellProfiler’s standard com-
positing process, assigning colors to channels evenly spaced
around the color wheel; we also applied selected image aug-
mentations that enabled noticeably better performance than
the standard augmentations.

All models were implemented using the ViT-Large back-
bone architecture. DINOv2 and CellRep were trained for 64
epochs, while Phenom-Beta was trained for 50 epochs fol-
lowing the authors’ protocol [1].

We pretrain all models from scratch using the same data
mix described above for the following reasons.

1. To conduct a fair methodological comparison of archi-
tectural choices for cell microscopy analysis

2. To avoid potential local optima from natural image
pretraining - our preliminary experiments showed that

2We trained the channel-agnostic MAE version of Phenom-Beta, as it
enables inference on unseen numbers of channels as is required for some
of our benchmarks.

initializing DINOv2 with their pretrained weights ac-
tually degraded performance on the held-out test set,
likely due to the significant domain shift between nat-
ural and microscopy images

In addition to these baseline models, we also evaluated
a variant called DINOv2 Finetuned, where the pretrained
DINOv2 model underwent additional self-supervised learn-
ing on the set of internal lipocyte images (both composites
and brightfield), which includes the lipocyte plates used in
evaluation. This variant allows us to assess the strength of
CellRep’s adaptability by comparing it directly to a base
that has had exposure to evaluation data.

Table 1. Classification Performance. Held-out set evalu-
ates MoA classification on CDRP-bio-BBBC036-Bray. Lipocyte
benchmarks evaluate perturbation classification on novel cell types
and staining protocols. We show the top-1 accuracy and weighted
average precision scores. CellRep outperforms baseline models
across all benchmarks, showing particular strength in generalizing
to novel cell types, staining protocols, and imaging methods.

Held-out Set 5-Channel Lipocyte

Model Top-1 Precision Top-1 Precision

CellRep 0.16 0.18 0.35 0.37
DINOv2 0.16 0.17 0.34 0.34
DINOv2 Finetuned 0.16 0.17 0.34 0.36
Phenom-Beta 0.05 0.06 0.05 0.06

4-Channel Lipocyte 1-Channel Brightfield

Model Top-1 Precision Top-1 Precision

CellRep 0.63 0.68 0.63 0.65
DINOv2 0.47 0.61 0.60 0.64
DINOv2 Finetuned 0.64 0.66 0.69 0.72
Phenom-Beta 0.08 0.29 0.11 0.13

4.3. Evaluation Framework

We evaluated our models using three distinct bench-
marks designed to test both the generalization capability
and biological relevance of the learned representations. For
all benchmarks, we extracted embeddings from each model
and trained a logistic classifier on either mechanism of ac-
tion (MoA) or perturbation labels using consistent train/test
splits.

Held-out set: Our primary benchmark uses CDRP-bio-
BBBC036-Bray, a held-out subset of 124,416 images from
CDRP-BBBC047-Bray containing known bioactive com-
pounds. Each compound in this dataset has an annotated.
As multiple compounds can share the same MoA, this helps
test if they learn biologically meaningful features within the
same assay rather than memorizing compound-specific ar-
tifacts or batch effects. To ensure statistical reliability, we
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restrict our evaluation to the 40 most frequent MoA classes
in CDRP-bio-BBBC036-Bray.

Generalization to Novel Assays: To evaluate general-
ization to unseen cell and stain (as thus channel) types, we
tested on three high quality internal datasets:

• 5-channel lipocyte fluorescent stains: Uses the same
channel count but different stain types than the Cell
Painting assay used in training

• 4-channel lipocyte fluorescent stains: Tests adaptation
to both new stain types and a different channel count

• 1-channel myoblast brightfield: Tests adaptation to
new cell type and imaging technique which is single-
channel

These datasets include compound perturbation labels but
not MoA annotations. Importantly, these assays contain cell
types and channel configurations that are not present in the
training data, providing a strong test of model generaliza-
tion.

We do not include DINOv2 implemented with the Chan-
nelViT backbone because it cannot accommodate unseen
channel types as is required for the novel assay benchmarks.
For Phenom-Beta, we followed the authors’ procedure by
tiling each image into multiple crops. Each crop was pro-
cessed independently through the encoder, and the resulting
embeddings were averaged to produce a final aggregated
embedding representing the entire well.

4.4. Classification Performance

Table 1 presents the classification performance across
our evaluation benchmarks. For clarity, mechanism of ac-
tion (MoA) labels categorize compounds by their biological
effect (e.g., “HDAC inhibitor” or “proteasome inhibitor”),
while perturbation labels identify specific compounds ap-
plied or genetic manipulations performed on cells (e.g.,
“Melatonin”, “Paclitaxel”, or “siRNA knockdown of gene
X”). We observe several key findings:

Both DINO and CellRep significantly outperform
Phenom-Beta across all benchmarks. We hypothesize this
gap stems from self-distillation approaches learning invari-
ant features across different image views, while masked au-
toencoders focus on pixel-level reconstruction that may not
capture subtle phenotypic differences.

On the held-out set evaluation, CellRep achieves compa-
rable accuracy with DINOv2 but slightly lower precision.

But CellRep’s advantage becomes clearer in generaliza-
tion scenarios. On the 5-channel lipocyte benchmark with
novel stain types, CellRep (0.35 accuracy, 0.37 precision)
outperforms DINOv2 (0.34 accuracy, 0.34 precision).

This advantage widens in the 4-channel lipocyte bench-
mark, where CellRep (0.63 accuracy, 0.68 precision) sig-
nificantly outperforms DINOv2 (0.47 accuracy, 0.61 preci-

sion), demonstrating its ability to adapt to different channel
configurations without artificial compositing.

Even with 1-channel brightfield imaging, CellRep main-
tains its edge (0.63 accuracy, 0.65 precision) over DI-
NOv2 (0.60 accuracy, 0.64 precision), showing that it
captures channel-independent cellular morphology features
that translate across imaging modalities.

Perhaps most indicative of the architectural strength of
CellRep is that it performs comparably or better than DI-
NOv2 Finetuned on the lipocyte plates, despite DINOv2
Finetuned having the substantial advantage of seeing the
evaluation lipocyte images during SSL training.

However, this advantage did hold true with the myoblast
brightfield evaluation. We speculate that this difference
stems from the significant domain shift presented by bright-
field imaging, which the DINOv2 Finetuned has been ex-
posed to during training and CellRep has not.

These results validate CellRep’s effectiveness in learn-
ing generalizable representations from multichannel mi-
croscopy data, demonstrating adaptability to novel cell
types, staining protocols, and imaging methods.

5. Discussion

The performance of CellRep reveals an important insight
about self-distillation architectures: the design of embed-
ding layers prior to the teacher-student framework impacts
the model’s ability to generalize. We are currently inves-
tigating whether richer pre-distillation embeddings could
lead to stronger performance in natural image downstream
tasks.

In attempting to build a channel-invariant representation,
we experimented with a variety of design choices. One
such design choice was dropping out channels before show-
ing them to the teacher network while showing the student
the full multi-channel views. Despite speculation that this
could lead to better biological understanding by forcing the
student to learn representations robust to missing channels,
this approach performed worse in practice. Similarly, when
we tried dropping out channels shown to the student in the
CellRep architecture while maintaining full information for
the teacher, performance degraded. We hypothesize this is
because the distillation objective is partially unachievable,
which could entail a weaker learning signal.

Several promising avenues for future research emerge
from this work:

First, while our current implementation uses mean pool-
ing to compress channel-wise information, this presents an
interesting trade-off space that warrants deeper investiga-
tion. Future work could systematically evaluate how dif-
ferent pooling ratios affect the performance-computation
trade-off. More sophisticated learned compression ap-
proaches using attention weights could potentially preserve
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more information, though mean pooling may actually serve
as beneficial regularization in low-data regimes.

The architecture could be extended to incorporate multi-
scale patch embeddings, potentially allowing the model to
better capture both fine-grained subcellular features and
whole cell-level patterns simultaneously. This might be
particularly valuable for applications involving varying mi-
croscopy magnifications or multi-scale biological phenom-
ena.
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A. Appendix
A.1. Loss

The total training loss consists of three components:
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L = Lglobal + λlocalLlocal + λregLkl

The global loss Lglobal is computed between the
teacher’s prediction on a global view and the student’s pre-
dictions on all other global views of the same image. Simi-
larly, Llocal is computed between the teacher’s global view
prediction and the student’s predictions on all local views.
Both losses use cross-entropy:

Lglobal = −
∑
i

∑
j ̸=i

P i
t logP

j
s

Llocal = −
∑
i

∑
k

P i
t logP

k
s

where P i
t is the teacher’s prediction on the i-th global

view and P j
s , P k

s are the student’s predictions on the j-th
global and k-th local views respectively.

Following DINOv2, we also include the KL regulariza-
tion term Lkl that encourages uniform output distributions,
preventing collapse to trivial solutions:

Lkl = DKL(
1

K
∥P̄ )

where P̄ is the average output probability across the
batch and K is the output dimension.
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