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HICEScore: A Hierarchical Metric for Image Captioning
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ABSTRACT
Image captioning evaluation metrics can be divided into two cate-
gories, reference-based metrics and reference-free metrics. However,
reference-based approaches may struggle to evaluate descriptive
captions with abundant visual details produced by advanced multi-
modal large language models, due to their heavy reliance on limited
human-annotated references. In contrast, previous reference-free
metrics have been proven effective via CLIP cross-modality similar-
ity. Nonetheless, CLIP-based metrics, constrained by their solution
of global image-text compatibility, often have a deficiency in detect-
ing local textual hallucinations and are insensitive to small visual
objects. Besides, their single-scale designs are unable to provide an
interpretable evaluation process such as pinpointing the position of
caption mistakes and identifying visual regions that have not been
described. To move forward, we propose a novel reference-free
metric for image captioning evaluation, dubbedHierarchical Image
Captioning Evaluation Score (HICE-S). By detecting local visual
regions and textual phrases, HICE-S builds an interpretable hier-
archical scoring mechanism, breaking through the barriers of the
single-scale structure of existing reference-free metrics. Compre-
hensive experiments indicate that our proposed metric achieves the
SOTA performance on several benchmarks, outperforming existing
reference-free metrics like CLIP-S and PAC-S, and reference-based
metrics like METEOR and CIDEr. Moreover, several case studies re-
veal that the assessment process of HICE-S on detailed texts closely
resembles interpretable human judgments. The code is available in
the supplementary.

CCS CONCEPTS
• Computing methodologies→ Scene understanding.

KEYWORDS
Image captioning evaluation, Hierarchical scoring, Hallucination
detection, Assessing details in long captions

1 INTRODUCTION
Image captioning (IC) [47, 52] is a fundamental task in vision-
language (VL) multi-modal learning, which aims to generate de-
scriptions in the natural language given an image. In recent years, IC
has attracted more and more attention from researchers since it has
wide applications such as helping the visually impaired people [6],
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• A few bags laying around in a living room.

• A living room with a couch, two tables and a painting.

• A living room with a couch and a bottle of wine.

• A white couch a brown table with a bottle and glass.

• Black bags sitting on top of a white couch in a living room.

Brief Caption 1 (BC1): A living room with a couch and a table.

Brief Caption 2 (BC2): A living room with a couch with pillows and a table.

Detailed Caption 1 (DC1): The image showing a view of a living room. The room is furnished with a 
white sofa and a wooden coffee table. The walls are adorned with a patterned wallpaper, and a 
window with a curtain is visible. The overall ambiance is warm and inviting.

Detailed Caption 2 (DC2): The image showing a view of a living room. The room is furnished with a 
white sofa and a wooden coffee table. The walls are adorned with a white decorated painting and a 
window with a curtain is visible. The overall ambiance is warm and inviting.

METEOR CIDEr CLIP-S PAC-S
HICE-S

Human
Global Local Overall

DC1 22.39 0.00 0.720 0.778 0.515 0.537 0.526

DC2 23.94 0.00 0.717 0.777 0.543 0.542 0.543

（a）Assessing brief captions.

（b）Assessing detailed captions.

METEOR CIDEr CLIP-S PAC-S
HICE-S

Human
Global Local Overall

BC1 43.05 350.32 0.729 0.789 0.523 0.533 0.529

BC2 41.82 283.32 0.728 0.807 0.542 0.536 0.538

蓝色
（0,176,240）
红色：
（255,0,0）
绿色
（0,168,75）
金色
（191,144,0）

Figure 1: Comparisons on evaluation scores of various met-
rics when assessing (a) brief captions or (b) detailed cap-
tions, where correct descriptions about small objects are high-
lighted in blue and incorrect hallucinations are in golden.
The evaluation scores that agree with human judgments are
highlighted in green and disagree in red.

and it also serves as the foundation of other image-to-text tasks like
Visual Question Answering [4, 53] and Video Captioning [7, 46].
Based on the encoder-decoder framework, various advanced IC
methods have been proposed in the past few years, by extracting
meaningful visual information [4, 48, 55], considering effective VL
feature alignment [17, 31, 52, 57], and incorporating the knowledge
from pre-trained large models [24, 25, 33].

In parallel with the improvement of IC models, increasing efforts
have also been dedicated to automatic quality evaluation for gen-
erated captions. Besides evaluation, a good metric is also a good
learning guidance that can in turn improve the performance of IC
models [15, 50].

Traditional referenced-basedmetrics like BLEU [32],METEOR [5],
CIDEr [45], etc., are based on n-gram similarity between the gener-
ated caption and the human-written references, which focuses on
exact phrases matching. However, despite being the most popular
measurements for conventional image captioning models, these
metrics still have two major limitations that hinder their potential

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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applications in real-world scenarios. First, human-annotated refer-
ences are time-consuming and only contain partial visual content.
These metrics struggle to correctly identify the visual concepts not
appearing in the limited references. As shown in Fig. 1(a), METEOR
and CIDEr prefer the brief caption 1 due to “pillows” exist in the
image but are not included in the references. Secondly, recent so-
phisticated multimodal large language models (MLLMs [29, 65]) are
inclined to produce detailed captions describing rich details of visual
objects. Meanwhile, these detailed captions often exhibit unique
linguistic styles that differ from the references. Consequently, tradi-
tional metrics often experience a significant decline in performance
when assessing those detailed captions due to the notable disparities
in sentence length and word choice compared to the references.

To break through the above limitations, with the help of Con-
trastive Language-Vision Pretraining (CLIP) model [33], reference-
free metrics CLIP-S [12] and PAC-S [36] are proposed by evaluating
the similarity between the given image and the candidate caption
using CLIP. Specifically, CLIP projects the original images and sen-
tences to a shared embedding space to calculate cosine similarity
between two modalities. Though free of time-consuming human-
annotated references and robust in both diverse descriptive styles
and sentence lengths, it is often observed that CLIP-S and PAC-S
fail to detect hallucinations in the caption, and small objects in
the image, as shown in Fig. 1(b). This might be due to the fact
that CLIP is trained on web-scale noisy image-text pairs [37], and
learns global representations for the whole image and text, ignor-
ing local cross-modality relations among image regions and text
phrases [62]. Besides, this inherent characteristic renders them
incapable of performing human-like interpretable evaluation capa-
bilities to pinpoint concrete textual mistakes or identify semantic
visual regions that may have been omitted.

In general, human experts typically evaluate the quality of image
descriptions from two perspectives: i) Correctness. Are there any
mistakes existing in the captions? If so, where do they occur? ii)
Completeness. Has all visual content been well comprehensively
described? What has been included and what has been left out?

Building on these analyses, in this paper, we propose a novel
reference-free metric for IC which is closer to human judgment,
namedHierarchical ImageCaptioningEvaluation Score (HICEScore,
abbreviated to HICE-S) as shown in Fig. 2. Specifically, HICE-S
is calculated by gathering the image-caption similarities globally
and locally as follows. For global evaluation, we follow previ-
ous reference-free metrics and employ a pre-trained VL model to
extract image and text representations and then compute global
image-text similarity based on distances in the shared embedding
space. For local evaluation, we first construct semantic image
regions set and informative text phrases set to decompose the vi-
sual content and candidate captions, respectively. Subsequently,
these two sets are used to measure local similarity by computing
the description completeness of semantic regions (recall) and the
correctness of text phrases (precision). Finally, HICE-S combines
the global and local similarities as a fusion score for reference-free
IC evaluation. Similar to previous reference-free metrics, HICE-S
can also be easily extended to RefHICE-S when human references
are provided. Except for image-text compatibility (ITC), RefHICE-S
additionally computes hierarchical text-text compatibility (TTC)
between references and captions. To evaluate the effectiveness of

our proposed metric, we conduct extensive experiments on a series
of benchmarks from different perspectives, including the correla-
tion with human judgment, caption pairwise ranking, hallucination
sensitivity, and system-level correlation.

Our main contributions can be summarized as follows.
• We proposed a novel hierarchical reference-free metric called
HICE-S for IC evaluation. It includes a global score for image-
caption compatibility and a local score for region-phrase
compatibility.

• Owing to the hierarchical designs, HICE-S provides an in-
terpretable evaluation process that can pinpoint incorrect
textual mistakes and present unmentioned visual regions.

• Extensive experiments on typical datasets demonstrateHICE-
S achieves SOTA performance on diverse evaluation bench-
marks including correlationswith human judgments, caption
pairwise ranking, and hallucination detection.

2 RELATEDWORK
Image captioning evaluation methods can be roughly divided into
two categories, reference-based and reference-free, according to
whether a human-provided reference is available.

2.1 Reference-based metric
As references are provided, such as the COCO dataset [28] con-
taining five human-written annotations for every image, we can
evaluate the IC performances by calculating the reference-caption
similarity, i.e. , text-text compatibility (TTC). To this end, several
n-gram matching-based metrics are proposed. Specifically, the ini-
tial n-gram-based metrics are borrowed from language generation
tasks, such as BLEU [32] andMETEOR [5] frommachine translation;
ROUGE [27] from document summarization. Further considering
the unique property of IC task that different words in the caption
have different importance for describing the given image (e.g. , verbs
and nouns are always more important than articles), CIDEr [45] and
CIDEr-D [45] use TF-IDF to assign weights on different n-grams.
To overcome the limitations of these methods sensitive to n-gram
overlap, which is neither necessary nor sufficient for the task of
simulating human judgment, SPICE [3] and SoftSPICE [26] are pro-
posed by considering the semantic propositional content defined
over scene graphs.

Recently, with the advance of pre-trained large models, some re-
searchers [9, 16, 18, 20, 22, 23, 54] proposed to conduct assessment
in the text-feature domain rather than the original word space. For
instance, BERT-S [23] and its enhanced version BERT-S++ [54] use
the pre-trained BERT [18] to transform word tokens into an embed-
ding space for similarity calculation. Besides, ViLBERTScore [23]
and TIGEr [16] are proposed to incorporate visual information into
TTC calculation. However, as shown in Fig.1, the above reference-
based metrics have a performance degradation when assessing
detailed captions, due to the large gap in sentence lengths and
visual granularity compared to the brief references.

2.2 Reference-free metric
The aforementioned reference-based methods inevitably face that
acquiring human-written references for various real-world applica-
tions can be prohibitively expensive [36, 41, 51, 64], and it is often
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1. A little girl holding a red 
frisbee standing on a lush 
green field.

2. A little girl in the grass wearing 
sunglasses holding a frisbee.

3. A girl in blue shit and shorts 
holding a frisbee in grassy area.

Ground truth references 𝑹𝒉

( girl, is, little ) 

( girl, stand on, field )

(field, is, green)

(girl, hold, red frisbee)

...

Reference triplets 𝒓𝑹𝒉,𝒎 𝒎=𝟏

𝑴𝑹𝒉

𝑔ITC(𝑰, 𝑪) 𝑙ITC(𝑰, 𝑪)

𝑔TTC(𝑪, 𝑹𝒉) 𝑙TTC(𝑪, 𝑹𝒉)

𝐇𝐈𝐂𝐄 𝑰, 𝑪 = 𝐡𝐌𝐞𝐚𝐧( 𝑔ITC, 𝑙ITC )
𝐑𝐞𝐟𝐇𝐈𝐂𝐄 𝑰, 𝑪, 𝑹𝒉 = 𝐡𝐌𝐞𝐚𝐧( 𝑔ITC, 𝑙ITC, 𝑔TTC, 𝑙TTC )

Segment 
everything

Semantic regions 𝑰, 𝑨𝒏 𝒏=𝟏
𝑵

Image 𝑰

A young girl in a blue dress, 
standing in a grassy yard, playing 
with a red frisbee. The yard is 
enclosed by a wooden fence.

Caption triplets

( girl, is, young )

( girl, play with, red frisbee )

(girl, stand in, grassy yard)

(girl, wear, blue dress)

( fence, is, wooden)

𝒓𝑪,𝒎 𝒎=𝟏

𝑴𝒄

Parse

Caption 𝑪

Parse

Global evaluation Local evaluation

Figure 2: An illustration of our proposed HICEScore. Left: global image-caption compatibility gITC and reference-caption
compatibility gTTC. Right: local image-caption compatibility 𝑙 ITC and reference-caption compatibility 𝑙TTC

.

insufficient to compare generated captions with even multiple refer-
ences for each image [12]. As a result, there is a large gap remaining
between reference-based metrics and human judgments [10, 19].
To solve this problem, reference-free metrics are proposed based
on a large VL model CLIP [33], which is trained through the visual-
language contrastive loss on a large web-scale image-text-paired
dataset [37]. Specifically, CLIP-S [12] is the first reference-free IC
metric by using pre-trained CLIP to calculate the image-caption
similarity, i.e. , image-text compatibility (ITC). To further enhance
CLIP-S, PAC-S [36] proposes to finetune the CLIP with positive-
augmented contrastive learning. Since CLIP-S and PAC-S employ
the CLIP text encoder to obtain the sentence embeddings for the
calculation of TTC, they can be extended to reference-based metrics
by fusing the image-caption (ITC) and reference-caption (TTC) sim-
ilarities, which are named RefCLIP-S and RefPAC-S, respectively.
However, considering only the global evaluation which treats the
image and the caption as a whole with CLIP model [33], CLIP-S [12]
and PAC-S [36] fail to detect hallucination in the caption and they
are not sensitive to visual details in the image. To address fine-
grained evaluation, the InfoMetIC builds an object-token similarity
score. Nevertheless, InfoMetIC is designed for regular brief cap-
tions where an object is generally described by a single token. To

better represent local regions from detailed captions, our proposed
HICE-S exploits a graph parser to decompose the descriptive texts
into more informative local descriptions rather than a single word.

To provide a more human-correlated evaluation metric, HICE-S
considers hierarchical image-text compatibility evaluation, showing
a superior ability to assess whether the caption expresses full visual
details. It enables HICE-S to perform better for IC evaluations.

3 HIERARCHICAL IMAGE CAPTIONING
EVALUATION

3.1 Problem formulation and preliminaries
Given an image I and a candidate caption C for evaluation, our
proposed reference-free metric HICE-S is developed for calculating
a similarity score between them, denoted as HICE(I,C). Follow-
ing CLIP-S and PAC-S, we also present a reference-based version
RefHICE(I, C, Rℎ) when human references Rℎ are available.

Alpha-CLIP. Compared with the vanilla CLIP [33] which is
trained via global image-text contrastive learning, Alpha-CLIP [42]
is a region-aware enhanced CLIP with an auxiliary alpha channel.
Specifically, the alpha channel takes a binary region mask as input
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Visual 

encoder

Text encoder

Text 

encoder

( girl, is, young ) 
( girl, play with, red frisbee )  
( fence, is, wooden ) 
( girl, stand in, grassy yard ) 
( girl, wear,  blue dress ) 

( girl, is, little ) 

( field, is, green )

( girl, stand on, field )

( girl, hold, red frisbee )

( girl, wear, sunglasses )

( girl, stand in, lawn)

( girl, wear,  blue shirt )

1. A little girl holding a red frisbee standing on 
a lush green field 

2. A little girl in the grass wearing sunglasses 
holding a frisbee 

3. A girl in blue shirt and shorts holding a 
frisbee in grassy area.

4. ……

A young girl in a blue dress, 
standing in a grassy yard, playing 
with a red frisbee. The yard is 
enclosed by a wooden fence.

𝑷 𝑰, 𝑪 =
𝟏

𝟓
𝟎. 𝟕𝟐 + 𝟎. 𝟖𝟏 + 𝟎. 𝟕𝟖 + 𝟎. 𝟕𝟓 + 𝟎. 𝟖𝟐 = 𝟎. 𝟕𝟖

𝑹 𝑰, 𝑪 = 𝟎. 𝟕𝟏
𝒍𝐈𝐓𝐂 𝑰, 𝑪 = 𝐡𝐌𝐞𝐚𝐧 𝐏, 𝐑 = 𝟎. 𝟕𝟒

𝑷 𝑹𝒉, 𝑪 = 𝟎. 𝟔𝟖

𝑹 𝑹𝒉, 𝑪 =
𝟏

𝟕
𝟎. 𝟕𝟗 + 𝟎. 𝟓𝟑 + 𝟎. 𝟔𝟓 + 𝟎. 𝟖𝟐 + 𝟎. 𝟓𝟏 + 𝟎. 𝟕𝟖 + 𝟎. 𝟕𝟔 = 𝟎. 𝟔𝟗

𝒍𝐓𝐓𝐂 𝑰, 𝑪 = 𝐡𝐌𝐞𝐚𝐧 𝐏, 𝐑 = 𝟎. 𝟔𝟖

Human Reference 𝑹h

Candidates 𝑪

Image-region 
representation

Reference-phrase 
representation

𝑙ITC 𝑙TTC

0.20 0.31 0.15 0.73 0.21

0.16 0.24 0.78 0.33 0.25

0.42 0.43 0.23 0.36 0.35

0.35 0.81 0.29 0.33 0.39

0.72 0.78 0.19 0.75 0.82

0.79 0.45 0.21 0.56 0.51

0.19 0.23 0.16 0.53 0.25

0.21 0.16 0.26 0.65 0.31

0.45 0.82 0.27 0.46 0.42

0.41 0.46 0.16 0.51 0.46

0.51 0.4 0.17 0.78 0.36

0.42 0.33 0.19 0.34 0.76

Segment
everything

Image 𝑰

Parse

Parse

Caption-phrase 
representation

Figure 3: An illustration of local evaluation including 𝑙ITC (left part, Eq. 6) and 𝑙TTC (right part, Eq. 9), where both the precision
P and recall R are computed before obtaining the final fusion score through the harmonic mean hMean(·, ·).

to facilitate attention to specific regions. Thus, HICE-S steers Alpha-
CLIP to evaluate region-text similarity, as:

Alpha − CLIP(I,A,C) = cos (C𝑣 (I,A),C𝑡 (C)), (1)

where A is the binary region mask fed into the alpha channel,
C𝑣 (·),C𝑡 (·) are visual encoder and text encoder, respectively.cos (·, ·)
denotes the cosine similarity.

3.2 Hierarchical evaluation
Although achieving a human-like evaluation effect, the existing
reference-free metrics only focus on the global representations of
the whole image and text, but ignore the local relations among
image regions and text phrases. As a result, they may ignore some
visual details such as small objects. To overcome this limitation,
as shown in Fig. 2, HICE-S is developed on a hierarchical struc-
ture with both global and local similarity evaluations. In practice,
the reference-free HICE-S primarily focuses on ITC (image-text:
between I and C), while the reference-based RefHICE-S considers
the combination of ITC and TTC (text-text: between Rℎ and C),
simultaneously.

3.2.1 Global evaluation.
As in previous works [12, 36], we transform the image and text to
the shared embedding space to compute similarity.

i) Global ITC: We use Alpha-CLIP visual encoder C𝑣 (·) and text
encoder C𝑡 (·) to extract the features of image I and caption C,
respectively. For feature extraction of the entire image, we utilize a
full-one mask Ã. Then the global ITC can be calculated as

gITC(I,C) = cos (C𝑣 (I, Ã),C𝑡 (C)) . (2)

ii) Global TTC: We use Alpha-CLIP text encoder C𝑡 (·) to obtain
the similarity between human references Rℎ and the caption C as

gTTC(Rℎ,C) = cos (C𝑡 (Rℎ),C𝑡 (C)) . (3)

3.2.2 Local evaluation.
For local evaluation, we firstly need to obtain local representa-
tions for images and texts, and then calculate their similarities. The
illustration is shown in Fig. 3.

Local representations.Wefirst utilize a pre-trained lightweight
segmentation model and a textual graph parser to extract semantic
visual regions and informative textual phrases. Then we feed them
into the corresponding feature extractor C𝑣 (·) and C𝑡 (·) to obtain
the local representations.

i) Image-region representation set F𝐼 : Recently, segment-anything
models (SAM) [21, 58, 59] has shown powerful capabilities in zero-
shot image segmentation field. Many recent works applied SAM to
various image-related tasks like medical image analysis [30, 40, 61,
63], object detection [2, 11, 43], and 3D reconstruction [39]. In our
work, we use its segment-everythingmode to transform the original
image to multiple semantic regions with corresponding binary
region masks {A𝑛}𝑁𝑛=1, where 𝑁 denotes the number of region
masks. Then, the Alpha-CLIP visual encoder is employed to obtain
the representation for image regions as 𝒇 𝐼 ,𝑛 = C𝑣 (𝐼 ,A𝑛), which
can form a set of image-region representation as F𝐼 = {𝒇 𝐼 ,𝑛}𝑁𝑛=1.

ii) Text-phrase representation set F𝐶 for captions C; F𝑅ℎ for hu-
man references Rℎ : Transforming the complete sentences to the
text graph whose nodes are nouns while relations are verbs and
preposition is effect for language understanding [26]. Motivated
by this, given C (or Rℎ), we use a textual scene graph parser to get
a text graph having 𝑀𝑐 (or 𝑀ℎ) subject-predicate-object triplets
{𝑟𝐶,𝑚}𝑀𝑐

𝑚=1 (or {𝑟𝑅ℎ,𝑚}𝑀ℎ

𝑚=1). Each triplet is equivalent to a short
sentence, which is fed into the Alpha-CLIP text encoder to get
the representation for these triplets as 𝒇𝐶,𝑚 = C𝑡 (𝑟𝐶,𝑚); 𝒇𝑅ℎ,𝑚 =

C𝑡 (𝑟𝑅ℎ,𝑚). Then, we obtain the sets of text-phrase representations
for caption C as F𝐶 = {𝒇𝐶,𝑚}𝑀𝑐

𝑚=1. for human references Rℎ as
F𝑅ℎ = {𝒇𝑅ℎ,𝑚}𝑀ℎ

𝑚=1.
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Flickr8k-Expert [13] Flickr8k-CF [13] Composite [1]

Kendall 𝜏𝑏 Kendall 𝜏𝑐 Kendall 𝜏𝑏 Kendall 𝜏𝑐 Kendall 𝜏𝑏 Kendall 𝜏𝑐
BLEU-1 [32] 32.2 32.3 17.9 9.3 29.0 31.3
BLEU-4 [32] 30.6 30.8 16.9 8.7 28.3 30.6
ROUGE [27] 32.1 32.3 19.9 8.7 30.0 32.4
METEOR [5] 41.5 41.8 22.2 11.5 36.0 38.9
CIDEr [45] 43.6 43.9 24.6 12.7 34.9 37.7
SPICE [3] 51.7 44.9 24.4 12.0 38.8 40.3

BERT-S [23] - 39.2 22.8 - - 30.1
LEIC [9] 46.6 - 29.5 - - -
BERT-S++ [54] - 46.7 - - - 44.9
UMIC [22] - 46.8 - - -
TIGEr [16] - 49.3 - - - 45.4
ViLBERTScore [23] - 50.1 - - - 52.4
SoftSPICE [26] - 54.9 - - - -
MID [20] - 54.9 37.3 - - -
InfoMetIC [14] - 55.5 36.6 - - 59.3

CLIP-S [12] 51.1 51.2 34.4 17.7 49.8 53.8
PAC-S [36] 53.9 54.3 36.0 18.6 51.5 55.7
HICE-S 55.9 56.4 37.2 19.2 53.1 57.9
△ (+2.0) (+2.1) (+1.2) (+0.6) (+1.5) (+1.6)

RefCLIP-S [12] 52.6 53.0 36.4 18.8 51.2 55.4
RefPAC-S [36] 55.5 55.9 37.6 19.5 53.0 57.3
RefHICE-S 57.2 57.7 38.2 19.8 53.9 58.7
△ (+1.7) (+1.8) (+0.6) (+0.3) (+0.9) (+1.4)

Table 1: Human judgment correlation scores on Flickr8k-Expert, Flickr8k-CF and Composite.

Local-similarity evaluation. The calculations of similarity
between F𝐼 and F𝐶 for local ITC and F𝑅ℎ and F𝐶 for local TTC
are shown in Fig. 3. Concretely, we use the cosine similarity to get
a pair-wise similarity matrix that denotes the similarity between
any two elements from two sets. Then, we use the harmonic mean
hMean of precision P and recall R to measure the similarity between
two sets.

i) Local ITC: We calculate the harmonic mean of precision and
recall scores between two sets F𝐼 and F𝐶 to get the local ITC as

P(I,C) = 1
𝑀

𝑀∑︁
𝑚=1

max
1≤𝑛≤𝑁

cos(𝒇 𝐼 ,𝑛,𝒇𝐶,𝑚) (4)

R(I,C) = 1
𝑁

𝑁∑︁
𝑛=1

max
1≤𝑚≤𝑀𝑐

cos(𝒇 𝐼 ,𝑛,𝒇𝐶,𝑚) (5)

𝑙 ITC(I,C) = hMean(P(I,C), R(I,C)), (6)

where precision P(I,C) represents the correctness of captions with
respect to the images, while recall R(I,C) represents the complete-
ness of captions which measures whether all semantic regions are
well mentioned.

i) Local TTC: In a similar way, we derive the local TTC between
two sets F𝑅ℎ and F𝐶 through the harmonic mean of the precision

and recall scores, formulated as:

P(Rℎ,C) =
1
𝑀𝑐

𝑀𝑐∑︁
𝑚=1

max
1≤𝑖≤𝑀ℎ

cos(𝒇𝑅ℎ,𝑖 ,𝒇𝐶,𝑚) (7)

R(Rℎ,C) =
1
𝑀ℎ

𝑀ℎ∑︁
𝑖=1

max
1≤𝑚≤𝑀𝑐

cos(𝒇𝑅ℎ,𝑖 ,𝒇𝐶,𝑚) (8)

𝑙TTC(Rℎ,C) = hMean(P(Rℎ,C), R(Rℎ,C)). (9)

3.2.3 Reference-free metric: HICE-S.
Finally, after the combination of global and local evaluation from
the ITC view, with gITC in (2), lITC in (6), and we introduce our
proposed reference-free metric for IC as

HICE(I,C) = hMean(𝑔ITC, 𝑙 ITC), (10)

3.2.4 Reference-based metric: RefHICE-S.
Similar to RefCLIP-S [12] and RefPAC-S [36] as extensions of CLIP-
S and PAC-S, respectively, when the human-provided references
Rℎ are available, we can present a reference-augmented version of
HICE-S, i.e. RefHICE-S, which achieves higher correlation with
human judgment. Specifically, we just need to further consider the
global TTC score, gTTC in Eq. 3 and local TTC score 𝑙TTC in Eq. 9.
Then, same as Eq.10 to calculate the harmonic mean of those four
items, we have the RefHICE − S(I,C,Rℎ).

RefHICE(I,C,Rℎ) = hMean(𝑔ITC, 𝑙ITC, 𝑔TTC, 𝑙TTC) . (11)
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HC HI HM MM Mean

length 51.7 52.3 63.6 49.6 54.3
BLEU-1 [32] 64.6 95.2 91.2 60.2 77.9
BLEU-4 [32] 60.3 93.1 85.7 57.0 74.0
ROUGE [27] 63.9 95.0 92.3 60.9 78.0
METEOR [5] 66.0 97.7 94.0 66.6 81.1
CIDEr [45] 66.5 97.9 90.7 65.2 80.1

BERT-S [23] 65.4 96.2 93.3 61.4 79.1
BERT-S++ [54] 65.4 98.1 96.4 60.3 80.1
TIGEr [16] 56.0 99.8 92.8 74.2 80.7
ViLBERTScore [23] 49.9 99.6 93.1 75.8 79.6
FAIEr [49] 59.7 99.9 92.7 73.4 81.4
MID [20] 67.0 99.7 97.4 76.8 85.2
InfoMetIC [14] 69.9 99.7 96.8 79.6 86.5

CLIP-S [12] 55.9 99.3 96.5 72.0 80.9
PAC-S [36] 60.6 99.3 96.9 72.9 82.4
HICE-S 68.6 99.7 96.5 79.5 86.1
△ (+8.6) (+0.4) (-0.4) (+6.6) (+3.7)

RefCLIP-S [12] 64.9 99.5 95.5 73.3 83.3
RefPAC-S [36] 67.7 99.6 96.0 75.6 84.7
RefHICE-S 71.4 99.7 97.7 79.7 87.3
△ (+3.7) (+0.1) (+1.7) (+4.1) (+2.6)

Table 2: Accuracy results on the Pascal-50S dataset [45] ob-
tained by averaging the scores over five random draws of
reference captions (except for reference-free metrics). De-
tailed descriptions about HC, HI, HM and MM can be found
in Sec. 4.3.

4 EXPERIMENTS
In this section, we conduct comprehensive experiments includ-
ing correlation with human judgments in Sec. 4.2, caption pairwise
ranking in Sec. 4.3, object hallucination sensitivity in Sec. 4.4, and
system-level correlation in Sec. 4.5, to demonstrate the superior-
ity of our proposed metrics HICE-S and RefHICE-S. Furthermore,
we conduct ablation experiments and present some discussion to
investigate the roles of each part in our metric.

4.1 Implementation details
Owing to the strong generalization capabilities of large models,
HICE-S and RefHICE-S employ distinct pre-trainedmodels to achieve
different functionalities without further fine-tuning. We choose
Alpha-CLIP-ViT-L/14 to compute global and local similarity for
both ITC and TTC. In the local evaluation, we utilize a fast and light-
weight segment-everything model mobileSAMv2 [59] to extract
semantic image region masks. For the textual phrases extraction,
we need to transform a sentence to several subject-predicate-object
phrases, which is realized by TextGraphParser [26].
Compared metrics. Following previous works [12, 36], we mainly
compare our metrics with three types of metrics, one for reference-
based and one for reference-free. i) n-grams-based metric is the
reference-based one including BLEU [32],METEOR [5], ROUGE [27],
CIDEr [45], and SPICE [3]. ii) embedding-based metric is another
type of the reference-based one including BERT-S [23], BERT-
S++ [54], LEIC [9], TIGEr [16], UMIC [22], VilBERTScore [23],

FOIL [38]

Acc. (1 Refs) Acc. (4 Refs)

BLEU-1 [32] 65.7 85.4
BLEU-4 [32] 66.2 87.0
ROUGE [27] 54.6 70.4
METEOR [5] 70.1 82.0
CIDEr [45] 85.7 94.1
MID [20] 90.5 90.5

CLIP-S [12] 87.2 87.2
PAC-S [36] 89.9 89.9
HICE-S 93.1 93.1
△ (+3.2) (+3.2)

RefCLIP-S [12] 91.0 92.6
RefPAC-S [36] 93.7 94.9
RefHICE-S 96.4 97.0
△ (+2.7) (+2.1)

Table 3: The accuracy results on the FOIL hallucination de-
tection datasets [38] with one reference and four references,
respectively.

SoftSPICE [26], and MID [20] and infoMetIC [14]. iii) CLIP-based
metric is recently proposed reference-free one including CLIP-S [12]
and PAC-S [36] as well as their reference-based extension RefCLIP-
S and RefPAC-S. Our metric HICE-S belongs to the reference-free
one and its reference-based extension is RefHICE-S.

4.2 Correlation with human judgments
Given an image-caption pair, this task is to see whether the scoring
of the metric is consistent with the human scoring (often contains
more than one person and takes average). To this end, we conduct
the experiment on three widely adopted human judgment datasets
Flickr8k-Expert, Flickr8k-CF, and Composite [1, 13]. Following
previous approaches [12, 36], we compute both Kendall 𝜏𝑏 and
Kendall 𝜏𝑐 correlation scores for each dataset.

Dataset. The Flickr8k-Expert [13] contains three expert human
rating scores for each image-caption pair, with 5,664 images and
17k expert annotations in total. The evaluation scores range from
1 to 4 and the higher the better. The Flickr8k-CF [13] is collected
from CrowdFlower [44] with 48k image-caption pairs. The assess-
ment on Flickr8k-CF is binary where “yes” (“no”) represents that
the candidate caption is (not) relevant to the image. Each image-
caption pair has more than three scores. Following [12, 36], we
use the mean proportion of “yes” annotations as the final score
for each pair to compute the correlation with human judgments.
The Composite [1] is composed of 12k human judgments with 3,995
images from Flickr8k [13] (997 images), Flickr30k [56] (991 images),
and COCO [28] (2007 images). Each image-caption pair is evalu-
ated with a human score, ranked from 1 to 5 where a higher score
indicates the better matching between the caption and the image.

Results. Results on Flickr8k-Expert, Flickr8k-CF, and Composite
are reported in Table 1. Our proposed metric achieves the best corre-
lation results with human judgment compared to previous metrics.
Specifically, on the Flickr8k-Expert, the HICE-S and RefHICE-S
exhibit significant advantages over the SOTA score PAC-S [36] and
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Methods M C CLIP-S PAC-S precision recall HICE-S

Brief Captions

M2 Transformer [8] 28.7 127.9 0.605 0.806 0.536 0.516 0.539
VinVL [60] 31.1 140.9 0.627 0.821 0.540 0.545 0.553
BLIP-2 [24] 32.4 144.2 0.635 0.829 0.551 0.557 0.568

Detailed Captions

LLaVA-1.6 [29]
length=10 15.3 42.6 0.588 0.746 0.518 0.516 0.522
length=25 19.8 35.6 0.603 0.748 0.511 0.526 0.535
length=65 14.8 1.1 0.591 0.725 0.480 0.533 0.513
length=75 13.1 0.0 0.590 0.729 0.478 0.536 0.515

Figure 4: Different scores of previous SOTA captioning
models on COCO testing dataset [28].

Sc
o

re
s

Average length of captions

0.4

0.6

0.8

10 25 60 75

HICE-precision Human Correctness

HICE-recall Human Completeness

Figure 5: HICE-S’s local ITC precision and recall
evaluation scores with different caption lengths
compared to human correctness and completeness
scores.

RefPAC-S [36], with more than 1.5 points gained in terms of both 𝜏𝑏
and 𝜏𝑐 . On the Flickr8k-CF and Composite, our metrics also perform
better than previous models, in particular under the reference-free
scenarios.

4.3 Caption pairwise ranking
Given an image with two captions, this task is to see whether the
better caption selected by metric is consistent with the human
choice.

Dataset. Pascal-50S [45] contains 1k images collected from
UIUC PASCAL Sentence dataset [34] and 4k sentence pairs, which
are split into four groups, two correct captions written by human
(HC); one incorrect and one correct caption by human (HI); two
correct captions with one written by human and the other one by
machine (HM); two correct captions generated by machine (HM).
Each caption pair has 48 human judgments about which one better
matches the image. The vote is based on the principle of majority
rule, while a random selection will be operated in case of the equal
number of votes. Following [36], we compute the accuracy instead
of correlation coefficients and select 5 references among the 48
human references to serve as ground truth to compute reference-
based metrics (average over 5 random draws of references).

Results. In Table. 2, we provide the accuracy results. Obvi-
ously, under the reference-free scenarios, our proposed HICE-S
outperforms SOTA metrics, CLIP-S[12] and PAC-S [36] by a large
margin, about 3.7 points improvements on average accuracy of
four categories, as shown in the “Mean” column. Even compared to
reference-based scoring methods, our HICE-S metric is still in the
lead with 6 points better than CIDEr [45], 2.8 points than RefCLIP-
S [12] and 1.4 points higher than RefPAC-S [36]. Such an excellent
performance can be attributed to the introduction of hierarchical
evaluation designs, which are more in accordance with human
criteria. Furthermore, our reference-based metric RefHICE-S also
achieves superior accuracy results compared to previous methods.

4.4 Object hallucination Sensitivity
As mentioned by Rohrbach in [35], current image captioning mod-
els are prone to generate objects that are not present in the images,

aka, object hallucinations. Thus, it is critical to identify object hal-
lucinations for IC evaluation

Dataset. FOIL dataset [38] contains 32k images from COCO
validation set [28]. Each image is accompanied by a correct-foil
caption pair, where the correct sentence is collected from the origi-
nal COCO annotations [38] while the foil sentence is generated by
replacing a noun with a similar but incorrect description. Following
previous works [12, 36], the accuracy is derived as the percentage
of higher scores assigned to the correct caption

Results. The results are available in Table 3 under both one
reference-available case and four reference-available case [12, 36].
Note that since the reference-free methods do not use reference,
the performance is the same between the two columns. It can be
observed that our proposed HICE-S and RefHICE-S outperform the
existing best metric PAC-S [36] with a large margin, especially for
reference-free evaluation. For reference-based cases, the improve-
ment of RefHICE-S on ”1 Refs" is higher, which is more difficult
than ”4 Refs", since reference is useful to find hallucinations [12, 36].

4.5 System-level correlation
We also propose to evaluate the efficaciousness of HICE-S and
RefHICE-S within image captioning models. Table 4 has shown the
evaluation results on images from the COCO testing set [28] for
both brief caption generations and detailed caption generations. The
results about different evaluation metrics are exhibited, including
BLEU-4 [32] (B@4), METEOR [5] (M), CIDEr [45] (C), CLIP-S [12],
PAC-S [36], and our HICE-S.

For conventional brief caption evaluation, we assess the caption
generations of some SOTA methods includingM2 Transformer [8],
VinVL [60], and BLIP-2 [24]. As we can see, both reference-based
metrics (METEOR, CIDEr) and reference-free metrics (CLIP-S, PAC-
S, and our proposed HICE-S) can effectively evaluate the previous
image captioning methods and identify the best captioning model.

For detailed caption evaluation, we leverage an advanced multi-
modal large language model LLaVA-1.6 [29] to generate detailed
captions of different caption lengths with a prompt template “de-
scribe the image scene in {length} words”. As we can see, CIDEr is
unable to assess captions whose lengths are larger than 65 words,
presenting nearly zero scores. HICE-S in Table. 4 has shown that the
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The image showing a different view of a residential 
area. The photos capture the a house, which has a 
distinctive black roof and a white wall. The house is 
surrounded by palm trees and a fence, and there are 
benches and a truck visible in the background. A 
yellow dog is running on the sidewalk. 

fence surround house
0.563

trees surround house
0.512

benches
0.521

palm trees surround house
0.545

trees surround house
0.502

truck in the background
0.530

trees surround house
0.542

house have white wall 
0.590

— house have roof 0.537
— trees surround house 0.542
— fence surround house 0.563
— benches 0.521
— truck in the background 0.530
— house have white wall 0.590

— yellow dog 0.312
— dog run on sidewalk 0.369
— residential area 0.474

0.390 0.473 0.376 0.356

Mentioned > 0.5

Unmentioned < 0.5

Correct > 0.5

Incorrect < 0.5

Figure 6: A Local evaluation example of HICE-S. Left top is the original image and detailed caption. Left bottom are the local
text phrases and corresponding precision scores that measure the correctness of each phrase. Text phrases with scores lower
than 0.5 are considered as incorrect phrases and larger than 0.5 as correct . Right are the semantic regions and corresponding
recall scores that measure the completeness of the captions. Those semantic regions with scores lower than 0.5 are considered
as unmentioned. For the mentioned regions, we have presented the matched text phrase with the highest local similarity.

Flickr8k-Expert Pascal-50S FOIL

global local Kendall𝜏𝑏 Kendall 𝜏𝑐 Acc. Acc.(1 Ref)

✓ ✗ 52.3 53.1 82.1 90.7
✗ ✓ 54.6 54.4 84.8 92.0
✓ ✓ 55.9 56.4 86.1 93.1

Table 4: Ablation studies of our proposedHICE-S on Flickr8k-
Expert dataset [13], Pascal-50S [45] and FOIL dataset [38].
global and local denote global and local evaluation, respec-
tively.

longer the caption, the lower the precision score, and conversely,
the higher the recall score. This demonstrates that although longer
captions can express more visual content, they often tend to in-
troduce more errors and hallucinations. To further explore the
correlation with human judgments, we invite 5 human experts to
assess the LLaVA captions from both correctness and complete-
ness perspectives. Fig.5 has shown the comparison results between
human assessment and HICE local assessment. The high correla-
tion demonstrates the effectiveness of our proposed hierarchical
evaluation.

4.6 Ablation study and discussion
To further investigate the roles of each part in our proposed met-
ric, we conduct the ablation experiments on Flickr8k-Expert [13],
Pascal-50S [45] and FOIL [38].

Hierarchical evaluation. The first row of Table 4 displays the
performance results of the individual global evaluation, while the
second row shows the individual local evaluation results. The third
row presents the combined results of global and local evaluations.
When adopting a hierarchical evaluation, there is significant per-
formance improvements on Flickr8k-Expert, Pascal-50S, and FOIL.
Finally, our HICE-S achieves the SOTA results on all datasets by
hierarchical evaluation.

Interpretable evaluation process.As presented in Fig. 6, HICE-
S can perform human-like interpretable evaluation process. For
correctness evaluation, HICE-S can effectively recognize correct
phrases and incorrect phrases that are not included in the image
content. For completeness evaluation, HICE-S can also identify the
mentioned region and match textual phrases.

5 CONCLUSION
In this paper, we propose a novel reference-free metric for image
captioning evaluation, dubbed HICE-S. We introduce a hierarchical
evaluation design, which includes the global evaluation, built on the
image-level and the sentence-level representations, and the local
evaluation, based on the region-level and the phrase-level features.
The combination of global evaluation and local evaluation renders
our HICE-S more sensitive to object hallucination and minor er-
rors. Extensive experiments demonstrate that our proposed HICE-S
and the reference-based RefHICE-S are superior to all previous
metrics including reference-free and reference-based methods on
correlations with human judgments, caption pairwise ranking, and
hallucination detection.
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