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ABSTRACT

Large Language Models (LLMs) have recently emerged as a powerful backbone
for recommender systems. Existing LLM-based recommender systems take two
different approaches for representing items in natural language, i.e., Attribute-
based Representation and Description-based Representation. In this work, we aim
to address the trade-off between efficiency and effectiveness that these two ap-
proaches encounter, when representing items consumed by users. Based on our
observation that there is a significant information overlap between images and de-
scriptions associated with items, we propose a novel method, Image is all you need
for LLM-based Recommender system (I-LLMRec). Our main idea is to leverage
images as an alternative to lengthy textual descriptions for representing items,
aiming at reducing token usage while preserving the rich semantic information of
item descriptions. Through extensive experiments on real-world Amazon datasets,
we demonstrate that I-LLMRec outperforms existing methods that leverage tex-
tual descriptions for representing items in both efficiency and effectiveness by
leveraging images. Moreover, a further appeal of I-LLMRec is its ability to re-
duce sensitivity to noise in descriptions, leading to more robust recommendations.
Our code is available at http://anonymous.4open.science/r/anonymous-87EE/.

1 INTRODUCTION

LLMs, which have recently shown remarkable performance in various NLP tasks by leveraging
strong semantic reasoning and world knowledge, have inspired research into their application across
diverse domains, including recommender systems (Kim et al., 2024a; Chen et al., 2024; Kim et al.,
2024b; Xie et al., 2024). Especially, recent studies explore the replacement of traditional collabo-
rative filtering models (e.g., SASRec (Kang & McAuley, 2018)) with LLMs as the backbone for
recommendations (Lin et al., 2024; Bao et al., 2023; Tan et al., 2024). To this end, they typically
transform each item in a user’s interaction history from a traditional numerical ID into natural lan-
guage (e.g., titles) and arrange them into sequences within the input prompt.

The key to LLM-based recommender systems lies in effectively representing items in natural lan-
guage to capture user preferences based on LLM’s comprehensive understanding of user interaction
history. In this regard, existing studies that represent items in natural language can be categorized
into the following two main approaches: 1) Attribute-Based Representation approach is to com-
bine simple attributes such as brand and category with the item title to represent the item (Bao et al.,
2023; Li et al., 2023a; Tan et al., 2024). For example, TALLRec (Bao et al., 2023) and TransRec (Lin
et al., 2024) enhance the understanding of user preferences by adding attributes, thereby facilitat-
ing a multifaceted understanding of items 2) Description-Based Representation approach is to use
detailed item descriptions1 to preserve rich textual item semantics so that the LLM could capture
user preference in a more fine-grained manner. For example, TRSR (Zheng et al., 2024) summa-
rizes full descriptions and provides them to the LLM for recommendation, thereby overcoming the
limited item semantics provided by attributes only and addressing the input length constraints of
LLMs. Overall, these approaches demonstrate the potential of natural language in enriching item
representations for LLM-based recommendation.

However, we argue that when representing items in natural language, there is an inherent trade-off
between efficiency and effectiveness. Specifically, the Attribute-Based Representation approach is
efficient since it requires fewer tokens to add item attributes than to add the entire item descriptions,

1While attributes are the high-level, general features in a few keywords (e.g., Apple), descriptions generally
provide item-specific details (e.g., It is a slim metallic body, 13-inch Liquid Retina, and black keyboard...).
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Figure 1: (a) Histogram of the input token length required to represent a user’s item interaction
history across different item expression approaches. (b) Recommendation performance (Hit@5) and
Inference Time (seconds/100 users) for different item representation approaches. For (a) and (b), we
use the Amazon Sports dataset for analysis. (c) Cosine similarity between item image-description
pairs in Amazon Sport and Art datasets and image-caption pairs in the COCO dataset using CLIP.

which shortens the input length for the LLM. However, it sacrifices the effectiveness of under-
standing user preferences due to the limited item semantics that can be contained in relatively short
attributes. On the other hand, the Description-Based Representation approach is less efficient due
to the longer input length required for detailed item descriptions, whereas the effectiveness of un-
derstanding user preferences is improved by incorporating richer textual semantics of items. In fact,
as shown in Figure 1(a), the input length required for LLMs to represent a user’s item interaction
history significantly varies depending on how the item is represented. That is, the Description-Based
Representation approach (i.e., Summarized description2 and Full description) demands much longer
input token lengths than the Attribute-Based Representation approach (i.e., Attribute), resulting in
the increased computational complexity.

To better understand this trade-off, in Figure 1(b), we extend our analysis beyond a simple compari-
son of input token length and examine the computational complexity of different item representation
approaches (i.e., efficiency) along with their recommendation performance (i.e., effectiveness). Note
that we use the same LLM backbone (i.e., Sheared LLaMA-2.7B (Xia et al., 2023)) and adopt the
same recommendation protocol for fair comparisons (See Appendix B regarding the details of the
recommendation protocol). We observe that the Attribute-based Representation approach (blue cir-
cle) achieves the inference time more than 2.5 times faster than the Description-based Representation
approach (green and black). However, this comes at the expense of a performance reduction of over
13% due to the lack of rich item semantics contained in attributes compared with descriptions. Fur-
thermore, summarizing full descriptions reduces inference time but compromises performance due
to the information loss during the summarization. In conclusion, the trade-off can be summarized
as: richer item representation provided to the LLM improves effectiveness but decreases efficiency.
However, this trade-off is unavoidable by nature if items are represented with natural language.

In this paper, we focus on addressing this trade-off based on our observation that there is a signifi-
cant information overlap between images and descriptions associated with items. Specifically, when
we measure the similarity between item image-description pairs in a real-world e-commerce dataset
(i.e., Amazon Sport and Art (Ni et al., 2019)) using a vision-language model (i.e., CLIP (Radford
et al., 2021)) in which image and language spaces are jointly embedded, we found that the similar-
ity is surprisingly high. Specifically, Figure 1(c) shows that the average similarity for the Amazon
Sport and Art datasets is around 0.31. To better understand this similarity level, we conducted the
same experiment with the COCO caption dataset (Lin et al., 2014), a well-curated image-caption
pair dataset widely used in vision-language research. Specifically, we measured similarities for both
positive (i.e., image-caption) and negative (i.e., image-randomly sampled unrelated caption) pairs.
Given that the negative pairs have an average similarity of only 0.07, the positive pairs’ average sim-
ilarity of around 0.26 can be considered an indicator of high similarity. Furthermore, the similarity
value of 0.31 between item image-description pairs, which is even higher, highlights a significant
information overlap between images and their associated descriptions3.

Building on this observation, we propose Image is all you need for LLM-based Recommender
system (I-LLMRec), which addresses both efficiency and effectiveness of existing LLM-based rec-
ommender systems by leveraging images as an alternative to lengthy textual descriptions for the
item representation, aiming at reducing token usage while preserving the rich semantic informa-

2To summarize the full description, we adopt an approach similar to TRSR (Zheng et al., 2024) and use a
similar prompt. For more details, please refer to Appendix A.

3Such an observation was consistently observed across other real-world datasets as well as another CLIP
variant model (See Appendix C and E.4).
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tion of item descriptions4. The main technical challenge lies in the misalignment between the item
image space and the language space. To this end, we adopt a learnable adaptor for visual features
followed by a technique to bridge the gap between the two spaces (i.e., Recommendation-oriented
Image-LLM Semantic Alignment (RISA) module), which facilitates the training of the adaptor with
carefully crafted prompts tailored to the recommendation context. This ensures the LLM to cap-
ture rich item semantics through images with only a few tokens, thereby effectively and efficiently
capturing user preferences.

Through extensive experiments on real-world Amazon datasets, we demonstrate that our proposed
method using images instead of item descriptions is superior in both effectiveness and efficiency.
Specifically, I-LLMRec improves inference speed by approximately 2.93 times compared to the
Description-based Representation approach, while achieving a 22% performance improvement over
the Attribute-based Representation approach (Figure 1(b)). As a further appeal, I-LLMRec facilitates
robust recommendations by mitigating sensitivity to noise associated with item descriptions as it
leverages images. Our main contributions can be summarized as follows:

• We identify a trade-off between efficiency and effectiveness when expressing items in natural
language.

• Based on the observation that there is a significant overlap between item image-description pairs,
we propose a novel method, called I-LLMRec, which utilizes images instead of textual descrip-
tions to efficiently and effectively capture user preferences.

• Our extensive experiments demonstrate that I-LLMRec outperforms the various natural
language-based representation approaches in both effectiveness and efficiency.

2 PRELIMINARIES

Here, we introduce the task formulation and examine the complexity of different item expression
approaches.

Task Formulation. Throughout this paper, we mainly focus on sequential recommendation, as it
closely aligns with real-world scenarios (Tian et al., 2022; Xie et al., 2022). Let U and I denote
the set of users and items, respectively. A user u ∈ U has the historical item interaction sequence
denoted as Su=[i1, i2, ..., ik, ..., i|Su|], where ik denotes the k-th interacted item and |Su| is the
number of items in the interaction sequence. The goal of this task is, for each user u, to predict the
next item i|Su|+1 to be consumed by the user based on the user interaction history Su.

Representing Item Semantics. With the advancement of LLMs for recommender systems, there is
a growing need to help them understand the semantics of items to capture user preferences. In this
regard, we categorize the multiple types of information to recommend an item i’s semantics into [Ii,
Di, Ai], where Ii, Di, and Ai are an item image, textual description5, and attribute, respectively.

Comparison of Complexity. Let f(·) denote the transformation function for the LLM to convert
the representation of item semantics into input tokens, and let |f(·)| denote the number of input
tokens. Specifically, for Di and Ai that are in natural language, f refers to tokenizing the natural
language and converting them into the word embeddings. Meanwhile, for an image Ii, f involves
extracting the visual features using a pretrained vision encoder (e.g., CLIP-ViT (Radford et al.,
2021)), followed by an adaptor to resize their feature dimensions for compatibility with the LLM
(Liu et al., 2024a; Li et al., 2023b). The complexity of LLM operations for each representation
is O((|f(Ii)||Su|)2d), O((|f(Di)||Su|)2d), and O((|f(Ai)||Su|)2d), where |f(Di)| >> |f(Ai)|.
This is derived based on the complexity of Transformer, i.e., O(n2d), where n is the input token
length and d is the feature dimension of the LLM. It reveals that the complexity of the description-
based approach is not merely being incurred with a single item; rather, it increases with the user
sequence length |Su|, and its complexity even grows quadratically, making this approach impracti-
cal. Therefore, in this work, we propose to lower the complexity of expressing an item by leveraging
its associated image using only a single token (i.e., |f(Di)| ≫ |f(Ai)| > |f(Ii)| = 1 )6 while
preserving the rich semantics of the item description. This is based on our observation that there is
a significant information overlap between the item image-description pairs (Figure 1(c)).

4Some text-specific information that is missing in an image may be lost, but we find that in Section 4.2, this
information has surprisingly little impact on recommendations.

5To avoid confusion, we will henceforth refer to the description as summarized description instead of full
description unless stated otherwise.

6In average, |f(Di)| and |f(Ai)| are approximately 160 and 10 tokens, respectively.
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Figure 2: Overall framework of I-LLMRec. User-interacted item images are mapped into the LLM
through an adaptor, which bridges the image and language spaces. To ensure alignment between two
spaces, the adaptor is optimized via the RISA module. Furthermore, the recommendation process is
formulated as a retrieval task via the RERI module.

3 PROPOSED METHOD: I-LLMREC

In this section, we provide a detailed explanation of I-LLMRec. After introducing the initial
recommendation-related task prompt, we begin by encoding the images of items consumed by
users, and mapping them to an LLM through a learnable adaptor (Section 3.1). However, since
these mapped visual features are not inherently aligned with the language space, we propose the
Recommendation-oriented Image-LLM Semantic Alignment (RISA) module that trains the adap-
tor with carefully crafted prompts tailored for the recommendation context, resulting in effectively
bridging the alignment gap (Section 3.2). Meanwhile, we propose the REtrieval-based Recommen-
dation via Image features (RERI) module, a training approach that enables the LLM to directly
perform recommendations from the item corpus based on the visual features (Section 3.3). Finally,
we describe the overall training objectives and inference for recommendation (Section 3.4). Figure 2
shows the overall framework of I-LLMRec.

3.1 MAPPING ITEM IMAGES TO AN LLM

In this section, our goal is to map items consumed by users to an LLM using only a few tokens,
allowing us to capture user preference efficiently and effectively. Specifically, given the interaction
history of user u, i.e., [i1, i2, ..., i|Su|−1], and a target item i|Su|, we convert the interaction history
into a sequence of item images [Ii1 , Ii2 , ..., Ii|Su|−1

] ∈ R(|Su|−1)×H×W×3, where H and W are the
image height and width, respectively. Then, we adopt a pretrained visual encoder V of a vision-
language model to extract the visual features of each item, defined as vi = V (Ii) ∈ Rdv . This
process makes the sequence of visual features [vi1 , vi2 , ..., vi|Su|−1

] ∈ R(|Su|−1)×dv , where dv is the
dimension of the visual feature.
Adaptor network for visual features. However, since the visual feature dimension dv is different
from that of the LLM feature d, and their spaces are inherently misaligned, we introduce an adaptor
network M : Rdv → Rd to make visual features compatible with the LLM’s feature dimension,
allowing vi to be interactive with word embeddings within the LLM’s input layer. More precisely,
we process each item’s visual feature vi through the adaptor M , transforming it into a sequence of
visual features that match the dimensionality of the LLM. Formally, the sequence of mapped visual
features is defined as S̄I

u = [v̄i1 , v̄i2 , ..., v̄i|Su|−1
], where v̄i = M(vi) ∈ Rd.

Designing a prompt to represent a user’s item interaction history. To represent a
user’s item interaction history with visual features, we carefully design a prompt, en-
abling the LLM to comprehensively understand the item semantics. Specifically, for each
item i in a user’s item interaction history, we represent it in the prompt as Pi =
{Title : ITEM_TITLE,Visual Representation : [VISUAL]}, where Pi is the representation of item
i, ITEM_TITLE is the title of the item i, and [VISUAL] is the placeholder of item i’s visual feature
v̄i. More precisely, before being forwarded to the LLM’s transformer layer, [VISUAL] is replaced
with v̄i, while the natural language in Pi is converted into word embeddings. Note that following
prior studies (Bao et al., 2023; Li et al., 2023a), we use the item title instead of the item’s numerical
ID. By enumerating Pi over the item interaction history of user u (i.e., [Pi1 ,Pi2 , ...,Pi|Su|−1

]), we
represent the user interaction based on item images where each image is expressed using a single
token, allowing the LLM to efficiently and effectively capture the user preference.

4
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3.2 RECOMMENDATION-ORIENTED IMAGE–LLM SEMANTIC ALIGNMENT (RISA) MODULE

To make the LLM effectively capture user preferences from item images, it is crucial to align visual
features with the language space in a meaningful way, requiring adequate supervision of the adaptor
network M . To achieve this, we optimize the adaptor network M by predicting the next item prop-
erties based on the user interaction within a structured prompt, thereby guiding the LLMs to capture
user preferences in the context of recommendation through the visual features.

Specifically, we craft a prompt in an "input"-"target output" format. Here, the input consists of
the user interaction prompt, followed by a question regarding the next item (e.g., What brand is
this user likely to consume for the next item?). The target output corresponds to the answer to that
question (e.g., The brand likely to be consumed is ‘WOLT’). To guide the LLM in considering various
properties of the next item, we incorporate multiple properties of the next item, including brand,
category, title, and description. For each property, we design five different question templates (refer
to Appendix D.1 for complete templates). During each training step, we randomly select one of 20
possible question templates (4 properties × 5 templates) and train M to generate the corresponding
output. The training objective is formulated as LRISA = max

M

∑|y|
k=1 log(Pθ,M (yk|x, y<k)), where

θ is the parameter of the LLM that is frozen, y is the target output, yk is the k-th token of y, and
x is the input. Note that x incorporates the image features of items consumed by users, which are
supervised under LRISA. Please refer to Appendix D.2 for further discussion of LLM fine-tuning.

3.3 RETRIEVAL-BASED RECOMMENDATION VIA IMAGE FEATURES (RERI) MODULE

We found that existing studies on LLM-based recommender systems often face challenges in pro-
viding reliable and efficient recommendations since they typically recommend items by predicting
the next item title (Kim et al., 2024b; Lin et al., 2024; Tan et al., 2024) or item tokens allocated as
out-of-vocabulary (Wei et al., 2024; Li et al., 2023a; Zhu et al., 2024). Regarding reliable recom-
mendation, the title prediction approach cannot guarantee that the recommended items exist within
the item corpus, being likely to recommend non-existent items. Regarding efficient recommenda-
tion, title prediction relies on computationally intensive beam search to recommend multiple items,
while the item token prediction approach requires an oversized LLM, as expanding the item pool
necessitates extending the LLM vocabulary set, which hinders scalability. To overcome these chal-
lenges, we propose the REtrieval-based Recommendation via Image features (RERI) module, which
formulates the recommendation task as a retrieval task by leveraging the images to directly retrieve
relevant items from the item pool. In the following, we describe how to obtain an LLM-guided user
representation for retrieval, and define a training objective that retrieves relevant items.

LLM-guided user representation. To obtain the LLM-guided user representation containing user
preference, for each user u, we append an instruction prompt, i.e., Generate a recommendation
token for the next item to be consumed, after the user interaction prompt [Pi1 ,Pi2 , ...,Pi|Su|−1

].
This instruction prompt helps generate a recommendation token, guiding the model towards item
retrieval-based recommendations instead of item title generation-based recommendation. At the end
of this prompt, we append a learnable token [REC] that aggregates a user’s item interaction history
and instruction-related information, leveraging the LLM’s contextual reasoning capabilities. Specif-
ically, we utilize the last hidden state associated with the [REC] token (i.e., h([REC])) to obtain the
aggregated information of user preference for retrieval.

Training objective for retrieving relevant items. Given that h([REC]) represents the user’s pref-
erence contained in the interaction history of user u, i.e., [i1, i2, ..., i|Su|−1], we formulate the task
of retrieving the target item i|Su| based on a scoring function T , unlike previous studies relying
on a generative task (i.e., item title generation). To this end, we use the visual feature of items as
the item representations and compute the affinity score between those and h([REC]). However, as
h([REC]) and the visual features lie in the different spaces, we employ projectors for each, ensuring
that they are mapped into a shared recommendation space. We denote the projectors and their out-
puts as oImg

u = F
Img
u (h([REC])), oImg

i = F
Img
i (vi|Su|) , where F

Img
u : Rd → Rds , F Img

i : Rdv → Rds

are the projectors, and ds is the feature dimension of shared recommendation space. oImg
u and o

Img
i

denote the projected representations of user u and item i in terms of visual features, respectively. To
optimize the retrieval task, we use the binary cross-entropy loss as follows:

LImg
RERI = −

∑
u∈U

[
log(σ(rImg

u,i )) + log(1− σ(rImg
u,i−

))
]

(1)
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where r
Img
u,i = T (o

Img
u , o

Img
i ) = o

Img
u ⊛ o

Img
i ∈ R is the affinity score between o

Img
u and o

Img
i , with ⊛

denoting the dot product, and i− is a randomly selected negative item. It is important to note that
since we formulate the training objective as a retrieval task, we can guarantee that the recommended
item exists in the item corpus and do not need to extend the item tokens within the LLM, resulting
in a reliable and efficient recommendation process.
Extension to multiple feature types. Our retrieval-based recommendation approach can seam-
lessly incorporate multiple item feature types (e.g., ID-based embeddings and textual features)
alongside visual features. Specifically, for a given item feature type denoted as ∗, we can simply in-
tegrate it by introducing two additional projectors, F ∗

u and F ∗
i , such that o∗u = F ∗

u (h([REC])), o
∗
i =

F ∗
i (IF

∗), where IF∗ represents the item feature corresponding to feature type ∗ (e.g., vi|Su| = IFImg

if ∗ is the image type Img), and o∗u and o∗i are the projected representations of user u and item i in
terms of ∗ feature type, respectively. Using o∗u and o∗i , we can then compute the binary cross-entropy
loss L∗

RERI following Equation 1.

Among various item feature types, we extract the ID-based item embeddings from a pretrained col-
laborative filtering (CF) model (i.e., SASRec (Kang & McAuley, 2018)), thanks to its effectiveness
in general recommendation tasks, especially for warm items (Kim et al., 2024b)7. Specifically, we
incorporate ID-based item embeddings (i.e., ci|Su| = IFCF) in addition to the visual features (i.e.,
vi|Su| = IFImg). Furthermore, as item descriptions are readily available in real-world scenarios
(Zheng et al., 2024), we can easily incorporate textual features t extracted from full descriptions
to further improve overall performance (i.e., ti|Su| = IFText). The analysis of extension to various
features is provided in Section 4.4.

3.4 TRAINING AND INFERENCE

Training. With the image, CF, and text feature types, we combine the training objective from RISA
module and three training objectives from RERI module, training the adaptor M and projectors F ∗

u

and F ∗
i (∗ = [Img,CF,Text]) while freezing the LLM. The combined loss8 is denoted as:

Lfinal = LRISA + LImg
RERI + LCF

RERI + LText
RERI (2)

Inference. For retrieval-based inference, we compute the affinity scores r
Img
u,i , rCF

u,i, and rText
u,i using

the scoring function T , in terms of visual, CF, and textual features, respectively. Specifically, the top-
k relevant items for i|Su|+1 is computed as recku = Top-k(rImg

u,i + rCF
u,i + rText

u,i ),∀i ∈ I , where recku
is the set of recommended k items for user u, and Top-k is a function that extracts items with the
highest top-k scores. Note that while the affinity scores across different features can be aggregated
through various approaches, such as weight summation or product, we opt for a simpler summation.

4 EXPERIMENTS

In this section, we conduct experiments to explore the following research questions:
• RQ1: How does I-LLMRec perform compared to the CF and LLM-based recommender models?
• RQ2: How well does I-LLMRec offer strengths (i.e., efficiency, effectiveness, and robustness)

by utilizing images rather than lengthy descriptions?
• RQ3: How does each module (i.e., RISA and RERI) contribute to the I-LLMRec?
• RQ4: How can we handle when item images are missing?

4.1 EXPERIMENTAL SETTING

Datasets. For evaluation, we use four categories from the Amazon dataset (Ni et al., 2019): Sports,
Grocery, Art, and Phone. These datasets contain the item titles, attributes (e.g., brand and category),
detailed textual descriptions, and images representing items. Following a prior study (Wei et al.,
2024), we filter out users and items with fewer than 5 interactions to ensure data quality. We sum-
marize the data statistics in the Appendix E.1.

Evaluation Protocol. Following the leave-one-out protocol (Kim et al., 2023; Kang & McAuley,
2018), we use each user’s most recent interaction as the test set, the second most recent interaction

7In Appendix E.5, we show that the utilization of ID-based item embeddings leads to more recommenda-
tions of warm items.

8We opt to fix all weights at 1 to avoid the computational burden of tuning over a large hyperparamter space.
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Table 1: Performance Comparison. A: Attributed-based Representation, CF: CF-based Representa-
tion (i.e., the CF item embedding is projected into the LLM), D: Description-based Representation,
I: Image-based Representation.

Dataset Metric Collaborative Filtering LLM Image-aware LLM

GRU4Rec VBPR BERT4Rec SASRec TALLRec (A) A-LLMRec (CF) TRSR (D) UniMP (I) I-LLMRec (I)+D I-LLMRec (I)

Sport

NDCG@5 0.2106 0.2369 0.2389 0.3129 0.2938 0.3352 0.3375 0.3364 0.3637 0.3711
Hit@5 0.2820 0.3097 0.2993 0.3841 0.3801 0.4070 0.4302 0.4030 0.4554 0.4570
NDCG@10 0.2413 0.2694 0.2670 0.3514 0.3323 0.3683 0.3765 0.3629 0.4003 0.4071
Hit@10 0.3775 0.4108 0.3866 0.4760 0.4997 0.5096 0.5515 0.4853 0.5694 0.5689

Grocery

NDCG@5 0.2673 0.2321 0.2995 0.3753 0.3477 0.3860 0.3802 0.3710 0.3908 0.3956
Hit@5 0.3609 0.3171 0.3834 0.4684 0.4589 0.4823 0.4917 0.4506 0.5037 0.5069
NDCG@10 0.3033 0.263 0.3317 0.4096 0.3874 0.4195 0.4184 0.4011 0.4288 0.4332
Hit@10 0.4726 0.4232 0.4835 0.5746 0.5815 0.5864 0.6099 0.5439 0.6211 0.6232

Art

NDCG@5 0.3119 0.3710 0.3626 0.4561 0.4572 0.4652 0.4758 0.4565 0.4796 0.4839
Hit@5 0.4044 0.4656 0.4455 0.5374 0.5663 0.5681 0.5841 0.5315 0.5902 0.5883
NDCG@10 0.3481 0.4062 0.3955 0.4860 0.4944 0.4981 0.5100 0.4829 0.5160 0.5191
Hit@10 0.5203 0.5745 0.5477 0.6301 0.6813 0.6877 0.6896 0.6131 0.6981 0.6974

Phone

NDCG@5 0.2023 0.1898 0.2319 0.3299 0.3721 0.3403 0.3886 0.3388 0.3892 0.3900
Hit@5 0.2877 0.2688 0.3184 0.4366 0.4986 0.4502 0.5148 0.4427 0.5176 0.5156
NDCG@10 0.2353 0.2222 0.2664 0.3658 0.4148 0.3811 0.4292 0.3757 0.4309 0.4320
Hit@10 0.3952 0.3698 0.4255 0.5478 0.6305 0.5761 0.6401 0.5569 0.6463 0.6448

as the validation set, and the remaining interactions as the training set. For evaluation metrics, we
utilize Hit Ratio (Hit@k) and Normalized Discounted Cumulative Gain (NDCG@k) with k = 5, 10.
Hit@k measures whether the ground-truth item appears in the recommended list (i.e., recku) while
NDCG@k evaluates its ranking position. To reduce computational complexity during evaluation
for each user, we randomly select 100 negative items that the user has not interacted with, add the
ground-truth test item, and compute the metrics based on this set.

Regarding the Implementation Details and Baselines, please refer to Appendix E.2 and E.3.

4.2 PERFORMANCE COMPARISON (RQ1)

Table 1 shows the performance comparison between I-LLMRec and baselines across four datasets.
The key observations are as follows: 1) LLM-based models generally outperform traditional CF
models, highlighting the effectiveness of leveraging an LLM backbone for the recommender sys-
tems. 2) A-LLMRec and TRSR generally outperform TALLRec. It suggests that beyond the at-
tributes, incorporating CF item embeddings or item descriptions further enhances the LLM’s ability
to capture user preferences. However, we observe that A-LLMRec performs worse on the Phone
dataset, and TRSR generally outperforms A-LLMRec, indicating that item descriptions are more
effective than ID-based item embeddings in expressing item semantics. 3) I-LLMRec outperforms
UniMP, an image-aware LLM-based model. Given that UniMP employs a multimodal LLM where
images and texts are pre-aligned, it indicates the need for a more specialized alignment strategy tai-
lored to the recommendation tasks, demonstrating the effectiveness of I-LLMRec. 4) Considering
that TRSR includes attributes during summarization (See Appendix A), adding description infor-
mation in TALLRec, which is equivalent to TRSR, improved performance, whereas descriptions
in addition to images (i.e., I-LLMRec+D9) did not improve the performance of I-LLMRec. This
suggests that while descriptions convey useful information, they are inherently limited by what is
already present in images due to the significant information overlap between image and description
pairs. Even if descriptions may include some text-specific information that images do not contain,
the fact that performance remains competitive implies that such information has surprisingly little
impact on the recommendations. This supports the idea that item images are sufficient to capture
user preferences for recommendation. For further experimental results on additional datasets, such
as visual-centric datasets, please refer to Appendix E.4.

4.3 MODEL ANALYSIS (RQ2)

Users’ Item Interaction Sequence length ( |𝑆𝑢| )

Amazon Sport Amazon Art

User’s Item Interaction Sequence length (|𝑆𝑢|)

Figure 3: Inference time (sec/100 users) over |Su|.

Analysis on Efficiency. To study the
efficiency of I-LLMRec, we evaluate the
inference time across different sizes of
user’s item interaction sequences (i.e., |Su|).
Specifically, we divided the users into
groups according to |Su|, randomly selected
100 users per group, and measured their total
inference time. As shown in Figure 3, we ob-
serve that TRSR and I-LLMRec+D, which
rely on lengthy descriptions, show a sharp

9I-LLMRec+D is a variant of I-LLMRec that represent items using both image features and text description.
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increase in inference time as the length of textual descriptions within the prompt increases propor-
tional to |Su|. On the other hand, I-LLMRec maintains consistently low inference time regardless
of |Su|. This efficiency stems from the fact that even as |Su| increases, only a minimal number of
image tokens are added, keeping computational costs low. Furthermore, we observe that TALLRec,
which is an attribute-based representation approach, shows a gradual increase in inference time and
eventually surpasses I-LLMRec when |Su| ≥ 10. We attribute this to the fact that processing nat-
ural language attributes scales in complexity faster than image processing required for I-LLMRec.
In summary, I-LLMRec is more efficient than TRSR across all Su and even more efficient than
TALLRec when user interactions are high, demonstrating superior computational efficiency.

Context Window Size

Amazon Sport

Context Window Size

Amazon Art

Figure 4: Performance of various LLM context
window sizes.

Analysis on Effectiveness. To gain a
deeper understanding of the effectiveness of I-
LLMRec, we examine how well it performs un-
der a limited budget compared to the natural
language-based approach. Specifically, we con-
sider the LLM’s context window size (i.e., max-
imum input token length) as the budget, and
vary it from 4,096 to 256 tokens. This allows us
to analyze the ability of models in effectively
capturing the user preferences given a limited
budget. As shown in Figure 4, we observe that
as the context window size drops below 512,
the performance of TRSR and I-LLMRec+D declines sharply. This is because lengthy descrip-
tions make it difficult for the LLM to fully process interactions with a limited context window size,
thereby making it more challenging to understand user preferences. On the other hand, I-LLMRec
maintains stable performance even at the context window size of 256 by representing item semantics
using minimal image tokens. This enables the LLM to process full user interactions within the given
budget and effectively capture user preferences. While TALLRec also remains stable at 256 due to
its low token usage, it exhibits inferior performance because its attributes are not expressive enough.
Overall, I-LLMRec effectively overcomes the context window size constraints by leveraging item
images to preserve rich item semantics, demonstrating its effectiveness and practicality.

Sport

H
it
@
5

H
it
@
5

Grocery Phone Art

1.53%

3.46% 6.71%

1.97%

(a) Information Loss (b) Noise Reduction

Figure 5: Performance of natural language-based
approaches (TALLRec, TRSR and Full Descrip-
tion) and I-LLMRec on four datasets.

Analysis on Robustness. To evaluate the
robustness of representing items using im-
ages instead of natural language as done
in I-LLMRec, we compare its performance
with various natural language-based ap-
proaches—TALLRec (Attribute), TRSR
(Summarized description), and Full descrip-
tion—across multiple datasets. Figure 5
presents two key findings regarding the draw-
back of natural language-based approaches.
1) Information loss from summarization
(Figure 5(a)): Full description outperforms
TRSR, indicating that summarizing descriptions introduces information loss, where essential
semantic details may be omitted, leading to lower performance. 2) Presence of Noise in Full
Description (Figure 5(b)): On some datasets (i.e., Phone and Art), Full description rather performs
worse than TRSR that relies on a summarized description. This indicates that the lengthy full
description may contain noise and that the noise could be partially removed in the summarized
version of the full description10. Such different behaviors of natural language-based approaches
across different datasets demonstrates that these approaches are sensitive to the given text, and thus
impractical in reality. In contrast, I-LLMRec, consistently delivers strong performance across all
datasets, demonstrating its robustness in handling variations in item descriptions.

4.4 ABLATION STUDIES (RQ3) Table 2: Ablation studies of I-LLMRec.

Row RISA RERI Sport Art
Image CF Text Hit@5 NDCG@5 Hit@5 NDCG@5

(a) ✓ 0.3953 0.3043 0.5040 0.3915
(b) ✓ ✓ 0.4316 0.3403 0.5564 0.4447
(c) ✓ ✓ 0.4075 0.3256 0.5502 0.4517
(d) ✓ ✓ ✓ 0.4491 0.3630 0.5795 0.4769
(e) ✓ ✓ ✓ ✓ 0.4570 0.3711 0.5883 0.4839

In Table 2, we conduct ablation studies to un-
derstand the effectiveness of each component in
I-LLMRec. The variant without any additional
components is trained solely using Equation 1
and recommends items based only on image

10Indeed, we found that full descriptions often contain extraneous content, such as HTML tags introduced
during data crawling.
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features (row (a)). We make the following observations: 1) Effect of RISA: We observe that equip-
ment with the RISA module significantly improves performance (row (a) vs. row (b)). This indi-
cates that the RISA module effectively aligns visual features with the language space, enhancing the
LLM’s ability to understand user preferences. 2) Effect of extending to multiple feature types in
RERI: We observe that incorporating CF features along with image features11 yields better perfor-
mance than using either the image or CF feature alone (row (b), (c) vs. (d)). Moreover, integrating
all three feature types (i.e., Image, CF, and Text) further improves performance (row (d) vs. (e)).
This demonstrates that extending multiple feature types enhances recommendation effectiveness be-
yond image features alone. Moreover, we provide detailed analysis of effectiveness of features types
across cold/warm items in Appendix E.5.

Discussion: Rethinking Information Overlap. We note that the observation of information overlap
between image and text features, as discussed in Section 1, relates to the challenges of redundancy
in multimodal recommender systems (Zhou et al., 2023; Yang et al., 2025; Jeong et al., 2024). Here,
we discuss how this information overlap has been perceived in previous studies and articulate how
our viewpoint departs from these interpretations. Specifically, prior studies on multimodal recom-
mender systems generally view this information overlap as redundant information that is seen as a
barrier to improving performance when both modalities are used. Therefore, they generally aim to
extract complementary information from each modality to improve performance. On the other hand,
we present a fundamentally different viewpoint, asserting that this information overlap is in fact
a crucial factor in addressing the trade-off between efficiency and effectiveness when representing
items for LLMs in natural language. In other words, we view this information overlap as an advan-
tage for LLM-based recommender systems rather than a barrier. Moreover, this perspective allows
us to maintain robust performance in real-world cases where item images are absent, as detailed in
Appendix E.6 (RQ4).

5 RELATED WORK

LLM-based Recommendation. A myriad of studies have spurred the development of LLMs for
recommender systems (Bao et al., 2023; Wang & Lim, 2023; Zhang et al., 2023; Liu et al., 2024b).
Prior works adapt LLMs to recommendation by representing interaction history as item title se-
quences and enhancing performance with item attributes to enrich semantics. (Attribute-based
Representation). Specifically, TALLRec (Bao et al., 2023) converts item IDs into their titles and
captures user preference via LoRA (Hu et al., 2021) fine-tuning. TransRec (Lin et al., 2024) improves
the user preference understanding by including item titles and attributes in prompts. IDGenRec (Tan
et al., 2024) incorporates item titles generated by an independent LLM for unique and meaningful
semantics. More recently, to feed the richer item semantics to LLMs, a description of items have
been utilized (Description-based Representation). Specifically, TRSR (Zheng et al., 2024) utilizes
a large LLM (i.e., LLaMA-30B-instruct (Touvron et al., 2023a)) to summarize item descriptions, and
feeds them to a smaller LLM (i.e., LLaMA-2 7B (Touvron et al., 2023b)) to capture the condensed
meaningful information, while ONCE (Liu et al., 2024b) adopts GPT-3.5 (Brown et al., 2020) for
the summarizing task. Despite their notable success to capture the richer item semantics, they face a
trade-off between efficiency and effectiveness when representing items in natural language, leading
us to utilize image information to address this trade-off.

Please see Appendix F for additional related works (e.g., multimodal LLM-based recommendation).

6 CONCLUSION

In this work, we address the trade-off between efficiency and effectiveness when representing item
semantics in natural language for an LLM-based recommender system. Based on the observation
that there exists a significant information overlap between images and descriptions associated with
items, we propose I-LLMRec, a novel method that leverages images to capture rich item seman-
tics of lengthy descriptions with only a few tokens, thereby capturing user preferences efficiently
and effectively. However, as the image and language space are not inherently aligned, we propose
the Recommendation-oriented Image-LLM Semantic Alignment (RISA) module, which effectively
bridges the gap between these spaces. Furthermore, we propose the REtrieval-based Recommen-
dation via Image features (RERI) module, a retrieval-based recommendation approach, to enhance
both the reliability and efficiency of the recommender systems. Our extensive experiments demon-
strate that I-LLMRec outperforms natural language-based approaches in terms of both efficiency
and effectiveness. Regarding the limitation and future work, please refer to Appendix G

11The inclusion of specific feature types is applied both in model training (Equation 2) and in inference.
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Given the item’s metadata, including the title, attributes, and description, 
craft a concise summary:
Title: {TITLE}
Brand: {BRAND}
Category: {CATEGORY}
Description: {DESCRIPTION}
Answer:

Figure 6: Prompt for summarizing descriptions. The red-colored text denotes the actual metadata for
the item.

A PROMPT FOR SUMMARIZATION

Figure 6 shows the prompt used for description summarization. Following TRSR Zheng et al. (2024),
we incorporate attribute information along with the description to generate a concise summary.

B RECOMMENDATION PROTOCOL

In this section, we describe a comprehensive explanation of the recommendation protocol, which
is consistently applied to Attribute-based Representation, Description-based Representation (i.e.,
Full Description and Summarized Description), and I-LLMRec as introduced in Section 1. Note
that this recommendation protocol follows a retrieval-based recommendation approach similar to
the RERI module discussed in Section 3.3. Therefore, we recommend reading Section 3.3 first for
a deeper understanding. At a high level, we modify the way items are represented by replacing the
visual representation with either an attribute-based or description-based representation within Pi,
followed by a recommending process similar to RERI module.

Specifically, we first craft the prompt, which includes the task prompt (as shown in Figure 2) and
the semantics of user-interacted items in a sequence. Here, the item semantics depend on the item
representation approach, which plays a crucial role in capturing user preferences. Then, we append a
learnable token [REC] at the end, allowing this token to aggregate the semantics of items the user has
interacted with, thereby capturing user preferences. To obtain the corresponding representation, we
use the last hidden state of [REC] token, which serves as the LLM-guided user representation. Using
this representation, we retrieve relevant items by comparing with items’ visual, collaborative filtering
(CF), and textual features. More precisely, for each feature type, we compute affinity scores by
performing a dot-product between the LLM-guided user representation and item features. Based on
the summation of affinity score across feature types for all items, we rank the items and recommend
the Top-k items with the highest scores.

Similarity Score

Fr
eq

u
en

cy

Figure 7: Cosine similarity between item image-description pairs in Amazon Phone and Grocery
datasets and image-caption pairs in the COCO dataset using CLIP Radford et al. (2021).

C CONSISTENT OBSERVATION OF INFORMATION OVERLAP

We further investigate the information overlap between image and description associated with items,
which was explored in Section 1, by expanding these experiments to additional datasets and leverag-
ing another CLIP-based model. 1) Expanding to additional datasets: Building upon our previous

15
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Sport Art Grocery Phone
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Figure 8: Sigmoid-based similarity (ranging from 0 to 1) between item image-description pairs
across four datasets (Amazon Sport, Art, Grocery, and Phone datasets) using SigLIP Zhai et al.
(2023).

comparative experiments in Amazon Sport and Art—where we used CLIP Radford et al. (2021) to
measure cosine similarity in Section 1—we extend our analysis to the Amazon Grocery and Phone
datasets. As shown in Figure 7, the average similarity for Amazon Phone and Grocery is approxi-
mately 0.31, which is higher than 0.26 average similarity observed in well-aligned COCO image-
caption pairs. This consistent observation across multiple datasets further supports the information
overlap between item images and descriptions. 2) Leveraging another CLIP model: To further
explore the information overlap using a different CLIP variant, we select SigLIP Zhai et al. (2023),
a variant of CLIP with sigmoid loss function, to compute the similarity scores ranging from 0 to
1. Specifically, when we apply SigLIP to measure similarity between item image-description pairs
across all four datasets (Amazon Sport, Art, Grocery, and Phone), we observed that, as show in Fig-
ure 8, the majority of items exhibit similarity scores close to 1, further demonstrating the significant
information overlap between their image and description pairs.

D PROPOSED METHOD: I-LLMREC

"Template 1": "What brand will this user go for with the next item?"

"Template 2": "Which brand will the user choose for their next item?"

"Template 3": "What brand is the user likely to pick for their next purchase?"

"Template 4": "What brand will the user decide on for their next item?"

"Template 5": "Which brand could this user go with for their next product?"

Question Templates for Brand

Answer Template for Brand

"Template": "The brand of the next item to be consumed is {BRAND}"

"Template 1": "Which product category will the user shop from next?"

"Template 2": "Which category will the user choose for the next purchase?"

"Template 3": "From which category will the user's next item be selected?"

"Template 4": "What will be the next category of purchase for this user?"

"Template 5": "In which category will the user's next purchase fall?"

Question Templates for Category

Answer Template for Category

"Template": "The category of the next item to be consumed is {CATEGORY}"

"Template 1": "What's the title of the next item this user plan to buy?"

"Template 2": "Which item is this user likely to buy next?"

"Template 3": "What's the name of the next item this user is considering buying?"

"Template 4": "What is the title of the next product this user plans to buy?"

"Template 5": "What's the title of the next purchase this user is planning?"

Question Templates for Title

Answer Template for Title

"Template": "The title of the next item to be consumed is {TITLE}"

"Template 1": "Please describe the details of the next item that this user would consume."

"Template 2": "Please give a detailed description of the next item this user intends to consume."

"Template 3": "Could you describe the characteristics of the next item this user would consume?"

"Template 4": "Describe the features of the next item this user is likely to consume."

"Template 5": "Can you share the specifics of the next item this user is going to consume?"

Question Templates for Description

Answer Template for Description

"Template": "The details of the next item to be consumed is as follows: {FEATURE}"

Figure 9: Prompt template for RISA module. The red-colored text denotes the actual information of
an item.

D.1 RISA PROMPT TEMPLATES

Figure 9 shows the prompt template for RISA module of I-LLMRec. As described in Section 3.2,
we utilize the prompt templates to align the visual feature with the language space of LLMs by
training the adaptor network M .

D.2 DISCUSSION OF LLM-FINETUNING FOR I-LLMREC

A further benefit of I-LLMRec is that LLM fine-tuning is not mandatory, unlike the existing LLM-
based recommender systems (Lin et al., 2024; Bao et al., 2023; Tan et al., 2024; Zheng et al., 2024;
Liu et al., 2024b) that generally rely on costly fine-tuning of the LLM. Instead, we harness the
LLM’s intrinsic parametric knowledge to understand the user preferences. Throughout this paper,
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we opt to keep the LLM frozen to preserve the LLM’s intrinsic knowledge and improve the training
efficiency.

Table 3: Performance comparison when LLM back-
bone of I-LLMRec is fine-tuned using LoRA Hu
et al. (2021).

Sport Art
Hit@5 NDCG@5 Hit@5 NDCG@5

LLM Frozen 0.4570 0.3711 0.5883 0.4839
LLM fine-tuning with LoRA 0.4633 0.3772 0.5958 0.4949

Potential Improvement through LLM
fine-tuning Nevertheless, we explore po-
tential performance gains from fine-tuning
the LLM, a common approach in existing
LLM-based recommender systems Lin et al.
(2024); Bao et al. (2023); Tan et al. (2024);
Zheng et al. (2024); Liu et al. (2024b). How-
ever, since fully fine-tuning an LLM de-
mands substantial computational resources, we adopt the parameter-efficient fine-tuning strategy,
LoRA Hu et al. (2021), which introduces a small number of learnable rank matrices into each
LLM’s transformer layer. As shown in Table 3, we observed the performance improvement through
fine-tuning, indicating that there is room for further improvement within I-LLMRec. However, con-
sidering the computational cost, we opt to freeze the LLM.

E EXPERIMENTS

Table 4: Data statistics after preprocessing.
Dataset # Users # Items # Interactions Avg. Len

Sport 24,665 9,884 179,491 7.28
Grocery 84,896 25,632 739,628 8.71

Art 14,986 5,801 121,917 8.13
Phone 59,307 19,671 403,194 6.80

E.1 DATA STATISTICS

Table 4 shows the summary of the data statistics after preprocessing. Our experiments were con-
ducted on datasets of varying scale, ranging from Grocery, which has a large number of interactions,
to Art, which has relatively fewer interactions.

E.2 IMPLEMENTATION DETAILS

We employed Sheared LLaMA 2.7B (Xia et al., 2023) as the LLM backbone. For the visual encoder
V , we adopt SigLIP (Zhai et al., 2023), a variant of CLIP (Radford et al., 2021) with a sigmoid loss
function, to extract visual features. Regarding experiments with different LLMs and visual encoders,
please refer to Section E.10. We use a 2-layer MLP with ReLU activation function for the adaptor M
and the intermediate dimension is 512. In RERI module, we employ SBERT (Reimers, 2019) as the
textual encoder. To ensure consistency across the LLM backbone, we use the same Sheared LLaMA
2.7B for TALLRec, A-LLMRec, and TRSR. Since these models are limited to recommending items
only from a narrower item pool (i.e., 1 or 20), we apply the same RERI module for recommenda-
tion, which incorporates image, CF, and textual features, allowing them to recommend items from a
larger pool. This approach is acceptable since our main goal is to evaluate how effectively the LLM
captures user preferences through item expression. For TRSR, we use GPT-4o (OpenAI, 2024) to
summarize full item descriptions. For UniMP, we follow its original implementation, which utilizes
OpenFlamingo-4B-Instruct (Awadalla et al., 2023), a pre-trained multimodal LLM. Regarding train-
ing configurations, we set the learning rate to 0.001 and the batch size to 32. All models are trained
on an NVIDIA GeForce A6000 48GB GPU.

E.3 BASELINES

Baselines. We compare I-LLMRec with the following baselines:

Collaborative Filtering (CF) models.

• GRU4Rec (Hidasi, 2015) employs the RNN network to capture sequential user interactions.
• VBPR (He & McAuley, 2016b) enhances BPR (Rendle et al., 2012) by incorporating image

features to improve personalized ranking.
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• BERT4Rec (Sun et al., 2019) applies bidirectional transformers with masked item prediction to
capture complex user preference.

• SASRec uses self-attention mechanisms to capture long-term user preference.

LLM-based models.

• TALLRec (Bao et al., 2023) converts numerical IDs into titles while intentionally adding at-
tributes (i.e., brand and category), regarding it as a representative model of the Attribute-based
Representation approach.

• A-LLMRec (Kim et al., 2024b) express items by projecting the CF item embeddings into the
LLM along with title, enabling effective recommendation of warm items.

• TRSR (Zheng et al., 2024) is a representative work of the Description-based Representation
approach, which summarizes full item descriptions to effectively express items while leveraging
rich textual semantics.

Image-aware LLM-based models.

• UniMP (Wei et al., 2024) utilizes image features and attributes to represent items, and recom-
mends them through image tokens assigned as out-of-vocabulary.

• I-LLMRec+D (equiv. to I-LLMRec+TRSR)12 is a variant of I-LLMRec that represent items
using both image features and text description.

Note that the main difference between LLM-based models and I-LLMRec lies in how item seman-
tics are represented (i.e., attributes, CF, descriptions, or images) in that both share the same LLM
backbone and recommendation protocol.

Table 5: Performance results on three additional Amazon datasets (Automotive, Video, and Cloth-
ing) and the H&M Fashion dataset, with cosine similarity (Cosine Sim.) between item images and
descriptions measured using CLIP (Radford et al., 2021) is measured.

Model
Automotive

(Cosine Sim.: 0.3086)
Video

(Cosine Sim.: 0.2801)
Clothing

(Cosine Sim.: 0.3107)
H&M Fashion

(Cosine Sim.: 0.2847)
Hit@5 NDCG@5 Hit@5 NDCG@5 Hit@5 NDCG@5 Hit@5 NDCG@5

SASRec 0.4027 0.3078 0.6045 0.4713 0.4981 0.4690 0.4918 0.3885
TALLRec 0.4203 0.3107 0.6040 0.4521 0.4388 0.3660 0.3959 0.2827
I-LLMRec 0.4515 0.3379 0.6413 0.4915 0.5469 0.4927 0.5321 0.3949

E.4 ANALYSIS ON OTHER DATASETS

Behavior on visual-centric datasets. We evaluate on two visual-centric datasets (Amazon Cloth-
ing and H&M Fashion datasets), where users’ choices are likely influenced by visual attributes, and
two less visual-centric datasets (Amazon Automotive and Video) to examine how I-LLMRec per-
forms in visual-centric datasets compared to baselines, including the collaborative filtering model
(SASRec(Kang & McAuley, 2018)) and natural language-based LLM approach (TALLRec (Bao
et al., 2023)). As shown in Table 5, we observe that TALLRec performs on par with SASRec on the
less visual-centric datasets, while showing a significant performance drop on visual-centric ones.
It indicates that natural language alone is insufficient to represent items for LLMs in vision-driven
contexts, making it challenging to capture user preferences driven by visual attributes. I-LLMRec,
however, effectively leverages image information, yielding significantly higher performance than
TALLRec, especially on visual-centric datasets. These results highlight the particular effectiveness
of I-LLMRec in vision-driven contexts, while its solid performance on Automotive and Video fur-
ther demonstrate its general effectiveness.

Generalization of the observation. To further demonstrate the information overlap between item
images and descriptions discussed in Section 1, we measured the cosine similarity between images
and descriptions on three additional Amazon datasets (Automotive, Video, and Clothing) as well as
the H&M Fashion dataset (Ling et al., 2022) from another domain. As shown in Table 5, the high
cosine similarity (Cosine Sim.) reported under each dataset consistently reveals a strong semantic

12For each item in the user interaction, we append the description as "Description: Di" after Pi within the
prompt, i.e., Pi = {Title : ITEM_TITLE,Visual Representation : [VISUAL],Description : Di }

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

overlap between images and descriptions, alongside superior performance of I-LLMRec over the
baselines. While we could not cover every real-world dataset, the consistent results across eight
datasets—including the four in the main paper—demonstrate the general applicability of informa-
tion overlap, suggesting that I-LLMRec can be broadly applied.
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Amazon Sport

Item Group 1
(Cold)

Item Group 2 Item Group 3 Item Group 4 Item Group 5
(Warm)

Item Group 1
(Cold)

Item Group 2 Item Group 3 Item Group 4 Item Group 5
(Warm)

Amazon Art

Figure 10: Performance across item groups, where higher IDs indicate warmer item groups.

E.5 EFFECTIVENESS OF FEATURE TYPES ACROSS COLD/WARM ITEMS

Building on the experiments regarding the effect of feature types in Section 4.4 of the main paper,
we further analyze the impact of different feature types under cold and warm item recommendations
settings. Specifically, we follow (Liu et al., 2023b) by sorting the items in ascending order based on
the frequency of interaction and dividing them into five equally sized groups, where a higher group
ID indicates a warmer item group, Then, we compare the recommendation performance across these
groups. As shown in Figure 10, we observe that using image features (blue bar) generally outper-
forms CF features (orange bar) for cold items (lower ID groups). However, as the item group tran-
sitions from cold to warm, CF’s effectiveness improves, eventually surpassing Image in Item Group
5 (Warm). This suggests that CF is particularly effective for recommending warm items. With these
insights, combining Image and CF (green bar) helps mitigate CF’s weakness in recommending cold
items, resulting in higher performance than CF alone in Item Group 1-2. At the same time, the CF
features compensate for weakness of the image features in recommending warm items, leading to
better performance than image alone in Item Group 4-5. Furthermore, adding textual features (red
bar) further boosts performance across all Item Groups, exceeding the performance of Image+CF.
This analysis highlights how different feature types complement each other to enhance recommen-
dation.

Unseen Items in the Training stage. To further demonstrate the effectiveness of image features
for cold-start items, we evaluate the Sports and Art datasets by selecting users whose test items do
not appear in the training set (i.e., extreme cold-start case), resulting in 302 users in Sports and 29
in Art. In this setting, using only CF features in the RERI module leads to near-zero performance,
since unseen items retain untrained initial embeddings. On the other hand, image features achieve a
Hit@5 of 0.3245 on Sports and 0.0689 on Art, demonstrating their effectiveness in recommending
extreme cold start items.

E.6 MISSING IMAGE SCENARIO

Table 6: Performance when item images are missing.

Sport Art
Hit@5 NDCG@5 Hit@5 NDCG@5

TALLRec 0.3801 0.2938 0.5663 0.4572
TRSR 0.4302 0.3375 0.5841 0.4758
I-LLMRec w/ missing images 0.4451 0.3589 0.5805 0.4789

In this section, we explore how to handle
scenarios where item images are missing
and evaluate how effectively we can man-
age them. Specifically, we randomly re-
move 50% of the item images from the en-
tire item pool. As a result, these missing im-
ages cannot be used for item semantics representation (Pi) and retrieval-based recommendation
(Equation 1 and recku in the main paper). To compensate for the missing images, we substitute them
with readily available textual descriptions. Similarly, for retrieval-based recommendations, when
item images are missing, we extract textual features derived from descriptions using SigLIP (Zhai
et al., 2023) text encoder rather than extracting visual features from images using SigLIP visual en-
coder. As shown in Table 6, I-LLMRec trained with half of the items missing images outperforms the
baselines (TALLRec and TRSR), even though the baselines were trained without any missing item
images. This demonstrate the effectiveness of I-LLMRec in handling the missing image scenario,
which shows the practicality of I-LLMRec in reality.

E.7 EXPLORING SENSITIVITY TO IMAGE QUALITY
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Table 7: Performance under low-quality images.

Row Level of Image Quality Hit@5 NDCG@5

Using only image features
(a) I-LLMRec w/ low quality images 0.3704 0.2936
(b) I-LLMRec w/ high quality images 0.4316 0.3403

Using all features (Image, CF, Text)
(c) I-LLMRec w/ low quality images 0.4459 0.3597
(d) I-LLMRec w/ high quality images 0.4570 0.3711

Throughout the paper, we use high-
resolution images, i.e., high-quality item
images. However, in the real-world ap-
plications, it may not always be feasi-
ble to obtain such high-quality item im-
ages, and systems may instead rely on
low-quality ones. To examine this issue,
we investigate how I-LLMRec performs
when the low-quality images are used.
Specifically, we replace high-resolution
images with low-resolution versions originally provided in the metadata. We evaluate this setting on
the Amazon Sport dataset under two conditions: (i) using only image features in both training and
inference to isolate the effect of image quality, and (ii) using all features13 (image, text, and CF).
As shown in Table 7, we observe that performance drops significantly when relying solely on image
features (row (a) vs. (b)), while the model remained robust when other features were included (row
(c) vs. (d)). These observations indicate that while I-LLMRec is sensitive to image quality when
used in isolation, it can still effectively handle low-quality images by leveraging complementary
information.

E.8 TRAINING STRATEGY

Table 8: Training Strategy.

Training Strategy Sport Art
Hit@5 NDCG@5 Hit@5 NDCG@5

End-to-End 0.4570 0.3711 0.5883 0.4839
Stage1+Stage2 0.4604 0.3747 0.5858 0.4887

Throughout this paper, we optimize our
model using an end-to-end training strat-
egy to ensure ease of implementation
and learning efficiency. However, in this
section, we explore the impact of an
alternative two-stage training strategy,
where we separate the RISA and RERI
modules. Specifically, for stage 1, we train the adaptor M through the RISA module to initially
align the visual space with the language space. For stage 2, we freeze the adaptor and train only F ∗

u
and F ∗

i (∗=[Img, CF, Text]) through the RERI module. As shown in Table 8, the two-stage strategy
shows performance comparable to the end-to-end strategy, indicating that neither strategy offers a
clear advantage over the other. Given this, we opt for the end-to-end training strategy to facilitate
the ease of implementation and training efficiency.

Sport

Positive Set

Art

Negative Set

Sports Apparel Items Tactical and Survival-related Items

Easily Identifiable Visual Items Items Containing Small Text or Fine Details

Figure 11: Case studies of impact of figure types in images.

E.9 CASE STUDY ON THE IMPACT OF FIGURE TYPES

To study which figure types influence performance, we analyzed the item histories of users who
correctly predicted the test item and selected their top 5 most frequently consumed items (positive
set), as well as the top 5 items from users who failed to predict the test item correctly (negative set),
using the Amazon Sport and Art datasets. We hypothesize that items in the positive set help LLMs
capture user preferences, whereas items in the negative set have the opposite effect. As shown in
Figure 11, we observe that in the Sport dataset, the positive set mainly consists of sports apparel
(e.g., shoe, athletic shirts), while the negative set includes tactical or survival-related gear (e.g.,
camping pillow, lightbulb). This suggests that the functional category or intended use of an item
appears to have an influence on performance. On the other hand, in the Art dataset, items in the

13The LLM takes only the item images consumed by users as input, whereas the retrieval-based recommen-
dation leverages image, text, and CF features.
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positive set typically feature clear and easily recognizable visuals (e.g., paintbrush, yarn), whereas
the negative set contains items that require interpreting small text or fine details to identify (e.g., a
dark chipboard with a small label). These findings indicate that images providing clear visual cues
are more beneficial for the model than those requiring detailed or text-based interpretation, instead
of the functional category effect observed in the Sport dataset. In conclusion, the types of figures
within images that affect performance seem to vary depending on the dataset.

E.10 IMPACT OF DIFFERENT LLMS AND VISION ENCODERS

Table 9: Impact of the different backbones.

LLM Vision Encoder Sport Art
Hit@5 NDCG@5 Hit@5 NDCG@5

LLaMA-2.7B SigLIP 0.4570 0.3711 0.5883 0.4839
LLaMA-2.7B CLIP 0.4476 0.3560 0.5836 0.4796

Vicuna 1.5-7B SigLIP 0.4670 0.3779 0.5943 0.4930
Vicuna 1.5-7B CLIP 0.4552 0.3677 0.5885 0.4892

To investigate the impact of the back-
bone models on the recommendation
performance of I-LLMRec, we evalu-
ated our model by replacing different
backbone models. For the LLM, we used
Sheared LLaMA-2.7B Xia et al. (2023)
and Vicuna 1.5-7B Chiang et al. (2023),
an improved version of LLaMA-7B Touvron et al. (2023a). For the vision encoder, we used CLIP14

Radford et al. (2021) and SigLIP15 Zhai et al. (2023), with the advanced version of CLIP scaling
with sigmoid loss. Table 9 shows the following observations: 1) Given the same vision encoder,
I-LLMRec with Vicuna 1.5-7B outperforms the model with LLaMA-2.7B. This improvement is
likely attributed to Vicuna 1.5-7B’s superior semantic reasoning capability, allowing it to capture
user preferences more effectively. 2) Given the same LLM backbone, I-LLMRec with SigLIP per-
forms better than the version with CLIP. This suggests that models that better capture visual features
are more effective in delivering item semantics, thereby enabling the LLM to better understand the
item semantics. In summary, employing more powerful LLMs and vision encoders leads to improve-
ments in recommendation performance, as these models effectively capture item semantics and user
preference.

F ADDITIONAL RELATED WORKS

Sequential Recommendation. Our setup closely aligns with the sequential recommendation, where
a user’s item interaction history is listed as a sequence in chronological order, and the goal is to pre-
dict the user’s next interaction item. Early studies process user sequences via the Markov chain
for sequential recommendation (He & McAuley, 2016a; Mahmood & Ricci, 2007; Wang et al.,
2015). With the advancement of deep learning, RNNs were used for sequence modeling to capture
user preference (Hidasi, 2015; Li et al., 2017), while studies using CNN treat previous interacted
items’ embedding matrices as images, enabling the convolutional operation to consider user se-
quences (Tang & Wang, 2018; Yuan et al., 2019; Kim et al., 2016). Recently, with the emergence of
Transformer (Vaswani, 2017), the self-attention mechanism has been applied to sequential recom-
mendations (Kang & McAuley, 2018; Sun et al., 2019; Xu et al., 2021). More recently, the focus has
shifted towards leveraging rich side information associated with items (e.g., images or text) in the
sequential recommendation. Specifically, TempRec (Wu et al., 2022) encodes textual information of
items to strengthen item embeddings, while MMMLP (Liang et al., 2023) fuses visual and textual
features in the user sequence to capture fine-grained user preferences.

Multimodal LLM-based Recommendation. Recent studies (Zhou et al., 2025; Ye et al., 2025;
Wei et al., 2024) have explored leveraging visual information in LLMs for recommendation tasks.
Specifically, MSRBench (Zhou et al., 2025) investigates the use of off-the-shelf Multimodal LLMs
(e.g., GPT-4V (Achiam et al., 2023)) for recommendation in various settings, while MLLM-MSR
(Ye et al., 2025) and UniMP (Wei et al., 2024) fine-tune the Multimodal LLMs (Awadalla et al.,
2023; Liu et al., 2023a) developed in computer vision to improve recommendation performance.
Nonetheless, these studies mainly emphasize leveraging Multimodal LLMs to merely boost perfor-
mance by feeding image features into LLMs, offering limited analysis of image–description overlap
and lacking effective alignment strategies between visual and language spaces tailored to the recom-
mendation context.

14https://huggingface.co/openai/clip-vit-large-patch14-336
15https://huggingface.co/google/siglip-so400m-patch14-384
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G LIMITATION AND FUTURE WORK

In this paper, we mainly exploit item images to capture user preferences effectively and efficiently
for LLMs. A potential limitation of this approach is the possible underutilization of textual infor-
mation. Specifically, even if item images are sufficient to capture user preferences by offering rich
semantics, textual descriptions may still provide complementary information—such as subtle at-
tributes or contextual nuances—that are not easily conveyed by images. However, extracting such
information requires carefully disentangling text-specific cues from overlapping visual content and
isolating only those parts of text that contribute meaningfully to recommendation tasks, which is a
challenging and non-trivial process. Although the contribution of this information is estimated to
be small according to our results in Section 4.2, combining it with image features could further en-
hance recommendation performance. We therefore identify this as a promising direction for future
research.
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